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ABSTRACT  

Enhancement of α7 nicotinic receptor (nAChR) function by positive allosteric modulators 

(PAMs) is a promising therapeutic strategy to improve cognitive deficits. PAMs have been 

classified only on the basis of their macroscopic effects as type I, which only enhance agonist-

induced currents, and type II, which also decrease desensitization and reactivate desensitized 

nAChRs. To decipher the molecular basis underlying these distinct activities, we explored the 

effects on single-α7 channel currents of representative members of each type and of less 

characterized compounds. Our results reveal that all PAMs enhance open-channel lifetime and 

produce episodes of successive openings, thus indicating that both types affect α7 kinetics. 

Different PAM types show different sensitivity to temperature, suggesting different mechanisms 

of potentiation. By using a mutant α7 receptor that is insensitive to the prototype type II PAM 

(PNU-120596), we show that some though not all type I PAMs share the structural determinants 

of potentiation. Overall, our study provides novel information on α7 potentiation, which is key to 

the ongoing development of therapeutic compounds. 

 

Keywords: Cys-loop receptors; Nicotinic Receptors; Patch-clamp; Single-channel Recordings; 

Positive allosteric modulators.  

 

Abbreviations:  nAChR, nicotinic acetylcholine receptor; ACh, acetylcholine; 5-HT3A, serotonin 

type 3A receptor; PAM, positive allosteric modulator; PAM-2, 3-furan-2-yl-N-p-tolyl-acrylamide; 

PAM-3, 3-furan-2-yl-N-o-tolylacrylamide, PAM-4, 3-furan-2-yl-N-phenylacrylamide; PNU-

120596, N-(5-Chloro-2,4-dimethoxyphenyl)-N'-(5-methyl-3-isoxazolyl)-urea; 5-HI, 5-

Hydroxyindole; NS-1738, N-(5-Chloro-2-hydroxyphenyl)-N'-[2-chloro-5-

(trifluoromethyl)phenyl]urea; RT, room temperature; ECD, extracellular domain, TMD, 

transmembrane domain; extracellular solution (ECS). 
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1. INTRODUCTION 

α7 nicotinic receptors (nAChRs) are widely distributed in the brain, especially in the 

hippocampus, thalamus, and cortex (Albuquerque et al., 2009). They contribute to cognition, 

sensory information processing, attention, working memory, and reward pathways. Decline or 

alterations of cholinergic signaling involving α7 have been implicated in various neurological 

diseases, such as schizophrenia, epilepsy, and Alzheimer’s disease (Dani and Bertrand, 

2007;Dineley et al., 2015;Hurst et al., 2013;Thomsen et al., 2010;Wallace and Bertrand, 

2013;Wallace and Porter, 2011). Selective α7 agonists are currently being developed for the 

treatment of memory impairment in patients with schizophrenia and Alzheimer’s disease (Fan et 

al., 2015;Freedman, 2014;Wallace and Porter, 2011). An alternative approach to increase α7 

function is the use of selective positive allosteric modulators (PAMs) (Arias, 2010;Uteshev, 

2014;Williams et al., 2011a). Allosteric ligands have several pharmacological advantages over 

orthosteric ligands including maintenance of the normal spatial and temporal pattern of 

endogenous neurotransmission and higher receptor subtype selectivity, resulting, at least 

hypothetically, in high clinical efficacy with minimal adverse effects (Uteshev, 2014).  

PAMs have been classified on the basis of their macroscopic effects as type I (e.g., 5-HI, 

NS-1738) or type II (e.g., PNU-120596). Based on their macroscopic effects it has been 

postulated that type I PAMs only enhance agonist-induced currents without affecting 

macroscopic current kinetics, whereas type II PAMs also delay desensitization and reactivate 

desensitized receptors (Arias, 2010;Bertrand and Gopalakrishnan, 2007;Williams et al., 2011a). 

The microscopic origin of these profiles remains unclear for most PAMs and its elucidation 

requires high-resolution single-channel recordings.  

We have recently synthesized a series of compounds, named as PAM-2,  PAM-3, and 

PAM-4 and shown that they act as selective α7 PAMs (Arias et al., 2011). Initial Ca2+ influx 
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experiments show that PAM-2 reactivates desensitized α7, suggesting that it is a putative type II 

PAM (Targowska-Duda et al., 2014). The potential clinical importance of these PAMs is based 

on experimental results in rodents revealing that PAM-2 produces antidepressant-like 

(Targowska-Duda et al., 2014;Arias et al., 2015), pro-cognitive (Potasiewicz et al., 2015), and 

nociceptive and anti-inflammatory activities (Bagdas et al., 2015). 

Considering the wide spectrum of potential clinical uses of PAMs, understanding the 

underlying molecular mechanism of potentiation at human α7 is urgent. Still, studying α7 at the 

molecular level is complex due to its low open probability and fast kinetics, high-resolution 

single-channel recordings being therefore required to collect accurate information (Bouzat et al., 

2008). We therefore performed a thorough evaluation at the single-channel current level of the 

activity of prototypic type I and type II PAMs and of the less characterized compounds (PAM-2, -

3 and -4). Overall, by examining PAM activities from a different perspective, our results provide 

novel information regarding the foundation of α7 potentiation, which is required for 

understanding the potential consequences at the cell and clinical levels. 
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2. MATERIALS AND METHODS 

2.1. Drugs.  

5-Hydroxyindole (5-HI), acetylcholine (ACh), and probenecid were purchased from Sigma-

Aldrich (St Louis, MO, USA). NS-1738 (N-(5-Chloro-2-hydroxyphenyl)-N'-[2-chloro-5-

(trifluoromethyl)phenyl]urea), PNU-120596 (N-(5-Chloro-2,4-dimethoxyphenyl)-N'-(5-methyl-3-

isoxazolyl)-urea), (±)-epibatidine hydrochloride were obtained from Tocris Biosciences (Bristol, 

UK). Fluo-4 was purchased from Molecular Probes (Eugene, OR, USA). PAM-2 (3-furan-2-yl-N-

p-tolylacrylamide), -3 (3-furan-2-yl-N-o-tolylacrylamide) and -4 (3-furan-2-yl-N-

phenylacrylamide) were synthesized as in Arias et al. (2011).  

 

2.2. Expression of Receptors.  

All cDNAs were subcloned in the pRBG4 plasmid (Bouzat et al., 1994). Wild-type human α7 

(Andersen et al., 2013;Bouzat et al., 2008) and the quintuple mutant α7 (α7TSLMF) that carries 

five substitutions within the transmembrane domain (TMD) (S223T, A226S, M254L, I281M, and 

V288F) (daCosta et al., 2011) were used. This quintuple mutant α7 is insensitive to PNU-

120596 (daCosta et al., 2011). The chimeric receptor α7-5HT3A is composed of human α7 

sequences from the extracellular domain (ECD) and mouse 5-HT3A (m5-HT3A) sequences from 

the TMD (Bouzat et al., 2004). The high conductance forms of m5-HT3A and the α7-5HT3A 

chimera were obtained by substitution of three arginine residues responsible for low 

conductance (R432Q, R436D and R440A) as described before (Corradi et al., 2009;Rayes et 

al., 2005). BOSC 23 cells, modified HEK 293 cells, were transfected by calcium phosphate 

precipitation with subunits cDNAs alone or with Ric-3 cDNA to increase α7 cell membrane 

expression (Andersen et al., 2013;Andersen et al., 2011;Bouzat et al., 2008). Ric-3 and α7 

cDNAs were co-transfected at a ratio of 12:1 (wt:wt), with the total α7 cDNA ranging from ∼0.4 

to 1 µg for a 35-mm culture dish (Andersen et al., 2013;Andersen et al., 2011;Bouzat et al., 
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2008). All transfections were carried out for about 12-18 h in DMEM with 10% FBS and were 

terminated by exchanging the medium. Cells were used for single-channel recordings 2 to 4 

days after transfection. To facilitate identification of transfected cells, a separate plasmid 

encoding green fluorescent protein was included in all transfections. 

 

2.3. Single-Channel Recordings.  

Single-channel recordings were obtained in the cell attached patch configuration. For α7 

nAChRs, the bath and pipette solutions contained 142 mM KCl, 5.4 mM NaCl, 1.8 mM CaCl2, 

1.7 mM MgCl2, and 10 mM HEPES (pH 7.4). For α7-5HT3A, the bath and pipette solutions 

contained 142 mM KCl, 5.4 mM NaCl, 0.2 mM CaCl2, and 10 mM HEPES (pH 7.4) (Bouzat et 

al., 2008). ACh alone and/or PAMs were added to the pipette solution. Single-channel currents 

were digitized at 5- to 10-µs intervals, low-pass filtered at a cutoff frequency of 10 kHz using an 

Axopatch 200 B patch-clamp amplifier (Molecular Devices), and analyzed using the program 

TAC with the Gaussian digital filter at 9 kHz. Gaussian filter of 3 kHz was used in recordings 

with PNU-120596 to facilitate the analysis. Single-channel currents were detected by the half 

amplitude threshold criterion using the program TAC (Bruxton Corporation, Seattle, WA, USA). 

Dwell-time histograms were fitted by the sum of exponential functions by maximum likelihood 

using the program TACFit (Bruxton Corporation, Seattle, WA, USA).  

Bursts of channel openings were identified as a series of closely separated openings preceded 

and followed by closings longer than a critical duration, which was taken as the point of 

intersection between the first and second briefest components in the closed-time histogram for 

bursts of α7 (∼300-500 µs), second and third closed components for bursts of α7TSLMF (∼1-2 

ms), second and third closed components for bursts of α7 in the presence of 5-HI (∼1-3 ms), 

and second and third closed components for bursts of α7-5HT3A receptors (∼2-5 ms) (Andersen 

et al., 2013). In the presence of PNU-120596, α7 openings are grouped in bursts, which, in turn, 
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form long clusters. For bursts, the critical time was set at 200-300 µs, and for clusters, the 

critical time was determined by the point of intersection between the third and fourth closed 

components (∼50 ms).  

Single-channel recordings were performed at room temperature (22 ± 2oC) unless specified. To 

perform recordings at more physiological temperatures we used a thermostated stage and the 

temperature of the bath solution in the dish was controlled by a thermocouple. The bath 

temperature was maintained at 34 ± 3oC.  

The final concentration of DMSO used to solubilize PAMs was lower than 1% (v/v). As a control, 

we verified that the mean duration of α7 openings in the presence of ACh and 5 µM PAM-2 

does not change if the concentration of DMSO is increased from 0.1% to 1%, discarding the 

possibility that DMSO is affecting the determined values. 

 

2.4. Macroscopic current recordings.  

Currents were recorded in the whole-cell configuration as described previously (Bouzat et al., 

2008;Corradi et al., 2009).  The pipette solution contained 134 mM KCl, 5 mM EGTA,1 mM 

MgCl2, and 10 mM HEPES (pH 7.3). The extracellular solution (ECS) contained 150 mM NaCl, 

1.8 mM CaCl2, 1 mM MgCl2, and 10 mM HEPES (pH 7.3). Agonist responses (control currents) 

were obtained by a pulse of ECS containing the agonist. 

To study the activity of different PAMs, responses were evaluated following different protocols 

(Gumilar and Bouzat, 2008). Briefly, we used: co-application protocols, where a 3-s pulse of 

ECS containing ACh and PAM was applied; pre-incubation protocols, where the cell was 

exposed to a variable period (6-240 s) to ECS containing PAM before the application of ACh 

solution; and a combination of both protocols. For all tested PAMs, a 6-s wash period allowed 

total recovery of control currents. For NS-1738, PNU-120596, PAM-2 and -4 maximal 
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potentiation was observed with preincubation (with or without co-application). For 5-HI we used 

co-application assays as reported previously (Zwart et al., 2002).  

The solution exchange time was estimated by the open pipette and varied between 0.1 and 1 

ms (Corradi et al., 2009). Briefly, an open tip is placed in the ECS stream and the solution is 

switched to another ½ diluted ECS solution, which leads to a change in liquid junction potential. 

The time required to produce the 20%-80% change is determined as the exchange time. For the 

whole-cell configuration the solution exchange rate is slower than that determined for the open 

pipette because of the larger surface and curvature of the cell compared with the tip. The speed 

of the solution exchange sensed by the patch in the whole-cell configuration has been estimated 

to be 3-10-fold slower than that determined from the open pipette (Lovinger et al., 2002;Zhou et 

al., 1998).  

Currents were filtered at 5 kHz, digitized at 20 kHz, and analyzed using the IgorPro software 

(WaveMetrics Inc., Lake Oswego, OR, USA).  Each current represents the average from 3-5 

individual traces obtained from the same cell, which were aligned with each other at the point 

where the currents reached 50% of maximum. Currents were fitted by a double exponential 

function (1):  

 

I(t)=Ifast[exp(-t/τfast)]+ Islow[exp(-t/τslow)]+I∞                   (1) 

 

where Ifast and Islow are the peak current values, I∞ the steady state , and τfast  and τslow are the 

fast and slow decay time constants, respectively. Net charge was calculated by current 

integration (Papke and Porter Papke, 2002). 
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2.5. Ca2+ influx measurements in the GH3-αααα7 cell line.  

The reactivation of desensitized α7 receptors elicited by selective PAMs  was determined by 

Ca2+ influx experiments using the GH3-α7 cell line as previously described (Arias et al., 2011). 

Briefly, 5x104 cells per well were seeded 48 h prior to the Ca2+ influx experiment on black poly-

L-lysine 96-well plates (Costar, Corning Inc., NY, USA) and incubated at 37oC in a humidified 

atmosphere (5% CO2/95% air). On the day of the experiment, the medium was removed by 

flicking the plates and replaced with 100 µL HBSS/1% FBS containing 2 µM fluo-4 (Molecular 

Probes, Eugene, OR, USA) in the presence of 2.5 mM probenecid. The cells were then 

incubated at 37oC in a humidified atmosphere (5% CO2/95% air) for 1 h. Plates were flicked to 

remove excess of fluo-4, washed with HBSS/1% FBS, and finally refilled with 100 µL of HBSS. 

Plates were then placed in the cell plate stage of the fluorimetric imaging plate reader 

(Molecular Devices, Sunnyvale, CA, USA). 0.1 µM (±)-epibatidine was injected after 8 s, and the 

fluorescence recorded for a total of 190 s. The laser excitation and emission wavelengths were 

488 and 510 nm, at 1 W, with a CCD camera opening of 0.4 s. After nAChR desensitization 

increasing concentrations of the compound under study were added in the presence of (±)-

epibatidine to the cell plate simultaneously to fluorescence recordings for additional 180 s. The 

concentration–response data for PAM-2, -3, and -4, were curve-fitted by nonlinear least squares 

analysis using the Prism software (GraphPad Software, San Diego, CA) and the potency 

(apparent EC50 values) and efficacy (Emax) of receptor reactivation calculated. ∆Emax 

corresponds to the difference between the maximal fluorescence value (Emax) obtained at the 

highest PAM concentrations and the value obtained after (±)-epibatidine-induced α7 nAChR 

desensitization. 
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2.6. Statistics.  

Experimental data are shown as mean ± S.D. Student t-Test or One-Way ANOVA were used to 

determine significance differences. A value of p<0.05 was considered statistically significant.  

 

 

3. RESULTS 

 

3.1. Effects of PAMs on macroscopic currents.  

We first determined if the less characterized compounds (PAM-2 and PAM-4) behave at the 

macroscopic level as type I or type II by analyzing their effects on ACh-activated whole-cell 

currents from cells expressing human wild-type α7 and comparing with those elicited by 

prototype PAMs.  

In agreement with previous reports (Bertrand and Gopalakrishnan, 2007;Timmermann et 

al., 2007;Zwart et al., 2002), the type I PAMs 5-HI and NS-1738 increase the amplitude of wild-

type α7 whole-cell responses without producing significant changes in the decay time constants 

(Figure 1). In the presence of 2 mM 5-HI and 50 µM ACh, the maximal current increases 7.7 ± 

1.1 times, the net charge increases 5.5 ± 2.3 times, and the decay time constant remains similar 

to that of the control current. The observed τfast and τslow values are 270 ± 130 ms and 1,700 ± 

600 ms, and 110 ± 30 ms and 990 ± 40 ms for α7 in the absence and presence of 2 mM 5-HI, 

respectively (Figure 1). In the presence of 10 µM NS-1738, the peak current increases 2.4 ± 1.1 

times, the net charge increases 1.9 ± 1.1 times, and the decay time constants remain 

unchanged  (Figure 1). Thus, the ratio of the changes in net charge/peak current induced by 5-

HI and NS-1738 is close to 1, as expected for type I PAMs. 

Preincubation with 3 µM PNU-120596 (type II PAM) increases the peak current (23 ±12 

times) and produces a significant reduction in the decay rate of wild-type α7 receptors activated 
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by 50 µM ACh (daCosta et al., 2011) (Figure 1). In general, an initial rapid desensitizing peak 

current followed by the potentiated current is observed (daCosta et al., 2011;Szabo et al., 

2014). The net charge increases 128 ± 100 fold (n=5). Thus, the ratio of the increase in net 

charge/peak current is >1, in accordance to previous observations (Williams et al., 2011b). At a 

saturating ACh concentration (1 mM), α7 potentiation by PNU-120596 is also important but it is 

slightly smaller than that at 50 µM ACh (peak current and net charge increase 23 ± 18 and 61 ± 

28 fold respectively, n=9) (Figure S1). 

Preincubation with 100 µM PAM-2 or PAM-4 enhances the peak current and decreases 

the decay rate of wild-type α7 ACh-evoked currents (Figure 1). Higher PAM concentrations (300 

and 500 µM) do not produce further potentiation. PAM-2 and PAM-4 increase 1.5 ± 0.2 and 1.8 

± 0.5 times the peak of ACh-elicited currents, and 4.2 ± 0.1 and 3.7 ± 2.4 times the net charge, 

respectively. The decreased decay rate together with the fact that the ratio of the change in net 

charge versus the change in peak current is > 1 supports a type II classification, as previously 

suggested for PAM-2  (Targowska-Duda et al., 2014). 

α7 potentiation by PAM-2 is smaller at 1 mM ACh than at 50 µM ACh (the peak current 

decreases 0.6 ± 0.2 fold and the net charge increases only 2.1 ± 0.8 fold, n=4) (Figure S1). This 

weak potency make PAM-2 appear under certain conditions as an intermediate type PAM. 
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FIGURE 1. Potentiation of wild-type αααα7 responses by type I and type II PAMs.  Whole-cell 

α7 currents elicited by 50 µM ACh (black traces), and 50 µM ACh plus a given PAM (grey 

traces), including 5-HI (n=3), NS-1738 (n=9), PNU-120596 (n=5), PAM-2 (n=10), and PAM-4 

(n=9). The bars show the application of ACh (black) and PAM (grey). Membrane potential: -50 

mV. 

 

 

3.2. Reactivation of desensitized α7 nAChRs by selective PAMs.   

Ca2+ influx assays were performed in GH3-α7 cells to quantitatively compare the activity of 

PAM-2, -3 and -4 with that of NS-1738 and PNU-120596 (Figure 2A). After the initial (±)-

epibatidine-induced α7 activation (i.e., increased Ca2+ influx), receptors become desensitized. 

The subsequent treatment of cells with either PAM-3, PAM-4, or PNU-120596 in the presence 

of (±)-epibatidine reactivates the formerly desensitized α7, and a long-lasting Ca2+ increase is 

observed (Figure 2A). These results are in agreement with that described initially for PAM-2 

(Targowska-Duda et al., 2014). In contrast, NS-1738 does not produce reactivation (Figure 2A), 

thus confirming that PAM-2, -3, and -4, can be considered type II PAMs. To quantify the 

reactivation induced by PAM-2, -3, -4 and PNU-120596, increasing concentrations of each PAM 

were used (Figure 2B). The results indicate that PAM-2 and -4 are equipotent and ~3-fold more 
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potent than PAM-3, and that PNU-120596 is the most potent among all tested PAMs (Table 1). 

This trend coincides very well with the potencies determined previously (Arias et al., 2011). The 

∆Emax values indicate the following efficacy order: PNU-120596>PAM-2~PAM-4>PAM-3 (Table 

1). 

 

 

FIGURE 2. Reactivation of desensitized αααα7 by selective PAMs.   

(A) GH3-α7 cells were first treated with 0.1 µM (±)-epibatidine. After desensitization, cells were 

treated with either 10 µM PAM-2 (─), -3 (▬), -4 (•••), PNU-120596 (---), or NS-1738 (…) in the 

presence of 0.1 µM (±)-epibatidine. (B) To quantify the reactivation activity of PAMs, increasing 

concentrations of PAM-2 (�), -3 (�),-4 (�), PNU-120596 (○), and NS-1738 (□) were used. The 

observed plots are representative of 3 experiments. (±)-Epibatidine-induced α7 nAChR 

activation (■) is also included for comparative purposes. The data for PAM-2 was taken from 

Targowska-Duda et al. (2014) for comparative purposes. 
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TABLE 1. Potency (EC 50) and differential efficacy ( ∆Emax) of PAMs for recovering 

desensitized α7 nAChRs from GH3 cell line. 

 

PAM Apparent EC50 (µM) ∆Emax 

PAM-2 3.6 ± 1.8 183 ± 65 

PAM-3 14.9 ± 7.1 87 ± 15 

PAM-4 5.4 ± 3.4 164 ± 38 

PNU-120596 0.8 ± 0.5 589 ± 13 

NS-1738 No effect ─ 

 

The concentration–response data for the different PAMs were analyzed by nonlinear regression 

(Figure 2B). The ∆Emax values correspond to the difference between the Emax value obtained at 

the highest PAM concentrations and the value obtained after (±)-epibatidine-induced α7 nAChR 

desensitization.  

 

  

3.3. Single-channel current profiles of wild-type α7 nAChRs potentiated by type I and II PAMs. 

To compare the molecular effects elicited by different PAMs, single-α7 channel currents were 

recorded in the absence and presence of type I (5-HI and NS-1738), type II (PNU-120596), and 

PAM-2, -3 and -4 compounds. In the absence of modulators, 50-100 µM ACh elicits brief and 

isolated channel openings from cells expressing α7. The open time distribution is described by a 

brief exponential component of 60 ± 10 µs and the slowest one of about 300 µs (Figure 3A, 

Table 2) (Andersen et al., 2013;Bouzat et al., 2008). In the presence of 2 mM 5-HI, single-

channel recordings show prolonged α7 openings and bursts composed of successive openings 

appear (Andersen et al., 2013) (Figure 3B, Table 2). The open-time histogram is fitted by the 

sum of two or three exponential components, being the mean duration of slowest component 
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~6-fold longer than that of the control (Table 2). The maximal open-channel lifetime is relatively 

constant at a range of 5-HI concentration from 100 µM (1.4 ± 0.3 ms) to 2 mM. The mean burst 

duration is 10-fold longer than that in the absence of PAMs (Figure 3, Table 2). In the presence 

of 10 µM NS-1738, α7 openings elicited by 100 µM ACh are also prolonged and appear in 

bursts, similar to the activity observed with 5-HI. Open duration histograms are described by the 

sum of three exponential components (Figure 3C). The mean durations of the slowest open 

component and of bursts are statistically significantly longer with respect to those determined in 

its absence (Figure 3C, Table 2). In conclusion, two representative type I PAMs prolong open 

duration and make openings appear in long activation episodes, indicating that type I PAMs do 

affect activation kinetics.  

PNU-120596 (1 µM) gives rise to significantly prolonged openings, grouped in bursts of 

openings separated by brief closings (200-300 µs), which in turn coalesce into long activation 

periods, named clusters (Table 2 and daCosta et al., 2011). The mean duration of the slowest 

open component is ~700-fold longer than that in the absence of PAMs (Figure 3D, Table 2). 

In the presence of PAM-2 (5 µM), PAM-3 (25 µM), or PAM-4 (5 µM) at concentrations 

corresponding to their EC50 values determined by Ca2+ influx assays (Arias et al., 2011), 50-100 

µM ACh elicits prolonged openings which are grouped in bursts of ∼10 ms (Figure 3E-G and 

Figure S2, Table 2). For the three PAMs, open duration histograms are fitted by three 

exponential components, whose durations are ∼0.10 ms, ∼0.50-0.70 ms and ∼3 ms (Figure 3, 

Table 2 and Figure S2). For all PAMs, the mean open and burst durations determined at 

concentrations 3-4 times higher than the corresponding EC50 do not show further increase 

(except for the burst duration between 5 and 20 µM PAM-4) (Figure S2). At lower 

concentrations (0.1-1 µM PAM-2) openings and bursts are less frequent and significantly briefer 

than at 5 µM (Figure S2).  
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In conclusion, the two types of PAMs enhance open and burst durations. Moreover, the 

single-channel profiles in the presence of PAM-2, -3 and -4 (classified as type II PAMs) 

resemble better that of type I PAMs than that of PNU-120596 (Figures 1 and 3, Table 2).  

 

 

FIGURE 3. Single-channel current profiles of wild-t ype αααα7 in the presence of type I and 

type II PAMs.  

Left:  Single-channel traces of 50-100 µM ACh-activated α7 currents in the absence of PAMs 

(A), or in the presence of 2 mM 5-HI (B), 10 µM NS-1738 (C), 1 µM PNU-120596 (D), 5 µM 

PAM-2 (E), 25 µM PAM-3 (F), and 5 µM PAM-4 (G). Membrane potential: -70 mV. Right:  

Representative open and burst or cluster duration histograms are shown for each condition.  
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Table 2.  Mean open and burst or cluster durations of α7, 5-HT3A, α7-5HT3A and α7TSLMF 

in the presence of PAMs. 

 

Single-channel properties of different receptors in the absence and presence of PAMs. τo and 

τburst or τcluster correspond to the slowest components of the open and burst or cluster 

duration histograms, respectively. Values are mean ± SD. n: corresponds to the number of 

patches from different experiments. Statistical significance was determined by comparing the 

mean value in the presence of the indicated PAM with respect to that determined in its absence 

(Student t-Test: p<0.05 *, p<0.01 **, p<0.001 ***). 

 

 

Receptor Agonist Agonist (µM) PAM ττττo  
(ms)  

ττττburst  or ττττcluster  

(ms)   
n 

α7 ACh 50-100 - 0.33 ± 0.12 0.43 ± 0.15 6 

α7 ACh 100 2 mM 5-HI 2.0 ± 0.6 (***) 4.2 ± 1.9 (*) 8 

α7 ACh 100 10 µM NS-1738 2.8 ± 0.6 (***) 12.7 ± 5.9 (**) 4 

α7 ACh 100 1 µM PNU-120596 206 ± 79 (***) 2700 ± 1200 (***) 8 

α7 ACh 50-100 5 µM PAM-2 2.7 ± 0.9 (***) 9.5 ± 2.9 (***) 8 

α7 ACh 50-100 25 µM PAM-3 2.6 ± 0.7 (**) 6.9 ± 1.7 (**) 3 

α7 ACh 50-100 5 µM PAM-4 3.5 ± 0.7 (***) 13.2 ± 2.7 (***) 4 

       

5-HT3A 5-HT 1 - 120 ± 35 3200 ± 1300 4 

5-HT3A 5-HT 1 5 µM PAM-2 115 ± 50  2600 ± 700  6 

5-HT3A 5-HT 1 15 µM PAM-2 60 ± 15 (*) 800 ± 250 (**) 3 

       

α7-5HT3A ACh 1000 - 9.6 ± 2.8 17.9 ± 6.9 5 

α7-5HT3A ACh 1000 5 µM PAM-2 9.8 ± 2.2  21.3 ± 6.7  6 

α7-5HT3A ACh 1000 2 mM 5-HI 14.2 ± 4.0 73.5 ± 23.4 (**) 3 

       

α7TSLMF ACh 100 - 1.0 ± 0.4 2.0 ± 1.0 9 

α7TSLMF ACh 100 2 mM 5-HI 5.8 ± 0.9 (***) 22.3 ± 3.7 (***)  4 

α7TSLMF ACh 100 10 µM NS-1738 1.1 ± 0.1 1.5 ± 0.6 4 

α7TSLMF ACh 100 5 µM PAM-2 1.3 ± 0.7  2.5 ± 1.4 7 
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3.4. Temperature dependence of PAM potentiation.  

Although most in vitro studies have been performed at room temperature (RT), preclinical 

studies and clinical use obviously take place at physiological temperatures. At the macroscopic 

level, it has been shown that wild-type α7 currents potentiated by PAMs are markedly reduced if 

the temperature is increased (Sitzia et al., 2011;Williams et al., 2012). To understand the origin 

of this effect, we evaluated at the single-channel level PAM potentiation at a temperature closer 

to the physiological one (34 ± 3°C). As expected, t he single-channel amplitude, measured in the 

presence of PAMs, is higher at 34oC than that at RT (22 ± 2°C) (Figure 4). The Q 10 value for 

single-channel conductance, estimated with these two points, is 1.2. This value is in close 

agreement with the Q10 for the muscle nAChR and indicates that  the  temperature  sensitivity is 

similar to that of diffusion of ions in solution (Dilger et al., 1991).  

Single-channel activity in the presence of PNU-120596 reveals reduced potentiation at 

34oC with respect to RT. The mean duration of the slowest open component is reduced 2-fold 

respect to that at 22oC (Table 3). However, the most important change occurs in the pattern of 

channel activity. More specifically, bursts do not coalesce into the long clusters observed at RT; 

they instead appear isolated, thus leading to significantly shorter activation episodes when 

compared to the 3-s ones detected at RT (Figure 4A). To quantify the kinetic changes we 

analyzed burst (defined by successive openings separated by closings of durations <0.2 ms) 

and cluster duration histograms. The mean burst duration is 258 ± 118 ms at 22°C and 164 ± 40 

ms at 34°C. We determined that at 34ºC the mean dur ation of bursts remains constant (206 ± 

70 ms, n=5, p>0.05) if the critical time used to define a burst is increased 20-fold (4-5 ms), 

which corresponds to the intersection between the 2nd and 3rd exponential components of the 

closed time histograms. The 3rd and 4th closed components are highly variable among 

recordings at 34oC, suggesting that they correspond to dwell times between independent 

activation episodes. Therefore, at this temperature, we cannot define activation episodes of 
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longer duration than a burst, in good agreement with the visual inspection of the recordings 

(Figure 4). In contrast, for recordings at 22°C in the presence of PNU-120596, the duration of 

the 3rd closed component is relatively constant among recordings, and setting the critical time to 

that corresponding to the intersection of the 3rd and 4th closed components allows definition of 

the ~3-s clusters (composed of several bursts), which are  clearly observed in the recordings. 

Thus, in the presence of PNU-120596, although the increase in temperature decreases slightly 

the open-channel lifetime, it decreases markedly the capability of eliciting super long-activation 

episodes (Figure 4A, Table 3).  

We subsequently evaluated the temperature dependence of 5-HI potentiation. 

Interestingly, visual inspection of recordings at 34°C shows the presence of the typical bursts of 

openings but occurring at lower frequency compared to RT (Figure 4B, Table 3). To detect 

these low-frequency potentiated bursts, open and burst duration histograms were fitted 

including an additional exponential component. To standardize the analysis, the same 

procedure was applied to recordings at RT. We found that the slowest exponential components 

of both histograms, which correspond to the maximal open and burst durations, do not show 

statistically significant differences between RT and 34°C (Table 3). This result confirms that for 

5-HI the maximal open-channel lifetime at 22ºC can be achieved at 34ºC. Thus, while a higher 

temperature evokes a marked reduction in the duration of PNU-120596-induced clusters, it does 

not affect the maximal duration of 5-HI prolonged bursts. Nevertheless, for 5-HI the proportion of 

potentiated bursts at 34ºC decreases statistically significantly with respect to that at 22oC 

(relative areas are 0.02 ± 0.01 and 0.05 ± 0.01, respectively, p<0.05). Therefore, the overall 

potentiation would be also reduced at physiological temperatures.  

The mean open and burst durations of α7 in the presence of PAM-2 are significantly 

reduced at 34°C respect to RT (p<0.01) (Figure 4C, Table 3). Although PAM-2 behaves as a 

type II PAM, the burst duration in its presence is more similar to that in the presence of 5-HI 
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than in the presence of PNU-120596. We therefore evaluated if fitting burst duration histograms 

at 34oC with an additional exponential component reveals bursts of mean duration similar to 

those at 22ºC, as shown for 5-HI.  We found no statistically significant differences of mean burst 

durations calculated from histograms fitted either by four or by three components, thus 

confirming that the prolonged bursts do not occur at higher temperatures. Overall, the reduction 

in the duration of sustained activation episodes, which are the most sensitive parameters to 

temperature, appears to be different among different PAM types. 

 

 

FIGURE 4. Effect of temperature on PAM-induced pote ntiation of human wild-type αααα7 

single-channel currents.   

Left:  Single-channel traces of α7 recorded at room temperature (22 ± 2°C) or near 

physiological temperature (34 ± 3°C) in the presenc e of 50-100 µM ACh and 1 µM PNU-120596 

(A), 2 mM 5-HI (B) or 20 µM PAM-2 (C). Membrane potential: -70 mV. Right: Open and 

burst/cluster duration histograms for each condition are shown.  
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Table 3. Effect of temperature on α7 PAM potentiation. 

 

 

Single-channel properties of potentiated α7 channels at RT (22 ± 2 ºC) or at more physiological 

temperatures (34 ± 3 °C). τo and τburst or τcluster correspond to the slowest components of the 

open and burst or cluster duration histograms, respectively. Values are mean ± SD. n: 

corresponds to the number of patches from different experiments. Statistical significance was 

determined by comparing the mean values at the two different temperatures (Student t-Test: 

p<0.05 *, p<0.01 **, p<0.001 ***).  

 

3.5. 5-HT3A and α7-5HT3A chimeric receptors are not potentiated by PAM-2.  

To provide further information on receptor selectivity of PAM-2 (Arias et al., 2011), we explored 

its action on 5-HT3A and chimeric α7-5HT3A receptors. In the presence of 1 µM 5-HT, single-

channel currents are readily detected in cell-attached patches from cells expressing the high-

conductance form of 5-HT3A receptors (Figure 5B) (Bouzat et al., 2008;Corradi et al., 2009). 

Single-channel activity, which in the absence of PAM-2 appears mainly as long openings 

forming bursts that coalesce in long-lasting clusters, remains constant in the presence of 5 µM 

PAM-2 (Figure 5B, Table 2). A higher PAM-2 concentration (15 µM) does not lead to further 

potentiation but reduces open and cluster durations, probably due to open-channel blockade 

(Figure 5, Table 2). Thus, we conclude that 5-HT3A receptor is not potentiated by PAM-2.  

Temperature 
(°C) ACh (µM) PAM ττττo  

(ms)  
ττττburst  or ττττcluster  

(ms) 
n 

22 ± 2 100 1 µM PNU-120596 206 ± 79 2700 ± 1200 8 

34 ± 3 100 1 µM PNU-120596 122 ± 37 (*) 206 ± 70(***) 5 

22 ± 2 100 2 mM 5-HI 2.4 ± 1.0 4.0 ± 1.3 5 

34 ± 3 100 2 mM 5-HI 1.9 ± 0.2  4.1 ± 0.1  4 

22 ± 2 50 20 µM PAM-2 3.2 ±0.20 9.9 ± 2.9 3 

34 ± 2 50 20 µM PAM-2 1.9 ± 0.4 (**) 2.9 ± 0.6 (**) 3 
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Recordings from cells expressing the α7-5HT3A chimera (Bouzat et al., 2004) show that 

the mean open and burst durations in the presence of PAM-2 are similar to those in its absence 

(Figure 5C, Table 2), indicating that PAM-2 is not a positive modulator of α7-5HT3A receptors. 

In contrast, 5-HI potentiates 5-HT3A receptors (Hu and Lovinger, 2008) and the α7-5HT3A 

chimera as evidenced by the increased burst duration in its presence (Table 2).  

 

 

FIGURE 5. Lack of potentiation of 5-HT 3A and αααα7-5HT3A receptors by PAM-2.   

(A) Models of the α7, 5-HT3A, and chimeric α7-5HT3A receptors (PDB:2BG9). Protein regions 

with α7 sequence are shown in light grey, and those with 5-HT3A sequence in dark grey. Single-

channel currents from 5-HT3A receptors evoked by 5-HT (B) or from α7-5HT3A receptors 

evoked by ACh (C), in the absence or presence of different concentrations of PAM-2. 

Representative open and burst/cluster duration histograms are shown. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

23 

 

3.6. Structural determinants of α7 potentiation by type I and type II PAMs.  

A fundamental question is whether there is a common or different binding site(s) for type I and 

type II PAMs. We took advantage of our previously reported mutant α7 receptor (α7TSLMF) 

(daCosta et al., 2011), which carries five mutations at an intrasubunit cavity forming the PNU-

120596 binding site (Young et al., 2008), to explore whether all PAMs share the same structural 

components. Single-channel currents of ACh-elicited α7TSLMF reveal lack of potentiation by 

PNU-120596 (daCosta et al., 2011) and PAM-2 (Figure 6, Table 2), indicating that PAM-2 and 

PNU-120596 share the same structural determinants for their potentiating effects, probably as a 

result of an overlapping binding site. In contrast, the quintuple mutant α7TSLMF activated by 

100 µM ACh is potentiated by 2 mM 5-HI in a similar way as wild-type α7 (Table 2). 

Interestingly, 10 µM NS-1738 does not enhance open channel lifetime and does not produce 

bursts of openings of α7TSLMF as observed for α7 wild-type (Figure 6, Table 2), indicating that 

it shares with the type II PAMs the structural determinants required for potentiation.  
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FIGURE 6. Differential potentiation of the human αααα7 quintuple mutant nAChR ( αααα7TSLMF) 

by type I and type II PAMs.   

(A) Homology model of a single α7 subunit based on the Torpedo nAChR structure (PDB 

2BG9). Magnified close-up view of the transmembrane region (lateral and top view), highlighting 

the residues involved in PNU-120596 binding. (B) Left:  Single-channel traces from α7TSLMF 

activated by 100 µM ACh in the absence or presence of either 2 mM 5-HI, 10 µM NS-1738, 1 

µM PNU, or 5 µM PAM-2. Right:  Representative open and burst or cluster duration histograms 

for each condition. 
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4. DISCUSSION 

Since stimulation of neuronal α7 nAChRs improves attention, cognitive performance and 

neuronal resistance to injury as well as it produces robust analgesic and anti-inflammatory 

effects, this nAChR has emerged as a potential drug target (Dineley et al., 2015;Thomsen et al., 

2011). When compared to agonists, PAMs are promising therapeutic tools because: i) they 

maintain the temporal spatial characteristics of endogenous activation; ii) they show higher 

selectivity (Yang et al., 2012); iii) they reduce tolerance due to α7 desensitization; and iv) they 

act as neuronal protectors (Kalappa et al., 2013;Sun et al., 2013;Uteshev, 2014). Since drug 

discovery in this field is still in progress, deciphering the molecular mechanism(s) underlying 

PAM activities at human α7 is urgent. In addition, the characterization of novel PAMs will 

provide new avenues for therapy. In particular, preclinical studies in rodents have shown 

potential clinical benefits of PAM-2 compound (Bagdas et al., 2015;Potasiewicz et al., 

2015;Targowska-Duda et al., 2014). We here determined that its high selectivity for human α7 

together with its moderate potentiation at physiological temperatures make this compound good 

candidate for clinical use. 

α7 activation is unique because: i) ACh occupancy of only one of its five ACh binding sites 

allows activation and maximal open-channel lifetime, ii) the temporal pattern of single-channel 

currents is not dependent on agonist concentration, and iii) desensitization rate is so rapid that it 

is a major determinant of open channel lifetime (Bouzat et al., 2008). Thus, α7 behaves as high 

fidelity sensor of ACh concentration and harbors a built-in filtering mechanism against excessive 

stimulation. Any slight changes in the energy barriers between active, closed and/or 

desensitized states would, therefore, have a deep impact on this unique activation mechanism, 

thus making these receptors very sensitive drug targets.  

 Our results indicate that the macroscopic profile of PAM-2-induced α7 potentiation resembles 

that of type II PAM potentiation as evidenced by the marked decrease in the current decay rate 
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and the ratio in the net charge/peak current changes. In addition, our Ca2+ influx results indicate 

that PAM-2, -3, and -4 reactivate desensitized α7, which support a type II PAM classification. 

However, at a saturating ACh concentration potentiation of the macroscopic response is 

significantly smaller than at submaximal ACh concentration, which may make PAM-2 appear as 

an intermediate class under certain conditions.  

A few number of studies have described the single-channel effects of α7 PAMs, which were 

limited to the type II PAMs PNU-120596 (daCosta and Sine, 2013;daCosta et al., 2011;Hurst et 

al., 2005;Williams et al., 2011b) and TQS (Palczynska et al., 2012). In spite of minor quantitative 

differences likely due to differences in experimental conditions, there is a general consensus 

that type II PAMs increase the open-channel duration, the number of detectable open states, 

the burst/cluster duration and the open probability (Andersen et al., 2013;daCosta et al., 

2015;daCosta et al., 2011;Hurst et al., 2005;Palczynska et al., 2012;Williams et al., 2011b). 

There is no full agreement on whether or not there is a change in single-channel conductance. 

All studies report amplitude distributions showing multiple amplitude populations in the absence 

of PAMs and a major single population in their presence, which in turn, corresponds to the 

highest detected amplitude. However, they differ in the interpretation of these observations 

since lack of full-amplitude resolution due to the brief open durations in the absence of PAMs 

(Andersen et al., 2013;daCosta et al., 2015;daCosta et al., 2011;Williams et al., 2011b;Yan et 

al., 2015)  and genuine increased conductance have been proposed (Palczynska et al., 2012). 

It is a generally accepted statement that type II PAMs may increase the energetic barrier for 

desensitization and/or reverse some forms of desensitization induced by agonist (Williams et al., 

2011a). An increase in the desensitization barrier would lead to a more stabilized open state, 

which agrees with the observed effects of PNU-120596 and PAM-2 on both macroscopic and 

single-channel currents. It has also been proposed that PNU-120596 binds predominantly to the 

fast desensitized state and induces a set of conformational states in which opening of the pore 
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is energetically more favorable (Szabo et al., 2014). This mechanism explains very well the long 

openings and activation episodes detected at the single-channel level.  

In contrast, and also based on macroscopic observations, it has been postulated that type I 

PAMs increase the peak of ACh-elicited macroscopic currents without changing the kinetics due 

to a decrease in the energetic barrier for opening (Hurst et al., 2013;Williams et al., 2011a). Our 

single-channel data demonstrate that two prototypic type I PAMs increase α7 open-channel 

lifetime, which reveals that they do affect α7 kinetics. The decrease in the energetic barrier for 

opening might explain the appearance of bursts of openings observed with type I PAMs due to 

rapidly re-opening of the closed channel. However, it would only explain the increase in the 

duration of the open channel if reopening of the closed channel were so fast that the associated 

brief closings could not be detected, thus making openings appear artifactually longer. 

Alternatively, same as type II PAMs, the increase in the duration of channel openings in the 

presence of type I PAMs could be due to changes in desensitization rate, which in turn, could be 

too slight to be detected from whole-cell macroscopic currents. However, this may not be the 

case since, although PAM-2 and 5-HI (or NS-1738) produce a similar increase in open and 

burst durations, the effects on the decay of macroscopic currents are different. Thus, there 

seems to be more than one mechanism by which PAMs enhance the duration of the open 

channel and of activation episodes. It is also important to remark that given the fast kinetics of 

α7, the temporal resolution of the system, including the patch configuration and the perfusion 

speed, should be taken into account for defining PAM actions. In slow systems, the changes in 

current decay rates do not strictly correlate with changes in desensitization rates (Bouzat et al., 

2008;Lovinger et al., 2002;Zhou et al., 1998). In this regard, we expect that fast outside-out 

patches should reveal decreased decay rates in the presence of type I PAMs because of the 

more prolonged openings. 
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PAMs with intermediate type I/type II properties have been reported (Chatzidaki et al., 

2015;Dinklo et al., 2011;Dunlop et al., 2009;Malysz et al., 2009;Sahdeo et al., 2014). As 

previously suggested (Chatzidaki and Millar, 2015), it could be possible that the classification of 

type I and type II PAMs is an oversimplification resulting mainly from macroscopic observations. 

In agreement with this, we here reveal that potentiation is more complex than what it appears to 

be, i.e. PAM-2 behaves at the macroscopic level as a type II PAM as judged from its effects on 

the decay rate and its capability of reactivating desensitized receptors. However, its activity at 

the single-channel level resembles more that of type I PAMs, and at a saturating ACh 

concentration, the macroscopic effect is very slight. Moreover, NS-1738 macroscopically 

behaves as a type I PAM but shares structural determinants with type II PAMs. 

Macroscopic current studies have shown that α7 potentiation decreases significantly at 

temperatures closer to physiological values compared to that at RT (Sitzia et al., 2011;Williams 

et al., 2012). This is indeed an important issue because clinical effects occur at physiological 

temperatures. In addition, there are controversial results regarding the cytotoxic effects of PNU-

120596 due to the profound α7-induced calcium influx (Guerra-Alvarez et al., 2015;Hu et al., 

2009;Ng et al., 2007;Uteshev, 2015;Williams et al., 2012). The fact that PAM-induced 

potentiation is reduced at physiological temperatures may be beneficial in attenuating potential 

toxicity. 

Our temperature dependence results reveal for the first time the microscopic changes 

underlying the temperature sensitivity of PAM-potentiation. Although there is an important 

decrease in the duration and/or frequency of long activation episodes between 22oC and 34oC, 

potentiation is still significant when compared to single-channel activity in the absence of PAMs, 

which, in turn, support their potential clinical effects. In the presence of PNU-120596, the long 

clusters observed at RT are absent at physiological temperatures and activation episodes take 

place in shorter bursts. We show that the longest bursts elicited by PAM-2 also disappear at 
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higher temperatures. This is different from what is observed for 5-HI, for which maximal open 

and burst durations can be achieved at physiological temperatures, albeit at a lower frequency 

than at RT. Thus, this detailed analysis shows differences in the effect of temperature on 

potentiation between different PAMs. Previous studies have demonstrated that α7 

desensitization rate increases at higher temperatures in the absence or presence of PNU-

120596 (Gupta and Auerbach, 2011;Jindrichova et al., 2012;Sitzia et al., 2011). If the effect of 

temperature were mainly on desensitization, increasing temperature would affect mainly type II 

PAM modulation. This could explain why we observe a reduction in the duration of the longest 

bursts or clusters in the presence of type II PAMs, while the maximal duration of the bursts with 

5-HI remains more constant. These differences suggest that bursts/clusters have a different 

mechanistic origin in type I (5-HI) or type II PAMs. Nonetheless, more PAMs should be tested to 

confirm this hypothesis. Alternatively, it could be possible that dissociation of PAMs from their 

binding sites responds differently to temperature depending on both the PAM and the binding-

site structures.  

Previous studies using chimeras and point mutations pointed out that type I and II PAMs may 

bind to a common or overlapping transmembrane site (Collins et al., 2011;Gill et al., 

2011;Young et al., 2008). Other studies suggested distinct regions as responsible for the effects 

elicited by type I or type II PAMs (Bertrand et al., 2008). A similar controversial situation is 

observed for 5-HI, where both extracellular (Gronlien et al., 2010) and transmembrane site 

locations have been proposed (Hu and Lovinger, 2008;Placzek et al., 2004). Given the 

structural diversity of α7 PAM chemotypes, it is likely that there are multiple allosteric sites on 

the receptor and a given PAM could bind to more than one. In agreement with this, several ECD 

sites have been proposed for type I PAMs (Spurny et al., 2015). 

Our results showing that neither PAM-2 nor PNU-120596 potentiates α7TSLMF support that 

these two PAMs share similar structural determinants and probably an overlapping site. In 
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support of this conclusion, both PAMs produce qualitatively similar effects at both the 

macroscopic and single-channel levels and respond similarly to the increased temperature. 

Interestingly, whereas NS-1738 behaves more similar to 5-HI, it shares the structural 

determinants of PNU-120596. Thus, different type I PAMs increase open-channel lifetime and 

induce episodes of sustained activation of human α7 through different binding sites. 

Nevertheless, it is important to note that our results cannot discard that 5-HI may bind either to 

the PNU-120596 site but interact with different residues within the cavity, or to a partial 

overlapping site. Therefore, until the location of the binding site(s) is defined, it is cautious to 

refer to different structural determinants between PNU-120596 and 5-HI potentiation. 

Overall, this study provide novel information regarding human α7 potentiation at the single-

channel level, which emerges as a key requisite for the evaluation of potential clinical 

applications of PAMs.  

 

 

5. CONCLUSIONS 

Decline of α7 has been implicated in various neurological diseases, such as schizophrenia 

and Alzheimer’s disease. Positive allosteric modulators (PAMs) are emerging as promising 

therapeutic strategies for these disorders. PAMs have been classified on the basis of their 

macroscopic effects as type I, which enhance peak currents, or type II, which also delay 

desensitization and reactivate desensitized receptors. The microscopic origin of these 

macroscopic profiles remains unclear for most PAMs. Considering the wide spectrum of 

potential clinical uses of PAMs, understanding the underlying molecular mechanism of 

potentiation at human α7 is urgent. In this study, we used high-resolution single-channel 

recordings to compare the actions of prototypic type I and type II PAMs as well as other less 

characterized PAMs, which macroscopically behave as type II PAMs. Our study reveals that all 
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PAMs enhance, although to a different extent, open-channel lifetime and activation episodes. 

This indicates that also type I PAMs affect α7 activation kinetics.  By using a mutant α7 receptor 

that is insensitive to the prototype type II PAM (PNU-120596), we show that some though not all 

type I PAMs share structural determinants required for potentiation with type II PAMs. Because 

clinical and preclinical studies take place at a physiological temperature we also evaluated 

single-channel activity at this temperature. We found that the different PAM types show different 

sensitivity to temperature, suggesting different mechanisms of potentiation. A thorough 

molecular knowledge of α7 potentiation is required for the still ongoing development of 

therapeutic compounds. 
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Highlights  

 

• Potentiation of α7 is analyzed at the single-channel level. 

• Type I and II PAMs prolong open-channel lifetime and activation episodes. 

• Temperature sensitivity and structural determinants differ between PAM types. 

• Some though not all type I PAMs share structural determinants of type II PAMs. 

 

 


