On some factorizations of operators

Jorge Antezana ${ }^{\mathrm{a}, \mathrm{b}, 1}$, M. Laura Arias ${ }^{\mathrm{a}, \mathrm{c}, 2}$, Gustavo Corach ${ }^{\mathrm{a}, \mathrm{c}, 2, *}$
${ }^{a}$ Instituto Argentino de Matemática "Alberto P. Calderón", CONICET
Saavedra 15, Piso 3 (1083), Buenos Aires, Argentina.
${ }^{b}$ Dpto. de Matemática, FCE-UNLP, La Plata, Argentina
${ }^{c}$ Dpto. de Matemática, Facultad de Ingeniería, Universidad de Buenos Aires.

Abstract

Given two subsets \mathcal{A} and \mathcal{B} of the algebra of bounded linear operators on a Hilbert space \mathcal{H} we denote by $\mathcal{A B}:=\{A B: A \in \mathcal{A}, B \in \mathcal{B}\}$. The goal of this article is to describe $\mathcal{A B}$ if \mathcal{A} and \mathcal{B} denote classes of projections, partial isometries, positive (semidefinite) operators, etc. Moreover, fixed $T \in \mathcal{A B}$ we shall describe $(\mathcal{A B})_{T}:=\{(A, B) \in \mathcal{A} \times \mathcal{B}: A B=T\}$, $p_{1}\left((\mathcal{A B})_{T}\right):=\{A \in \mathcal{A}: T=A B$ for some $B \in \mathcal{B}\}$ and $p_{2}\left((\mathcal{A B})_{T}\right):=\{B \in \mathcal{B}: T=$ $A B$ for some $A \in \mathcal{A}\}$.

Keywords: Factorizations, polar decomposition, projections, partial isometries 2010 MSC: 47A05

1. Introduction

Let \mathcal{H} be a Hilbert space and denote by \mathcal{L} the algebra of bounded linear operators on \mathcal{H}. The main goal of this paper is the characterization of

$$
\begin{equation*}
\mathcal{A B}=\{A B: A \in \mathcal{A}, B \in \mathcal{B}\}, \tag{1}
\end{equation*}
$$

for certain subsets \mathcal{A} and \mathcal{B} of \mathcal{L}. Moreover, for $T \in \mathcal{A B}$ we study the set:

$$
(\mathcal{A B})_{T}:=\{(A, B) \in \mathcal{A} \times \mathcal{B}: A B=T\}
$$

and its natural projections

$$
p_{1}\left((\mathcal{A B})_{T}\right):=\{A \in \mathcal{A}: T=A B \text { for some } B \in \mathcal{B}\}
$$

and

$$
p_{2}\left((\mathcal{A B})_{T}\right):=\{B \in \mathcal{B}: T=A B \text { for some } A \in \mathcal{A}\} .
$$

Of course, it looks impossible to find methods which allow to deal with the problem for general \mathcal{A} and \mathcal{B}. We shall show that in many concrete natural cases, the problem is not

[^0]trivial. Observe that, if we know a characterization of $\mathcal{A B}$, then for each $T \in \mathcal{A B}$ determining $(\mathcal{A B})_{T}$ is a kind of inverse problem. Even if $(\mathcal{A B})_{T}$ is determined, it looks difficult to choose, among all factorizations $A B=T$, a single one $A_{0} B_{0}=T$ with nice properties (e.g., $\left\|A_{0}-B_{0}\right\| \leq\|A-B\|$ for every $(A, B) \in(\mathcal{A B})_{T}$, or $\left(A_{0}-B_{0}\right)^{*}\left(A_{0}-B_{0}\right) \leq(A-B)^{*}(A-B)$ for every $\left.(A, B) \in(\mathcal{A B})_{T}\right)$. The main goals of our study will be:
(a) Characterize $\mathcal{A B}$.
(b) For $T \in \mathcal{A B}$, characterize $(\mathcal{A B})_{T}, p_{1}\left((\mathcal{A B})_{T}\right), p_{2}\left((\mathcal{A B})_{T}\right)$.
(c) Find a mapping $\phi: \mathcal{A B} \rightarrow \mathcal{A} \times \mathcal{B}$ such that $\phi(T)$ belongs to $(\mathcal{A B})_{T}$, where it has some optimal properties.

We shall restrict our study to the following cases:
i. $\mathcal{A}=\mathcal{J}=$ the set of partial isometries, $\mathcal{B}=\mathcal{L}^{+}=$the cone of positive (semi-definite) operators.
ii. $\mathcal{A}=\mathcal{P}=$ the set of Hermitian projections, $\mathcal{B}=\mathcal{U}=$ the group of unitary operators.
iii. $\mathcal{A}=\mathcal{P}, \mathcal{B}=\mathcal{G}=$ the group of invertible operators.
iv. $\mathcal{A}=\mathcal{Q}=$ the set of all oblique (i.e., not necessarily Hermitian) projections, $\mathcal{B}=\mathcal{U}$.
v. $\mathcal{A}=\mathcal{Q}, \mathcal{B}=\mathcal{G}$.
vi. $\mathcal{A}=\mathcal{P}, \mathcal{B}=\mathcal{Q}$.

Case i. consists on studying general forms of polar decompositions of any $T \in \mathcal{L}$. It follows that the classic polar decomposition $T=V|T|$, with $N(V)=N(T)$, is optimal in several senses. If \mathcal{A} or \mathcal{B} is \mathcal{P}, the determination of $\mathcal{A B}$ is a particular dilation problem, where the "big" space of the dilation is fixed. The choice of the cases $\mathcal{P U}, \mathcal{P G}, \mathcal{Q G}, \mathcal{Q U}$ is related to some problems in frame theory. We shall explain this in the introduction of Section 3. In case i. we complete goals (a), (b), (c); in cases ii. - v. we complete goals (a), (b), in case vi. we solve (a), (c). With similar methods we achieve (a) for cases where \mathcal{A} is \mathcal{P} or \mathcal{Q} and \mathcal{B} is one of the following: \mathcal{I}, the set of isometries, \mathcal{I}^{*}, the set of co-isometries (i.e., $T \in \mathcal{I}^{*} \Leftrightarrow T^{*} \in \mathcal{I}$), \mathcal{L}^{h}, the real subspace of Hermitian operators, and so on.

For a nice survey (up to 1990) of factorization problems, we refer the reader to P. Y. Wu's paper [26], which also deals with sets of the type $\mathcal{A}^{n}=\mathcal{A} \ldots \mathcal{A}(n$ times $)$ and $\cup_{n=1}^{\infty} \mathcal{A}^{n}$.

We describe now a sample of known results which enter into the scheme we are following here. The classical polar decomposition of John von Neumann [19] provides us the first example of characterization of $\mathcal{A B}$. Recall that it says that for every $T \in \mathcal{L}$ there exists a unique partial isometry V_{T} and a unique positive operator A such that $T=V_{T} A$ and $N\left(V_{T}\right)=N(A)$, where $N(T)$ is the nullspace of $T \in \mathcal{L}$. In fact, $A=|T|=\left(T^{*} T\right)^{1 / 2}$ and $A=V_{T}^{*} T$. It also holds $T=B V_{T}$, where $B=\left(T T^{*}\right)^{1 / 2}$, and this is the unique pair (B, V) such that $B \in \mathcal{L}^{+}, V \in \mathcal{J}$ and $R(B)=R(T)$, where $R(T)$ denotes the range of T. In particular, it says that $\mathcal{J} \mathcal{L}^{+}=\mathcal{L}=\mathcal{L}^{+} \mathcal{J}$. It also provides the mapping $\phi: \mathcal{L}=\mathcal{J} \mathcal{L}^{+}: \rightarrow \mathcal{J} \times \mathcal{L}^{+}$ defined by $\phi(T)=\left(V_{T},|T|\right)$, which is a good candidate for goal (c).

An invertible operator $S \in \mathcal{L}$ is called a symmetry if $S^{-1}=S=S^{*}$; the set of all symmetries is denoted by \mathcal{S}. Observe that $\mathcal{S}=\mathcal{U} \cap \mathcal{L}^{h}$. Chandler Davis [10] proved that a unitary operator U belongs to $\mathcal{S} \mathcal{S}$ if and only if U is unitarily equivalent to U^{*}, i.e.,

$$
\mathcal{S S}=\left\{U \in \mathcal{U}: U \sim_{\mathcal{U}} U^{*}\right\}
$$

The paper by H. Radjavi and J. P. Williams [21] contains several results of type (a). They prove that, if $\operatorname{dim} \mathcal{H}<\infty$ then

$$
\begin{aligned}
\mathcal{L}^{h} \mathcal{L}^{h} & =\mathcal{L}^{h} \mathcal{G}^{h}=\mathcal{G}^{h} \mathcal{L}^{h}=\left\{T \in \mathcal{L}: \exists A \in \mathcal{G}^{h} \text { such that } A^{-1} T A=T^{*}\right\} \\
& =\left\{T \in \mathcal{L}: \exists G \in \mathcal{G} \text { such that } G^{-1} T G=T^{*}\right\}
\end{aligned}
$$

There is a proof of these identities in [21, Theorem 1]; in the same paper it is shown that, for an infinite dimensional \mathcal{H}, the first equality does not hold and it is unknown if the last equality holds. Theorem 3 of [21] characterizes

$$
\mathcal{S} \mathcal{L}^{h}=\left\{T \in \mathcal{L}: T \sim_{\mathcal{U}} T^{*}\right\}
$$

and Theorem 2 of the same paper proves that

$$
\mathcal{G}^{+} \mathcal{L}^{h}=\left\{T \in \mathcal{L}: \exists B \in \mathcal{L}^{h} \text { such that } T \sim B\right\}
$$

Radjavi and Williams also show

$$
\mathcal{P P}=\left\{T \in \mathcal{L}: T T^{*} T=T^{2}\right\}
$$

(an unpublished theorem by T. Crimmins) and

$$
\mathcal{P} \mathcal{L}^{h}=\left\{T \in \mathcal{L}:\left(T^{*}\right)^{2} T=T^{*} T^{2}\right\}
$$

in Theorems 8 and 9 of [21]. L. G. Brown [5] proved that any contraction C can be decomposed as $C=S^{*} W$ for two unilateral shifts S, W. In particular, this proves

$$
\mathcal{J} \mathcal{J}=\mathcal{C}
$$

where $\mathcal{C}:=\{T \in \mathcal{L}:\|T\| \leq 1\}$. About factorizations in idempotent matrices, C. S. Ballantine [4] proved that

$$
\mathcal{Q}^{k}=\underbrace{\mathcal{Q} \cdots \mathcal{Q}}_{\mathrm{k} \text { times }}=\{T \in \mathcal{L}: \operatorname{rank}(T-I) \leq k \operatorname{dim} N(T)\}
$$

For infinite dimensional spaces, R. J. H. Dawlings [11] proved that $T \in \mathcal{Q}^{k}$ for some k if and only if one of the following holds: (i) $T=I$, (ii) $\operatorname{dim} N(T)=\operatorname{dim} N\left(T^{*}\right)=\infty$; (iii) $0<\operatorname{dim} N(T)=\operatorname{dim} N\left(T^{*}\right)$ and $\operatorname{dim} N(T-I)^{\perp}<\infty$. For partial isometries in a finite dimensional space, K. H. Kuo and P. Y. Wu [16] proved that

$$
\mathcal{J}^{k}=\left\{T \in \mathcal{C}: \operatorname{rank}\left(I-T^{*} T\right) \leq k \operatorname{dim} N(T)\right\}
$$

As mentioned before, the survey by Wu [26] describes $\mathcal{A B}$ and \mathcal{A}^{n} for several classes of operators \mathcal{A} and \mathcal{B}. In particular, it is proven that

$$
\mathcal{L}^{+} \mathcal{G}^{+}=\mathcal{G}^{+} \mathcal{L}^{+}=\left\{T \in \mathcal{L}: \exists A \in \mathcal{L}^{+} \text {such that } T \sim A\right\}
$$

[26, Theorem 2.9]. More recently, in [8] there is an extensive study of $\mathcal{P} \mathcal{P}$. From now on, $P_{\mathcal{S}}$ denotes the orthogonal projection in \mathcal{L} with range \mathcal{S}. The study developed in [8] includes a
characterization of $(\mathcal{P} \mathcal{P})_{T}$ for every $T \in \mathcal{P} \mathcal{P}$ and some minimality criterion. More precisely, if $T \in \mathcal{P P}$ then

$$
\begin{array}{r}
(\mathcal{P P})_{T}=\left\{\left(P_{\mathcal{M}_{1}}, P_{\mathcal{M}_{2}}\right): \text { there exist closed subspaces } \mathcal{N}_{i} \text { of } \mathcal{M}_{i} \text { s.t. } \mathcal{M}_{1}=\overline{R(T)} \oplus \mathcal{N}_{1}\right. \\
\\
\left.\mathcal{M}_{2}=N(T)^{\perp} \oplus \mathcal{N}_{2}, \mathcal{N}_{1} \perp \mathcal{N}_{2} \text { and } \mathcal{N}_{1} \oplus \mathcal{N}_{2} \subseteq R(T)^{\perp} \cap N(T)\right\}
\end{array}
$$

Crimmins' proofs of the characterization of $\mathcal{P} \mathcal{P}$ shows that if $T \in \mathcal{P} \mathcal{P}$ then $T=P_{\overline{R(T)}} P_{N(T)^{\perp}}$. The pair $\left(P_{\overline{R(T)}}, P_{N(T)^{\perp}}\right) \in(\mathcal{P} \mathcal{P})_{T}$ turns to be minimal in the sense that $\overline{R(T)} \subseteq \mathcal{M}$ and $N(T) \subseteq \mathcal{N}$ and $\left(P_{\overline{R(T)}}-P_{N(T)^{\perp}}\right)^{2} \leq\left(P_{\mathcal{M}}-P_{\mathcal{N}}\right)^{2}$ if $T=P_{\mathcal{M}} P_{\mathcal{N}}$. Of course, this implies that $\left\|P_{R(T)}-P_{N(T)^{\perp}}\right\| \leq\left\|P_{\mathcal{M}}-P_{\mathcal{N}}\right\|$, [8, Corollary 3.9]. According to our program (a), (b), (c), paper [8] completely solves the case $\mathcal{P} \mathcal{P}$, by providing a mapping $\phi: \mathcal{P} \mathcal{P} \rightarrow \mathcal{P} \times \mathcal{P}$, namely $\phi(T)=\left(P_{\overline{R(T)}}, P_{\left.N(T)^{\perp}\right)}\right)$, such that $\phi(T) \in(\mathcal{P} \mathcal{P})_{T}$ and $\phi(T)$ is minimal in the senses mentioned above. The paper [2] contains an analogous treatment of $\mathcal{P} \mathcal{L}^{+}$. It is proven that

$$
\mathcal{P} \mathcal{L}^{+}=\left\{T \in \mathcal{L}: \exists \lambda>0 \text { such that }\left(T^{*} T\right)^{2} \leq \lambda T^{*} T^{2}\right\},
$$

[2, Theorem 3.2], and that for every $T \in \mathcal{P} \mathcal{L}^{+}$there exists a well-defined $A_{T} \in \mathcal{L}^{+}$such that

$$
\begin{aligned}
\left(\mathcal{P} \mathcal{L}^{+}\right)_{T}=\{(P, A): R(P)= & \overline{R(T)} \oplus \overline{\mathcal{M}} \text { with } \mathcal{M} \subseteq N(T) \text { and } \\
& \left.A=A_{T}+(I-P) C(I-P) \text { with } C \in \mathcal{L}^{+}\right\}
\end{aligned}
$$

[2, Theorem 4.9]. The pair $\left(P_{\overline{R(T)}}, A_{T}\right)$ has also minimal properties in $\left(\mathcal{P} \mathcal{L}^{+}\right)_{T}$. If $T \in \mathcal{P} \mathcal{P}$ it turns out that $A_{T}=P_{N(T)^{\perp}}$. Again, paper [2] completely solves the case $\mathcal{P} \mathcal{L}^{+}$, and $\phi(T)=\left(P_{\overline{R(T)}}, A_{T}\right)$ has minimal properties in $\left(\mathcal{P} \mathcal{L}^{+}\right)_{T}$. For the case $\mathcal{P} \mathcal{G}^{+}$, Theorem 3.3 in [2] contains the answer:

$$
\mathcal{P} \mathcal{G}^{+}=\left\{T \in \mathcal{L}_{c r}: R(T)+N(T)=\mathcal{H}, T P_{R(T)} \in \mathcal{L}^{+}\right\}
$$

where $\mathcal{L}_{c r}$ is the set of closed range operators in \mathcal{L}. For $T \in \mathcal{P} \mathcal{G}^{+}$it holds $\left(\mathcal{P} \mathcal{G}^{+}\right)_{T}=\{(P, A)$: $A=\left(\left((T P)^{1 / 2}\right)^{\dagger} T\right)^{*}\left((T P)^{1 / 2}\right)^{\dagger} T+(I-P) C(I-P), C \in \mathcal{L}^{+}$and $\left.P=P_{R(T)}\right\}$, see [2, Corollary 4.5]. Here, B^{\dagger} denotes the Moore-Penrose generalized inverse of $B \in L(\mathcal{H})$.

We describe now the results of this paper. Section 2 contains the study of the case $\mathcal{A}=\mathcal{J}$ and $\mathcal{B}=\mathcal{L}^{+}$, i.e. the case of (generalized) polar decompositions. For every $T \in \mathcal{L}=$ $\mathcal{J} \mathcal{L}^{+}=\mathcal{L}^{+} \mathcal{J}$, the set $\left(\mathcal{J} \mathcal{L}^{+}\right)_{T}$ is determined. Among other properties, if $(V, A) \in\left(\mathcal{J} \mathcal{L}^{+}\right)_{T}$ then $V^{*} T \in \mathcal{L}^{+}$and the operator $A_{V^{*} T}$, which appears in the treatment of $\mathcal{P} \mathcal{L}^{+}$mentioned before, plays a relevant role. More precisely,

$$
\left(\mathcal{J} \mathcal{L}^{+}\right)_{T}=\left\{(V, A) \in \mathcal{J} \times \mathcal{L}^{+}: \begin{array}{c}
T T^{*} \leq \lambda T V^{*} \text { for some } \lambda>0 \\
\left.A=A_{V^{*} T}+\left(I-V^{*} V\right) C\left(I-V^{*} V\right) \text { for some } \mathrm{C} \in \mathcal{L}^{+}\right\}
\end{array}\right\}
$$

As a corollary, we get descriptions of $\mathcal{P} \mathcal{J}$ and $\mathcal{J} \mathcal{P}$. It is also proved that $\phi(T)=\left(V_{T},|T|\right)$ has the following optimal properties: $R\left(V_{T}\right) \subseteq R(V)$ and $|T| \leq A,\left\|V_{T}-|T|\right\| \leq\|V-A\|$ and $\left(V_{T}-|T|\right)\left(V_{T}-|T|\right)^{*} \leq(V-A)(V-A)^{*}$ for every $(V, A) \in\left(\mathcal{J} \mathcal{L}^{+}\right)_{T}$. Section 3 contains the results of the case $\mathcal{A}=\mathcal{P}$ and $\mathcal{B}=\mathcal{U}$. It holds that $\mathcal{P U}=\left\{V \in \mathcal{J}: \operatorname{dim} N(V)=\operatorname{dim} N\left(V^{*}\right)\right\}$. Thus, using index terminology, $\mathcal{P U}$ consists of all zero index partial isometries. Moreover, for $T \in \mathcal{P U}$ it holds $(\mathcal{P U})_{T}=\left\{(P, U) \in \mathcal{P} \times \mathcal{U}: P=P_{R(T)}\right.$ and $U=T+W$ where $W \in$
\mathcal{J} with $N(W)^{\perp}=N(T)$ and $\left.R(W)=R(T)^{\perp}\right\}, p_{1}\left((\mathcal{P U})_{T}\right)=\left\{P_{R(T)}\right\}$ and $p_{2}\left((\mathcal{P U})_{T}\right)=$ $\left\{T+W: W \in \mathcal{J}\right.$ with $N(W)^{\perp}=N(T)$ and $\left.R(W)=R(T)^{\perp}\right\}$. Section 4 contains the results about $\mathcal{P G}$ and $\mathcal{Q G}$. These sets coincide and consist of all $T \in \mathcal{L}_{c r}$ with index zero, i.e., $\operatorname{dim} N(T)=\operatorname{dim} N\left(T^{*}\right)$. In Section 5 we study the case $\mathcal{Q U}$. We prove that

$$
\mathcal{Q U}=\left\{T \in \mathcal{L}: \begin{array}{c}
\operatorname{dim} N(T)=\operatorname{dim} N\left(T^{*}\right) \\
\operatorname{dim} \frac{\gamma\left(\left|T^{*}\right|\right)>1}{R\left(T T^{*}-P_{R(T)}\right)} \leq \operatorname{dim} R(T)^{\perp}
\end{array}\right\}
$$

where γ denotes the reduced minimum modulus, i.e., $\gamma(T)=\inf \left\{\|T x\|: x \in N(T)^{\perp},\|x\|=\right.$ $1\}$, and for $T \in \mathcal{Q U}$ it holds

$$
(\mathcal{Q U})_{T}=\left\{\begin{array}{c}
Q \in \mathcal{Q} \\
\left.\left(Q, Q^{*}\left(T T^{*}\right)^{\dagger} T+W\right): \begin{array}{c}
\left|Q^{*}\right|=\left|T^{*}\right| \\
W \in \mathcal{J} \text { with } N(W)=N(T)^{\perp}, R(W)=N(Q)
\end{array}\right\} . . . ~ . ~
\end{array}\right.
$$

Section 6 is devoted to $\mathcal{P Q}$. We prove that $\mathcal{P} \mathcal{Q}=\{T \in \mathcal{L}: R(T(I-T)) \subseteq R(T(I-$ $P)$) where $\left.P=P_{\overline{R(T)}}\right\}$, and given $T \in \mathcal{P Q}$ if $Q_{T}:=T+(T(I-P))^{\dagger}\left(T-T^{2}\right)$ then $Q_{T} \in$ $p_{2}\left((\mathcal{P Q})_{T}\right)$ and the pair $\left(P, Q_{T}\right)$ belongs to $(\mathcal{P} \mathcal{Q})_{T}$ and it is minimal in the following senses: $P \leq \tilde{P}$ for all $\tilde{P} \in p_{1}\left((\mathcal{P Q})_{T}\right), Q_{T}^{*} Q_{T} \leq \tilde{Q}^{*} \tilde{Q}$ for all $\tilde{Q} \in p_{2}\left((\mathcal{P Q})_{T}\right)$ and $\left(P-Q_{T}\right)^{*}(P-$ $\left.Q_{T}\right) \leq(\tilde{P}-\tilde{Q})^{*}(\tilde{P}-\tilde{Q})$ for every $(\tilde{P}, \tilde{Q}) \in(\mathcal{P Q})_{T}$. Finally, Section 7 contains miscellaneous results about $\mathcal{P} \mathcal{I}^{*}, \mathcal{Q} \mathcal{I}^{*}, \mathcal{I P}, \mathcal{I} \mathcal{Q}, \mathcal{P} \mathcal{E}, \mathcal{Q E}, \mathcal{P N}, \mathcal{Q N}$, where $\mathcal{E}=\{T \in \mathcal{L}: R(T)=\mathcal{H}\}$ and $\mathcal{N}=\{T \in \mathcal{L}: N(T)=\{0\}\}$.

2. Polar decompositions: the case $\mathcal{A}=\mathcal{J}$ and $\mathcal{B}=\mathcal{L}^{+}$

As mentioned in the introduction, it holds $\mathcal{J} \mathcal{L}^{+}=\mathcal{L}$. In this section we characterize $\left(\mathcal{J} \mathcal{L}^{+}\right)_{T}$ for every $T \in \mathcal{L}$ and we show some minimal properties of $\left(V_{T},|T|\right)$ in $\left(\mathcal{J} \mathcal{L}^{+}\right)_{T}$. Any factorization $T=V A$, with $V \in \mathcal{J}$ and $A \in \mathcal{L}^{+}$is called a polar decomposition of T. Clearly, for any $V \in \mathcal{J}$ and $A \in \mathcal{L}^{+}$the pair (V, A) belongs to $\left(\mathcal{J} \mathcal{L}^{+}\right)_{T}$ for $T=V A$. However, if we return to the classical polar decomposition, for a pair (V, A) there exists $T \in \mathcal{L}$ such that $V_{T}=V$ and $A=|T|$ if and only if $N(V)=N(A)$. In such case, if $T=V A$ then $(V, A) \in\left(\mathcal{J} \mathcal{L}^{+}\right)_{T}$.

We begin this section with some minimality properties of the classical polar decomposition. For this, consider on \mathcal{L}^{+}the usual order $T_{1} \leq T_{2}$ if $\left\langle T_{1} \xi, \xi\right\rangle \leq\left\langle T_{2} \xi, \xi\right\rangle$ for all $\xi \in \mathcal{H}$. On \mathcal{J} define the Halmos order $V_{1} \leq V_{2}$ if $V_{1} V_{1}^{*} \leq V_{2} V_{2}^{*}$, i.e., $V_{1} \leq V_{2}$ if $R\left(V_{1}\right) \subseteq R\left(V_{2}\right)$. The next result shows that $\left(V_{T},|T|\right)$ is minimal in $\left(\mathcal{J} \mathcal{L}^{+}\right)_{T}$ if we consider the order just defined and also $\left(V_{T},|T|\right) \leq(V, A)$ for all $(V, A) \in\left(\mathcal{J} \mathcal{L}^{+}\right)_{T}$ in the sense of the statement of Proposition 2.2.

Proposition 2.1. For any $(V, A) \in\left(\mathcal{J} \mathcal{L}^{+}\right)_{T}$ it holds $V_{T} \leq V$ and $|T| \leq A$.
Proof. Let $(V, A) \in\left(\mathcal{J} \mathcal{L}^{+}\right)_{T}$. Since $T=V A$ then $\overline{R(T)} \subseteq R(V)$; therefore $V_{T} V_{T}^{*}=P_{\overline{R(T)}} \leq$ $P_{R(V)}=V V^{*}$, i.e., $V_{T} \leq V$. On the other side, $T^{*} T=A V^{*} V A=A P_{N(V)^{\perp}} A \leq A^{2}$, therefore, since the square root is operator monotone (Loewner's theorem [17]), we get that $|T| \leq A$.

Proposition 2.2. For every $(V, A) \in\left(\mathcal{J} \mathcal{L}^{+}\right)_{T}$ it holds $\left(V_{T}-|T|\right)\left(V_{T}^{*}-|T|\right) \leq(V-A)\left(V^{*}-A\right)$. As a consequence, $\left\|V_{T}-|T|\right\| \leq\|V-A\|$ for all $(V, A) \in\left(\mathcal{J} \mathcal{L}^{+}\right)_{T}$.

Proof. If $(V, A) \in\left(\mathcal{J} \mathcal{L}^{+}\right)_{T}$ then $(V-A)\left(V^{*}-A\right)-\left(V_{T}-|T|\right)\left(V_{T}^{*}-|T|\right)=P_{R(V)}-P_{\overline{R(T)}}+$ $A^{2}-T^{*} T \geq 0$, because, by the Proposition above, it holds $P_{\overline{R(T)}} \leq P_{R(V)}$ and $T^{*} T \leq A^{2}$.

The following result due to R. G. Douglas [12] will be useful in the sequel.
Theorem 2.3. Let $A, B \in \mathcal{L}$. The following conditions are equivalent:

1. $R(B) \subseteq R(A)$.
2. There is a positive number λ such that $B B^{*} \leq \lambda A A^{*}$.
3. There exists $C \in \mathcal{L}$ such that $A C=B$.

If one of these conditions holds then there is a unique operator $D \in \mathcal{L}$ such that $A D=B$ and $R(D) \subseteq N(A)^{\perp}$. We shall call D the reduced solution of $A X=B$. Moreover, $N(D)=N(B)$ and $\|D\|^{2}=\inf \left\{\lambda>0: B B^{*} \leq \lambda A A^{*}\right\}$.

Remark 2.4. It is well known that the reduced solution of $A X=B$ is given by $A^{\dagger} B$. In fact, if $A X=B$ has a bounded linear solution then $R(B) \subseteq R(A)$ and therefore $A^{\dagger} B \in \mathcal{L}$. Put $A\left(A^{\dagger} B\right)=P_{\overline{R(A)}} B=B$ and $R\left(A^{\dagger} B\right) \subseteq R\left(A^{\dagger}\right)=N(A)^{\perp}$, thus $D=A^{\dagger} B$.

The next result due to Z. Sebestyén [24, pg. 300] (see also [2, Proposition 2.3]) is relevant in what follows.

Proposition 2.5. Let $A, B \in \mathcal{L}$. The equation $A X=B$ has a positive solution if and only if $B B^{*} \leq \lambda B A^{*}$ for some constant $\lambda>0$. In such case, there exists $C \in \mathcal{L}^{+}$with $N(C)=N(B)$ such that $A C=B$.

Proposition 2.6. Let $T \in \mathcal{L}$ and $V \in \mathcal{J}$. The next conditions are equivalent:

1. $V \in p_{1}\left(\left(\mathcal{J} \mathcal{L}^{+}\right)_{T}\right)$.
2. $T T^{*} \leq \lambda T V^{*}$ for some $\lambda>0$.

Proof. It is an immediate consequence of Proposition 2.5.
For a treatment of the condition $P \in p_{1}\left(\left(\mathcal{J} \mathcal{L}^{+}\right)_{T}\right)$ with $P \in \mathcal{P}$ we refer the reader to [2]. Observe that for $V \in p_{1}\left(\left(\mathcal{J} \mathcal{L}^{+}\right)_{T}\right)$ it holds $\left\{A \in \mathcal{L}^{+}: T=V A\right\}=\left\{A \in \mathcal{L}^{+}: V^{*} T=\right.$ $\left.P_{R\left(V^{*}\right)} A\right\}$. Hence, applying [2, Proposition 4.8], we get that $\left\{A \in \mathcal{L}^{+}: T=V A\right\}=\left\{A_{V^{*} T}+\right.$ $\left.\left(I-V^{*} V\right) C\left(I-V^{*} V\right): C \in \mathcal{L}^{+}\right\}$where $A_{V^{*} T}:=\left(\left(\left(V^{*} T P\right)^{1 / 2}\right)^{\dagger} V^{*} T\right)^{*}\left(\left(V^{*} T P\right)^{1 / 2}\right)^{\dagger} V^{*} T$ and $P=P_{\overline{R(V * T)}}$. Therefore, we have proved:

Theorem 2.7. For any $T \in \mathcal{L}$ it holds:

$$
\left(\mathcal{J} \mathcal{L}^{+}\right)_{T}=\left\{(V, A) \in \mathcal{J} \times \mathcal{L}^{+}: \begin{array}{c}
T T^{*} \leq \lambda T V^{*} \text { for some } \lambda>0 \\
\left.A=A_{V^{*} T}+\left(I-V^{*} V\right) C\left(I-V^{*} V\right) \text { for some } \mathrm{C} \in \mathcal{L}^{+}\right\}
\end{array}\right\} .
$$

Remark 2.8. Given a subspace \mathcal{S} of \mathcal{H} we $\operatorname{define} \operatorname{dim}(\mathcal{S})$ as the cardinality of any maximal orthonormal set of \mathcal{S}. In the next Proposition and in many others which involve claims about $\operatorname{dim} \overline{R(T)}$ one should notice that $\operatorname{dim} R(T)=\operatorname{dim} \overline{R(T)}$; however this is not true, in general, for a subspace which is not an operator range (see [13]).

The next result provides a characterization of $p_{2}\left(\left(\mathcal{J} \mathcal{L}^{+}\right)_{T}\right)$:
Proposition 2.9. Let $T \in \mathcal{L}$ and $A \in \mathcal{L}^{+}$. The next conditions are equivalent:

1. $A \in p_{2}\left(\left(\mathcal{J} \mathcal{L}^{+}\right)_{T}\right)$, i.e., there exists $V \in \mathcal{J}$ such that $T=V A$.
2. $T^{*} T \leq A^{2}$ and $\operatorname{dim} \overline{R\left(Z Z^{*}-\left(Z Z^{*}\right)^{2}\right)} \leq \operatorname{dim} N(A)$ where $Z=A^{\dagger} T^{*}$.
3. $T^{*} T=A P_{1} A$ for some $P_{1} \in \mathcal{P}$.

Proof. $1 \Rightarrow 2$. Let $A \in p_{2}\left(\left(\mathcal{J} \mathcal{L}^{+}\right)_{T}\right)$. Then $T=V A$ for some $V \in \mathcal{J}$. Thus, $T^{*} T=A V^{*} V A=$ $A P_{1} A \leq A^{2}$ where $P_{1}=V^{*} V=P_{R\left(V^{*}\right)}$. As a consequence, by Theorem 2.3, the equation $T^{*}=A X$ has a solution in \mathcal{L} and its reduced solution is $Z=A^{\dagger} T^{*}=A^{\dagger} A V^{*}=P V^{*}$, where $P=P_{\overline{R(A)}}$. Hence, $\overline{R\left(Z Z^{*}-\left(Z Z^{*}\right)^{2}\right)}=\overline{R\left(P P_{1}(I-P) P_{1} P\right)}=\overline{R\left(P P_{1}(I-P)\right)}$ and therefore, $\operatorname{dim} \overline{R\left(Z Z^{*}-\left(Z Z^{*}\right)^{2}\right)} \leq \operatorname{dim} R(I-P)=\operatorname{dim} N(A)$.
$2 \Rightarrow 3$. Suppose that $T^{*} T \leq A^{2}$. Then, by Douglas' theorem, the equation $T^{*}=A X$ has a solution in \mathcal{L}. Let Z be the reduced solution of this equation, i.e., $T^{*}=A Z$ and $R(Z) \subseteq \overline{R(A)}$. Moreover, since $T^{*} T \leq A^{2}$ then $\|Z\| \leq 1$. Now, define $Y:=Z Z^{*}$. Clearly, $T^{*} T=A Y A$ and $0 \leq Y \leq I$.

Now, as $\operatorname{dim} \overline{R\left(Y-Y^{2}\right)} \leq \operatorname{dim} N(A)$, then there exists a partial isometry W from $N(A)$ onto $\overline{R\left(Y-Y^{2}\right)}$. Then,

$$
P_{1}=\left(\begin{array}{cc}
Y & \left(Y-Y^{2}\right)^{1 / 2} W \\
W^{*}\left(Y-Y^{2}\right)^{1 / 2} & I-W^{*} Y W
\end{array}\right) \begin{gathered}
\overline{R(A)} \\
R(A)^{\perp}
\end{gathered}
$$

is an orthogonal projection. Moreover, as $A=\left(\begin{array}{cc}A & 0 \\ 0 & 0\end{array}\right)$ then $A P_{1} A=A Y A$, i.e., $A P_{1} A=$ $T^{*} T$ as desired.
$3 \Rightarrow 1$. Suppose that $T^{*} T=A P_{1} A$ for some orthogonal projection $P_{1} \in \mathcal{L}$. Hence, $|T|=\left|P_{1} A\right|$. Therefore, if $T=V_{T}|T|$ and $P_{1} A=V_{P_{1} A}\left|P_{1} A\right|$ are the polar decompositions of T and $P_{1} A$ respectively, then $T=V_{T} V_{P_{1} A}^{*} P_{1} A=V_{T} V_{P_{1} A}^{*} A$. Define $J:=V_{T} V_{P_{1} A}^{*}$, therefore $T=J A$ and it only remains to show that J is a partial isometry. For this, observe that $J J^{*} J=V_{T} V_{P_{1} A}^{*} V_{P_{1} A} V_{T}^{*} V_{T} V_{P_{1} A}^{*}=V_{T} V_{P_{1} A}^{*} V_{P_{1} A} P_{\overline{R\left(T^{*}\right)}} V_{P_{1} A}^{*}=V_{T} V_{P_{1} A}^{*} V_{P_{1} A} V_{P_{1} A}^{*}=V_{T} V_{P_{1} A}^{*}=J$, where the third equality follows from the fact that $R\left(V_{P_{1} A}^{*}\right)=\overline{R\left(\left(P_{1} A\right)^{*}\right)}=\overline{R\left(A P_{1} A\right)}=$ $\overline{R\left(T^{*} T\right)}=\overline{R\left(T^{*}\right)}$. Therefore, $T=J A$ with $J \in \mathcal{J}$, i.e., $A \in p_{2}\left(\left(\mathcal{J} \mathcal{L}^{+}\right)_{T}\right)$.

Remark 2.10. Clearly, $\mathcal{L}=\mathcal{J} \mathcal{L}^{h}$. Now, given $T \in \mathcal{L}$ and $A \in \mathcal{L}^{h}$ then, following the same lines as in the proof of the above proposition, there exists $V \in \mathcal{J}$ such that $T=V A$ if and only if $T^{*} T \leq A^{2}$ and $\operatorname{dim} \overline{R\left(Z Z^{*}-\left(Z Z^{*}\right)^{2}\right)} \leq \operatorname{dim} N(A)$, where $Z=A^{\dagger} T^{*}$ or, equivalently, $T^{*} T=A P_{1} A$ for some orthogonal projection $P_{1} \in \mathcal{L}$.

The previous result allows us to describe the sets $\mathcal{P} \mathcal{J}$ and $\mathcal{J} \mathcal{P}$. The equivalence $1 \Leftrightarrow 4$ in the next corollary has been proved by Sebestyén and Magyar [25].

Corollary 2.11. Let $T \in \mathcal{L}$ and $P=P_{\overline{R(T)}}$. The next conditions are equivalent:

1. $T \in \mathcal{P} \mathcal{J}$.
2. $P \in p_{2}\left(\left(\mathcal{J} \mathcal{L}^{+}\right)_{T^{*}}\right)$.
3. There exists $P_{1} \in \mathcal{P}$ such that $T T^{*}=P P_{1} P$.
4. $\|T\| \leq 1$ and $\operatorname{dim} \overline{R\left(T T^{*}-\left(T T^{*}\right)^{2}\right)} \leq \operatorname{dim} R(T)^{\perp}$.

Briefly, it holds

$$
\mathcal{P} \mathcal{J}=\left\{T \in \mathcal{C}: \operatorname{dim} \overline{R\left(T T^{*}-\left(T T^{*}\right)^{2}\right)} \leq \operatorname{dim} R(T)^{\perp}\right\}
$$

and

$$
\mathcal{J P}=\left\{T \in \mathcal{C}: \operatorname{dim} \overline{R\left(T^{*} T-\left(T^{*} T\right)^{2}\right)} \leq \operatorname{dim} N(T)\right\}
$$

The next result describes $\left\{A \in \mathcal{L}^{+}: V_{T} A=T\right\}$ and $\{V \in \mathcal{J}: V|T|=T\}$ for $T \in \mathcal{L}$.
Proposition 2.12. Let $T \in \mathcal{L}$ then:

1. $\left\{A \in \mathcal{L}^{+}:\left(V_{T}, A\right) \in\left(\mathcal{J} \mathcal{L}^{+}\right)_{T}\right\}=\left\{|T|+P_{N(T)} B P_{N(T)}: B \in \mathcal{L}^{+}\right\}$.
2. $\left\{V \in \mathcal{J}:(V,|T|) \in\left(\mathcal{J} \mathcal{L}^{+}\right)_{T}\right\}=\left\{V \in \mathcal{J}: V V_{T}^{*}=P_{\overline{R(T)}}\right\}=\left\{V \in \mathcal{J}: V P_{\overline{R\left(T^{*}\right)}}=V_{T}\right\}$.

Proof. 1. Let $A \in \mathcal{L}^{+}$such that $\left(V_{T}, A\right) \in\left(\mathcal{J}^{+}\right)_{T}$. Then, by Proposition 2.1, $A=$ $|T|+B$ with $B \in \mathcal{L}^{+}$. Moreover, as $T=V_{T} A=V_{T}|T|$ then $V_{T} B=0$. So, $R(B) \subseteq$ $N\left(V_{T}\right)=N(T)$, i.e., $B=P_{N(T)} B$. Now, since $B=B^{*}$ then $B=P_{N(T)} B P_{N(T)}$. Hence, $A=|T|+P_{N(T)} B P_{N(T)}$ with $B \in \mathcal{L}^{+}$. The converse is trivial.
2. Let $(V,|T|) \in\left(\mathcal{J} \mathcal{L}^{+}\right)_{T}$. Then, $V|T|=V_{T}|T|=T$. So, as $|T|=V_{T}^{*} T$ we have that $V V_{T}^{*} T=V|T|=T=P_{\overline{R(T)}} T$ or, equivalently, $T^{*} V_{T} V^{*}=T^{*} P_{\overline{R(T)}}$. Now, since $R\left(V_{T} V^{*}\right)$ and $R\left(P_{\overline{R(T)}}\right)$ are both included in $N\left(T^{*}\right)^{\perp}$ we have that $V_{T} V^{*}=P_{\overline{R(T)}}$. For the other inclusion, if $V \in \mathcal{J}$ and $V V_{T}^{*}=P_{\overline{R(T)}}$ then $V|T|=V V_{T}^{*} T=P_{\overline{R(T)}} T=T$, i.e., $(V,|T|) \in\left(\mathcal{J} \mathcal{L}^{+}\right)_{T}$. The second equality follows by right multiplication by V_{T}.

Remark 2.13. In [7, Proposition 3.11] it is proven that given $T \in \mathcal{L}, V_{T}|T| V_{T}=V_{T}$ and $|T| V_{T}|T|=|T|$ if and only if $T \in \mathcal{Q}$. Moreover, it is easy to check that if $E \in \mathcal{Q}$ then $\mathcal{T}:=$ $\left\{(V, A) \in\left(\mathcal{J} \mathcal{L}^{+}\right)_{E}: V A V=V, A V A=A\right\}=\left\{(V, A) \in\left(\mathcal{J} \mathcal{L}^{+}\right)_{E}: R(V)=R(E), N(A)=\right.$ $N(E)\}$. Now, since $\left(P_{R(E)}, E^{*} E\right) \in\left(\mathcal{J} \mathcal{L}^{+}\right)_{E}, R\left(P_{R(E)}\right)=R(E)$ and $N\left(E^{*} E\right)=N(E)$, then $\left(P_{R(E)}, E^{*} E\right) \in \mathcal{T}$, i.e., $\left(V_{E},|E|\right)$ is not the unique pair in \mathcal{T}.

Due to the uniqueness part of the classical polar decomposition, we get two mappings:

$$
\begin{aligned}
\alpha & : \mathcal{L} \rightarrow \mathcal{J}, \alpha(T)=V_{T} \\
\beta & : \mathcal{L} \rightarrow \mathcal{L}^{+}, \beta(T)=|T| .
\end{aligned}
$$

In general β is continuous but α is not. However, we are here interested in their behaviours as set mappings. The proof of the following proposition is straightforward.

Proposition 2.14. The next identities hold:

1. $\alpha^{-1}(\mathcal{U})=\mathcal{N} \cap \mathcal{N}^{*}$. Notice that $\mathcal{L}_{d}:=\{T \in \mathcal{L}: \overline{R(T)}=\mathcal{H}\}=\mathcal{N}^{*}$.
2. $\alpha^{-1}(\mathcal{I})=\mathcal{N}$.
3. $\alpha^{-1}\left(\mathcal{I}^{*}\right)=\mathcal{N}^{*}$.
4. $\alpha^{-1}(\mathcal{S})=\mathcal{S N}^{+}$.
5. $\alpha^{-1}(\mathcal{P})=\mathcal{L}^{+}$.
6. $\beta^{-1}(\mathcal{P})=\mathcal{J}$.
7. $\beta^{-1}\left(\mathcal{G}^{+}\right)=\mathcal{N} \cap \mathcal{L}_{c r}$.
8. $\beta^{-1}\left(\mathcal{L}^{+} \cap \mathcal{N}\right)=\mathcal{N}$.

One can also consider the images of different classes in \mathcal{L} by α and β. This has been done in [7, Theorems 5.1 and 6.1] for \mathcal{Q}, in [8, Theorem 5.2 and Proposition 5.5] for $\mathcal{P P}$ and in [2, Proposition 6.4] for $\mathcal{P} \mathcal{L}^{+}$.

3. The case $\mathcal{A}=\mathcal{P}$ and $\mathcal{B}=\mathcal{U}$

The cases $\mathcal{P U}, \mathcal{P G}, \mathcal{Q G}$ and $\mathcal{Q U}$ are related to a result on frame theory. Recall that a frame in a (separable) Hilbert space \mathcal{H} is a sequence $\left\{x_{n}\right\}$ of vectors of \mathcal{H} for which there exist positive constants α, β such that

$$
\begin{equation*}
\alpha\|x\|^{2} \leq \sum\left|\left\langle x, x_{n}\right\rangle\right|^{2} \leq \beta\|x\|^{2}, \forall x \in \mathcal{H} . \tag{2}
\end{equation*}
$$

As a consequence of Naimark's dilation theorem [18] it can be shown that if $\left\{x_{n}\right\}$ is a Parseval frame (which means that (2) holds for $\alpha=\beta=1$) then there exist a Hilbert space $\mathcal{K} \supseteq \mathcal{H}$ and an orthonormal basis $\left\{e_{n}\right\}$ of \mathcal{K} such that the orthogonal projection $P_{\mathcal{H}}$ maps e_{n} to $x_{n}(n \in \mathbb{N})$; see [9] for a modern proof. It should be mentioned that Han and Larson [14] rediscovered this corollary of Naimark's theorem by using a completely different approach.

Each frame $\bar{x}=\left\{x_{n}\right\}$ defines a bounded linear operator $T_{\bar{x}}: l^{2} \rightarrow \mathcal{H}, T_{\bar{x}}\left(\left\{\alpha_{n}\right\}\right)=\sum \alpha_{n} x_{n}$ which is onto (the synthesis operator). In this context, Naimark's result says that if $\left\{x_{n}\right\}$ is a Parseval frame then, in a convenient extension \mathcal{K} of $\mathcal{H}, P_{\mathcal{H}} U=T_{\bar{x}}$, where U is a unitary operator on \mathcal{K} related to the orthonormal basis $\left\{e_{n}\right\}$. If one allows oblique projections instead of orthogonal ones, or Riesz basis instead of orthonormal ones, we are lead to equalities like $E G=T_{\bar{x}}$ for an oblique projection E and an invertible operator G. The reader is referred to [1] for more details.

This section is devoted to $\mathcal{P U}$, and the following ones deal with the other cases. However, in each section we can extract result on different factorizations $\mathcal{A B}$.

Theorem 3.1. The set $\mathcal{P U}$ consists of all partial isomeries with zero index:

$$
\mathcal{P U}=\left\{V \in \mathcal{J}: \operatorname{dim} N(V)=\operatorname{dim} N\left(V^{*}\right)\right\} .
$$

Moreover, fixed $T \in \mathcal{P U}$ then $(\mathcal{P U})_{T}=\left\{(P, U) \in \mathcal{P} \times \mathcal{U}: P=P_{R(T)}\right.$ and $U=T+$ W where $W \in \mathcal{J}$ with $N(W)^{\perp}=N(T)$ and $\left.R(W)=R(T)^{\perp}\right\}, p_{1}\left((\mathcal{P U})_{T}\right)=\left\{P_{R(T)}\right\}$ and $p_{2}\left((\mathcal{P U})_{T}\right)=\left\{T+W: W \in \mathcal{J}\right.$ with $N(W)^{\perp}=N(T)$ and $\left.R(W)=R(T)^{\perp}\right\}$.

Proof. If $V=P U$ for some $U \in \mathcal{U}$ and some $P \in \mathcal{P}$, then $V=V V^{*} V$ (i.e., V is a partial isometry). Moreover, $W:=U^{*}(I-P)$ is a partial isometry with initial subspace $N\left(V^{*}\right)$ and final subspace $N(V)$. This implies that $\operatorname{dim} N(V)=\operatorname{dim} N\left(V^{*}\right)$. Conversely, suppose that V is a partial isometry such that $\operatorname{dim} N(V)=\operatorname{dim} N\left(V^{*}\right)$. Let $P=V V^{*}$ and let W be a partial isometry with initial subspace $N(V)$ and final subspace $N\left(V^{*}\right)$. Then, $V+W$ is a unitary operator and $V=P(V+W)$, i.e., $V \in \mathcal{P U}$.

On the other hand, let $T \in \mathcal{P U}$ and $P=P_{R(T)}$. Recall that T is a partial isometry. Consider $U \in \mathcal{U}$ such that $T=P U$ and let $W:=U-T$. Notice that $U T^{*}=U U^{*} P=P=$
$T U^{*}$ and $T^{*} T=U^{*} P U=U^{*} T=T^{*} U$. We claim that W is a partial isometry. In fact, $W W^{*}=(U-T)(U-T)^{*}=I-P-P+P=I-P$, i.e., W is a partial isometry with $R(W)=R(I-P)=R(T)^{\perp}$. Moreover, $W^{*} W=\left(U^{*}-T^{*}\right)(U-T)=I-U^{*} T-T^{*} U+T^{*} T=$ $I-T^{*} T=I-P_{N(T)^{\perp}}$, i.e., $N(W)=N(T)^{\perp}$.

Conversely, let $U=T+W$ with W a partial isometry with $R(W)=R(T)^{\perp}$ and $N(W)=$ $N(T)^{\perp}$. Clearly, $P U=T$. Let us show that $U \in \mathcal{U}$. Indeed, $U U^{*}=(T+W)\left(T^{*}+W^{*}\right)=$ $T T^{*}+T W^{*}+W T^{*}+W W^{*}=T T^{*}+W W^{*}=P_{R(T)}+P_{R(T)^{\perp}}=I$. Similarly, $U^{*} U=I$ and the proof is finished.

Notice that if $T \in \mathcal{P U}$ and $P=P_{R(T)}$ then $(P-U)^{*}(P-U)=P+I-2 \operatorname{Re}(T)$ for all $U \in p_{2}\left((\mathcal{P U})_{T}\right)$ and, a fortiori, $\|P-U\|=\|P+I-2 \operatorname{Re}(T)\|$ for all $U \in p_{2}\left((\mathcal{P U})_{T}\right)$. Hence, there is no optimal pair $(P, U) \in(\mathcal{P U})_{T}$ in the same sense as in Proposition 2.2.

4. The cases $\mathcal{A}=\mathcal{P}$ or \mathcal{Q} and $\mathcal{B}=\mathcal{G}$

In the sequel we denote $\mathcal{R}:=\{(A, B) \in \mathcal{L} \times \mathcal{L}: R(A+B)=R(A)+R(B)\}$; this set appears in [3], related to shorted operators and the Sherman-Morrison-Woodbury formula.

Theorem 4.1. The next equality holds:

$$
\mathcal{P G}=\left\{T \in \mathcal{L}_{c r}: \operatorname{dim} N(T)=\operatorname{dim} N\left(T^{*}\right)\right\} .
$$

Moreover, fixed $T \in \mathcal{P G}$ then $(\mathcal{P G})_{T}=\left\{(P, G) \in \mathcal{P} \times \mathcal{G}: P=P_{R(T)}\right.$ and $G=T+$ W where $(T, W) \in \mathcal{R}, R(W)=R(T)^{\perp}$ and $\left.N(W) \cap N(T)=\{0\}\right\}, p_{1}\left((\mathcal{P G})_{T}\right)=\left\{P_{R(T)}\right\}$ and $p_{2}\left((\mathcal{P G})_{T}\right)=\left\{T+W:(T, W) \in \mathcal{R}, R(W)=R(T)^{\perp}\right.$ and $\left.N(W) \cap N(T)=\{0\}\right\}$.

Proof. Let $T=P G$ for some $P \in \mathcal{P}$ and some $G \in \mathcal{G}$ then, clearly, $R(T)=R(P)$, i.e., T has closed range and $P=P_{R(T)}$. Moreover, the partial isometry of the polar decomposition of $G^{-1}(I-P)$ has initial subspace $N\left(T^{*}\right)$ and final subspace $G^{-1}\left(R(P)^{\perp}\right)=N(T)$. Hence, $\operatorname{dim} N(T)=\operatorname{dim} N\left(T^{*}\right)$. On the other side, suppose that T has closed range and $\operatorname{dim} N(T)=$ $\operatorname{dim} N\left(T^{*}\right)$. Let W be a partial isometry with initial subspace $N(T)$ and final subspace $N\left(T^{*}\right)$, and let P be the orthogonal projection onto $R(T)$. Trivially, $T=P(T+W)$. Let us show that $T+W \in \mathcal{G}$. First, by [3, Theorem 2.10], $R(T+W)=R(T)+R(W)$ and so $R(T+W)=\mathcal{H}$. Finally, if $x \in N(T+W)$ then $T x=-W x \in R(T) \cap R(W)=\{0\}$. Thus, $x \in N(T) \cap N(W)=\{0\}$ and so $N(T+W)=\{0\}$ as desired. Therefore, $T=P(T+W) \in \mathcal{P G}$.

Let now $T \in \mathcal{P G}$ and consider $G \in \mathcal{G}$ such that $T=P G$. Define $W:=G-T$. As $P W=0$, then $R(W) \subseteq R(T)^{\perp}$. Moreover, as $\mathcal{H}=R(G) \subseteq R(T) \dot{+} R(W) \subseteq R(T) \dot{+} R(T)^{\perp}=\mathcal{H}$, we obtain that $(T, W) \in \mathcal{R}$ and $R(W)=R(T)^{\perp}$. In addition, if $x \in N(W) \cap N(T)$ then $G x=T x+W x=0$ and since G is invertible we have that $x=0$. Conversely, let $G=T+W$ with $(T, W) \in \mathcal{R}, R(W)=R(T)^{\perp}$ and $N(W) \cap N(T)=\{0\}$. Clearly, $P G=T$. Let us show that $G \in \mathcal{G}$. First, $R(G)=R(T+W)=R(T)+R(W)=R(T)^{\perp}+R(T)=\mathcal{H}$. Moreover, if $x \in N(G)$ then $G x=T x+W x=0$, i.e, $T x=-W x \in R(T) \cap R(T)^{\perp}=\{0\}$. Thus, $x \in N(W) \cap N(T)=\{0\}$ and so $N(G)=\{0\}$, as desired.

Remark 4.2. It also holds that $\mathcal{P G}=\overline{\mathcal{G}} \cap \mathcal{L}_{c r}$. This result is due to S . Izumino [15, Theorem 3.2].

Lemma 4.3. The following equality holds:

$$
\mathcal{Q G}=\mathcal{P G}
$$

Proof. Let us show that $\mathcal{Q G}=\mathcal{P G}$. For this, let us consider the matrix representation of oblique projections. Given an oblique projection Q with range \mathcal{S}, with respect to the 2×2 matrix decomposition induced by \mathcal{S}, Q has the following form

$$
Q=\left(\begin{array}{cc}
I & X \tag{3}\\
0 & 0
\end{array}\right) \underset{\mathcal{S}^{\perp}}{\mathcal{S}}
$$

If P is the orthogonal projection onto \mathcal{S} then $P=\left(\begin{array}{ll}I & 0 \\ 0 & 0\end{array}\right)$ and, trivially,

$$
Q=\left(\begin{array}{cc}
I & X \tag{4}\\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
I & X \\
0 & I
\end{array}\right)=P C
$$

where $C:=\left(\begin{array}{cc}I & X \\ 0 & I\end{array}\right) \in \mathcal{G}$. This proves that $\mathcal{Q G} \subseteq \mathcal{P G}$ and therefore the equality between these two sets because the other inclusion is trivial.

Theorem 4.4. Fixed $T \in \mathcal{Q G}$ then $(\mathcal{Q G})_{T}=\{(Q, G) \in \mathcal{Q} \times \mathcal{G}: R(Q)=R(T)$ and $G=$ $T+W$, where $(T, W) \in \mathcal{R}, \quad R(W)=N(Q)$ and $N(W) \cap N(T)=\{0\}\}, p_{1}\left((\mathcal{Q G})_{T}\right)=$ $\{Q \in \mathcal{Q}: R(Q)=R(T)\}$ and $p_{2}\left((\mathcal{Q G})_{T}\right)=\{T+W:(T, W) \in \mathcal{R}, \quad R(W) \dot{+} R(T)=$ \mathcal{H} and $N(W) \cap N(T)=\{0\}\}$.

Proof. For $T \in \mathcal{Q G}$, let us show that $p_{1}\left((\mathcal{Q G})_{T}\right)=\{Q \in \mathcal{Q}: R(Q)=R(T)\}$. For this, let $Q \in \mathcal{Q}$ with $R(Q)=R(T)$. So, as $T \in \mathcal{P G}$ there exists $G \in \mathcal{G}$ such that $T=P G$ where $P=P_{R(T)}$. Hence, using (4), $T=P G=P C C^{-1} G=Q C^{-1} G$ where $C^{-1} G \in \mathcal{G}$, i.e., $Q \in p_{1}\left((\mathcal{Q G})_{T}\right)$. The other inclusion is obvious.

Now, let $G \in p_{2}\left((\mathcal{Q G})_{T}\right)$, i.e., $G \in \mathcal{G}$ and $T=Q G$ for some $Q \in \mathcal{Q}$. Let $W:=G-T$. Then the sum $R(T)+R(W)$ is direct since $R(T)=R(Q)$ and $R(W) \subseteq N(Q)$ (consequence of the fact that $Q W=Q(I-Q) G=0)$. In addition, $\mathcal{H}=R(G)=R(T+W) \subseteq R(T) \dot{+} R(W)$, which shows that $R(T+W)=R(T) \dot{+} R(W)=\mathcal{H}$. Moreover, if $x \in N(W) \cap N(T)$ then $G x=T x+W x=0$ and since G is invertible we have that $x=0$. Conversely, let $G=T+W$ with $(T, W) \in \mathcal{R}, R(T) \dot{+} R(W)=\mathcal{H}$ and $N(W) \cap N(T)=\{0\}$. Define $Q:=Q_{R(T) / / R(W)}$, i.e., $Q \in \mathcal{Q}, R(Q)=R(T)$ and $N(Q)=R(W)$. Clearly, $T=Q G$. Let us show that G is invertible. Now, $R(G)=R(T)+R(W)=\mathcal{H}$ and if $x \in N(G)$ then $T x=-W x \in R(T) \cap R(W)=\{0\}$ and so $x \in N(W) \cap N(T)=\{0\}$. Therefore, $N(G)=\{0\}$ and the proof is finished.

Finally, following the proof of $p_{2}\left((\mathcal{Q G})_{T}\right)$ we get the characterization of $(\mathcal{Q G})_{T}$.

5. The case $\mathcal{A}=\mathcal{Q}$ and $\mathcal{B}=\mathcal{U}$

As mentioned in the beginning of Section 3, the spaces $\mathcal{P G}, \mathcal{P U}, \mathcal{Q G}$ and $\mathcal{Q U}$ are directly related to different dilation frame problems. We devote this section to the case $\mathcal{Q U}$ which is more difficult to deal with than the others.

The next result will be useful in the sequel, see [7, Theorem 6.1]. Recall that the reduced minimum modulus of $T \in \mathcal{L}$ is the number $\gamma(T):=\inf \left\{\|T x\|: x \in N(T)^{\perp},\|x\|=1\right\}$.

Theorem 5.1. Let $B \in \mathcal{L}^{+}$. There exists $Q \in \mathcal{Q}$ such that $|Q|=B$ if and only if $\gamma(B) \geq 1$ and $\operatorname{dim} \overline{R\left(B^{2}-P_{R(B)}\right)} \leq \operatorname{dim} N(B)$.

Theorem 5.2. The following equality holds:

$$
\mathcal{Q U}=\left\{T \in \mathcal{L}: \begin{array}{c}
\operatorname{dim} N(T)=\operatorname{dim} N\left(T^{*}\right), \\
\operatorname{dim} \frac{\gamma\left(\left|T^{*}\right|\right) \geq 1}{R\left(T T^{*}-P_{R(T)}\right)} \leq \operatorname{dim} R(T)^{\perp}
\end{array}\right\}
$$

For a fixed $T \in \mathcal{Q U}$ it holds

Proof. Suppose that $T=Q U$ for some $U \in \mathcal{U}$ and $Q \in \mathcal{Q}$. Then, clearly, $\left|T^{*}\right|=\left|Q^{*}\right|$ and, by Theorem 5.1, $\gamma\left(\left|T^{*}\right|\right) \geq 1$ and $\operatorname{dim} \overline{R\left(T T^{*}-P_{R(T)}\right)} \leq \operatorname{dim} R(T)^{\perp}$. Moreover, $\operatorname{dim} N(T)=$ $\operatorname{dim} N(Q)=\operatorname{dim} N\left(Q^{*}\right)=\operatorname{dim} N\left(T^{*}\right)$.

Conversely, assume that $\operatorname{dim} N(T)=\operatorname{dim} N\left(T^{*}\right), \gamma\left(\left|T^{*}\right|\right) \geq 1$ and $\operatorname{dim} \overline{R\left(T T^{*}-P_{R(T)}\right)} \leq$ $\operatorname{dim} R(T)^{\perp}$. Then, by Theorem 5.1, $\left|T^{*}\right|=\left|Q^{*}\right|$ for some $Q \in \mathcal{Q}$. Let $T=\left|T^{*}\right| V_{T}$ and $Q=\left|Q^{*}\right| V_{Q}$ be the polar decompositions of T and Q respectively. Observe that V_{Q} and V_{T} have the same final space, $R(T)$. As a consquence, $V_{Q}^{*} V_{T}\left(V_{Q}^{*} V_{T}\right)^{*} V_{Q}^{*} V_{T}=V_{Q}^{*} V_{T}$, i.e., $V_{Q}^{*} V_{T} \in \mathcal{J}$ and $N\left(V_{Q}^{*} V_{T}\right)=N(T), R\left(V_{Q}^{*} V_{T}\right)=N(Q)^{\perp}$. On the other hand, $\operatorname{dim} N(T)=$ $\operatorname{dim} N\left(T^{*}\right)=\operatorname{dim} R(T)^{\perp}$ and it is also equal to the dimension of any other supplement of $R(T)=R(Q)$, for instance $N(Q)$. Therefore, $\operatorname{dim} N(T)=\operatorname{dim} N(Q)$ and the partial isometry $V_{Q}^{*} V_{T}$ can be extended to an unitary operator U which maps $N(T)$ onto $N(Q)$. So, we get

$$
T=\left|T^{*}\right| V_{T}=\left|Q^{*}\right| V_{T}=\left|Q^{*}\right| V_{Q} V_{Q}^{*} V_{T}=Q\left(V_{Q}^{*} V_{T}\right)=Q U
$$

which proves that $T \in \mathcal{Q U}$.
Let us show equality (5). Let us first consider $U \in \mathcal{U}, Q \in \mathcal{Q}$ such that $T=Q U$. Clearly, $T T^{*}=Q Q^{*}$, i.e., $\left|T^{*}\right|=\left|Q^{*}\right|$. Hence, if $T=\left|T^{*}\right| V_{T}$ and $Q=\left|Q^{*}\right| V_{Q}$ are the classical polar decompositions of T and Q respectively, then $\left|Q^{*}\right|=Q V_{Q}^{*}$ and so $Q U=T=\left|T^{*}\right| V_{T}=$ $\left|Q^{*}\right| V_{T}=Q V_{Q}^{*} V_{T}$. Therefore, $U=V_{Q}^{*} V_{T}+W$ for some $W \in \mathcal{L}$ with $R(W) \subseteq N(Q)$. We claim that:

1. $W \in \mathcal{J}$ with $R(W)=N(Q)$ and $N(W)=N(T)^{\perp}$.
2. $V_{Q}^{*} V_{T}=Q^{*}\left(T T^{*}\right)^{\dagger} T$.

In fact,

1. Notice that $R\left(V_{Q}^{*} V_{T}\right)=R\left(V_{Q}^{*}\right)=N(Q)^{\perp}$ and since $R(W) \subseteq N(Q)$ and $\mathcal{H}=R(U)=$ $R\left(V_{Q}^{*} V_{T}+W\right)=R\left(V_{Q}^{*} V_{T}\right)+R(W)$ we obtain that $R(W)=N(Q)$. Moreover, $I=$ $U U^{*}=\left(V_{Q}^{*} V_{T}+W\right)\left(V_{Q}^{*} V_{T}+W\right)^{*}=V_{Q}^{*} V_{T} V_{T}^{*} V_{Q}+V_{Q}^{*} V_{T} W^{*}+W V_{T}^{*} V_{Q}+W W^{*}=$ $P_{N(Q)^{\perp}}+V_{Q}^{*} V_{T} W^{*}+W V_{T}^{*} V_{Q}+W W^{*}$. Hence,

$$
\begin{equation*}
V_{Q}^{*} V_{T} W^{*}+W V_{T}^{*} V_{Q}+W W^{*}=P_{N(Q)} \tag{6}
\end{equation*}
$$

but since $R(W)=N(Q)$ then $R\left(V_{Q}^{*} V_{T} W^{*}\right) \subseteq N(Q) \cap R\left(V_{Q}^{*}\right)=N(Q) \cap N(Q)^{\perp}=\{0\}$. Therefore, $V_{Q}^{*} V_{T} W^{*}=0$ and so, by $(6), W W^{*}=P_{N(Q)}$. Thus, $W \in \mathcal{J}$. It only remains to show that $N(W)=N(T)^{\perp}$. For this, notice that $R\left(V_{T}^{*} V_{Q}\right)=R\left(V_{T}^{*}\right)=N(T)^{\perp}$ and, as $W V_{T}^{*} V_{Q}=0$ we have that $N(T)^{\perp}=R\left(V_{T}^{*} V_{Q}\right) \subseteq N(W)$ or, equivalently, $R\left(W^{*}\right) \subseteq N(T)$ On the other side, $\mathcal{H}=R\left(U^{*}\right)=R\left(V_{T}^{*} V_{Q}+W^{*}\right)=R\left(V_{T}^{*} V_{Q}\right)+$ $R\left(W^{*}\right)=N(T)^{\perp}+R\left(W^{*}\right)$, and so $R\left(W^{*}\right)=N(T)$, i.e., $N(W)=N(T)^{\perp}$.
2. $V_{Q}^{*} V_{T}=Q^{*}\left|Q^{*}\right|^{\dagger} V_{T}=Q^{*}\left|T^{*}\right|^{\dagger} V_{T}=Q^{*}\left|T^{*}\right|^{\dagger}\left|T^{*}\right|^{\dagger} T=Q^{*}\left(T T^{*}\right)^{\dagger} T$.

Conversely, let $\left(Q, Q^{*}\left(T T^{*}\right)^{\dagger} T+W\right)$ as in (5) and let us show that this pair is in $(\mathcal{Q U})_{T}$. First, as $R(W)=N(Q)$ and $\left|Q^{*}\right|=\left|T^{*}\right|$ we have that $Q\left(Q^{*}\left(T T^{*}\right)^{\dagger} T+W\right)=T T^{*}\left(T T^{*}\right)^{\dagger} T=$ $P_{R(T)} T=T$. Thus, we only need to show that $Q^{*}\left(T T^{*}\right)^{\dagger} T+W \in \mathcal{U}$. Now, $\left(Q^{*}\left(T T^{*}\right)^{\dagger} T+\right.$ $W)\left(Q^{*}\left(T T^{*}\right)^{\dagger} T+W\right)^{*}=Q^{*}\left(T T^{*}\right)^{\dagger} T\left(Q^{*}\left(T T^{*}\right)^{\dagger} T\right)^{*}+W W^{*}=Q^{*}\left(T T^{*}\right)^{\dagger} T T^{*}\left(T T^{*}\right)^{\dagger} Q+$ $W W^{*}=Q^{*}\left(T T^{*}\right)^{\dagger} Q+W W^{*}=Q^{*}\left(Q Q^{*}\right)^{\dagger} Q+W W^{*}=V_{Q}^{*} V_{Q}+W W^{*}=P_{N(Q)^{\perp}}+P_{N(Q)}=I$. In a similar manner we can prove that $\left(Q^{*}\left(T T^{*}\right)^{\dagger} T+W\right)^{*}\left(Q^{*}\left(T T^{*}\right)^{\dagger} T+W\right)=I$, i.e., $\left(Q^{*}\left(T T^{*}\right)^{\dagger} T+W\right) \in \mathcal{U}$ and the proof is finished.

6. The case $\mathcal{A}=\mathcal{P}$ and $\mathcal{B}=\mathcal{Q}$

The study of $\mathcal{P} \mathcal{P}$ done in [8] is an invitation to consider the case $\mathcal{P} \mathcal{Q}$. We present here a characterization of $\mathcal{P Q}$ and an example which shows that $\mathcal{P} \mathcal{Q} \neq \mathcal{Q P}$.

Theorem 6.1. The set $\mathcal{P Q}$ can be described as:

$$
\begin{equation*}
\mathcal{P} \mathcal{Q}=\left\{T \in \mathcal{L}: R(T(I-T)) \subseteq R(T(I-P)) \text { where } P=P_{\overline{R(T)}}\right\} \tag{7}
\end{equation*}
$$

Moreover, if $T \in \mathcal{P Q}, P:=P_{\overline{R(T)}}$ and $Q_{T}:=T+(T(I-P))^{\dagger}\left(T-T^{2}\right)$ then:

1. $P \in p_{1}\left((\mathcal{P Q})_{T}\right)$ and $P \leq \tilde{P}$ for all $\tilde{P} \in p_{1}\left((\mathcal{P Q})_{T}\right)$.
2. $Q_{T} \in p_{2}\left((\mathcal{P Q})_{T}\right)$ and $Q_{T}^{*} Q_{T} \leq \tilde{Q}^{*} \tilde{Q}$ for all $\tilde{Q} \in p_{2}\left((\mathcal{P Q})_{T}\right)$.
3. $\left(P-Q_{T}\right)^{*}\left(P-Q_{T}\right) \leq(\tilde{P}-\tilde{Q})^{*}(\tilde{P}-\tilde{Q})$ for all $(\tilde{P}, \tilde{Q}) \in(\mathcal{P} \mathcal{Q})_{T}$.

As a consequence, $\left\|P-Q_{T}\right\| \leq\|\tilde{P}-\tilde{Q}\|$ for all $(\tilde{P}, \tilde{Q}) \in(\mathcal{P} \mathcal{Q})_{T}$.
Proof. Let $T \in \mathcal{P Q}$. Then, $T=P_{\mathcal{S}} Q$ for some $P_{\mathcal{S}} \in \mathcal{P}$ and $Q \in \mathcal{Q}$. As $\overline{R(T)} \subseteq \mathcal{S}$, then $T=P T=P P_{\mathcal{S}} Q=P Q$. Thus, $P \in p_{1}\left((\mathcal{P Q})_{T}\right)$. In addition, $T-T^{2}=P Q-P Q P Q=$ $P Q(I-P) Q$. Therefore, $R\left(T-T^{2}\right)=R(P Q(I-P) Q) \subseteq R(P Q(I-P))=R(T(I-P))$, as claimed. Conversely, suppose that $R(T(I-T)) \subseteq R(T(I-P))$. Hence, $Q_{T}:=T+(T(I-$ $P))^{\dagger}\left(T-T^{2}\right) \in \mathcal{L}$ because of Remark 2.4. Moreover, notice that $R\left((T(I-P))^{\dagger}\left(T-T^{2}\right)\right) \subseteq$ $R\left((T(I-P))^{\dagger}\right)=\overline{R\left((I-P) T^{*}\right)} \subseteq R(I-P)$. Therefore, $P Q_{T}=P T=T$. Finally, as $Q_{T}=T+(I-P)(T(I-P))^{\dagger}\left(T-T^{2}\right)$, an easy computation shows that $Q_{T}^{2}=Q_{T}$, i.e. $Q_{T} \in \mathcal{Q}$, and (7) is proven. Furthermore, we have shown that $Q_{T} \in p_{2}\left((\mathcal{P Q})_{T}\right)$.

Now, let $T \in \mathcal{P Q}, P:=P_{\overline{R(T)}}$ and $Q_{T}:=T+(T(I-P))^{\dagger}\left(T-T^{2}\right)$. Let us prove items 1., 2. and 3.:

1. We have already proved that $P \in p_{1}\left((\mathcal{P} \mathcal{Q})_{T}\right)$. Now, if $T=\tilde{P} Q$ for some $\tilde{P} \in \mathcal{P}$ and $Q \in \mathcal{Q}$ then $\overline{R(T)} \subseteq R(\tilde{P})$ and so $P \leq \tilde{P}$.
2. We have already proved that $Q_{T} \in p_{2}\left((\mathcal{P Q})_{T}\right)$. Let us prove that $Q_{T}^{*} Q_{T} \leq \tilde{Q}^{*} \tilde{Q}$ for all $\tilde{Q} \in p_{2}\left((\mathcal{P Q})_{T}\right)$. If $\tilde{Q} \in p_{2}\left((\mathcal{P Q})_{T}\right)$ then $T=P \tilde{Q}$ and so $N(\tilde{Q}) \subseteq N(T)$. On the other hand, it is straightforward that $N\left(Q_{T}\right)=N(T)$. Hence, $N(\tilde{Q}) \subseteq N\left(Q_{T}\right)$ or, equivalently, $R\left(Q_{T}^{*}\right) \subseteq R\left(\tilde{Q}^{*}\right)$. Then, by Douglas' theorem, $Q_{T}^{*} Q_{T} \leq \lambda \tilde{Q}^{*} \tilde{Q}$ for some positive constant λ. We claim that $\lambda \leq 1$. Applying Douglas' theorem again, we have that $\left\|\left(\tilde{Q}^{*}\right)^{\dagger} Q_{T}^{*}\right\|^{2}=\inf \left\{\lambda>0: Q_{T}^{*} Q_{T} \leq \lambda \tilde{Q}^{*} \tilde{Q}\right\}$. By [20, Lemma 2.3] (see also [7, Theorem 4.1]), we have that $\left(\tilde{Q}^{*}\right)^{\dagger}=P_{R(\tilde{Q})} P_{R\left(\tilde{Q}^{*}\right)}$ then $\left\|\left(\tilde{Q}^{*}\right)^{\dagger} Q_{T}^{*}\right\|=\left\|P_{R(\tilde{Q})} P_{R\left(\tilde{Q}^{*}\right)} Q_{T}^{*}\right\|=$ $\left\|P_{R(\tilde{Q})} Q_{T}^{*}\right\|=\left\|Q_{T} P_{R(\tilde{Q})}\right\|$ where the second equality holds because $R\left(Q_{T}^{*}\right) \subseteq R\left(\tilde{Q}^{*}\right)$. Now, recalling that $Q_{T}:=T+(T(I-P))^{\dagger}\left(T-T^{2}\right)$ and replacing T by $P \tilde{Q}$ we get that

$$
\begin{aligned}
Q_{T} & =P \tilde{Q}+(P \tilde{Q}(I-P))^{\dagger}\left(P \tilde{Q}-(P \tilde{Q})^{2}\right) \\
& =P \tilde{Q}+(P \tilde{Q}(I-P))^{\dagger} P \tilde{Q}(I-P) \tilde{Q} \\
& =P \tilde{Q}+P_{\overline{R\left((I-P) \tilde{Q}^{*} P\right)}} \tilde{Q}=\left(P+P_{\overline{R\left((I-P) \tilde{Q}^{*} P\right)}}\right) \tilde{Q} \\
& =P_{\left(R(P)+\overline{\left.R\left((I-P) \tilde{Q}^{*} P\right)\right)}\right.} \tilde{Q},
\end{aligned}
$$

where the last equality follows because $R(P) \perp \overline{R\left((I-P) \tilde{Q}^{*} P\right)}$. Therefore,

$$
Q_{T} P_{R(\tilde{Q})}=P_{\left(R(P)+\overline{\left.R\left((I-P) \tilde{Q}^{*} P\right)\right)}\right.} \tilde{Q} P_{R(\tilde{Q})}=P_{\left(R(P)+\overline{\left.R\left((I-P) \tilde{Q}^{*} P\right)\right)}\right.} P_{R(\tilde{Q})}
$$

Thus, $\inf \left\{\lambda>0: Q_{T}^{*} Q_{T} \leq \lambda \tilde{Q}^{*} \tilde{Q}\right\}=\left\|Q_{T} P_{R(\tilde{Q})}\right\|^{2}=\left\|P_{\left(R(P)+\overline{\left.R\left((I-P) \tilde{Q}^{*} P\right)\right)}\right.} P_{R(\tilde{Q})}\right\|^{2} \leq 1$. 3. It follows by items 1 and 2 .

Remark 6.2. Note that $\mathcal{P Q} \neq \mathcal{Q P}:$ let $T=\left(\begin{array}{ccc}\frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{ccc}\frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right) \in$ $\mathcal{P Q}$. Now, $T^{*}\left(I-T^{*}\right)=\frac{1}{4}\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & 0 & 0 \\ -1 & -1 & 0\end{array}\right)$ and $T^{*}\left(I-P_{R\left(T^{*}\right)}\right)=T^{*} P_{N(T)}=\frac{1}{2}\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$. Hence, $R\left(T^{*}\left(I-T^{*}\right)\right)=\operatorname{gen}\left\{\left(\begin{array}{lll}1 & 0 & -1\end{array}\right)^{T}\right\}$ and $R\left(T^{*}\left(I-P_{R\left(T^{*}\right)}\right)\right)=\operatorname{gen}\left\{\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)^{T}\right\}$, i.e., $R\left(T^{*}\left(I-T^{*}\right)\right) \nsubseteq R\left(T^{*}\left(I-P_{R\left(T^{*}\right)}\right)\right)$. Therefore, by Theorem 6.1, $T^{*} \notin \mathcal{P Q}$ and so $T \notin \mathcal{Q P}$.

Corollary 6.3. The following equality holds:

$$
\mathcal{Q P}=\left\{T \in \mathcal{L}: R\left(T^{*}\left(I-T^{*}\right)\right) \subseteq R\left(T^{*} P_{N(T)}\right)\right\} .
$$

Remark 6.4. If $T \in \mathcal{P} \mathcal{P}$, a fortiori, $T \in \mathcal{P Q}$ so the minimal projections $P_{N(T)^{\perp}}$ and Q_{T} can be compared. It turns out that they coincide. In fact, if $T \in \mathcal{P} \mathcal{P}$ then $T=P_{\overline{R(T)}} P_{N(T)^{\perp}}$ and so it suffices to replace T by $P_{\overline{R(T)}} P_{N(T)^{\perp}}$ in the formula of Q_{T} to get that $Q_{T}=P_{N(T)^{\perp}}$.

Notice that Remark 6.2 also shows that $\mathcal{Q Q} \neq \mathcal{P Q}$.

7. Miscellanea

In this section we obtain some results on $\mathcal{P} \mathcal{A}, \mathcal{A} \mathcal{P}, \mathcal{Q} \mathcal{A}$ or $\mathcal{A} \mathcal{Q}$ for some sets \mathcal{A} 's which properly contain \mathcal{U} or \mathcal{G}. Recall that Corollary 2.11 is a characterization of $\mathcal{P} \mathcal{J}$.

Corollary 7.1. The next equalities hold:

1. $\mathcal{P I}^{*}=\left\{V \in \mathcal{J}: \operatorname{dim} N\left(V^{*}\right) \leq \operatorname{dim} N(V)\right\}$.
2. $\mathcal{I P}=\left\{V \in \mathcal{J}: \operatorname{dim} N(V) \leq \operatorname{dim} N\left(V^{*}\right)\right\}$.

3. $\mathcal{P E}=\mathcal{Q} \mathcal{E}=\left\{T \in \mathcal{L}_{c r}: \operatorname{dim} N\left(T^{*}\right) \leq \operatorname{dim} N(T)\right\}$.
4. $\mathcal{E}^{*} \mathcal{P}=\mathcal{E}^{*} \mathcal{Q}=\left\{T \in \mathcal{L}_{c r}: \operatorname{dim} N(T) \leq \operatorname{dim} N\left(T^{*}\right)\right\}$.
5. $\mathcal{P N}=\mathcal{Q} \mathcal{N}=\left\{T \in \mathcal{L}: \operatorname{dim} N(T) \leq \operatorname{dim} N\left(T^{*}\right)\right\}$.
6. $\mathcal{L}_{d} \mathcal{P}=\mathcal{L}_{d} \mathcal{Q}=\left\{T \in \mathcal{L}: \operatorname{dim} N\left(T^{*}\right) \leq \operatorname{dim} N(T)\right\}$.

Proof. Items 1 and 3 can be proven following similar lines than in Theorems 3.1 and 5.2. Items 2 and 4 follows by taking adjoints in items 1 and 3 , respectively.
5. If $T=P E$ with $E \in \mathcal{E}$ then $R(P)=R(T)$ and so $R(T)$ is closed. On the other hand, define $G:=E^{\dagger}(I-P)$. Notice that $N(G)=N(I-P)$ because E^{\dagger} is injective, and $R(G) \subseteq N(T)$ because if $y=E^{\dagger}(I-P) x \in R(G)$ then $T y=P E E^{\dagger}(I-P) x=P(I-P) x=0$. Therefore, $\operatorname{dim} N\left(T^{*}\right) \leq \operatorname{dim} N(T)$. Conversely, if $R(T)=\overline{R(T)}$ and $\operatorname{dim} N\left(T^{*}\right) \leq \operatorname{dim} N(T)$ then there exists a partial isometry W with initial subspace included in $N(T)$ and final subspace $N\left(T^{*}\right)$. Then, $T=P(T+W)$ where $P=P_{R(T)}$ and $R(T+W)=R(T)+R(W)=$ $R(T)+N\left(T^{*}\right)=\mathcal{H}$ where $(T, W) \in \mathcal{R}$ by [3, Proposition 2.2]. Finally, given $T=Q E$ with $Q \in \mathcal{Q}$ and $E \in \mathcal{E}$ then $T=Q E=P(Q+(1-P)) E$ where $(Q+(1-P)) E \in \mathcal{E}$ because $Q+(1-P)$ is invertible.
6. Follows by taking adjoints in item 5 .
7. Let $T=P A$ with $N(A)=\{0\}$. Without loss of generality we can consider $P=P_{\overline{R(T)}}$. Then, $\left.A\right|_{N(T)}: N(T) \rightarrow N(P)=N\left(T^{*}\right)$ is injective, so $\operatorname{dim}(N(T)) \leq \operatorname{dim} N\left(T^{*}\right)$. Conversely, if $\operatorname{dim}(N(T)) \leq \operatorname{dim} N\left(T^{*}\right)$ then there exists $B \in \mathcal{L}$ such that $\left.B\right|_{N(T)}: N(T) \rightarrow N\left(T^{*}\right)=$ $N(P)$ injective and $B\left(N(T)^{\perp}\right)=\{0\}$. Again $P=P_{\overline{R(T)}}$. Therefore, $T=P(T+B)$ and $N(T+B)=\{0\}$ because if $(T+B) x=0$ then $T x=-B x \in R(T) \cap R(B) \subseteq R(T) \cap R(T)^{\perp}=$ $\{0\}$, so $B x=0$ with $x \in N(T)$ and so $x=0$ since $\left.B\right|_{N(T)}$ is injective. The equality $\mathcal{P N}=\mathcal{Q N}$ can be proved in similar way as in the previous item.
8. Follows by taking adjoints in item 7.

We show next that, in many instances, it holds $\mathcal{A B}=\mathcal{B} \mathcal{A}$. However, at Remark 6.2 we have given an example for which $\mathcal{A B} \neq \mathcal{B} \mathcal{A}$.

Corollary 7.2. The next equalities hold:

$$
\mathcal{P G}=\mathcal{G P}, \mathcal{P U}=\mathcal{U} \mathcal{P}, \mathcal{Q G}=\mathcal{G} \mathcal{Q}, \mathcal{Q U}=\mathcal{U} \mathcal{Q}
$$

Proof. By Theorem 4.1, $T \in \mathcal{P G}$ if and only if $T^{*} \in \mathcal{P G}$. Taking adjoints, we get $\mathcal{P G}=\mathcal{G} \mathcal{P}$. The same argument shows that $\mathcal{P U}=\mathcal{U} \mathcal{P}$ and $\mathcal{Q G}=\mathcal{G} \mathcal{Q}$.

Although it is not trivial from Theorem 5.2, it also holds that $T \in \mathcal{Q U}$ if and only if $T^{*} \in \mathcal{Q U}$. In fact, if $T=Q U$ with Q an oblique projection and U a unitary operator then $T^{*}=U^{*} Q^{*}=\left(U^{*} Q^{*} U\right) U^{*}$ where $U^{*} Q^{*} U \in \mathcal{Q}$ and $U^{*} \in \mathcal{U}$. Thus, $T^{*} \in \mathcal{Q} \mathcal{U}$. Now, the proof of $\mathcal{Q U}=\mathcal{U} \mathcal{Q}$ follows the same lines that above.

Proposition 7.3. Let $T \in \mathcal{L}$ and $P=P_{\overline{R(T)}}$. The next conditions are equivalent:

1. $T \in \mathcal{P} \mathcal{I}$.
2. There exists $P_{1} \in \mathcal{P}$ such that $T T^{*}=P P_{1} P$ with $\operatorname{dim} R\left(P_{1}\right)=\operatorname{dim} \mathcal{H}$ and $\operatorname{dim} N(T) \leq$ $\operatorname{dim} R\left(P_{1}(I-P)\right)$.

Proof. $1 \Rightarrow 2$ Let $T=P Z$ with $Z \in \mathcal{I}$, then $T T^{*}=P Z Z^{*} P=P P_{1} P$ where $P_{1}=Z Z^{*} \in \mathcal{P}$. Since $Z \in \mathcal{I}$ then $\operatorname{dim} R\left(P_{1}\right)=\operatorname{dim} R(Z)=\operatorname{dim} \mathcal{H}$. On the other hand, let us see that $N(T) \subseteq R\left(Z^{*}(I-P)\right)$. Indeed, if $x \in N(T)$ then $T x=P Z x=0$, i.e, $Z x \in N(P)=$ $R(I-P)$. Thus, $x=Z^{*} Z x \in R\left(Z^{*}(I-P)\right)$. Therefore, $\operatorname{dim} N(T) \leq \operatorname{dim} R\left(Z^{*}(I-P)\right)=$ $\operatorname{dim} Z R\left(Z^{*}(I-P)\right)=\operatorname{dim} R\left(P_{1}(I-P)\right)$.
$2 \Rightarrow 1$ Suppose that item 2 holds. Notice that if $\operatorname{dim} R\left(P_{1}\right)=\operatorname{dim} \mathcal{H}$ then there exist $Z \in \mathcal{I}$ such that $Z Z^{*}=P_{1}$. Therefore, $T T^{*}=P Z Z^{*} P$ for some $Z \in \mathcal{I}$. Thus, $\left|T^{*}\right|=\left|(P Z)^{*}\right|$. Now, if $T=\left|T^{*}\right| V_{T}$ and $P Z=\left|(P Z)^{*}\right| V_{P Z}$ are the polar decompositions of T and $P Z$ respectively, then $T=P Z V_{P Z}^{*} V_{T}$. Define $J:=V_{P Z}^{*} V_{T}$. We claim that J is a partial isometry with initial space $N(T)^{\perp}$ and final space $N(P Z)^{\perp}$. In fact, $\overline{J J^{*}=V_{P Z}^{*} V_{T} V_{T}^{*} V_{P Z}=V_{P Z}^{*} V_{P Z}=}$ $P_{N(P Z)^{\perp}}$, where the second equality holds because $R\left(V_{T}\right)=\overline{R(T)}=\overline{R\left(T T^{*}\right)}=\overline{R\left(P Z Z^{*} P\right)}=$ $\overline{R(P Z)}=R\left(V_{P Z}\right)$. On the other hand, $J^{*} J=V_{T}^{*} V_{P Z} V_{P Z}^{*} V_{T}=V_{T}^{*} V_{T}=P_{N(T)^{\perp}}$ as desired.

Now, let F be a partial isometry with initial space $N(T)$ and a subspace of $N(P Z)$ as final space. The existence of F is guaranteed because $\operatorname{dim} N(P Z)=\operatorname{dim} Z^{*}\left(R(T)^{\perp}\right)=$ $\operatorname{dim} Z^{*}(R(I-P))=\operatorname{dim} Z R\left(Z^{*}(I-P)\right)=\operatorname{dim} R\left(P_{1}(I-P)\right) \geq \operatorname{dim} N(T)$.

Now, $J+F \in \mathcal{I}$ because $(J+F)^{*}(J+F)=J^{*} J+J^{*} F+F^{*} J+F^{*} F=J^{*} J+F^{*} F=$ $P_{N(T)^{\perp}}+P_{N(T)}=I$ where $J^{*} F=0$ because $N\left(J^{*}\right)=N\left(J J^{*}\right)=N(P Z) \supseteq R(F)$. Thus, $Z(J+F) \in \mathcal{I}$ and $T=P Z(J+F)$, i.e., $T \in \mathcal{P} \mathcal{I}$.

By Theorem 4.1 and items 3 and 4 of Corollary 7.1, we get the next result.
Corollary 7.4. The next equalities hold: $\mathcal{P E} \cap \mathcal{P N}=\mathcal{Q E} \cap \mathcal{Q N}=\mathcal{Q G}=\mathcal{P G}$
Remark 7.5. In spite of the results of Corollary 7.4, one cannot expect a general result of the type $\mathcal{A B} \cap \mathcal{A C}=\mathcal{A}(\mathcal{B} \cap \mathcal{C})$. In fact, consider $\mathcal{A}=\mathcal{L}^{+}, \mathcal{B}=\mathcal{J}$ and $\mathcal{C}=\mathcal{G}^{+}$. Then, $\mathcal{A B}=\mathcal{L}, \mathcal{A C}=\left\{T \in \mathcal{L}: \exists A \in \mathcal{L}^{+}\right.$such that $\left.T \sim A\right\}$ and so $\mathcal{A B} \cap \mathcal{A C}=\mathcal{A C}$. On the other hand, $\mathcal{B} \cap \mathcal{C}=\{I\}$ and so $\mathcal{A}(\mathcal{B} \cap \mathcal{C})=\mathcal{A}$. Now, since $\mathcal{A C}=\left\{T \in \mathcal{L}: \exists A \in \mathcal{L}^{+}\right.$such that $T \sim$ $A\} \neq \mathcal{L}^{+}=\mathcal{A}$ we get that $\mathcal{A B} \cap \mathcal{A C} \neq \mathcal{A}(\mathcal{B} \cap \mathcal{C})$.

Acknowledgments We thank the referee for a careful reading and for her/his suggestions which improved the article.

References

[1] J. Antezana, G. Corach, M. Ruiz, D. Stojanoff, Oblique projections and frames. Proc. Amer. Math. Soc. 134 (2006), 1031-1037.
[2] M.L. Arias, G. Corach, M. C. Gonzalez, Products of projections and positive operators, Linear Algebra Appl. 439 (2013), 1730-1741.
[3] M. L. Arias, G. Corach, A. Maestripieri, Range additivity, shorted operator and the Sherman-Morrison-Woodbury formula, Linear Algebra Appl., 467 (2015), 86-99.
[4] C.S. Ballantine, Products of idempotent matrices, Linear Algebra and Appl. 19 (1978), 81-86.
[5] L. G. Brown, Almost every proper isometry is a shift, Indiana Univ. Math. J. 23 (1973/74), 429-431.
[6] J.B. Conway, A course in functional analysis, Springer-Verlag New York, 1985.
[7] G. Corach, A. Maestripieri, Polar decomposition of oblique projections, Linear Algebra Appl. 433 (2010), 511-519.
[8] G. Corach, A. Maestripieri, Products of orthogonal projections and polar decompositions, Linear Algebra Appl. 434 (2011), 1594-1609.
[9] W. Czaja, Remarks on Naimark's duality, Proc. Amer. Math. Soc. 136 (2008), 867-871.
[10] C. Davis, Separation of two linear subspaces. Acta Sci. Math. Szeged 19 (1958), 172-187.
[11] R. J. H. Dawlings, Products of idempotents in the semigroup of singular endomorphisms of a finite-dimensional vector space, Proc. Roy. Soc. Edinburgh Sect. A 91 (1981/82), 123-133.
[12] R. G. Douglas; On majorization, factorization and range inclusion of operators in Hilbert spaces, Proc. Am. Math. Soc. 17 (1966), 413-416.
[13] P. A. Fillmore and J. P. Williams; On operator ranges, Advances in Math. 7 (1971), 254-281.
[14] D. Han, D. R. Larson, Frames, bases and group representations, Mem. Amer. Math. Soc. 147 (2000),1-94.
[15] S. Izumino, Y. Kato, The closure of invertible operators on a Hilbert space. Acta Sci. Math. (Szeged), 49 (1985), 321-327.
[16] K. H. Kuo, P. Y. Wu, Factorization of matrices into partial isometries, Proc. Amer. Math. Soc. 105 (1989), 263-272.
[17] K. Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), 177-216.
[18] M. Naimark, Spectral functions of a symmetric operator, Bull. Acad. Sci. URSS. Ser. Math. [Izvestia Akad. Nauk SSSR] 4 (1940), 277-318.
[19] J. von Neumann, Über adjungierte Funktionaloperatoren, Ann. of Math. (2) 33 (1932), 294-310.
[20] R. Penrose, A generalized inverse for matrices, Math. Proc. Cambridge Philos. Soc. 51 (1955), 406-413.
[21] H.Radjavi, J.P.Williams, Products of self-adjoint operators, Mich.Math.J. 16 (1969), 177-185.
[22] M. Reed, B. Simon, Methods of modern mathematical physics. I. Functional analysis, Second edition. Academic Press, Inc., New York, 1980.
[23] D. D. Rogers, Approximation by unitary and essentially unitary operators, Acta Sci. Math. (Szeged) 39 (1977), 141-151.
[24] Z. Sebestyén, Restrictions of positive operators, Acta Sci.Math. 46 (1983), 299-301.
[25] Z. Sebestyén, A. Magyar, Restrictions of partial isometries II, Periodica Mathematica Hungarica 25 (1992), 191-193.
[26] P. Y. Wu, The operator factorization problems, Linear Algebra Appl. 117 (1989), 35-63.

[^0]: *Corresponding author. Address: IAM-CONICET, Saavedra 15, Piso 3 (1083), Buenos Aires, Argentina. Email addresses: antezana@mate.unlp.edu.ar (Jorge Antezana), lauraarias@conicet.gov.ar (M. Laura Arias), gcorach@fi.uba.ar (Gustavo Corach)
 ${ }^{1}$ Partially supported by CONICET-PIP 2009-435, UNLP 11X681, MTM2012-36378
 ${ }^{2}$ Partially supported by PIP 0757(CONICET) and UBACYT 20020130100637

