AMERICAN JOURNAL OF BOTANY

Pleistocene climatic oscillations rather than recent human disturbance influence genetic diversity in one of the world's highest treeline species¹

Yanling Peng^{2,9}, Susanne Lachmuth^{2,3}, Silvia C. Gallegos⁴, Michael Kessler⁵, Paul M. Ramsay⁶, Daniel Renison⁷, Ricardo Suarez⁸, and Isabell Hensen^{2,3}

PREMISE OF THE STUDY: Biological responses to climatic change usually leave imprints on the genetic diversity and structure of plants. Information on the current genetic diversity and structure of dominant tree species has facilitated our general understanding of phylogeographical patterns.

METHODS: Using amplified fragment length polymorphism (AFLPs), we compared genetic diversity and structure of 384 adults of *P. tarapacana* with those of 384 seedlings across 32 forest sites spanning a latitudinal gradient of 600 km occurring between 4100 m and 5000 m a.s.l. in *Polylepis tarapacana* (Rosaceae), one of the world's highest treeline species endemic to the central Andes.

KEY RESULTS: Moderate to high levels of genetic diversity and low genetic differentiation were detected in both adults and seedlings, with levels of genetic diversity and differentiation being almost identical. Four slightly genetically divergent clusters were identified that accorded to differing geographical regions. Genetic diversity decreased from south to north and with increasing precipitation for adults and seedlings, but there was no relationship to elevation.

CONCLUSIONS: Our study shows that, unlike the case for other Andean treeline species, recent human activities have not affected the genetic structure of *P. tarapacana*, possibly because its inhospitable habitat is unsuitable for agriculture. The current genetic pattern of *P. tarapacana* points to a historically more widespread distribution at lower altitudes, which allowed considerable gene flow possibly during the glacial periods of the Pleistocene epoch, and also suggests that the northern Argentinean Andes may have served as a refugium for historical populations.

KEY WORDS AFLP; central Andes; elevational gradient; latitudinal gradient; phylogeography; Polylepis tarapacana; post-glacial migration

Biological responses to climatic change vary greatly in space and time (Loarie et al., 2009); such responses usually leave imprints on the genetic diversity and structure of plant populations (Hewitt, 2000). Information on the current distributions of the genetic diversity and structure of dominant tree species has facilitated our general understanding of phylogeographical patterns, including postglacial migration events, from which fossil evidence is lacking. In Europe and North America, genetic diversity of tree species has often been found to decline toward the pole because of postglacial migration from southern refugia and successive founder events (Hewitt, 2000; Petit et al., 2003).

In South America, the still limited knowledge on tree migration patterns and genetic structure of tropical high-mountain species points to complex scenarios (Quiroga and Premoli, 2007; Pautasso, 2009; Hensen et al., 2011, 2012). In some species, such as *Podocarpus parlatorei*, *Podocarpus nubigena*, and *Polylepis australis*, genetic diversity declines with increasing elevation and decreasing latitude (toward the equator; Quiroga and Premoli, 2007, 2010; Hensen et al., 2011). This decline indicates that these Andean highmountain tree species migrated toward the equator following

¹ Manuscript received 28 March 2015; revision accepted 9 September 2015.

² Institute of Biology/Geobotany and Botanical Garden, Martin Luther University of Halle-Wittenberg, Am Kirchtor 1, D-06108 Halle/Saale, Germany;

³ German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103 Leipzig, Germany;

⁴ Herbario Nacional de Bolivia (LPB) - Instituto de Ecología—MNHN, Universidad Mayor de San Andrés, Campus Universitario Cota Cota, La Paz, Bolivia;

⁵ Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland;

⁶ School of Biological Sciences, Plymouth University, Plymouth PL4 8AA, UK;

⁷ Instituto de Investigaciones Biológicas y Tecnológicas, Centro de Ecología y Recursos Naturales Renovables (CONICET—Universidad Nacional de Córdoba), Av. Vélez Sarsfield 1611, X5016GCA Córdoba, Argentina; and

⁸ Proyecto de Conservación y Reforestación Sierras de Córdoba, Argentina

⁹ Author for correspondence (e-mail: pengyl09@gmail.com) doi:10.3732/ajb.1500131

historic climate change and expanded to lower elevations during cooler periods while being restricted to higher elevations during warmer periods. According to this scenario, species may exhibit low population divergence and weak phylogeographic structures due to the relatively short (interglacial, ca. 15 000 yr) periods of isolation and long (glacial, ca. 100000 yr) periods of expansion (Stewart et al., 2010). For several tree species, the southern distributional areas are assumed to function as long-term refugia (Quiroga and Premoli, 2007). For other species, the results of genetic studies support a scenario of multiple glacial forest refugia in mountain areas, facilitated by the heterogeneous mountain topographies (Premoli et al., 2000; Mathiasen and Premoli, 2010). In such cases, species may have survived in situ, resulting in pronounced genetic differentiation between populations (Opgenoorth et al., 2010).

The genus *Polylepis* (Rosaceae) includes about 30 wind-pollinated tree and shrub species endemic to the Andean mountain chain from Argentina and Chile to Venezuela (Kessler and Schmidt-Lebuhn, 2006). As a result of mainly human impacts, *Polylepis* forests represent one of the most endangered ecosystems in the world (IUCN, 2014). Pollen evidence indicates that the current distribution of *Polylepis* forests has been affected by Pleistocene glacial-interglacial cycles (Gosling et al., 2009). The impacts of both Pleistocene climatic changes and more recent human disturbance on the genetic diversity of several *Polylepis* species has been shown by previous genetic studies (Hensen et al., 2011, 2012; Gareca et al., 2013).

The patchy distribution of many *Polylepis* forest stands can be partly explained by the effect of human activities, either directly by timber extraction or indirectly by cattle grazing and associated grassland burning (Kessler, 2002; Renison et al., 2006). Due to recurrent, partly anthropogenic fires, tropical *Polylepis* forests failed to recolonize high-elevation sites after the Last Glacial Maximum (Di Pasquale et al., 2008; Bush et al., 2015). Additional recent fragmentation through human activity (e.g., timber extraction) might be reflected in the higher genetic diversity observed in adults that germinated before fragmentation. This pattern was found for *Polylepis incana* in Ecuador (Hensen et al., 2012), while genetic diversity of *Polylepis subtusalbida* in Bolivia appears not to have been greatly affected by recent human activities (Gareca et al., 2013).

Here, we present a survey of amplified fragment length polymorphism (AFLP) variation within and between populations of Polylepis tarapacana, a tetraploid species (Schmidt-Lebuhn et al., 2009) distributed in scattered stands at high elevations in the border regions of Bolivia, Peru, Argentina, and Chile. In Bolivia and Argentina, extensive P. tarapacana forests have been harvested as a source of charcoal for mining activities since the Spanish conquest. Recent human impact has mainly resulted in habitat degradation, brought about particularly by livestock grazing but also by wood harvesting. The species is listed as lower risk or near threatened (IUCN, 2014), as such, understanding the genetic consequences of the recent history of the species is of interest to its conservation and sustainable management. Given that the patchy distribution of several Polylepis species is the result of human influence (Kessler, 2002; Renison et al., 2015), we expected to find lower genetic diversity in seedlings (<5 yr old) than in older adults (>100 yr old). We additionally wanted to explore whether the species survived in situ or shifted its elevational and latitudinal range during Pleistocene interglacial-glacial cycles and suspected that the genetic diversity of this tree species would decrease with increasing elevation and

decreasing latitude (toward the equator), as reported already for other Andean tree species (Quiroga and Premoli, 2007, 2010; Hensen et al., 2011).

MATERIALS AND METHODS

Study species—*Polylepis tarapacana* Philippi (Rosaceae) is an evergreen tree species with a mean height of about 3 m, which inhabits the semiarid Andean highlands from southernmost Peru across western Bolivia to northern Chile and Argentina. The species is one of the world's highest treeline species. It is normally distributed above 3900 m a.s.l. and can exceptionally reach about 5000 m a.s.l. on the Sajama Vulcano in Bolivia (IUCN, 2014). The species is characterized by twisted trunks and branches, compound leaves with leaflets no greater than 1 cm wide, and silvery trichomes on the lower surface (Kessler, 1995). Its flowers are apetalous and wind-pollinated, and fruits are one-seeded, gravity-dispersed nutlets with a low-dispersal capacity (Cierjacks et al., 2008).

Species sampling-We sampled 384 adults (>2 m high) and 384 seedlings (< 20 cm high) from a total of 32 forest plots (approx. $200 \times$ 50 m, 12 adults and 12 seedlings per plot). The plots were located within 18 forest remnants covering most of the elevational distribution of the species (4100 to ~5000 m) across a latitudinal distance of about 600 km (Table 1, Fig. 1). In northern Bolivia and Chile, population sizes exceeded 10000 adults, while in southern Bolivia and Argentina population sizes were smaller (less than 5000 individuals). In seven of the forests, we sampled transects comprising two to four plots over elevational ranges of up to 600 m (Table 1). Sampled individuals were separated by at least 10 m to minimize the chance of sampling closely related individuals. Leaves were stored in bags with silica gel. The distribution of the samples was divided into four geographic regions according to geographic distances and mountain barriers (separating Chile from Bolivia and Argentina): northern Bolivia (National Park Sajama; 144 adults and 144 seedlings from 12 plots distributed across four forests); southern Bolivia (Salar de Uyuni; 84 adults and 84 seedlings; seven plots from three forests); northern Argentina (108 adults and 108 seedlings, from nine plots in seven forests); and northern Chile (48 adults and 48 seedlings, from four plots in four forests; Table 1). Climate in the four regions is characterized by a relatively wet, warm season during summer and a dry, cold season during winter. In northern Bolivia, the mean annual precipitation is at about 330 mm (Hoch and Körner, 2005) with a steep decline toward the west into the Atacama Desert of Chile and a less pronounced reduction in precipitation toward the south into northern Argentina, where mean annual precipitation is about 100 mm (Carilla et al., 2013). For each population, mean annual temperature (°C) and precipitation (mm) levels were based on Worldclim 30 s resolution data (Hijmans et al., 2005). We used the ArcGIS 10 "extract multivalues to points" tool in the Spatial Analyst Extension.

DNA extraction and AFLP analysis—AFLP markers have been successfully used in studies of phylogeographic structures of other *Polylepis* species (Hensen et al., 2011, 2012; Gareca et al., 2013). The AFLP method followed Hensen et al. (2012). We chose five primer pairs that amplified reliably and showed polymorphism in pretests: *Eco*RI AGC/*Mse*I CTG, *Eco*RI AGC/*Mse*I CAT, *Eco*RI ACT/*Mse*I CTG, *Eco*RI AAG/*Mse*I CAT, and *Eco*RI AAG/*Mse*I CTG. To test

Pop F Lat (S) Long (W) Elev (m a.s.l.) Bolivia North a 18.111 68.962 5000 2 a 18.107 68.948 4800 2 a 18.107 68.952 4600 4 a 18.107 68.953 4600 5 c 18.007 68.953 4400 6 c 18.102 68.953 4400 7 c 18.102 68.935 4400 7 c 18.102 68.935 4400 10 d 18.155 68.865 4400 11 d 18.155 68.865 4400 11 d 18.166 68.877 4400 11 d 18.165 68.877 4400 11 d 18.166 68.877 4400 11 d 18.182 68.877 4400 12 f 19.556 67.647 <	Long (*W) Elev (m a.s.l.) 68.962 5000 68.948 4800 68.952 4400 68.953 4410 68.953 4410 68.953 4410 68.953 4410 68.953 4400 68.865 4800 68.872 4400 68.872 4400 68.872 4400 68.877 4400 68.877 4400 68.877 4400 67.700 4557 67.706 4345 67.647 4130 67.655 4345 67.666 4355 67.665 4355 67.665 4355 67.655 4578 67.655 4578	Mtemp (°C) 4.1 2.2 3.4 1.1 1.1 1.1 1.9 1.1 1.9 1.1 1.9 1.1 1.9 1.1 1.9 1.1 1.9 1.1 1.0 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7	Mpre (mm) 345 345 345 342 342 357 357 353 357 353 353 353 353 353 335 335	s	PPB 64.2 64.9	Н _。 0.187	u	РРВ	Н
Bolivia North a 18.111 68.962 5000 2 a 18.107 68.948 4800 3 a 18.107 68.948 4800 4 a 18.107 68.952 4600 5 b 18.102 68.953 4400 6 c 18.007 68.953 4400 7 c 18.007 68.935 4400 7 c 18.007 68.935 4400 8 c 18.157 68.866 4800 10 d 18.155 68.865 4800 11 d 18.155 68.866 4800 11 d 18.155 68.866 4800 12 d 18.155 68.866 4800 13 e 20.654 67.700 4557 14 e 20.654 67.665 4769 15 f 19.5596 67.665 4769	68.962 5000 68.948 4800 68.952 4800 68.953 4400 68.953 4415 68.934 4400 68.935 4415 68.935 4416 68.935 4410 68.953 4400 68.863 4400 68.863 4400 68.863 4400 68.865 4800 68.865 4800 68.872 4400 68.872 4400 68.872 4500 68.872 4500 68.872 4500 67.647 4130 67.665 4554 67.665 4554 67.665 4578 67.655 4578 67.655 4578	4 0 0 4 w - 0 w w 4 4 - 0 0 4 % / 0 0 v 4 4	345 345 345 342 357 357 353 357 338 353 338 335	2 2 2 2 2 2	64.2 64.9	0.187			e
1 a 18.111 68.962 5000 2 a 18.107 68.948 4600 3 a 18.107 68.948 4800 5 b 18.107 68.952 4600 6 c 17.998 68.953 4400 7 c 18.007 68.953 4400 7 c 18.012 68.953 4400 7 c 18.012 68.953 4400 7 c 18.155 68.863 4400 9 d 18.155 68.863 4400 10 d 18.155 68.865 4400 11 d 18.155 68.865 4400 11 d 18.155 68.865 4400 13 d 18.155 68.853 4400 14 d 18.155 68.856 4400 13 d 18.182 67.706 4345 <t< th=""><th>68.962 5000 68.948 4800 68.952 4800 68.953 4400 68.934 4800 68.935 4415 68.953 4415 68.953 4415 68.953 4415 68.863 4400 68.863 4400 68.863 4400 68.863 4400 68.872 4800 68.872 4800 68.872 4700 68.872 4700 68.877 4130 67.647 4130 67.647 4130 67.665 4554 67.665 4554 67.665 4554 67.655 4578 67.655 4578</th><th>- 4 0 0 4 м – 0 м – – – м 4 4 – и о 4 8 и и – – е и 4 4</th><th>342 345 345 342 357 357 353 357 338 335 335 335 335</th><th>1 2 2 2 5</th><th>64.9</th><th></th><th></th><th>64.4</th><th>0.185</th></t<>	68.962 5000 68.948 4800 68.952 4800 68.953 4400 68.934 4800 68.935 4415 68.953 4415 68.953 4415 68.953 4415 68.863 4400 68.863 4400 68.863 4400 68.863 4400 68.872 4800 68.872 4800 68.872 4700 68.872 4700 68.877 4130 67.647 4130 67.647 4130 67.665 4554 67.665 4554 67.665 4554 67.655 4578 67.655 4578	- 4 0 0 4 м – 0 м – – – м 4 4 – и о 4 8 и и – – е и 4 4	342 345 345 342 357 357 353 357 338 335 335 335 335	1 2 2 2 5	64.9			64.4	0.185
2 a 18.107 68.948 4800 3 a 18.105 68.952 4600 5 b 18.105 68.953 4400 6 c 17.998 68.934 4800 7 c 18.107 68.953 4400 7 c 18.007 68.953 4400 7 c 18.012 68.953 4400 9 d 18.157 68.863 4800 10 d 18.157 68.863 4900 11 d 18.155 68.863 4900 11 d 18.155 68.863 4900 11 d 18.157 68.865 4800 12 d 18.155 68.865 4800 13 d 18.165 68.872 4600 14 d 18.182 68.872 4600 13 e 20.654 67.706 4345 14 e 20.654 67.706 4345 15 f 19.599 67.647 4130 16 f 19.599 67.647 4130 17 f 19.599 67.647 <td>68.948 4800 68.952 4600 68.953 4400 68.934 4800 68.935 4415 68.935 4400 68.935 4400 68.935 4400 68.863 4920 68.872 4800 68.863 4400 68.872 4800 68.872 4800 68.877 4800 68.877 4400 68.877 4400 68.877 4500 68.877 4500 67.647 4130 67.647 4130 67.665 4554 67.665 4554 67.665 4554 67.665 4554 67.647 4130 67.647 4577 67.647 4578 67.647 4578 67.647 4578 67.647 4578 67.647 4578</td> <td>2014年10年10年1日年14年14日 2100年180万万千日の1914年11日</td> <td>345 342 342 357 357 338 338 335 335 335 335 335 335</td> <td>12</td> <td></td> <td>0.182</td> <td>12</td> <td>65.6</td> <td>0.189</td>	68.948 4800 68.952 4600 68.953 4400 68.934 4800 68.935 4415 68.935 4400 68.935 4400 68.935 4400 68.863 4920 68.872 4800 68.863 4400 68.872 4800 68.872 4800 68.877 4800 68.877 4400 68.877 4400 68.877 4500 68.877 4500 67.647 4130 67.647 4130 67.665 4554 67.665 4554 67.665 4554 67.665 4554 67.647 4130 67.647 4577 67.647 4578 67.647 4578 67.647 4578 67.647 4578 67.647 4578	2014年10年10年1日年14年14日 2100年180万万千日の1914年11日	345 342 342 357 357 338 338 335 335 335 335 335 335	12		0.182	12	65.6	0.189
3 a 18.105 68.952 4600 4 a 18.102 68.958 4400 5 b 18.102 68.953 4400 6 c 17.998 68.953 4400 7 c 18.007 68.953 4400 8 c 18.012 68.953 4400 9 d 18.155 68.863 4900 10 d 18.155 68.865 4800 11 d 18.155 68.872 4600 12 d 18.155 68.872 4600 13 e 20.654 67.700 4337 14 e 20.656 67.706 4345 14 e 20.656 67.706 4345 15 f 19.599 67.647 4130 16 f 19.599 67.647 4554 17 f 19.599 67.647 4769	68.952 4600 68.958 4410 68.953 4415 68.934 4800 68.953 4415 68.953 4400 68.953 4400 68.953 4400 68.863 4800 68.865 4800 68.865 4800 68.872 4400 68.872 4600 68.872 4400 68.872 4600 68.872 4500 68.872 4500 68.872 4500 67.647 4130 67.665 4351 67.665 4351 67.665 4578 67.665 4578 67.647 4578 67.647 4578 67.647 4578	0,4 m ー 0 m ー ー m 4 4 z 0,4 m レ び ー ー u 4 z	342 342 357 357 353 353 338 335 335 335	12	63.9	0.181	12	62.2	0.189
4 a 18.102 68.958 4400 5 b 18.102 68.953 4415 6 c 17.998 68.934 4800 7 c 18.007 68.953 4416 8 c 18.012 68.953 4400 9 d 18.155 68.863 4900 10 d 18.155 68.865 4800 11 d 18.155 68.865 4800 12 d 18.155 68.865 4900 13 e 20.655 68.872 4400 14 e 20.656 67.700 4557 14 e 20.656 67.700 4557 15 f 19.599 67.647 4130 16 f 19.596 67.665 4769 17 f 19.596 67.665 4769 18 g 19.832 67.665 4769 18 g 19.832 67.665 4769 18 g 19.832 67.655 4769 18 g 19.832 67.647 4769 18 g 19.832 67.647 </td <td>68.958 4400 69.032 4415 68.953 4415 68.953 4400 68.953 4400 68.865 4800 68.865 4800 68.865 4800 68.865 4800 68.872 4800 68.865 4800 68.872 4600 68.872 4600 68.872 4500 68.872 4500 68.872 4500 68.877 4100 67.647 4130 67.665 4345 67.665 4351 67.665 4351 67.655 4578 67.655 4578</td> <td>4 ㎡ - C ㎡ 4 4 4 4: ㎡</td> <td>342 339 357 353 342 338 335 335</td> <td>12</td> <td>62.2</td> <td>0.18</td> <td>12</td> <td>63.9</td> <td>0.187</td>	68.958 4400 69.032 4415 68.953 4415 68.953 4400 68.953 4400 68.865 4800 68.865 4800 68.865 4800 68.865 4800 68.872 4800 68.865 4800 68.872 4600 68.872 4600 68.872 4500 68.872 4500 68.872 4500 68.877 4100 67.647 4130 67.665 4345 67.665 4351 67.665 4351 67.655 4578 67.655 4578	4 ㎡ - C ㎡ 4 4 4 4: ㎡	342 339 357 353 342 338 335 335	12	62.2	0.18	12	63.9	0.187
5 b 18.099 69.032 4415 6 c 17.998 68.934 4800 7 c 18.007 68.933 4600 8 c 18.012 68.935 4400 9 d 18.155 68.853 4600 10 d 18.155 68.866 4800 11 d 18.155 68.872 4400 12 d 18.165 68.872 4400 13 e 20.656 67.700 4557 14 e 20.656 67.700 4557 15 f 19.599 67.647 4130 16 f 19.596 67.655 4769 17 f 19.9322 67.647 4769 18 g 19.9322 67.647 4769 17 f 19.534 67.655 4769 18 g 19.323.535 67.647 4769 <	69.032 4415 68.934 4400 68.953 4400 68.863 4400 68.865 4400 68.865 4400 68.872 4800 68.872 4920 68.877 4920 68.877 4920 68.877 4400 68.877 4400 67.700 4557 67.706 4345 67.647 4130 67.665 4351 67.665 4351 67.665 4554 67.665 4554 67.665 4554	4. 6. 7. 6 6. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	339 360 357 353 342 338 335 335	(64.7	0.185	12	65.6	0.187
	68.934 4800 68.953 4600 68.863 4400 68.865 4400 68.865 4800 68.872 4800 68.872 4800 68.877 4800 68.877 4400 68.877 4400 68.877 4400 67.706 4557 67.706 4557 67.647 4130 67.665 4351 67.665 4351 67.665 4351 67.665 4554 67.655 4564	8. L. C. W. L. L. L. W. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	360 357 353 342 338 338 335	12	65.2	0.195	12	60.9	0.177
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	68.953 4600 68.935 4400 68.863 4920 68.872 4920 68.872 4800 68.872 4800 68.872 4400 68.872 4400 68.877 4400 67.700 4557 67.706 4345 67.647 4130 67.665 4351 67.665 4351 67.665 4351 67.665 4351 67.665 4554 67.665 4554	2 8 6 4 4 4 ど 4 6 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	357 353 342 338 335 335	12	65.2	0.192	12	64.3	0.183
8 c 18.15 68.935 4400 9 d 18.155 68.863 4920 10 d 18.157 68.865 4800 11 d 18.157 68.865 4800 12 d 18.166 68.872 4600 13 e 20.654 67.700 4557 14 e 20.656 67.706 4345 15 f 19.599 67.647 4130 16 f 19.599 67.647 4130 17 f 19.599 67.647 4130 18 g 19.599 67.647 4130 17 f 19.596 67.647 4130 18 g 19.832 67.655 4564 19 g 19.832 67.655 4769 19 g 19.832 67.655 4769 19 g 19.832 67.655 4766	68.935 4400 68.863 4920 68.872 4920 68.872 4800 68.877 4400 68.877 4400 68.877 4400 67.700 4557 67.706 4345 67.647 4130 67.665 4351 67.665 4351 67.665 4351 67.665 4554 67.665 4554 67.665 4554 67.665 4554	ос С. Г. Г. С. М. А.	353 342 338 338 335	12	64.1	0.182	12	66	0.183
9 d 18.155 68.863 4920 10 d 18.157 68.866 4800 11 d 18.166 68.877 4600 12 d 18.182 68.877 4400 13 e 20.654 67.700 4557 14 e 20.656 67.706 4734 15 f 19599 67.647 4130 16 f 19599 67.665 4351 17 f 19596 67.706 4351 18 g 19.812 67.666 4351 19 19.812 67.665 4551 19 22.534 66.273 4568 19 19.812 67.665 451 19 22.534 66.273 4568 19 22.534 66.273 4568 19 22.534 66.273 4568 19 22.536 66.573 4588 23 k 22.478 66.635 4388 24 l 22.536 66.571 4588 25 1 22.536 66.571 4588	68.863 4920 68.866 4800 68.872 4600 68.877 4400 67.700 4557 67.706 4345 67.706 4345 67.706 4355 67.665 4356 67.665 4356 67.665 4356 67.665 4554 67.665 4554 67.665 4554 67.665 4554 67.665 4554		342 342 338 335	12	66.9	0.197	12	63.7	0.178
	68.866 4800 68.872 4600 68.877 4400 67.700 4557 67.706 4345 67.647 4130 67.665 4351 67.665 4351 67.655 4554		342 338 335	12	67.7	0.193	12	66	0.194
11 d 18.166 68.872 4600 12 d 18.182 68.877 4400 13 e 20.654 67.700 4557 14 e 20.656 67.706 4345 15 f 19.599 67.706 4345 16 f 19.599 67.647 4130 17 f 19.599 67.665 4351 18 g 19.812 67.666 4351 17 f 19.599 67.665 4351 18 g 19.812 67.665 4554 19 g 19.812 67.665 456 18 g 19.812 67.655 4769 19 g 19.812 67.655 4769 20 h 22.534 66.273 4583 21 i 23.575 66.273 4368 22 j 22.3301 66.632 4302 23 k 22.478 66.632 4302 23 k 22.536 66.571 4588	68.872 4600 68.877 4400 67.700 4557 67.647 4130 67.665 4130 67.665 4351 67.665 4351 67.655 4578	oʻrvi dir oʻrvi dir	338 335	12	69	0.192	12	64.5	0.19
12 d 18.182 68.877 4400 Bolivia South 13 e 20.654 67.700 4557 13 e 20.656 67.706 4345 14 e 20.656 67.706 4345 15 f 19.599 67.647 4130 16 f 19.599 67.665 4351 17 f 19.596 67.666 4351 18 g 19.832 67.666 4351 18 g 19.832 67.666 4351 18 g 19.832 67.665 4554 19 g 19.812 67.647 456 18 g 19.812 67.655 4769 19 g 19.812 67.655 4769 20 h 22.534 66.273 4583 21 i 23.575 66.273 4368 22 j 22.301 66.632 4302 23 k 22.478 66.632 4302 23 k 22.536 66.571 4588	68.877 4400 67.700 4557 67.706 4355 67.647 4130 67.665 4351 67.666 4351 67.655 4578 67.647 4578	с. 44 С. 6. 2	335	12	58.7	0.177	12	63.7	0.175
Bolivia South e 20.654 67.700 4557 13 e 20.656 67.700 4557 14 e 20.656 67.706 4345 15 f 19.599 67.665 4345 17 f 19.599 67.665 4345 18 g 19.596 67.666 4351 19 g 19.536 67.665 4554 19 g 19.832 67.665 4554 19 g 19.832 67.655 4769 19 g 19.832 67.655 4769 19 g 19.832 67.655 4769 20 h 22.534 66.273 4583 21 i 22.5301 66.632 4308 23 k 22.478 66.632 4308 23 k 22.536 65.571 4588	67.700 4557 67.706 4557 67.647 4130 67.665 4130 67.665 4554 67.665 4351 67.655 4578	4 5.5		12	58.1	0.189	12	66.7	0.19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	67.700455767.706434567.647413067.665455467.666435167.655457867.6474578	4 7.7			65	0.198		65.3	0.198
$ \begin{array}{ccccccccccccccccccccccccc$	67.706 4345 67.647 4130 67.665 4554 67.666 4351 67.655 4769 67.647 4578	4.5	94	12	6 4.5	0.202	12	71.4	0.201
15 f 19.599 67.647 4130 16 f 19.584 67.665 4554 17 f 19.596 67.665 4351 18 g 19.832 67.655 4769 19 g 19.832 67.647 4574 18 g 19.832 67.655 4769 19 g 19.812 67.647 4578 45 g 19.812 67.647 4578 Argentina h 22.534 66.273 4583 20 h 22.534 66.273 4368 21 i 23.575 66.573 4366 23 k 22.478 66.632 4308 23 k 22.478 66.632 4302 24 l 22.536 66.571 4588	67,647 4130 67,665 4554 67,666 4351 67,655 4769 67,647 4578		95	12	68.6	0.204	12	54.6	0.193
16 f 19.584 67.665 4554 17 f 19.596 67.666 4351 18 g 19.596 67.666 4351 19 g 19.532 67.655 4769 19 g 19.812 67.647 4578 Argentina 0 19.812 67.647 4578 20 h 22.534 66.273 4583 21 i 23.575 66.273 4466 23 k 22.301 66.635 4308 23 k 22.3301 66.632 4308 24 I 22.536 66.571 4588	67,665 4554 67,666 4351 67,655 4769 67,647 4578	0. 1	181	12	63.9	0.203	12	59.1	0.202
17 f 19.596 67.666 4351 18 g 19.832 67.655 4769 19 g 19.812 67.647 4578 Argentina 67.647 67.647 4578 20 h 22.534 66.273 4466 21 i 23.575 66.273 4466 23 k 22.301 66.635 4308 23 k 22.536 66.571 4588	67.666 4351 67.655 4769 67.647 4578	4.9	185	12	66.7	0.188	12	64.9	0.212
18 g 19.832 67.655 4769 19 g 19.812 67.647 4578 Argentina 67.647 65.647 4578 20 h 22.534 66.273 4583 21 i 23.575 66.273 4466 23 k 22.301 66.635 4308 24 l 22.536 66.571 4588	67.655 4769 67.647 4578	5.5	188	12	62.2	0.193	12	64.3	0.194
19 g 19.812 67.647 4578 Argentina h 22.534 66.273 4583 20 h 22.534 66.273 4466 21 i 23.575 66.273 4466 22 j 22.301 66.635 4398 23 k 22.478 66.632 4302 24 l 22.536 66.571 4588	67.647 4578	3.1	155	12	69.5	0.199	12	68.4	0.188
Argentina h 22.534 66.273 4583 4583 221 1 23.575 66.273 4466 4466 422 4328 4328 4338		3.8	158	12	59.6	0.2	12	74.2	0.194
20 h 22.534 66.273 4583 21 i 23.575 66.273 4466 22 j 22.301 66.635 4398 23 k 22.478 66.632 4302 23 k 22.478 66.632 4302 24 l 22.536 66.571 4588					67.3	0.194		67.7	0.196
21 i 23.575 66.273 4466 22 j 22.301 66.635 4398 23 k 22.478 66.632 4302 23 k 22.478 66.632 4302 24 l 22.536 66.571 4588	66.273 4583	4.7	126	12	67.1	0.194	12	70.1	0.197
22 j 22.301 66.635 4398 23 k 22.478 66.632 4302 24 l 22.536 66.571 4588	66.273 4466	5.4	116	12	63.9	0.198	12	62.4	0.197
23 k 22.478 66.632 4302 24 l 22.536 66.571 4588	66.635 4398	5.4	98	12	68.2	0.192	12	69.7	0.195
24 l 22.536 66.571 4588	66.632 4302	6.1	101	12	70.5	0.206	12	72.7	0.202
	66.571 4588	4.1	104	12	70.1	0.201	12	60.9	0.189
25 I 22.550 66.571 4794	66.571 4794	2.6	105	12	69	0.196	12	70.1	0.191
26 l 22.548 66.562 4942	66.562 4942	2.5	106	12	63.2	0.178	12	61.7	0.19
27 m 22.871 66.355 4433	66.355 4433	5.1	117	12	63.4	0.183	12	60.9	0.194
28 n 22.976 66.304 4644	66.304 4644	3.7	120	12	6.69	0.198	12	69	0.207
Chile					59.4	0.185		62.4	0.186
29 0 18.250 69.167 4545	69.167 4545	2.1	312	12	59.8	0.176	12	63.2	0.183
30 p 18.935 69.001 4550	69.001 4550	1.8	246	12	44.7	0.173	12	63.9	0.19
31 g 19.197 68.817 4209	68.817 4209	4	210	12	66.5	0.187	12	63	0.187
32 r 20.751 68.567 4250	68.567 4250	4.1	81	12	66.7	0.204	12	59.4	0.184
Total					64.6	0.191		65.3	0.191

FIGURE 1 Location of the sampled populations of *Polylepis tarapacana* in the central Andes. Population numbers refer to Table 1.

for reproducibility, we used >20% replicated individuals (Appendix S1, see online Supplemental Data) and followed the protocol of Ley and Hardy (2013). We generated output files for automatic scoring on the Fragment Profile of the MegaBACE package (Applied Biosystems), which converted peak data into a binary allelic matrix. The output file was prepared for the program SPAGeDi v1.4 (Hardy and Vekemans, 2002) to test for the reproducibility of peaks using broad sense heritability (H^2) and its significance, calculated as F_{ST} . Peaks with an H^2 > 0.25 and P < 0.05 were considered heritable for this study (Appendix S1). Among the 768 individuals, readable fingerprints could not be obtained with primer pairs *Eco*RI AGC/*Mse*I

were then simplified in a stepwise backward manner by removing terms that were not significantly based on likelihood ratio (χ^2) tests to obtain the minimal adequate models. To check which of the four minimal models explained variation in *H* and PPB best, we used the Akaike information criterion (AIC) (Akaike, 1973) adjusted for small sample sizes (AICc, Burnham and Anderson, 2004) in the R package AICcmodavg (Mazerolle, 2015). Model analytic plots (Crawley, 2012) confirmed normality of errors and homogeneity of variance for all models with untransformed variables. Moreover, we assessed correlations between pairwises of the four different environmental variables using Pearson's correlation coefficient (r_s).

CTG, *Eco*RI AGC/*Mse*I CAT, *Eco*RI ACT/ *Mse*I CTG, *Eco*RI AAG/*Mse*I CAT, and *Eco*RI AAG/*Mse*I CTG in 22, 14, 16, 31 and 23 individuals, respectively. These individuals were coded at respective markers as missing data. The AFLPdat R package (Ehrich, 2006) was used to transfer data between the different software packages used.

Data analyses—Given the polyploid nature of our study species, it was not possible to unambiguously estimate allele frequencies. In accordance with Bonin et al. (2007), we analyzed our AFLP data based on both the band-based and fragment-frequency-based approaches.

Genetic diversity at the population level was assessed as the percentage of polymorphic bands (PPB) and as Nei's expected heterzygosity (He; Nei, 1987) using a Bayesian method with uniform prior distribution (Zhivotovsky, 1999) in the software package AFLPSURV 1.0 (Vekemans et al., 2002). We detected whether genetic diversity (PPB and $H_{\rm c}$) differs significantly between adults and seedlings with paired t tests with permutations in R 3.1.2 (R Core Team, 2014; R package broman, Broman and Broman, 2014). The data set was analyzed assuming Hardy-Weinberg equilibrium. Pairwise $F_{\rm ST}$ values were calculated for each population pair using the program Arlequin 3.5 (Excoffier and Lischer, 2010). Significance was evaluated through 1000 permutations.

We analyzed the relationships between genetic diversity (H_e and PPB) and the environmental variables of elevation, latitude, mean annual temperature, and mean annual precipitation in interaction with life stage (i.e., seedling vs. adults) using linear mixed effects models with the package "lme4" (Bates et al., 2014) in R 3.1.2 (R Core Team, 2014). For each response variable, we fitted four different ANCOVA models, comprising one of the environmental variables in interaction with life stage, respectively. All models contained the nested random effects of region, forest, and population and were fitted with a maximum likelihood approach. The full models

For the analysis of population structure, a Bayesian modelbased approach was implemented in the program STRUCTURE 2.3.4 (Pritchard et al., 2000) for adults and juveniles, respectively. Data were coded as a dominant allele matrix. Due to the tetraploid nature of the species, we handled the genotypes with ambiguous allele copy numbers and analyzed the data set with the recessive allele option. We ran the analyses under the admixture model with correlated allele frequencies among populations. Ten runs were performed for each number of clusters K =1–12 using a burn-in and a run length of 100 000 iterations each. The K that best described the data were determined following inspection of the mean values of L(K), L'(K), L''(K), and ΔK (Evanno et al., 2005). The individual ancestry coefficients were calculated by the average pairwise similarity of individual assignments across runs with the program CLUMPP (Jakobsson and Rosenberg, 2007) using the FullSearch method and weighted by the number of individuals in each population; the program Distruct (Rosenberg, 2004) was used to plot the individual ancestry coefficients.

In addition, we employed a principal coordinate analysis (PCoA) to distinguish similar genetic groups of individuals with the package vegan (Oksanen et al., 2013) in R 3.1.2. We also used an AMOVA to describe genetic structure and to measure the amount of variation found within and between populations; F statistics were extracted and significance levels were tested with 1000 permutations for each analysis. AMOVA was performed with Arlequin 3.5 (Excoffier and Lischer, 2010).

Mantel tests (Mantel, 1967) were used to examine whether genetic distances (pairwise $F_{\rm ST}$ values) correlated with geographic distances using the vegan package (Oksanen et al., 2013). Mantel tests were performed on the entire data set, each of the four geographic groups, and on the different combination of the geographic groups.

FIGURE 2 Pearson's correlation coefficient between pairwise factors. *Abbreviations:* Lat, Latitude; Elev, Elevation; Mtemp, Mean annual temperature; Mpre, Mean annual precipitation.

RESULTS

A total of 465 polymorphic markers were obtained from the five primer combinations (Appendix S1). Measures of within-plot diversity yielded high values (Table 1). The average proportion of polymorphic bands (PPB) ranged between 44.7 and 70.5% for *P. tarapacana* adults and between 54.6 and 74.2% for juveniles. Values of average gene diversity (H_e) ranged between 0.17 and 0.21 for both adults and seedlings (Table 1). Adults and seedlings showed no significant difference in genetic diversity PPB (paired permutation *t* test: P = 0.57) and H_e (paired permutation *t* test: P = 0.90).

According to the ANCOVA, we found that H_{e} was significantly positively related to latitude ($\chi^2 = 5.98$, df = 1, P < 0.05) and mean annual temperature (χ^2 = 3.85, df = 1, *P* < 0.05) and significantly negatively related to mean annual precipitation ($\chi^2 = 8.07$, df = 1, P < 0.01), while elevation had no significant effect. None of the environmental variables had a significant effect on PPB. In all cases, neither the interaction nor the main effect of life stage was significant. For He, mean annual precipitation explained the data best (AICc = -438.0), followed by latitude (AICc = -435.9), mean annual temperature (AICc = -433.8), and elevation (AICc = -432.1). In addition, based on Pearson's correlation coefficient (Fig. 2), we found elevation and latitude to be uncorrelated, but they were both significantly correlated to mean annual temperature (elevation: $r_s =$ -0.61, P < 0.001; latitude: $r_s = 0.57$, P < 0.001) and mean annual precipitation (elevation: $r_s = 0.27$, P < 0.05; latitude: $r_s = -0.90$, P < 0.001). The two climatic variables, in turn, were negatively correlated $(r_{\rm s} = -0.61, P < 0.001).$

The results of the Bayesian structure analysis (Fig. 3) revealed peak values of K = 2 and 4 clusters for *P. tarapacana* adults and K = 2 and 4 clusters for the seedlings (Appendix S2, see online Supplemental Data). PCoA (Fig. 4) also showed four main clusters. Clus-

ters of adult plants corresponded to Bolivia North, Bolivia South, Argentina, and Chile, and seedlings produced the same clusters. The overall fixation indices ($F_{\rm ST}$ values) of 0.102 for *P. tarapacana* adults and 0.100 for the seedlings provided evidence of weak spatial isolation (Table 2). The pairwise $F_{\rm ST}$ values were highly significant and ranged between 0.055 (Bolivia North and Argentina) and 0.132 (Bolivia North and Chile) for adults and 0.054 (Bolivia North and Argentina) and 0.126 (Bolivia North and Chile) for seedlings (Table 3).

The AMOVA found that molecular variance was highest within plots of *P. tarapacana* (adults 89.75%, seedlings 89.96%, Table 2). Variance among four geographic regions and among forest remnants yielded lower values, which were again similar between adults and seedlings (7.11% and 3.14% vs. 6.6% and 3.44%, respectively). The Mantel test indicated isolation by distance across all forest plots for adults ($r_{\rm M} = 0.342$) and seedlings ($r_{\rm M} = 0.364$; Table 4) and for the Argentinean cluster, but no isolation by distance was detected for the other three clusters.

FIGURE 3 Bayesian structure analysis of *Polylepis tarapacana* with the STRUCTURE software. Probability of assignment for K = 2 and 4 for adults (above), and K = 2 and 4 for seedlings (below) in 32 populations, respectively. Each individual is represented by a single vertical line divided into Kcolored segments, where K is the number of genetic clusters. Black ticks separate the regions indicated below the figure. Labels above the plots indicate population information, and the labels below the plots provide region information.

DISCUSSION

We discovered genetic patterns of one of the world's highest treeline species, *P. tarapacana*, using AFLP markers. First, we found moderate to high genetic diversity and low genetic differentiation, and no significant difference of genetic diversity between life stages (adults and seedlings). Second, we detected four geographical clusters for adults and seedlings with low genetic differentiation. The results indicate that the current genetic pattern of this species is

FIGURE 4 Principal coordinate analysis (PCoA) of AFLPs among the 384 adults (left) and 384 seedlings (right) of *Polylepis tarapacana*. The samples are color coded according to their geographic origins. *Abbreviations:* A, Argentina; BN, Bolivia North; BS, Bolivia South; C, Chile.

more likely to be caused by Pleistocene climatic oscillations rather than recent human disturbance.

Effects of human impact-Levels of genetic diversity for adults of P. tarapacana in the current study did not differ much from those found for P. australis adults in Argentina (Hensen et al., 2011), and they were higher than those found for P. incana in Ecuador (Hensen et al., 2012). In contrast to the results for P. incana in the latter study (Hensen et al., 2012), but in accordance with the results for P. pauta in Ecuador (Aragundi et al., 2011), we found similar levels of genetic diversity for P. tarapacana adults and seedlings. The result suggests that the genetic diversity of P. tarapacana has not been significantly affected by forest fragmentation during the last few hundred years. Nevertheless, as these genetic patterns are certainly also influenced by life history and ecological traits including population sizes, fecundity and longevity, we believe that they mainly reflect historical and geographical signatures in the intensity of human impact on these populations. The distribution of P. tarapacana covers the driest and least densely populated region of the (sub)tropical Andes. This region has been inhabited by humans for millennia (Kessler, 2002), but their effect on the distribution of Polylepis forests does not seem to have influenced their genetic diversity. Perhaps most

importantly, vegetation cover here is so sparse that fires, the main reason for the large-scale destruction of these forests (Kessler, 1995, 2002), cannot spread. Also, grazing is largely done by native camelids and is concentrated in valley bottoms, such that human influence on *P. tarapacana* takes place mainly via timber extraction. In contrast, in the more humid Argentinean range of *P. australis*, human impact has greatly increased within the last few hundred years (Renison et al., 2006). Here, both the frequent use of fires and grazing with nonnative animals (cattle, sheep) within forest patches

have had negative impacts on the *Polylepis* forests (Renison et al., 2015). In the Ecuadorian range of *P. incana*, human impact also has a long history, and much of the fragmentation probably predates Spanish colonization (Bush et al., 2015); current impacts are also rather pronounced (Cierjacks et al., 2008). Accordingly, the populations of *P. incana* studied in the country showed strong age-related signatures of human impact (Hensen et al., 2012).

We therefore propose that the history of human land use, modulated by different environmental conditions, has left a geographic signature in the age-related genetic diversity of *Polylepis* forests. While more studies are needed to verify our assumptions, they potentially provide a guideline to predict where human impact may be most detrimental and

	-				Seeding	S
SV	df	PV	F statistic	df	PV	F statistic
All						
Among 4 clusters	3	7.11	$F_{cT} = 0.071^{***}$	3	6.6	$F_{ct} = 0.066^{***}$
Among populations within cluster	28	3.14	$F_{sc} = 0.034^{***}$	28	3.44	$F_{sc} = 0.037^{***}$
Within populations	324	89.75	$F_{ct} = 0.102^{***}$	328	89.96	$F_{\rm st} = 0.100^{***}$
Total	355		16	359		10
Bolivia North						
Among populations	11	1.54		11	1.12	
Within populations	126	98.46	$F_{cr} = 0.015^{***}$	129	98.88	$F_{cr} = 0.011^{***}$
Total	137		21	140		21
Bolivia South						
Among populations	6	4.88		6	5.23	
Within populations	60	95.1	$F_{ct} = 0.048^{***}$	62	94.77	$F_{\rm ct} = 0.052^{***}$
Total	66		16	68		10
Argentina						
Among populations	8	4.57		8	6.19	
Within populations	95	95.43	$F_{ct} = 0.046^{***}$	97	93.81	$F_{cr} = 0.062^{***}$
Total	103		21	105		21
Chile						
Among populations	3	3.66		3	2.5	
Within populations	43	96.34	$F_{cT} = 0.037^{***}$	40	97.5	$F_{cr} = 0.025^{***}$
Total	46		21	43		21

TABLE 2. AMOVA of adults and seedlings for Polylepis tarapacana calculated with Arlequin ver. 3.5, respectively, partitioned by regions.

Notes: SV, source of variation; df, degrees of freedom; PV, percentage of variation; ***P < 0.001.

where corresponding management activities are thus most urgently needed.

Phylogeographic history—Greater genetic variability of genetic diversity was found within, rather than among populations, as found for other Polylepis species (Hensen et al., 2011, 2012; Gareca et al., 2013). Our overall fixation indices (F_{ST} values) provide evidence of weak spatial isolation, particularly when regarding the large scale of our study, and are much lower than those determined for P. australis $(F_{\rm ST} = 0.165$ for adults, Hensen et al., 2011) and *P. incana* $(F_{\rm ST} = 0.307$ for adults, $F_{sr} = 0.298$ for seedlings, Hensen et al., 2012). In our study, the low genetic differentiation may be due to the maintenance of large population sizes (field observation). Gene flow through seeds or pollen between populations might replenish alleles that have been lost through drift, which in turn reduces genetic differentiation between populations (Hensen et al., 2011). In addition, the effect of drift on population structure in tetraploids is probably reduced compared with diploids due to an effective population size twice as high as for P. tarapacana (Meirmans and Van Tienderen, 2013). It should be noted that the results in our study might be biased due to the unavoidable genotyping error because we used the dominant data. However, we attempted to limit the biases by (1) reducing the genotyping error as much possible following the suggestions of Pompanon et al. (2005) and by (2) comparing genetic

TABLE 3. Pairwise F_{st} between the four regions for *Polylepis tarapacana*. The lower left part shows results for adults; the upper right shows seedlings. Bolded text indicates that the pairwise F_{st} value is significant.

Regions	BN	BS	А	С
BN	0	0.05895	0.0539	0.12649
BS	0.05475	0	0.05717	0.07943
A	0.0545	0.06093	0	0.08302
С	0.13166	0.09554	0.09988	0

Notes: BN, Bolivia North; BS, Bolivia South; A, Argentina.

diversity and differentiation with those of other *Polylepis* studies with the same AFLP markers.

Despite the overall low level of genetic differentiation, we found four distinct clusters for adults and seedlings (Figs. 3, 4). These four clusters were concordant with the four predefined and nonoverlapping geographic regions. We assume that particular Andean landscape structures hampering gene flow, such as high-mountain crests or lower elevation depressions, might explain the clusters. The role of such barriers for gene flow is impressively demonstrated by the highest pairwise $F_{\rm ST}$ values found between the Chilean forests and those of nearby northern Bolivia. While the four Chilean populations are located on the western side of the volcanic chain marking the borderline between Chile and Bolivia (Fig. 1), those of Bolivia and Argentina are located on the eastern side of the chain.

The low genetic differentiation between the four clusters may also be caused by the fact that the populations of *P. tarapacana* expanded to lower elevations and experienced gene flow in continuous populations during the cold glacial periods, with the Chilean populations shifting toward the Pacific and the Bolivian and

TABLE 4. Mantel tests for the individuals across all four regions for *Polylepis tarapacana*, each of the four regions, and different combinations of each region.

Region	r _м (Adults, Seedlings)	r _M (Adults)	r _M (Seedlings)
All	0.359**	0.342**	0.364**
BN	0.024	-0.138	0.113
BS	0.2	0.175	0.194
А	0.797*	0.807*	0.621+
С	-0.423	0.53	0.514
BN, BS, C	0.484*	0.835*	0.500*
BN, BS	0.843*	0.576*	0.760*
BS, C	0.544*	0.614*	0.479*
BN, C	0.602*	0.835*	0.585*

Notes: BN, Bolivia North; BS, Bolivia South; A, Argentina; C, Chile; *0.05 $\leq P \leq$ 0.1; *0.01 $< P \leq$ 0.05; ** $P \leq$ 0.01.

Argentinean populations migrating toward lower elevations within the Altiplano. During warm interglacial periods, the populations may have persisted only in isolated populations in the highlands. In accordance, the fossil record of *Polylepis*-type pollen covering multiple glacial/interglacial periods in the central Andes confirms several vertical migration cycles of *Polylepis* species in response to past climate change events, and a wider distribution during glacial periods (Gosling et al., 2009).

Focusing on within-cluster differentiation, we only detected significant isolation by distance for the Argentinean cluster. Thus, the Argentinean forest plots were somewhat more genetically differentiated than those of Bolivia and Chile, suggesting slightly stronger spatial isolation and enhanced genetic drift. In northern Argentina, topography is more divided, and higher mountain crests may represent barriers to pollen and seed flow (Hensen et al., 2011). The absence of isolation by distance across Bolivia and Chile could be accounted for by the relatively weaker landscape boundaries and the more continuous habitat of *P. tarapacana*, and thus pollen could disperse over long distances as found for *P. australis* (Seltmann et al., 2009).

We did not find a correlation between genetic diversity and elevation, which contrasts with previous results for *P. australis* and *P. incana* (Hensen et al., 2011, 2012). We assume that this contrasting pattern is the result of the more continuous elevational distribution of *P. tarapacana*, compared with *P. incana* and *P. australis* where fragments were sampled. Thus, although *P. tarapacana* most probably migrated up- and downslope during the Pleistocene interglacial–glacial periods, such patterns are not evident in its genetic signature, due to the extensive gene flow in continuous populations along elevations.

In accordance with our initial hypothesis, genetic diversity of P. tarapacana decreased toward the equator. In part, this decrease may be related to decreasing aridity because we also found a negative relationship between annual mean precipitation and genetic diversity in P. tarapacana, which explains variation in genetic diversity better than latitude. The pattern of decreasing genetic diversity toward the north is consistent with our previous study of P. australis, which has both higher genetic diversity (Hensen et al., 2011) and higher variability of ploidy levels (Kessler et al., 2014) in the southern extent of its range. The genetic pattern of Podocarpus parlatorei also revealed the long-term persistence of cold-tolerant elements in the northern Argentinean Andes adjacent to our Argentinean cluster (Quiroga and Premoli, 2007). These findings suggest that southern populations of these species persisted during glacial periods, while northern populations would have been relatively young. A possible interpretation is that P. tarapacana and other cold-adapted high Andean plant populations may have persisted in northern Argentina because here, the high western Andean range is closer to the eastern cloud forests and is separated by a lower eastern range in comparison to the Bolivian and Chilean populations. In addition, the northern Andes of Argentina are known to harbor higher levels of bird endemism than adjacent regions of Bolivia, which has been linked to historical ecoclimatic stability (Sandel et al., 2011). It thus seems likely that this geographical region would have served as a refugium for montane taxa during past climatic shifts.

In conclusion, the geographical patterns of genetic diversity, in particular the high levels of genetic connectivity found in our study, support the idea of a historically more widespread distribution of the treeline species *P. tarapacana*, possibly during cooler Pleistocene

periods. In addition, we suggest that the four geographical clusters have and could serve as putative refugium areas or reservoirs of genetic diversity, particularly for Argentinean populations of *P. tarapacana* under a global climate-change scenario.

ACKNOWLEDGEMENTS

Many thanks to Duilio Shinner and Julio Dominguez for all their help during the collection of the samples, to Erik Welk for help producing the map, and Birgit Müller for help in the laboratory. The authors thank the personnel of CONAF in Chile, especially Hector Ricardo Peñaranda Antezana, for hospitality and logistical support. The authors thank the Associate Editor and two anonymous reviewers for their constructive and thoughtful comments. Yanling Peng was funded by the China Scholarship Council (CSC, No. 2011618106), and Daniel Renison was funded by CONICET Argentina.

LITERATURE CITED

- Akaike, H. 1973. Information theory as an extension of the maximum likelihood principle. *In* B. N. Petrov and F. Csaki [eds.], Second International Symposium on Information Theory, 267–281. Akademiai Kiado, Budapest, Hungary.
- Aragundi, S., J. L. Hamrick, and K. C. Parker. 2011. Genetic insights into the historical distribution of *Polylepis pauta* (Rosaceae) in the northeastern Cordillera Oriental of Ecuador. *Conservation Genetics* 12: 607–618.
- Bates, D., M. Maechler, B. Bolker, and S. Walker. 2014. Ime4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7. Available at http:// CRAN.R-project.org/package=lme4.
- Bonin, A., D. Ehrich, and S. Manel. 2007. Statistical analysis of amplified fragment length polymorphism data: A toolbox for molecular ecologists and evolutionists. *Molecular Ecology* 16: 3737–3758.
- Broman, K. W., and A. T. Broman. 2014. Broman: Karl Broman's R code. R package version 0.55-2. Available at http://CRAN.R-project.org/package=broman.
- Burnham, K. P., and D. R. Anderson. 2004. Multimodel inference: Understanding AIC and BIC in model selection. *Sociological Methods & Research* 33: 261–304.
- Bush, M. B., A. M. Alfonso-Reynold, D. H. Urrego, B. G. Valencia, Y. A. Correa-Metrio, M. Zimmermann, and M. R. Silman. 2015. Fire and climate: Contrasting pressures on tropical Andean timberline species. *Journal* of Biogeography.
- Carilla, J., H. R. Grau, L. Paolini, and M. Morales. 2013. Lake fluctuations, plant productivity, and long-term variability in high-elevation tropical Andean ecosystems. *Arctic, Antarctic, and Alpine Research* 45: 179–189.
- Cierjacks, A., N. Rühr, K. Wesche, and I. Hensen. 2008. Effects of altitude and livestock on the regeneration of two treeline forming *Polylepis* species in Ecuador. *Plant Ecology* 194: 207–221.
- Crawley, M. J. 2012. The R book, 2nd ed. John Wiley, Chichester, UK.
- Di Pasquale, G., M. Marziano, S. Impagliazzo, C. Lubritto, A. de Natale, and M. Y. Bader. 2008. The Holocene treeline in northern Andes (Ecuador): First evidence from soil charcoal. *Palaeogeography, Palaeoclimatology, Palaeoecology* 259: 17–34.
- Ehrich, D. 2006. AFLPDAT: A collection of R functions for convenient handling of AFLP data. *Molecular Ecology Notes* 6: 603–604.
- Evanno, G., S. Regnaut, and J. Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. *Molecular Ecology* 14: 2611–2620.
- Excoffier, L., and H. E. L. Lischer. 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetic analysis under Linux and Windows. *Molecular Ecology Resources* 10: 564–567.
- Gareca, E. E., P. Breyne, K. Vandepitte, R. A. Cahill, M. Fernandez, and O. Honnay. 2013. Genetic diversity of Andean *Polylepis* (Rosaceae) woodlands and inferences regarding their fragmentation history. *Botanical Journal of the Linnean Society* 172: 544–554.

- Gosling, W. D., J. A. Hanselman, C. Knox, B. G. Valencia, and M. Bush. 2009. Long-term drivers of change in *Polylepis* woodland distribution in the central Andes. *Journal of Vegetation Science* 20: 1041–1052.
- Hardy, O. J., and X. Vekemans. 2002. spaged: A versatile computer program to analyse spatial genetic structure at the individual or population levels. *Molecular Ecology Notes* 2: 618–620.
- Hensen, I., A. Cierjacks, H. Hirsch, M. Kessler, K. Romoleroux, D. Renison, and K. Wesche. 2012. Historic and recent fragmentation coupled with altitude affect the genetic population structure of one of the world's highest tropical tree line species. *Global Ecology and Biogeography* 21: 455–464.
- Hensen, I., I. Teich, H. Hirsch, H. von Wehrden, and D. Renison. 2011. Range-wide genetic structure and diversity of the endemic tree line species *Polylepis australis* (Rosaceae) in Argentina. *American Journal of Botany* 98: 1825–1833.
- Hewitt, G. M. 2000. The genetic legacy of the Quaternary ice ages. *Nature* 405: 907–913.
- Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. *International Journal of Climatology* 25: 1965–1978.
- Hoch, G., and C. Körner. 2005. Growth, demography and carbon relations of *Polylepis* trees at the world's highest treeline. *Functional Ecology* 19: 941–951.
- IUCN. 2014. 2014. The IUCN Red List of Threatened Species. International Union for Conservation of Nature and Natural Resources, Cambridge, UK. Available at http://www.redlist.org [accessed 15 August 2015].
- Jakobsson, M., and N. A. Rosenberg. 2007. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. *Bioinformatics* 23: 1801–1806.
- Kessler, M. 1995. Present and potential distribution of *Polylepis* (Rosaceae) forests in Bolivia. *In* S. P. Churchill, H. Balslev, E. Forero, and J. L. Luteyn [eds.], Biodiversity and conservation of neotropical montane forests, 281– 294. New York Botanical Garden, Bronx, New York, USA.
- Kessler, M. 2002. The '*Polylepis* problem': Where do we stand? *Ecotropica* 8: 97–110.
- Kessler, M., A. Kühn, V. G. Solís Neffa, and I. Hensen. 2014. Complex geographical distribution of ploidy levels in *Polylepis australis* (Rosaceae), an endemic tree line species in Argentina. *International Journal of Plant Sciences* 175: 955–961.
- Kessler, M., and A. N. Schmidt-Lebuhn. 2006. Taxonomical and distributional notes on Polylepis (Rosaceae). Organisms, Diversity & Evolution 6: 67–69.
- Ley, A. C., and O. J. Hardy. 2013. Improving AFLP analysis of large-scale patterns of genetic variation—A case study with the Central African lianas *Haumania* spp (Marantaceae) showing interspecific gene flow. *Molecular Ecology* 22: 1984–1997.
- Loarie, S. R., P. B. Duffy, H. Hamilton, G. P. Asner, C. B. Field, and D. D. Ackerly. 2009. The velocity of climate change. *Nature* 462: 1052–1055.
- Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. *Cancer Research* 27: 209–220.
- Mathiasen, P., and A. C. Premoli. 2010. Out in the cold: Genetic variation of *Nothofagus pumilio* (Nothofagaceae) provides evidence for latitudinally distinct evolutionary histories in austral South America. *Molecular Ecology* 19: 371–385.
- Mazerolle, M. J. 2015. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.0-3. Available at http:// CRAN.R-project.org/package=AICcmodavg.
- Meirmans, P. G., and P. H. Van Tienderen. 2013. The effects of inheritance in tetraploids on genetic diversity and population divergence. *Heredity* 110: 131–137.
- Nei, M. 1987. Molecular evolutionary genetics. Columbia University Press, New York, New York, USA.

- Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O'Hara, G. L. Simpson, et al. 2013. vegan: Community ecology package. R package version 2.0-7. Available at http://CRAN.R-project.org/ package=vegan.
- Opgenoorth, L., G. G. Vendramin, K. Mao, G. Miehe, S. Miehe, S. Liepelt, J. Liu, and B. Ziegenhagen. 2010. Tree endurance on the Tibetan Plateau marks the world's highest known tree line of the Last Glacial Maximum. *New Phytologist* 185: 332–342.
- Pautasso, M. 2009. Geographical genetics and the conservation of forest trees. Perspectives in Plant Ecology, Evolution and Systematics 11: 157–189.
- Petit, R. J., I. Aguinagalde, J. de Beaulieu, C. Bittkau, S. Brewer, R. Cheddadi, R. Ennos, S. Fineschi, et al. 2003. Glacial refugia: Hotspots but not melting pots of genetic diversity. *Science* 300: 1563–1565.
- Pompanon, F., A. Bonin, E. Bellemain, and P. Taberlet. 2005. Genotyping errors: Causes, consequences and solutions. *Nature Reviews. Genetics* 6: 847–859.
- Premoli, A. C., T. Kitzberger, and T. T. Veblen. 2000. Isozyme variation and recent biogeographical history of the long-lived conifer *Fitzroya cupressoides. Journal of Biogeography* 27: 251–260.
- Pritchard, J. K., M. Stephens, and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. *Genetics* 155: 945–959.
- Quiroga, M. P., and A. C. Premoli. 2007. Genetic patterns in *Podocarpus parla-torei* reveal the long-term persistence of cold-tolerant elements in the southern Yungas. *Journal of Biogeography* 34: 447–455.
- Quiroga, M. P., and A. C. Premoli. 2010. Regional and local effects on genetic patterns of *Podocarpus nubigena* from Patagonia. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology* 285: 186–193.
- R Core Team. 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org/.
- Renison, D., M. P. Chartier, M. Menghi, P. I. Marcora, R. C. Torres, M. Giorgis, I. Hensen, and A. M. Cingolani. 2015. Spatial variation in tree demography associated to domestic herbivores and topography: Insights from a seeding and planting experiment. *Forest Ecology and Management* 335: 139–146.
- Renison, D., I. Hensen, R. Suarez, and A. M. Cingolani. 2006. Cover and growth habit of *Polylepis* woodlands and shrublands in the mountains of central Argentina: Human or environmental influence? *Journal of Biogeography* 33: 876–887.
- Rosenberg, N. A. 2004. DISTRUCT: A program for the graphical display of population structure. *Molecular Ecology Notes* 4: 137–138.
- Sandel, B., L. Arge, B. Dalsgaard, R. G. Davies, K. J. Gaston, W. J. Sutherland, and J. C. Svenning. 2011. The influence of Late Quaternary climate-change velocity on species endemism. *Science* 334: 660–664.
- Schmidt-Lebuhn, A. N., J. Fuchs, D. Hertel, H. Hirsch, J. Toivonen, and M. Kessler. 2009. An Andean radiation: Polyploidy in the tree genus *Polylepis* (Rosaceae, Sanguisorbeae). *Plant Biology* 12: 917–926.
- Seltmann, P., A. Cocucci, D. Renison, A. Cierjacks, and I. Hensen. 2009. Mating system, outcrossing distance effects and pollen availability in the wind-pollinated treeline species *Polylepis australis* BITT. (Rosaceae). *Basic* and Applied Ecology 10: 52–60.
- Stewart, J. R., A. M. Lister, I. Barnes, and L. Dalén. 2010. Refugia revisited: Individualistic responses of species in space and time. *Proceedings of the Royal Society, B, Biological Sciences* 277: 661–671.
- Vekemans, X., T. Beauwens, M. Lemaire, and I. Roldan-Ruiz. 2002. Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. *Molecular Ecology* 11: 139–151.
- Zhivotovsky, L. A. 1999. Estimating population structure in diploids with multilocus dominant DNA markers. *Molecular Ecology* 8: 907–913.