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Introduction

Let K be a field of characteristic zero. The Jacobian Conjecture (JC) in dimension 
two, stated by Keller in [7], says that any pair of polynomials P, Q ∈ L := K[x, y] with 
[P, Q] := ∂xP∂yQ − ∂xQ∂yP ∈ K× defines an automorphism of K[x, y].

In this paper we improve the algebraic methods of Abhyankar describing the shape of 
the support of possible counterexamples. We use elementary algebraic methods combined 
with basic discrete analytic geometry on the plane, i.e. on the points N0×N0 in the case 
of L = K[x, y] and in 1

lZ ×N0 in the case of L(l) := K[x± 1
l , y].

The first innovation is a definition of the directions and an order relation on them, 
based on the crossed product of vectors, which simplifies substantively the treatment 
of consecutive directions associated with the Newton polygon of Jacobian pairs. It is 
related to [5, Lemma 1.15] and enables us to simplify substantially the treatment of the 
Newton polygon and its edges (compare with [2, 7.4.14]).

The second innovation lies in the use of the polynomial F with [F, �ρ,σ(P )] = �ρ,σ(P ), 
obtained in Theorem 2.6 for a given Jacobian pair (P, Q). This element can be traced back 
to 1975 in [6]. There also appears the element G0 ∈ K[P, Q], which becomes important 
in the proof of our Proposition 7.1. The polynomial F mentioned above is well known 
and used by many authors, see for example [6,10] and [11, 10.2.8] (together with [11, 
10.2.17 i)]). In Theorem 2.6, we add some geometric statements on the shape of the 
supports, especially about the endpoints (called st and en) associated to an edge of 
the Newton Polygon. In [5, Proposition 1.3] some of these statements, presented in an 
algebraic form, can be found.

We will apply different endomorphisms in order to deform the support of a Jacobian 
pair. Opposed to most of the authors working in this area [5,12,9], we remain all the 
time in L (or L(l)). In order to do this we use the following very simple expression of the 
change of the Jacobian under an endomorphism ϕ : L → L (or L → L(l), or L(l) → L(l)):

[ϕ(P ), ϕ(Q)] = ϕ([P,Q])[ϕ(x), ϕ(y)].

Another key ingredient is the concept of regular corners and its classification, which 
we present in Section 5. The geometric fact that certain edges can be cut above the 
diagonal, Proposition 5.16, was already known to Joseph and used in [6, Theorem 4.2], 
in order to prove the polarization theorem.

In Section 6 we give an elementary proof of a result of [5]: If

B :=

⎧⎪⎨⎪⎩
∞ if the jacobian conjecture is true,
min

(
gcd(v1,1(P ), v1,1(Q))

)
if it is false, where (P,Q) runs
on the counterexamples,

then B ≥ 16. In spite of Heitmann’s assertion “Nothing like this appears in the literature 
but results of this type are known by Abhyankar and Moh and are easily inferred from 
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their published work”, referring to his result, we do not know how to do this, and we 
did not find anything like this in the literature till now. For example, in the survey 
papers [2] and [3], this result is not mentioned, although in [3, Corollary 8.9] it is proven 
that B ≥ 9.

In Section 7 we present our main new results: Propositions 7.1 and 7.3 and Corol-
laries 7.2 and 7.4. At first sight they look rather technical, but are related to the fact 
that for a Jacobian pair (P, Q) in K[x, y] we know that P and Q are star symmetric. 
Propositions 7.1 and 7.3 yield partial star symmetries between elements in K[P, Q] and 
P , whereas Corollaries 7.2 and 7.4 guarantee that the leading forms of P associated with 
certain directions can be written as powers of certain polynomials. This allows us to es-
tablish a very strong divisibility criterion for the possible regular corners, Theorem 7.6, 
which enables us to prove that B �= 2p for all prime p. This result is announced to be 
proven by Abhyankar in a remark after [5, Theorem 1.16], and it is said that it can 
be proven similarly to [5, Proposition 2.21]. However, we could not translate the proof 
of [5, Proposition 2.21] to our setting nor modify it to give B �= 2p. Once again in the 
survey articles [2] and [3], this result is not mentioned, although in [2, Lemma 6.1] it 
is proven that gcd(deg(P ), deg(Q)) �= p. We also found [12, Theorem 4.12] from which 
B �= 2p follows. But the proof relies on [12, Lemma 4.10], which has a gap, since it claims 
without proof that I2 ⊂ 1

mΓ(f2), an assertion which cannot be proven to be true. The 
same article claims to have proven that B > 16, and the author claims to have verified 
that B > 33, but it relies on the same flawed argument, so B ≥ 16 remains up to the 
moment the best lower limit for B.

One part of our strategy is described by [5]: “The underlying strategy is the mini-
mal counterexample approach. We assume the Jacobian conjecture is false and derive 
properties which a minimal counterexample must satisfy. The ultimate goal is either a 
contradiction (proving the conjecture) or an actual counterexample.” Actually this is the 
strategy followed by Moh in [9], who succeeded in proving that for a counterexample 
(P, Q), max(deg(P ), deg(Q)) > 100. The trouble of this strategy is that the number of 
equations and variables one has to solve in order to discard the possible counterexam-
ples, grows rapidly, and the brute force approach with computers gives no conceptual 
progress, although it allows us to increase the lower bound for max(deg(P ), deg(Q)).

The approach followed in [5] is more promising, since every possible B ruled out 
actually eliminates a whole infinite family of possible counterexamples and cannot be 
achieved by computer power.

Using the classification of regular corners we can produce the algebraic data corre-
sponding to a resolution at infinity, and these data are strongly related to the shape of a 
possible counterexample. It would be interesting to describe thoroughly the relation be-
tween the algebraic and topological methods used in the different approaches mentioned 
above.

The results in the first six sections of this paper are analogous to those established 
for the one dimensional Dixmier conjecture in [4]. The first section is just a reminder 
of definitions and properties from [4]. In Section 2 we give an improved version of the 
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analogous results in that paper, the main difference being the proof of the existence of G0

in Theorem 2.6 and Proposition 2.11(5). In section 3 we recall some of the results of [4]
about the order of directions. At the beginning of Section 4 we introduce the concept 
of a minimal pair and prove that a minimal pair can be assumed to have a trapezoidal 
shape.

The results corresponding to Proposition 5.3 of [4] now are distributed along various 
propositions that classify regular corners in section 5. In section 6 we obtain the fact 
that B ≥ 16, in the same way as the corresponding result in [4]. The rest of the results 
in this paper are new.

We point out that the proof that B �= 2p for any prime number p can be adapted 
easily to the case of the Dixmier conjecture.

1. Preliminaries

We recall some notations and properties from [4]. For each l ∈ N, we consider the 
commutative K-algebra L(l), generated by variables x 1

l , x−1
l and y, subject to the re-

lation x
1
l x

−1
l = 1. In other words L(l) := K[x 1

l , x
−1
l , y]. Obviously, there is a canonical 

inclusion L(l) ⊆ L(h), for each l, h ∈ N such that l|h. We define the set of directions by

V := {(ρ, σ) ∈ Z2 : gcd(ρ, σ) = 1}.

We also define

V≥0 := {(ρ, σ) ∈ V : ρ + σ ≥ 0},

V>0 := {(ρ, σ) ∈ V : ρ + σ > 0}

and

V0 := {(ρ, σ) ∈ V : ρ + σ > 0 and ρ > 0}.

Note that V≥0 = V>0 ∪ {(1, −1), (−1, 1)}.

Definition 1.1. For all (ρ, σ) ∈ V and (i/l, j) ∈ 1
lZ ×Z we write vρ,σ(i/l, j) := ρi/l+ σj.

Definition 1.2. Let (ρ, σ) ∈ V. For P =
∑

a i
l ,j

x
i
l yj ∈ L(l) \ {0}, we define:

– The support of P as Supp(P ) :=
{

(i/l, j) : a i
l ,j

�= 0
}

.

– The (ρ, σ)-degree of P as vρ,σ(P ) := max
{
vρ,σ(i/l, j) : a i

l ,j
�= 0

}
.

– The (ρ, σ)-leading term of P as �ρ,σ(P ) :=
∑

{ρ i
l +σj=vρ,σ(P )}

a i
l ,j

x
i
l yj .
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Remark 1.3. To abbreviate expressions we set vρ,σ(0) := −∞ and �ρ,σ(0) := 0, for all 
(ρ, σ) ∈ V. Moreover, instead of Supp(P ) = {a} we will write Supp(P ) = a.

Definition 1.4. We say that P ∈ L(l) is (ρ, σ)-homogeneous if P = �ρ,σ(P ).

Definition 1.5. We assign to each direction its corresponding unit vector in S1, and 
we define an interval in V as the preimage under this map of an arc of S1 that is 
not the whole circle. We consider each interval endowed with the order that increases 
counterclockwise.

For each P ∈ L(l) \ {0}, we let H(P ) denote the convex hull of the support of P . As 
it is well known, H(P ) is a polygon, called the Newton polygon of P , and it is evident 
that each one of its edges is the convex hull of the support of �ρ,σ(P ), where (ρ, σ) is 
orthogonal to the given edge and points outside of H(P ).

Notation 1.6. Let (ρ, σ) ∈ V arbitrary. We let stρ,σ(P ) and enρ,σ(P ) denote the first 
and the last point that we find on H(�ρ,σ(P )) when we run counterclockwise along the 
boundary of H(P ). Note that these points coincide when �ρ,σ(P ) is a monomial.

The cross product of two vectors A = (a1, a2) and B = (b1, b2) in R2 is A × B :=
det

( a1 a2
b1 b2

)
.

Remark 1.7. Note that if �ρ,σ(P ) is not a monomial, then (ρ, σ) × (enρ,σ(P ) −
stρ,σ(P )) > 0.

Remark 1.8. If (ρ0, σ0) < (ρ, σ) < (−ρ0, −σ0), then vρ0,σ0(enρ,σ(P )) ≤ vρ0,σ0(stρ,σ(P )), 
while if (ρ0, σ0) > (ρ, σ) > (−ρ0, −σ0), then vρ0,σ0(enρ,σ(P )) ≥ vρ0,σ0(stρ,σ(P )), with 
equality in both cases only if �ρ,σ(P ) is a monomial. Moreover, in the first case

stρ,σ(P ) = Supp(�ρ0,σ0(�ρ,σ(P ))) and enρ,σ(P ) = Supp(�−ρ0,−σ0(�ρ,σ(P ))).

Hence, if (ρ, σ) ∈ V>0, then

stρ,σ(P ) = Supp(�1,−1(�ρ,σ(P ))) and enρ,σ(P ) = Supp(�−1,1(�ρ,σ(P ))),

and, if ρ + σ < 0, then

stρ,σ(P ) = Supp(�−1,1(�ρ,σ(P ))) and enρ,σ(P ) = Supp(�1,−1(�ρ,σ(P ))).

Remark 1.9. Let P, Q ∈ L(l) \ {0} and (ρ, σ) ∈ V. The following assertions hold:

(1) �ρ,σ(PQ) = �ρ,σ(P )�ρ,σ(Q).
(2) If P =

∑
i Pi, vρ,σ(Pi) = vρ,σ(P ) and 

∑
i �ρ,σ(Pi) �= 0, then �ρ,σ(P ) =

∑
i �ρ,σ(Pi).
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(3) vρ,σ(PQ) = vρ,σ(P ) + vρ,σ(Q).
(4) stρ,σ(PQ) = stρ,σ(P ) + stρ,σ(Q).
(5) enρ,σ(PQ) = enρ,σ(P ) + enρ,σ(Q).
(6) −v−ρ,−σ(P ) ≤ vρ,σ(P ).

We will use freely these facts throughout the article.

Notation 1.10. For P, Q ∈ L(l) we write [P, Q] := det J(P, Q), where J(P, Q) is the 
jacobian matrix of (P, Q).

Definition 1.11. Let P, Q ∈ L(l). We say that (P, Q) is a Jacobian pair if [P, Q] ∈ K×.

Remark 1.12. Let P, Q ∈ L(l) \ {0} and let (ρ, σ) ∈ V. We have:

(1) If P and Q are (ρ, σ)-homogeneous, then [P, Q] is also. If moreover [P, Q] �= 0, then

vρ,σ([P,Q]) = vρ,σ(P ) + vρ,σ(Q) − (ρ + σ).

(2) If P =
∑

i Pi and Q =
∑

j Qj are the (ρ, σ)-homogeneous decompositions of P
and Q, then the (ρ, σ)-homogeneous decomposition [P, Q] =

∑
k[P, Q]k is given by

[P,Q]k =
∑

i+j=k+ρ+σ

[Pi, Qj ]. (1.1)

(3) If [P, Q] = 0, then [�ρ,σ(P ), �ρ,σ(Q)] = 0.

Proposition 1.13. Let P, Q ∈ L(l) \ {0} and (ρ, σ) ∈ V. We have

vρ,σ([P,Q]) ≤ vρ,σ(P ) + vρ,σ(Q) − (ρ + σ). (1.2)

Moreover

vρ,σ([P,Q]) = vρ,σ(P ) + vρ,σ(Q) − (ρ + σ) ⇐⇒ [�ρ,σ(P ), �ρ,σ(Q)] �= 0

and in this case [�ρ,σ(P ), �ρ,σ(Q)] = �ρ,σ([P, Q]).

Proof. It follows directly from the decomposition (1.1). �
Definition 1.14. We say that two vectors A, B ∈ R2 are aligned and write A ∼ B, if 
A ×B = 0.

Remark 1.15. Note that the restriction of ∼ to R2 \ {0} is an equivalence relation. Note 
also that if A ∈ R ×R>0, B ∈ R ×R≥0 and A ∼ B, then B = λA for some λ ≥ 0.
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2. Shape of Jacobian pairs

The results in this section appear in several papers, for instance [1,5] and [6], but we 
need to establish them in a slightly different form, including the geometric information 
about the shape of the support.

Proposition 2.1. Let (ρ, σ) ∈ V and let P, Q ∈ L(l) \ {0} be two (ρ, σ)-homogeneous 
elements. Set τ := vρ,σ(P ) and μ := vρ,σ(Q).

(1) If τ = μ = 0, then [P, Q] = 0.
(2) Assume that [P, Q] = 0 and (μ, τ) �= (0, 0). Let m, n ∈ Z with gcd(m, n) = 1 and 

nτ = mμ. Then
a) There exists α ∈ K× such that Pn = αQm.
b) There exist R ∈ L(l) and λP , λQ ∈ K×, such that

P = λPR
m and Q = λQR

n. (2.1)

Moreover
– if μτ < 0, then P, Q ∈ K[x1/l, x−1/l],
– if μτ ≥ 0, then we can choose m, n ∈ N0,
– if P, Q ∈ L, then R ∈ L.

Proof. (1) If ρ = 0, then P, Q ∈ K[x1/l, x−1/l] and if ρ �= 0, then P, Q ∈ K[z] where 
z := x−σ/ρy. In both cases, [P, Q] = 0 follows easily.
(2a) This is [6, Proposition 2.1(2)].
(2b) Assume first that μτ < 0 and take n, m ∈ Z coprime with nτ = mμ. By state-
ment (a), there exists α ∈ K× such that Pn = αQm. Since mn < 0, necessarily 
P, Q ∈ K[x1/l, x−1/l] and ρ �= 0. Moreover, since P and Q are (ρ, σ)-homogeneous,

P = λPx
r
l and Q = λQx

u
l ,

for some λP , λQ ∈ K× and r, u ∈ Z with rn = um. Clearly R := x
r

lm = x
u
ln satis-

fies (2.1). In order to finish the proof we only must note that, since m and n are coprime, 
R ∈ L(l).

Assume now μτ ≥ 0 and let m, n ∈ N0 be such that nτ = mμ and gcd(m, n) = 1. Set

z :=
{
x−σ

ρ y if ρ �= 0,
x

1
l if ρ = 0,

and write

P = x
r
l ysf(z) and Q = x

u
l yvg(z),
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where f, g ∈ K[z] with f(0) �= 0 �= g(0). By statement (2a) there exists α ∈ K× such 
that

x
nr
l ynsfn(z) = Pn = αQm = αx

mu
l ymvgm(z),

from which we obtain

(nr/l, ns) = (mu/l,mv) and fn = αgm.

Since gcd(m, n) = 1, by the second equality there exist h ∈ K[z] and λP , λQ ∈ K× such 
that

f = λPh
m(z) and g = λQh

n(z) (2.2)

Take c, d ∈ Z such that cm + dn = 1 and define (a/l, b) := c(r/l, s) + d(u/l, v). Since

m(a/l, b) = (r/l, s) and n(a/l, b) = (u/l, v),

it follows from (2.2), that R := x
a
l ybh(z) satisfies (2.1), as desired.

Finally, if P, Q ∈ L, then v−1,0(R) = 1
mv−1,0(P ) ≤ 0, which combined with the fact 

that R ∈ L(1) implies that R ∈ L. �
Lemma 2.2. Let (ρ, σ) ∈ V and let P, Q ∈ L(l) \ {0} be such that [P, Q] ∈ K×. If 
vρ,σ(P ) �= 0, then there exists G0 ∈ K[P, Q] such that

[�ρ,σ(G0), �ρ,σ(P )] �= 0 and [[�ρ,σ(G0), �ρ,σ(P )], �ρ,σ(P )] = 0.

Moreover, if we define recursively Gi := [Gi−1, P ], then [�ρ,σ(Gi), �ρ,σ(P )] = 0 for i ≥ 1.

Proof. Let t ∈ N and set

M(t) := linspan{P iQj : i, j = 0, . . . , t}.

Since {P iQj} is linearly independent, we have

dimM(t) = (t + 1)2. (2.3)

On the other hand, a direct computation shows that

mt ≤ −v−ρ,−σ(z) ≤ vρ,σ(z) ≤ Mt for each z ∈ M(t),

where

m := min{0,−v−ρ,−σ(P ),−v−ρ,−σ(Q),−v−ρ,−σ(P ) − v−ρ,−σ(Q)}



C. Valqui et al. / Journal of Algebra 471 (2017) 13–74 21
and

M := max{0, vρ,σ(P ), vρ,σ(Q), vρ,σ(P ) + vρ,σ(Q)}.

Consequently,

J := vρ,σ(M(t) \ {0}) ⊆ 1
l
Z ∩ [mt,Mt].

For each β ∈ J we take a zβ ∈ M(t) with vρ,σ(zβ) = β. We first prove that there exist 
t ∈ N and H ∈ M(t), such that

[�ρ,σ(P ), �ρ,σ(H)] �= 0. (2.4)

Assume by contradiction that

[�ρ,σ(P ), �ρ,σ(H)] = 0 for all H ∈ M(t) and all t ∈ N.

We claim that then M(t) = linspan{zβ : β ∈ J}. In fact, suppose this equality is false 
and take z ∈ M(t) \ linspan{zβ : β ∈ J} with β := vρ,σ(z) minimum. By assumption

[�ρ,σ(P ), �ρ,σ(z)] = 0 = [�ρ,σ(P ), �ρ,σ(zβ)].

Since vρ,σ(P ) �= 0 and vρ,σ(z) = vρ,σ(zβ), by Proposition 2.1(2b) there exist R ∈ L(l), 
λ, λβ ∈ K× and n ∈ Z, such that

�ρ,σ(z) = λRn and �ρ,σ(zβ) = λβR
n.

Hence vρ,σ(z − λλ−1
β zβ) < vρ,σ(z), which contradicts the choice of z, finishing the proof 

of the claim. Consequently dimM(t) ≤ l(M − m)t, which contradicts (2.3) if we take 
t ≥ l(M −m). Thus we can find H ∈ K[P, Q] such that (2.4) is satisfied.

We now define recursively (Hj)j≥0 by setting

H0 := H, and Hj+1 := [Hj , P ].

Since H0 ∈ K[P, Q], eventually Hn = 0. Let k be the largest index for which 
Hk �= 0. By Remark 1.12(3) we know that [�ρ,σ(Hk), �ρ,σ(P )] = 0. But we also have 
[�ρ,σ(H0), �ρ,σ(P )] �= 0 and hence there exists a largest j such that [�ρ,σ(Hj), �ρ,σ(P )] �= 0. 
By Proposition 1.13 we have

[�ρ,σ(Hj), �ρ,σ(P )] = �ρ,σ(Hj+1),

and so G0 := Hj satisfies the required conditions. �
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Proposition 2.3. Let P, Q ∈ L(l) \ {0} and (ρ, σ) ∈ V. If [�ρ,σ(P ), �ρ,σ(Q)] = 0, then

stρ,σ(P ) ∼ stρ,σ(Q) and enρ,σ(P ) ∼ enρ,σ(Q).

Proof. Consider (ρ0, σ0) such that (ρ0, σ0) < (ρ, σ) < (−ρ0, −σ0). By Remark 1.12(3),

0 = [�(ρ0,σ0)(�ρ,σ(P )), �(ρ0,σ0)(�ρ,σ(Q))].

On the other hand, by Remark 1.8 there exist μP , μQ ∈ K× such that

�ρ0,σ0(�ρ,σ(P )) = μPx
r
l ys and �ρ0,σ0(�ρ,σ(Q)) = μQx

u
l yv,

where (r/l, s) = stρ,σ(P ) and (u/l, v) = stρ,σ(Q). Clearly

0 = [�ρ0,σ0(�ρ,σ(P )), �ρ0,σ0(�ρ,σ(Q))] = μPμQ

(rv
l
− us

l

)
x

r+u
l −1ys+v−1,

from which stρ,σ(P ) ∼ stρ,σ(Q) follows. Similar arguments yield enρ,σ(P ) ∼ enρ,σ(Q), 
finishing the proof. �
Proposition 2.4. Let P, Q, R ∈ L(l) \ {0} be such that

[�ρ,σ(P ), �ρ,σ(Q)] = �ρ,σ(R),

where (ρ, σ) ∈ V. We have:

(1) stρ,σ(P ) � stρ,σ(Q) if and only if stρ,σ(P ) + stρ,σ(Q) − (1, 1) = stρ,σ(R).
(2) enρ,σ(P ) � enρ,σ(Q) if and only if enρ,σ(P ) + enρ,σ(Q) − (1, 1) = enρ,σ(R).

Proof. (1) It is enough to prove it when P , Q and R are (ρ, σ)-homogeneous, so we will 
assume it. Choose (ρ0, σ0) ∈ V such that (ρ0, σ0) < (ρ, σ) < (−ρ0, −σ0). By Remark 1.8

�ρ0,σ0(P ) = μPx
r
l ys, �ρ0,σ0(Q) = μQx

u
l yv and �ρ0,σ0(R) = μRx

a
l yb, (2.5)

where

μP , μQ, μR ∈ K×,
(r
l
, s
)

:= stρ,σ(P ),
(u
l
, v
)

:= stρ,σ(Q) and(a
l
, b
)

:= stρ,σ(R).

Clearly

[�ρ0,σ0(P ), �ρ0,σ0(Q)] = μPμQ

(rv
l
− us

l

)
x

r+u
l −1ys+v−1

and hence, by Proposition 1.13,
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stρ,σ(P ) � stρ,σ(Q) ⇐⇒ [�ρ0,σ0(P ), �ρ0,σ0(Q)] �= 0 ⇐⇒

�ρ0,σ0(R) = [�ρ0,σ0(P ), �ρ0,σ0(Q)]. (2.6)

Consequently if stρ,σ(P ) � stρ,σ(Q), then

μRx
a
l yb = μPμP

(rv
l
− us

l

)
x

r+u
l −1ys+v−1,

which evidently implies that

stρ,σ(P ) + stρ,σ(Q) − (1, 1) = stρ,σ(R).

Reciprocally if this last equation holds, then by (2.5)

vρ0,σ0(P ) + vρ0,σ0(Q) − (ρ0 + σ0) = vρ0,σ0(R),

and so, again by Proposition 1.13,

[�ρ0,σ0(P ), �ρ0,σ0(Q)] �= 0,

which by (2.6) implies that stρ,σ(P ) � stρ,σ(Q).

(2) It is similar to the proof of statement (1). �
Remark 2.5. Let (ρ, σ) ∈ V and let P, F ∈ L(l) be (ρ, σ)-homogeneous such that 
[F, P ] = P . If F is a monomial, then F = λxy with λ ∈ K×, and, either ρ + σ = 0
or P is also a monomial.

Theorem 2.6. Let P ∈ L(l) and let (ρ, σ) ∈ V>0 be such that vρ,σ(P ) > 0. If [P, Q] ∈ K×

for some Q ∈ L(l), then there exists G0 ∈ K[P, Q] \{0} and a (ρ, σ)-homogeneous element 
F ∈ L(l) such that

vρ,σ(F ) = ρ + σ, [F, �ρ,σ(P )] = �ρ,σ(P ) and

[�ρ,σ(G0), �ρ,σ(P )]F = �ρ,σ(G0)�ρ,σ(P ). (2.7)

Moreover, we have

(1) If P, Q ∈ L, then we can take F ∈ L.
(2) stρ,σ(P ) ∼ stρ,σ(F ) or stρ,σ(F ) = (1, 1).
(3) enρ,σ(P ) ∼ enρ,σ(F ) or enρ,σ(F ) = (1, 1).
(4) stρ,σ(P ) � (1, 1) � enρ,σ(P ).
(5) If we define recursively Gi := [Gi−1, P ], then [�ρ,σ(Gi), �ρ,σ(P )] = 0 for i ≥ 1.
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Proof. From Lemma 2.2 we obtain G0 such that the hypotheses of Lemma 2.2 of [6] are 
satisfied. Hence, by this lemma,

F := �ρ,σ(G0)�ρ,σ(P )
[�ρ,σ(G0), �ρ,σ(P )] ∈ L(l)

and if P and Q are in L, then F ∈ L. Hence statement (1) is true. Furthermore an 
easy computation shows that statement (5) is also true and equalities (2.7) are sat-
isfied. Statements (2) and (3) follow from Proposition 2.4. For statement (4), assume 
that stρ,σ(P ) ∼ (1, 1). We claim that this implies that stρ,σ(F ) = (1, 1). Otherwise, by 
statement (2) we have

stρ,σ(F ) ∼ stρ,σ(P ) ∼ (1, 1),

which implies stρ,σ(F ) ∼ (1, 1), since stρ,σ(F ) �= (0, 0) �= stρ,σ(P ). So there exists λ ∈
Q \ {1} such that stρ,σ(F ) = λ(1, 1). But this is impossible because vρ,σ(F ) = ρ + σ

implies λ = 1. Hence the claim is true, and so

stρ,σ(P ) + stρ,σ(F ) − (1, 1) = stρ,σ(P ),

which by Proposition 2.4(1) leads to the contradiction

stρ,σ(P ) � stρ,σ(F ) = (1, 1).

Similarly enρ,σ(P ) � (1, 1). �
Remark 2.7. In general, the conclusions of Theorem 2.6 do not hold if ρ + σ < 0. For 
instance, consider the following pair in L(1):

P = x−1 + x3y(2 + 18x2y + 36x4y2) + x9y3(8 + 72x2y + 216x4y2 + 216x6y3)

and

Q = x2y + x6y2(1 + 6x2y + 9x4y2).

Clearly [P, Q] = −1 and v1,−2(P ) = 3 > 0. However, one can show that there is no 
F ∈ L(1) such that [F, �1,−2(P )] = �1,−2(P ).

Remark 2.8. Let P ∈ L(l) \ {0} and (ρ, σ) ∈ V with ρ > 0. If �ρ,σ(P ) = x
r
l ysp(x−σ

ρ y), 
where

p :=
γ∑

i=0
aix

i ∈ K[x] with a0 �= 0 and aγ �= 0,

then, by Remark 1.8 with (ρ0, σ0) = (0, −1),
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stρ,σ(P ) =
(r
l
, s
)

and enρ,σ(P ) =
(r
l
− γσ

ρ
, s + γ

)
. (2.8)

Definition 2.9. Let P ∈ L(l) \ {0}. We define the set of directions associated with P as

Dir(P ) := {(ρ, σ) ∈ V : # Supp(�ρ,σ(P )) > 1}.

Remark 2.10. Note that if P ∈ L(l) \{0} is a monomial, then Dir(P ) = ∅ and that if P ∈
L(l)\{0} is (ρ, σ)-homogeneous, but is not a monomial, then Dir(P ) = {(ρ, σ), (−ρ, −σ)}. 
Furthermore, if P ∈ L(l) \ {0} is not homogeneous, then any two consecutive directions 
of P are separated by less than 180°.

Proposition 2.11. Let (ρ, σ) ∈ V0 and P, F ∈ L(l) \ {0}. Assume that F is (ρ, σ)-homo-
geneous, vρ,σ(P ) > 0 and

[F, �ρ,σ(P )] = �ρ,σ(P ). (2.9)

Write

F = x
u
l yvf(z) and �ρ,σ(P ) = x

r
l ysp(z) with z := x−σ

ρ y and p(0) �= 0 �= f(0).

Then

(1) f is separable and every irreducible factor of p divides f .
(2) If (ρ, σ) ∈ Dir(P ), then v0,1(stρ,σ(F )) < v0,1(enρ,σ(F )).
(3) Suppose that p, f ∈ K[zk] for some k ∈ N and let p and f denote the univariate 

polynomials defined by p(z) = p(zk) and f(z) = f(zk). Then f is separable and every 
irreducible factor of p divides f .

(4) If P, F ∈ L and v0,1(enρ,σ(F )) − v0,1(stρ,σ(F )) = ρ, then the multiplicity of each 
linear factor (in an algebraic closure of K) of p is equal to

1
ρ

deg(p) = 1
ρ

(
v0,1(enρ,σ(P )) − v0,1(stρ,σ(P )

)
.

(5) Assume that (ρ, σ) ∈ Dir(P ). If s > 0 or # factors(p) > 1, then there exist no 
(ρ, σ)-homogeneous element R ∈ L(l) such that

vρ,σ(R) = ρ + σ and [R, �ρ,σ(P )] = 0. (2.10)

Consequently, in this case F satisfying (2.9) is unique.

Proof. Note that, since [−, −] is a derivation in both variables, we have

[F, �ρ,σ(P )] =
[
x

u
l yvf(z), x r

l ysp(z)
]

= x
u+r

l −1yv+s−1(cf(z)p(z) + azf(z)p′(z) − bzf ′(z)p(z)
)
,
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where

c :=
(u

l

v

)
×
( r

l

s

)
, a :=

(u
l

v

)
×

(−σ
ρ

1

)
= 1

ρ
vρ,σ(F ) and

b :=
( r

l

s

)
×

(−σ
ρ

1

)
= 1

ρ
vρ,σ(P ).

Hence, by equality (2.9) there exists h ∈ N0 such that

zhp = cpf + azp′f − bzf ′p. (2.11)

Let g be a linear factor of p in an algebraic closure of K, with multiplicity m. Write 
p = p1g

m and f = f1g
n, where n ≥ 0 is the multiplicity of g in f . Since

p′ = p1mgm−1g′ + p′1g
m and f ′ = f1ng

n−1g′ + f ′
1g

n,

equality (2.11) can be written

zhp1g
m = gm+n−1(g(cp1f1 + azf1p

′
1 − bzf ′

1p1) + (am− bn)zf1p1g
′),

which implies n ≤ 1. But n = 0 is impossible since a, m > 0. So, statement (1) follows.
Assume now (ρ, σ) ∈ Dir(P ). Then deg p > 0, and so, by statement (1) we have 

deg f > 0. Consequently statement (2) follows from Remark 2.8. Using now that

zp′(z) = ktp′(t) and zf ′(z) = ktf
′(t) where t := zk,

we deduce from (2.11) the equality

zhp(t) = cp(t)f(t) + atp′f(t) − btf
′(t)p(t).

The same procedure as above, but using this last equality instead of (2.11), yields state-
ment (3).

Now we prove statement (4). Write

F =
α∑

i=0
bix

u−iσyv+iρ and �ρ,σ(P ) =
γ∑

i=0
cix

r−iσys+iρ

with b0 �= 0, bα �= 0, c0 �= 0 and cγ �= 0. By definition

f =
α∑

i=0
biz

iρ and p =
γ∑

i=0
ciz

iρ.

Moreover, since by (2.8),
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αρ = v0,1(enρ,σ(F )) − v0,1(stρ,σ(F )),

it follows from the hypothesis that α = 1. Hence

f(z) = b0 + b1z
ρ = μ(zρ − μ′) = f(zρ),

where μ := b1 and μ′ := b0/b1. Consequently, by statement (3), there exists μP ∈ K×

such that

p(z) = μP (zρ − μ′)γ ,

from which statement (4) follows easily. Finally we prove statement (5). For this we 
first prove (2.12) below, and then we prove that for any R satisfying (2.10) there exists 
λ ∈ K× such that Fλ := F − λR satisfies (2.9) and enρ,σ(P ) � enρ,σ(Fλ), which is a 
contradiction.

Assume that # factors(p) > 1 or that s > 0. We claim that enρ,σ(F ) �= (1, 1). If the 
first inequality holds, then, by statement (1), we have deg(f) > 1. Consequently, by 
Remark 2.8, it is impossible that enρ,σ(F ) = (1, 1). Assume that s > 0. By Proposi-
tion 2.4(1), either

stρ,σ(F ) = (1, 1) or stρ,σ(F ) ∼ stρ,σ(P ) = (r/l, s).

In the first case v0,1(stρ,σ(F )) = 1, while in the second one, since by Remark 1.12(1) 
we know that stρ,σ(F ) �= (0, 0), there exists λ > 0 such that stρ,σ(F ) = λ stρ,σ(P ). So 
v0,1(stρ,σ(F )) = λs > 0. In both cases, by statement (2),

v0,1(enρ,σ(F )) > v0,1(stρ,σ(F )) ≥ 1,

which clearly implies enρ,σ(F ) �= (1, 1), as desired. Thus, by Proposition 2.4(2) we con-
clude that, if # factors(p) > 1 or s > 0, then

[F, �ρ,σ(P )] = �ρ,σ(P ) =⇒ enρ,σ(P ) ∼ enρ,σ(F ). (2.12)

Suppose that R ∈ L(l) is a (ρ, σ)-homogeneous element that satisfies condition (2.10). 
By Proposition 2.3 we know that enρ,σ(P ) ∼ enρ,σ(R) and so enρ,σ(F ) ∼ enρ,σ(R). Since 
by Remark 1.12(1)

vρ,σ(F ) = ρ + σ = vρ,σ(R), (2.13)

this implies that

enρ,σ(F ) = enρ,σ(R). (2.14)

Let r̄ be an univariate polynomial such that r̄(0) �= 0 and R = x
h
l ykr̄(z). We have
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F = x
u
l f(z) and R = x

h
l r(z),

where f(z) := zvf(z), r(z) := zk r̄(z), u := u + vσl/ρ and h := h + kσl/ρ. By Remark 2.8
and equality (2.14)

deg(f) = deg(f) + v = v0,1(enρ,σ(F )) = v0,1(enρ,σ(R)) = deg(r̄) + k = deg(r).

Moreover u = h since, by equality (2.13),

ρ
u

l
= vρ,σ(F ) = vρ,σ(R) = ρ

h

l
.

Let λ ∈ K× be such that deg(f − λr) < deg(f) and let

Fλ := F − λR = x
u
l

(
f(z) − λr(z)

)
.

Again by Remark 2.8

enρ,σ(Fλ) = enρ,σ(F ) − t(−σ, ρ) where t := deg(f) − deg(f− λr)
ρ

> 0.

Hence

enρ,σ(P ) × enρ,σ(Fλ) = −t(enρ,σ(P ) × (−σ, ρ)) = −tvρ,σ(P ) < 0,

and so enρ,σ(P ) � enρ,σ(Fλ). But, since

[Fλ, �ρ,σ(P )] = [F − λR, �ρ,σ(P )] = [F, �ρ,σ(P )] − λ[R, �ρ,σ(P )] = [F, �ρ,σ(P )] = �ρ,σ(P ),

this contradicts (2.12), and hence, such an R cannot exist. Clearly the uniqueness of F
follows, since any other F ′ satisfying (2.9) yields R := F − F ′ which satisfies (2.10). �
3. More on the order on directions

In this section we consider the same order on directions as other authors, e.g. [1]
and [5], but we profit from the following characterization of this order in small intervals: 
If I is an interval in V and if there is no closed half circle contained in I, which means 
that there is no (ρ, σ) ∈ I with (−ρ, −σ) ∈ I, then for (ρ, σ), (ρ′σ′) ∈ I we have

(ρ, σ) < (ρ′, σ′) ⇐⇒ (ρ, σ) × (ρ′, σ′) > 0. (3.1)

We also present in Proposition 3.10 the chain rule for Jacobians in a convenient way.
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Remark 3.1. Let (ρ, σ) ∈ V and let P, Q ∈ L(l). If

vρ,σ(P ) > 0, vρ,σ(Q) ≥ 0 and [�ρ,σ(P ), �ρ,σ(Q)] = 0,

then by Proposition 2.1(2) we know that there exist λP , λQ ∈ K×, m, n ∈ N0 coprime 
and a (ρ, σ)-homogeneous element R ∈ L(l), with R ∈ L if P, Q ∈ L, such that

�ρ,σ(P ) = λPR
m and �ρ,σ(Q) = λQR

n.

Note that vρ,σ(P ) > 0 implies m ∈ N. Consequently, we have

(1) n
m = vρ,σ(Q)

vρ,σ(P ) ,
(2) stρ,σ(Q) = n

m stρ,σ(P ),
(3) enρ,σ(Q) = n

m enρ,σ(P ),

and, if moreover vρ,σ(Q) > 0, then

(ρ, σ) ∈ Dir(P ) ⇔ �ρ,σ(P ) is not a monomial

⇔ R is not a monomial

⇔ �ρ,σ(Q) is not a monomial

⇔ (ρ, σ) ∈ Dir(Q).

By Proposition 1.13 the condition [�ρ,σ(P ), �ρ,σ(Q)] = 0 can be replaced by

vρ,σ([P,Q]) < vρ,σ(P ) + vρ,σ(Q) − (ρ + σ).

We will use freely this fact.

For each (r/l, s) ∈ 1
lZ × Z \ Z(1, 1) there exists a unique (ρ, σ) ∈ V>0, denoted by 

dir(r/l, s), such that vρ,σ(r/l, s) = 0. In fact clearly

(ρ, σ) =
{

(−ls/d, r/d) if r − ls > 0,
(ls/d,−r/d) if r − ls < 0,

(3.2)

where d := gcd(r, ls), satisfies the required condition, and the uniqueness is evident.

Remark 3.2. Note that if (ρ, σ) ∈ V>0, (r/l, s) �= (r′/l, s′) and vρ,σ(r/l, s) = vρ,σ(r′/l, s′)
then

(ρ, σ) = dir
((r

l
, s
)
−

(
r′

l
, s′

))
.
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In particular

(ρ, σ) = dir
(
enρ,σ(P ) − stρ,σ(P )

)
for all P ∈ L(l) \ {0} and (ρ, σ) ∈ Dir(P ) ∩V>0.

Remark 3.3. Let (a/l, b) ∈ 1
lZ ×N and set

(ρ, σ) := 1
d
(bl,−a), where d := gcd(bl, a).

Then, for any (ρ, σ) ∈ V, we have

vρ,σ(a/l, b) > 0 ⇐⇒ (ρ, σ) × (ρ, σ) > 0 ⇐⇒ (ρ, σ) < (ρ, σ) < (−ρ,−σ).

Definition 3.4. Let P ∈ L(l) \ {0} which is not a monomial and (ρ, σ) ∈ V. We define 
the successor SuccP (ρ, σ) of (ρ, σ) to be the first element of Dir(P ) that one encounters 
starting from (ρ, σ) and running counterclockwise, and the predecessor PredP (ρ, σ), to 
be the first one, if we run clockwise.

Note that V>0 is the interval ](1, −1), (−1, 1)[ and the order on V>0 is given by (3.1).

Lemma 3.5. Let (a/l, b), (c/l, d) ∈ 1
lZ × Z and (ρ, σ) ∈ V>0. If v1,−1(a/l, b) >

v1,−1(c/l, d), then

vρ,σ

(a
l
, b
)
> vρ,σ

(c
l
, d
)
⇐⇒ dir

((a
l
, b
)
−

(c
l
, d
))

> (ρ, σ)

and

vρ,σ

(a
l
, b
)
< vρ,σ

(c
l
, d
)
⇐⇒ dir

((a
l
, b
)
−

(c
l
, d
))

< (ρ, σ).

Proof. Let

(ρ′, σ′) := dir
(
(a/l, b) − (c/l, d)

)
and g := gcd(bl − dl, a− c).

Since v1,−1(a/l, b) > v1,−1(c/l, d) implies a − c > bl − dl, we have

(ρ′, σ′) =
(
dl − bl

g
,
a− c

g

)
.

Consequently

vρ,σ

(a
l
, b
)
− vρ,σ

(c
l
, d
)

= g

l

(
ρ
a− c

g
− σ

dl − bl

g

)
= g

l

(
ρσ′ − ρ′σ

)
= g

l
(ρ, σ) × (ρ′, σ′),

and so, the result follows immediately from (3.1). �
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Corollary 3.6. Let (a/l, b), (c/l, d) ∈ 1
lZ ×Z and (ρ, σ) < (ρ′, σ′) in V>0. If

v1,−1(a/l, b) > v1,−1(c/l, d),

then

vρ′,σ′

(a
l
, b
)
≥ vρ′,σ′

(c
l
, d
)

=⇒ vρ,σ

(a
l
, b
)
> vρ,σ

(c
l
, d
)

and

vρ,σ

(a
l
, b
)
≤ vρ,σ

(c
l
, d
)

=⇒ vρ′,σ′

(a
l
, b
)
< vρ′,σ′

(c
l
, d
)
.

Proof. It follows easily from Lemma 3.5. �
The next two propositions are completely clear. The first one asserts that if you have 

two consecutive edges of a Newton polygon, then all that is between them is the common 
vertex. The second one asserts that if the end point of an edge coincides with the starting 
point of another edge, then they are consecutive.

Proposition 3.7. Let P ∈ L(l) \ {0} and let (ρ1, σ1) and (ρ2, σ2) be consecutive elements 
in Dir(P ). If (ρ1, σ1) < (ρ, σ) < (ρ2, σ2), then enρ1,σ1(P ) = Supp(�ρ,σ(P )) = stρ2,σ2(P ).

Proposition 3.8. Let P ∈ L(l) \ {0} and let (ρ, σ), (ρ′, σ′) ∈ V. If enρ,σ(P ) = stρ′,σ′(P ), 
then there is no (ρ′′, σ′′) ∈ Dir(P ) such that (ρ, σ) < (ρ′′, σ′′) < (ρ′, σ′).

Proposition 3.9. For k ∈ Z consider the automorphism of L(l) defined by

ϕ
(
x

1
l

)
:= x

1
l and ϕ(y) := y + λx

k
l .

Let (ρ, σ) be the direction defined by ρ > 0 and σρ = k
l . We have

�ρ,σ(ϕ(P )) = ϕ(�ρ,σ(P )), �−ρ,−σ(ϕ(P )) = ϕ(�−ρ,−σ(P )) and

�ρ1,σ1(ϕ(P )) = �ρ1,σ1(P ),

for all P ∈ L(l) \ {0} and all (ρ, σ) < (ρ1, σ1) < (−ρ, −σ). Moreover enρ,σ(ϕ(P )) =
enρ,σ(P ).

Proof. Take d := gcd(k, l) > 0, ρ := l/d and σ := k/d. Clearly σρ = k
l . Moreover, since 

ϕ is (ρ, σ)-homogeneous it is also clear that

�ρ,σ(ϕ(P )) = ϕ(�ρ,σ(P )) and �−ρ,−σ(ϕ(P )) = ϕ(�−ρ,−σ(P ))

for all P ∈ L(l) \ {0}. Now we prove that the last equality is also true. By the hypothesis 
about (ρ1, σ1) we have ρ1σ < ρσ1. Thus
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�ρ1,σ1

(
y + λx

σ
ρ
)

= y,

since ρ > 0. Consequently

�ρ1,σ1

(
ϕ(x i

l yj)
)

= �ρ1,σ1

(
x

i
l (y + λx

σ
ρ )j

)
= x

i
l yj ,

from which

�ρ1,σ1(ϕ(P )) = �ρ1,σ1(ϕ(�ρ1,σ1(P ))) = �ρ1,σ1(P ),

follows. The last assertion follows from the second equality in (2.8) and the fact that the 
monomials of greatest degree in y of �ρ,σ(ϕ(P )) and �ρ,σ(P ) coincide. �
Proposition 3.10. Let R0, R1 ∈ {L, L(l)}, P, Q ∈ R0 and ϕ : R0 → R1 an algebra mor-
phism. Then

[ϕ(P ), ϕ(Q)] = ϕ([P,Q])[ϕ(x), ϕ(y)]. (3.3)

Proof. Recall the (formal) Jacobian chain rule (see for example [2, (1.7), p. 1160]) which 
generalizes the (formal) derivative chain rule and which says that given any 2-variable 
rational functions f1(x, y), f2(x, y), g1(x, y), g2(x, y) ∈ K(x, y), we have

J(x,y)(h1, h2) = J(f1,f2)(g1, g2)J(x,y)(f1, f2),

where by definition hi(x, y) := gi(f1(x, y), f2(x, y)), and

J(f1,f2)(g1, g2) := j(f1(x, y), f2(x, y)) with j(x, y) := J(x,y)(g1, g2). (3.4)

Assume first that l = 1. Then equality (3.3) follows applying equality (3.4) with

g1 := P, g2 := Q, f1 := ϕ(x) and f2 := ϕ(y),

since ϕ([P, Q]) = j(ϕ(x), ϕ(y)), where j(x, y) := [P, Q] ∈ L(1) ⊆ K(x, y). Assume now 
that l is arbitrary. Identifying L(l) with K[z, z−1, y] via z = x1/l, we obtain

[P,Q] = (PzQy − PyQz)
1

lzl−1 , for P,Q ∈ L(l).

Consequently equality (3.3) is valid for R0, R1 ∈ {L, L(l)}. �
4. Minimal pairs and (m,n)-pairs

Our next aim is to determine a lower bound for
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B :=

⎧⎪⎨⎪⎩
∞ if the jacobian conjecture is true,
min

(
gcd(v1,1(P ), v1,1(Q))

)
if JC is false, where (P,Q) runs
on the counterexamples.

A minimal pair is a counterexample (P, Q) to JC such that B = gcd(v1,1(P ), v1,1(Q)).
An (m, n)-pair is a Jacobian pair (P, Q) with P, Q ∈ L(l) for some l, that satisfies 

certain conditions (see Definition 4.3).
In this section we prove that if B < ∞, then there exists a minimal pair that is also 

an (m, n)-pair for some m, n ∈ N. We could prove the result using only our previous 
results, but we prefer to use the well known fact that a counterexample to JC can be 
brought into a subrectangular shape, following an argument communicated by Leonid 
Makar-Limanov.

Proposition 4.1. Let (ρ, σ) ∈ V be such that (1, 0) ≤ (ρ, σ) ≤ (0, 1). If (P, Q) is a 
counterexample to JC, then

vρ,σ(P ) > 0, vρ,σ(Q) > 0 and vρ,σ(P ) + vρ,σ(Q) − (ρ + σ) > 0.

Proof. Note that if (1, 0) ≤ (ρ, σ) ≤ (1, 1), then ρ ≥ σ ≥ 0, while if (1, 1) ≤
(ρ, σ) ≤ (0, 1), then σ ≥ ρ ≥ 0. In the case ρ ≥ σ ≥ 0 it is enough to prove that 
vρ,σ(P ), vρ,σ(Q) > ρ. Assume for example that vρ,σ(P ) ≤ ρ, then

(i, j) ∈ Supp(P ) =⇒ iρ + jσ ≤ ρ =⇒ i = 0, or i = 1 and j = 0,

which means that P = μx + f(y) for some μ ∈ K and f ∈ K[y], and obviously (P, Q)
can not be a counterexample to JC. The case σ ≥ ρ ≥ 0 is similar. �
Remark 4.2. If (P, Q) is a minimal pair, then neither v1,1(P ) divides v1,1(Q) nor v1,1(Q)
divides v1,1(P ). This fact can be proven using a classical argument given for example in 
the proof of [11, Theorem 10.2.23].

Definition 4.3. Let m, n ∈ N be coprime with n, m > 1. A pair (P, Q) of elements 
P, Q ∈ L(l) (respectively P, Q ∈ L) is called an (m, n)-pair in L(l) (respectively in L), if

[P,Q] ∈ K×,
v1,1(P )
v1,1(Q) = v1,0(P )

v1,0(Q) = m

n
and v1,−1(en1,0(P )) < 0.

An (m, n)-pair (P, Q) is called a standard (m, n)-pair if P, Q ∈ L(1) and v1,−1(st1,0(P ))
< 0.

Lemma 4.4. Let (ρ, σ), (ρ′, σ′) ∈ V and A, B ∈ 1
lZ ×N0 such that

vρ,σ(A)vρ′,σ′(B) = vρ,σ(B)vρ′,σ′(A) and (ρ, σ) × (ρ′, σ′) �= 0.

Then A ∼ B.
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Proof. Write A = (a1, a2) and B = (b1, b2). The Lemma follows immediately from the 
equality (

ρ σ
ρ′ σ′

)(
a1 b1
a2 b2

)
=

(
vρ,σ(A) vρ,σ(B)
vρ′,σ′(A) vρ′,σ′(B)

)
,

taking determinants. �
Remark 4.5. Let P, Q ∈ L(l) and (ρ, σ) ∈ V. Assume that vρ,σ(P ) �= 0, stρ,σ(P ) ∼
stρ,σ(Q) and enρ,σ(P ) ∼ enρ,σ(Q). Then

enρ,σ(Q) = λ enρ,σ(P ) and stρ,σ(Q) = λ stρ,σ(P ), with λ := vρ,σ(Q)
vρ,σ(P ) .

If (P, Q) is an (m, n)-pair, then (Q, P ) is an (n, m)-pair, as is shown by the following 
proposition.

Proposition 4.6. Let (P, Q) be an (m, n)-pair. Then the following properties hold:

(1) v1,0(P ), v1,0(Q) > 0.
(2) en1,0(Q) ∼ en1,0(P ) and en1,0(Q) = n

m en1,0(P ).
(3) 1

m en1,0(P ) = 1
n en1,0(Q) ∈ 1

lN ×N and v1,−1(en1,0(Q)) < 0.
(4) v0,−1(en1,0(P )) < −1 and v0,−1(en1,0(Q)) < −1.
(5) Neither P nor Q are monomials.

Proof. Item (1) follows from inequality (1.2), since v10(P ) < 0 implies v10(Q) < 0. 
Now we prove item (2). Assume by contradiction that en1,0(Q) � en1,0(P ). By Proposi-
tions 1.13, 2.3, and 2.4(2) we have

en1,0(Q) + en1,0(P ) = (1, 1), (4.1)

which combined with the fact that v1,−1(en1,0(P )) < 0 and v1,0(P ) > 0 implies that 
there exists 0 < r < l with en1,0(P ) = (r/l, 1) and en1,0(Q) = ((l − r)/l, 0). Set

M := {(1, 1)} ∪ ((Dir(P ) ∪ Dir(Q))∩](1, 0), (1, 1)[) = {(ρ0, σ0) < · · · < (ρk, σk) = (1, 1)}.

We claim that

v0,1(stρj ,σj
(P )) + v0,1(stρj ,σj

(Q)) > 1, for j > 0. (4.2)

In fact, if k = 0 this is trivial. Otherwise, by Proposition 3.7 and Remark 1.8, we have

v0,1(stρj ,σj
(P )) ≤ v0,1(enρj ,σj

(P )) = v0,1(stρj+1,σj+1(P )), for 0 ≤ j < k,
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with strict inequality if (ρj , σj) ∈ Dir(P ), and the same is true for Q. The claim follows 
immediately from these facts, since

(ρ0, σ0) ∈ Dir(P ) ∪ Dir(Q) and v0,1(stρ0,σ0(P )) + v0,1(stρ0,σ0(Q)) = 1,

where the equality follows from Proposition 3.7 and equality (4.1).
Inequality (4.2) implies that stρj ,σj

(P ) + stρj ,σj
(Q) �= (1, 1) for j > 0, and so Propo-

sition 2.4(1) and Proposition 3.7 yield

enρj ,σj
(P ) = stρj+1,σj+1(P ) ∼ stρj+1,σj+1(Q) = enρj ,σj

(Q) for 0 ≤ j < k. (4.3)

On the other hand, ρj > 0 because (ρj , σj) ∈ ](1, 0), (1, 1)], and hence,

vρj ,σj
(Q) ≥ vρj ,σj

(en1,0(Q)) = l − r

l
> 0.

This allows us to use Remark 4.5 combined with (4.3), in order to prove inductively that

vρ0,σ0(P )
vρ0,σ0(Q) = vρk,σk

(P )
vρk,σk

(Q) = m

n
= v1,0(P )

v1,0(Q) . (4.4)

Set A := en1,0(P ) and B := en1,0(Q). By Proposition 3.7, we have vρ0,σ0(A) = vρ0,σ0(P )
and vρ0,σ0(B) = vρ0,σ0(Q). Consequently, by (4.4),

v1,0(A)vρ0,σ0(B) − v1,0(B)vρ0,σ0(A) = v1,0(P )vρ0,σ0(Q) − v1,0(Q)vρ0,σ0(P ) = 0,

which, by Lemma 4.4 with (ρ, σ) = (1, 0) and (ρ′, σ′) = (ρ0, σ0), leads to A ∼ B, 
contradicting the assumption that en1,0(Q) � en1,0(P ) and proving item (2).

From item (2) we obtain

1
m

en1,0(P ) = 1
n

en1,0(Q) ∈ 1
l
N×N0 and v1,−1(en1,0(Q)) < 0.

But v0,1(en1,0(P )), v0,1(en1,0(Q)) > 0, since v1,−1(en1,0(P )), v1,−1(en1,0(Q)) < 0, and so 
item (3) holds. Thus v0,−1(en1,0(P )) < −1 and v0,−1(en1,0(Q)) < −1, which is item (4). 
In order to check item (5), assume for instance that P is a monomial. Then, by item (4),

v0,−1(P ) + v0,−1(Q) = v0,−1(en1,0(P )) + v0,−1(Q) < −1 + 0,

which contradicts inequality (1.2). �
Proposition 4.7. Let (P, Q) be a minimal pair. Then there exist m, n ∈ N which are co-
prime, and ϕ ∈ Aut(L) such that (ϕ(P ), ϕ(Q)) is an (m, n)-pair satisfying v1,1(ϕ(P )) =
v1,1(P ) and v1,1(ϕ(Q)) = v1,1(Q). Moreover, (Fig. 1)

(−1, 1) < Succϕ(P )(1, 0), Succϕ(Q)(1, 0) < (−1, 0). (4.5)



36 C. Valqui et al. / Journal of Algebra 471 (2017) 13–74
Fig. 1. The shape of ϕ(P ) according to Proposition 4.7.

Proof. Since (P, Q) is a counterexample to JC, by [11, Corollary 10.2.21] there exists an 
automorphism ϕ of L and integers 1 ≤ a ≤ b such that

(a, b) ∈ Supp(ϕ(P )) ⊆ {(i, j) : 0 ≤ i ≤ a, 0 ≤ j ≤ b}. (4.6)

We can also achieve that inequality (4.5) is satisfied. This is a well known fact (see for 
instance [10, p. 8] or [8, discussion at 1.12]). We claim that there exist m, n ∈ N such 
that (P , Q) := (ϕ(P ), ϕ(Q)) is an (m, n)-pair. Clearly

en1,0(P ) = (a, b) = st1,1(P ). (4.7)

Moreover v1,−1(en1,0(P )) = a − b < 0, since by Theorem 2.6(4), we have a < b. Now we 
prove that there exist m, n ∈ N coprime, such that

v1,1(P )
v1,1(Q)

= m

n
= v1,0(P )

v1,0(Q)
. (4.8)

By Proposition 4.1 the hypotheses of Remark 3.1 are satisfied for (P, Q) and all (ρ, σ) ∈
V such that (1, 0) ≤ (ρ, σ) ≤ (1, 1). Hence there exists m, n ∈ N coprime such that 
v11(P )
v11(Q) = m

n ,

(a, b) = st1,1(P ) = m

n
st1,1(Q) (4.9)

and

Dir(Q)∩](1, 0), (1, 1)[ = Dir(P )∩ ](1, 0), (1, 1)[ = ∅,

where the last equality follows from (4.7) and Proposition 3.8. Hence by Proposition 3.7
we have en1,0(Q) = st1,1(Q) which, combined with (4.7) and (4.9), gives
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en1,0(P ) = m

n
en1,0(Q).

This yields equality (4.8).
Next we prove that

v1,1(P ) = v1,1(P ) and v1,1(Q) = v1,1(Q). (4.10)

For this consider the inverse ψ := ϕ−1. Set M := v1,1(ψ(x)) and N := v1,1(ψ(y)). By [6]
and [11, Corollary 5.1.6(a)], we know that either N |M or M |N . If M = N = 1 then 
clearly ψ and ϕ preserve v1,1, as desired.

We assert that the case M |N and N > 1, and the case N |M and M > 1, are 
impossible. Assume for example M |N and N > 1 and set R := �1,1(ψ(x)). Since

v1,1([ψ(x), ψ(y)]) = 0 < M + N − 2 = v1,1(ψ(x)) + v1,1(ψ(y)) − 2,

it follows from Proposition 1.13, that [�1,1(ψ(x)), �1,1(ψ(y))] = 0. Hence, by Proposi-
tion 2.1,

�1,1(ψ(y)) = λRk for some λ ∈ K× and k ∈ N.

By (4.6) we know that �1,1(P ) = λPx
ayb for some λP ∈ K×, and that

i ≤ a, j ≤ b and i + j < a + b for all (i, j) ∈ Supp(P ) \ {(a, b)}.

Hence, for all such (i, j), we have

v1,1(ψ(xiyj)) = iv1,1(R) + jv1,1(Rk) < av1,1(R) + bv1,1(Rk) = v1,1(ψ(xayb)),

and so

v1,1(ψ(P )) = v1,1(ψ(xayb)) = v1,1(R)(a + kb). (4.11)

On the other hand by equality (4.9) we can write a = ām and b = b̄m with ā, ̄b ∈ N. 
Hence equality (4.11) can be written as

v1,1(ψ(P )) = mv1,1(R)(ā + kb̄).

By (4.9) we have st1,1(Q) = n
m (a, b) = n(ā, ̄b). So, by Proposition 4.1 and Remark 3.1,

(nā, nb̄) ∈ Supp(Q) ⊆ {(i, j) : 0 ≤ i ≤ nā, 0 ≤ j ≤ nb̄}. (4.12)

A similar computation as above, but using (4.12) instead of (4.6), shows that

v1,1(ψ(Q)) = nv1,1(R)(ā + kb̄).
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Consequently

gcd(v1,1(ψ(P ))v1,1(ψ(Q))) = v1,1(R)(ā + kb̄) ≥ ā + b̄ = gcd(v1,1(P ), v1,1(Q)),

where the last equality follows from equality (4.9).
Since (ψ(P ), ψ(Q))) = (P, Q) is a minimal pair, equality must hold, and so we have 

k = 1 and v1,1(R) = 1, which contradicts kv1,1(R) = v1,1(�1,1(ψ(y))) = N > 1.
Similarly one discards the case N |M and M > 1, which finishes the proof of (4.10).
Hence (P, Q) is minimal pair and so, by Remark 4.2, we have m, n > 1. �

5. Regular corners of (m,n)-pairs

It is known (see e.g. [11, Theorem 10.2.1]) that the Newton polygons of a Jacobian 
pair (P, Q) in L are similar. The same is not true in L(l), but it is almost true. One of 
the basic geometric reasons for this difference is the fact that, by Propositions 1.13, 2.3
and 2.4, if two corners of P and Q are not aligned, then they must sum to (1, 1). In 
L this is only possible for (1, 0) and (0, 1), but in L(l) this happens for all (k/l, 0) and 
(1 − k/l, 1) if k ∈ Z \ {0} (see Case I.b), equality (5.5)).

We will analyze the edges and corners of the Newton polygons of an (m, n)-pair, 
corresponding to the directions in

I := ](1,−1), (1, 0)] = {(ρ, σ) ∈ V : (1,−1) < (ρ, σ) ≤ (1, 0)}.

Note that for (ρ, σ) ∈ I we have ρ +σ > 0, σ ≤ 0 and ρ > 0. In particular we will analyze 
what we call regular corners (see Definition 5.5). The conditions we will find on regular 
corners will allow us to discard many “small” cases in Sections 6 and 7, and to obtain 
lower bounds for B.

From now on we assume that K is algebraically closed unless otherwise stated.

Lemma 5.1. Let (P, Q) be an (m, n)-pair in L(l) and let (ρ, σ) ∈ I. If enρ,σ(P ) =
m
n enρ,σ(Q), then vρ,σ(P ) > 0 and vρ,σ(Q) > 0. Moreover, if v0,−1(stρ,σ(P )) < −1
or v0,−1(stρ,σ(Q)) < −1, then [�ρ,σ(P ), �ρ,σ(Q)] = 0.

Proof. Assume by contradiction that vρ,σ(P ) ≤ 0. Then vρ,σ(Q) = n
mvρ,σ(P ) ≤ 0. But 

then, since ρ + σ > 0, we have

vρ,σ(P ) + vρ,σ(Q) − (ρ + σ) < 0 = vρ,σ([P,Q]),

which contradicts (1.2) and proves vρ,σ(P ) > 0. The same argument proves that 
vρ,σ(Q) > 0.

Now assume for instance that

v0,−1(stρ,σ(P )) < −1 and [�ρ,σ(P ), �ρ,σ(Q)] �= 0.
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Since (0, −1) < (ρ, σ) < (0, 1), by Remark 1.8 we have

v0,−1(�ρ,σ(P )) = v0,−1(�0,−1(�ρ,σ(P ))) = v0,−1(stρ,σ(P )) < −1,

and so, we obtain

v0,−1(�ρ,σ(P )) + v0,−1(�ρ,σ(Q)) − (−1 + 0) < 0 = v0,−1([�ρ,σ(P ), �ρ,σ(Q)]),

which contradicts inequality (1.2), proving [�ρ,σ(P ), �ρ,σ(Q)] = 0. Similar arguments 
apply to the case v0,−1(stρ,σ(Q)) < −1. �

For P ∈ L(l) \ {0} we set

A(P ) := {(ρ, σ) ∈ Dir(P ) ∩ I : v0,−1(stρ,σ(P )) < −1 and v1,−1(stρ,σ(P )) < 0}.

Proposition 5.2. Let (ρ, σ) ∈ Dir(P ) ∩ I. If (ρ′, σ′) < (ρ, σ) ≤ (1, 0) for some (ρ′, σ′) ∈
A(P ), then (ρ, σ) ∈ A(P ).

Proof. It suffices to prove the result in the case in which enρ′,σ′(P ) = stρ,σ(P ). In this 
case, since (0, −1) < (ρ′, σ′) < (0, 1) and (1, −1) < (ρ′, σ′) < (−1, 1), it follows from 
Remark 1.8 that

v0,−1(stρ,σ(P )) = v0,−1(enρ′,σ′(P )) < v0,−1(stρ′,σ′(P )) < −1

and

v1,−1(stρ,σ(P )) = v1,−1(enρ′,σ′(P )) < v1,−1(stρ′,σ′(P )) < 0,

which implies that (ρ, σ) ∈ A(P ). �
Proposition 5.3. Let (P, Q) be an (m, n)-pair and (ρ, σ) := max(A(P )). Then

](ρ, σ), (1, 0)] ∩ Dir(Q) = ∅.

Proof. Assume that the statement is false and take

(ρ, σ) := max
(
](ρ, σ), (1, 0)] ∩ Dir(Q)

)
.

By Proposition 5.2 we know that ](ρ, σ), (1, 0)] ∩Dir(P ) = ∅. Hence, by Proposition 3.7,

stρ,σ(P ) = enρ,σ(P ) = en1,0(P ), (5.1)

and so, by Proposition 4.6(4),

v0,−1(stρ,σ(P )) = v0,−1(en1,0(P )) < −1.
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On the other hand,

enρ,σ(P ) = en1,0(P ) = m

n
en1,0(Q) = m

n
enρ,σ(Q),

where the first equality follows from (5.1), the second on from the definition of 
(m, n)-pair, and the third one, from the fact that ](ρ, σ), (1, 0)] ∩Dir(Q) = ∅ and Propo-
sition 3.7. Hence, by Lemma 5.1 and Remark 3.1, we conclude that (ρ, σ) ∈ Dir(P ), 
which is a contradiction. �
Proposition 5.4. If (P, Q) is an (m, n)-pair and (ρ, σ) ∈ A(P ), then

(1) enρ,σ(P ) = m
n enρ,σ(Q),

(2) stρ,σ(P ) = m
n stρ,σ(Q),

(3) (ρ, σ) ∈ Dir(Q).

Moreover A(Q) = A(P ) and, if we set

(ρ1, σ1) :=
{

min(A(P )) if A(P ) �= ∅,
min(SuccP (1, 0), SuccQ(1, 0)) if A(P ) = ∅,

then PredP (ρ1, σ1) = PredQ(ρ1, σ1) ∈ I.

Proof. Assume A(P ) �= ∅ and write A(P ) = {(ρ1, σ1) < (ρ2, σ2) < · · · < (ρk, σk)}, where 
we are considering the order of I. We will prove inductively statements (1), (2) and (3) 
for (ρj , σj), starting from j = k. Let (ρ, σ) := max(A(P ) ∪A(Q)). We have

enρ,σ(P ) = en1,0(P ) = m

n
en1,0(Q) = m

n
enρ,σ(Q),

where the first equality follows from Propositions 3.7 and 5.2, the second one, from 
Proposition 4.6(2) and the third one, from Propositions 3.7, since ](ρ, σ), (1, 0)] ∩Dir(Q) =
∅ by Propositions 5.2 and 5.3. Hence, by Lemma 5.1 and Remark 3.1, we have

(ρ, σ) ∈ Dir(P ) ∩ Dir(Q) and stρ,σ(P ) = m

n
stρ,σ(Q).

On the other hand by Proposition 5.2, we have (ρ, σ) = (ρk, σk), and so statements (1), 
(2) and (3) hold for (ρk, σk).

Let now j ≥ 1, assume that statements (1), (2) and (3) hold for (ρj+1, σj+1) and set

(ρ̃, σ̃) = max{PredP (ρj+1, σj+1),PredQ(ρj+1, σj+1)}.

Then

enρ̃,σ̃(P ) = stρj+1,σj+1(P ) = m stρj+1,σj+1(Q) = m enρ̃,σ̃(Q),

n n
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where the second equality holds by condition 2) for (ρj+1, σj+1). Moreover by Proposi-
tions 5.2 and 3.7,

(ρ̃, σ̃) = (ρj , σj) or stρ̃,σ̃(P ) = enρ̃,σ̃(P ) = stρj+1,σj+1(P ),

and so v0,−1(stρ̃,σ̃(P )) < −1. Hence, by Lemma 5.1 and Remark 3.1, we have

(ρ̃, σ̃) ∈ Dir(P ) ∩ Dir(Q) and stρ̃,σ̃(P ) = m

n
stρ̃,σ̃(Q).

On the other hand, by Proposition 5.2 we have (ρ̃, ̃σ) = (ρj , σj), and so statements (1), 
(2) and (3) hold for (ρj , σj).

Now we will prove that A(P ) = A(Q). By symmetry it suffices to prove that A(P ) ⊆
A(Q). Let (ρ, σ) ∈ A(P ). By statement (3) we already know (ρ, σ) ∈ Dir(Q). So we have 
to prove only that

v0,−1(stρ,σ(Q)) < −1 and v1,−1(stρ,σ(Q)) < 0.

By statement (2)

v1,−1(stρ,σ(Q)) = n

m
v1,−1(stρ,σ(P )) < 0.

Note now that again by statement (2)

1
m
v0,−1(stρ,σ(P )) ∈ Z,

and so

1
m
v0,−1(stρ,σ(P )) ≤ −1,

since v0,−1(stρ,σ(P )) < 0. Hence, once again by statement (2),

v0,−1(stρ,σ(Q)) = n

m
v0,−1(stρ,σ(P )) ≤ −n < −1,

which proves A(P ) ⊆ A(Q), as desired.
Now we prove

(ρ0, σ0) := PredP (ρ1, σ1) = PredQ(ρ1, σ1) ∈ I.

Set (ρ̂, ̂σ) := max{PredP (ρ1, σ1), PredQ(ρ1, σ1)}. We first prove that

(1,−1) < (ρ̂, σ̂) < (ρ1, σ1).
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Assume by contradiction that (−ρ1, −σ1) ≤ (ρ̂, ̂σ) ≤ (1, −1), which, by Proposition 3.7, 
implies that

en1,−1(P ) = stρ1,σ1(P ) and en1,−1(Q) = stρ1,σ1(Q). (5.2)

If (ρ1, σ1) ∈ A(P ) ∩A(Q), then this implies

v1,−1(P ) = v1,−1(stρ1,σ1(P )) < 0 and v1,−1(Q) = v1,−1(stρ1,σ1(Q)) < 0,

and so, by inequality (1.2), we have v1,−1([P, Q]) < 0, which contradicts that 
[P, Q] ∈ K×. Hence we can suppose that A(P ) = ∅, which by Proposition 3.7, implies 
that

stρ1,σ1(P ) = en1,0(P ) and stρ1,σ1(Q) = en1,0(Q).

Consequently, by (5.2),

en1,−1(P ) = en1,0(P ) and en1,−1(Q) = en1,0(Q).

By the definition of (m, n)-pair and Proposition 4.6(3), this implies that

v1,−1(P ) = v1,−1(en1,0(P )) < 0 and v1,−1(Q) = v1,−1(en1,0(Q)) < 0,

and so, again by inequality (1.2), we have v1,−1([P, Q]) < 0, which contradicts that 
[P, Q] ∈ K×.

In order to conclude the proof, we must show that PredP (ρ1, σ1) = PredQ(ρ1, σ1). 
Assume this is false and suppose for example that PredP (ρ1, σ1) < PredQ(ρ1, σ1), which 
implies

stρ̂,σ̂(P ) = enρ̂,σ̂(P ) = stρ1,σ1(P ). (5.3)

If A(P ) �= ∅, then by Lemma 5.1, the conditions of Remark 3.1 are satisfied for 
(ρ̂, ̂σ). Consequently, by this remark, (ρ̂, ̂σ) ∈ Dir(P ), contradicting (5.3). Assume now 
A(P ) = ∅, which implies that (ρ̂, ̂σ) ≤ (1, 0) < (ρ1, σ1). Hence, by (5.3), Proposition 3.7
and Proposition 4.6(2),

stρ̂,σ̂(P ) = enρ̂,σ̂(P ) = en1,0(P ) = n

m
en1,0(Q) = n

m
enρ̂,σ̂(Q)

and

v0,−1(stρ̂,σ̂(P )) = v0,−1(en1,0(P )) < −1.

Hence again by Lemma 5.1, the conditions of Remark 3.1 are satisfied for (ρ̂, ̂σ), 
and therefore (ρ̂, ̂σ) ∈ Dir(P ), which contradicts (5.3). The case PredQ(ρ1, σ1) <
PredP (ρ1, σ1), can be discarded using a similar argument. �
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Definition 5.5. A regular corner of an (m, n)-pair (P, Q) in L(l), is a pair (A, (ρ, σ)), 
where A = (a/l, b) ∈ 1

lZ ×N0 and (ρ, σ) ∈ I such that

(1) b ≥ 1 and b > a/l,
(2) (ρ, σ) ∈ Dir(P ),
(3)

(
a
l , b

)
= 1

m enρ,σ(P ).

A regular corner (A, (ρ, σ)) is said to be at the point A.

Proposition 5.6. If (A, (ρ, σ)) is a regular corner of an (m, n)-pair (P, Q), then at least 
one of the following three facts is true:

(a) (ρ, σ) ∈ A(P ),
(b) enρ,σ(P ) = en1,0(P ),
(c) (ρ, σ) = PredP (ρ1, σ1), where (ρ1, σ1) := min(A(P )).

Moreover, there exists exactly one regular corner (A, (ρ, σ)) such that (ρ, σ) /∈ A(P ).

Proof. Assume that (ρ, σ) /∈ A(P ) and define (ρ1, σ1) := SuccP (ρ, σ). If (ρ, σ) <
(ρ1, σ1) ≤ (1, 0), then (ρ1, σ1) ∈ A(P ), which implies that (ρ1, σ1) = min(A(P )) by 
Proposition 5.2, and so item (c) holds. Otherwise (ρ, σ) ≤ (1, 0) < (ρ1, σ1) and, by 
Proposition 3.7, we conclude that enρ,σ(P ) = en1,0(P ). �
Corollary 5.7. If (A, (ρ, σ)) is a regular corner of an (m, n)-pair (P, Q), then

(1) vρ,σ(P ) > 0 and vρ,σ(Q) > 0,
(2) enρ,σ(P ) = m

n enρ,σ(Q),
(3) (ρ, σ) ∈ Dir(Q).

Proof. If (ρ, σ) ∈ A(P ), or (ρ, σ) = PredP (ρ1, σ1), where (ρ1, σ1) := min(A(P )), then 
Lemma 5.1 and Proposition 5.4 yield the result. Hence, by Proposition 5.6, it suffices 
to prove the assertions when enρ,σ(P ) = en1,0(P ) and (ρ, σ) /∈ A(P ). We claim that 
A(P ) = ∅. In fact, if there exists (ρ′, σ′) ∈ A(P ) with (ρ′, σ′) < (ρ, σ), then (ρ, σ) ∈ A(P )
by Proposition 5.2. On the other hand, if there exists (ρ′, σ′) ∈ A(P ) with (ρ′, σ′) >
(ρ, σ), then

(ρ′, σ′) ≥ SuccP (ρ, σ) = SuccP (1, 0) > (1, 0),

which contradicts (ρ′, σ′) ∈ I. Now we set

(ρ′1, σ′
1) := min(SuccP (1, 0), SuccQ(1, 0)).

Then (ρ, σ) = PredP (ρ′1, σ′
1) and from Proposition 5.4 we obtain
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(ρ, σ) = PredQ(ρ′1, σ′
1) ∈ Dir(Q).

Since (ρ, σ) ≤ (1, 0) < (ρ′1, σ′
1), by Proposition 3.7 this implies enρ,σ(Q) = en1,0(Q). 

Consequently, by Proposition 4.6(2),

enρ,σ(P ) = en1,0(P ) = m

n
en1,0(Q) = m

n
enρ,σ(Q),

and Lemma 5.1 concludes the proof. �
Remark 5.8. If ((a/l, b), (ρ, σ)) is a regular corner of an (m, n)-pair (P, Q) in L(l), then 
a > 0.

Let (A, (ρ, σ)) be a regular corner of an (m, n)-pair (P, Q) in L(l). Write

�ρ,σ(P ) = xk/lp(z) where z := x−σ/ρy and p(z) ∈ K[z]. (5.4)

Since (ρ, σ) ∈ Dir(P ) the polynomial p(z) is not a constant. Moreover by Corol-
lary 5.7(1) and Theorem 2.6(4) we know that v1,−1(stρ,σ(P )) �= 0. Hence, one of the 
following five mutually excluding conditions is true:

I.a) [�ρ,σ(P ), �ρ,σ(Q)] �= 0 and stρ,σ(P ) ∼ stρ,σ(Q).
I.b) [�ρ,σ(P ), �ρ,σ(Q)] �= 0 and stρ,σ(P ) � stρ,σ(Q).

II.a) [�ρ,σ(P ), �ρ,σ(Q)] = 0, # factors(p(z)) > 1 and v1,−1(stρ,σ(P )) < 0.
II.b) [�ρ,σ(P ), �ρ,σ(Q)] = 0, # factors(p(z)) > 1 and v1,−1(stρ,σ(P )) > 0.
III) [�ρ,σ(P ), �ρ,σ(Q)] = 0 and p(z) = μ(z − λ)r for some μ, λ ∈ K× and r ∈ N.

Remark 5.9. Let (P, Q) be an (m, n)-pair in L(l) and let (ρ, σ) ∈ Dir(P ) ∩I. If (A, (ρ′, σ′))
is a regular corner and (ρ′, σ′) < (ρ, σ) ≤ (1, 0), then (ρ, σ) ∈ A(P ). In fact, by Proposi-
tion 5.2, it suffices to consider the case in which enρ′,σ′(P ) = stρ,σ(P ), and in that case 
it follows easily from the definition of A(P ) and Definition 5.5.

Remark 5.10. Let (P, Q) be an (m, n)-pair in L(l) and let (ρ, σ) ∈ V. If (ρ, σ) ∈ A(P )
then 

( 1
m enρ,σ(P ), (ρ, σ)

)
is a regular corner and we are in the Case II.a).

Remark 5.11. In the Case II.a), if we set (ρ′, σ′) := PredP (ρ, σ), then 
( 1
m stρ,σ(P ), (ρ′, σ′)

)
is a regular corner of (P, Q).

Remark 5.12. If (P, Q) is an (m, n)-pair, then 1
m en1,0(P ) is the first component of a 

regular corner of (P, Q).

Proposition 5.13 (Cases I.a) and I.b)). Let (P, Q) be an (m, n)-pair in L(l), and 
((a/l, b), (ρ, σ)) a regular corner of (P, Q). Assume [�ρ,σ(P ), �ρ,σ(Q)] �= 0. Then l−a/b >
1 and the following assertions hold:
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a) If stρ,σ(P ) ∼ stρ,σ(Q), then

1
m

stρ,σ(P ) ∈ 1
l
Z×N0 and stρ,σ(P ) ∼ (1, 0).

b) If stρ,σ(P ) � stρ,σ(Q), then there exists k ∈ N, with k < l − a
b , such that

{stρ,σ(P ), stρ,σ(Q)} =
{(

k

l
, 0
)
,

(
1 − k

l
, 1
)}

. (5.5)

Proof. a) Since stρ,σ(P ) ∼ stρ,σ(Q), it follows from Corollary 5.7, that

1
m

stρ,σ(P ) = 1
n

stρ,σ(Q),

and so

A′ := 1
m

stρ,σ(P ) ∈ 1
l
Z×N0, (5.6)

because m and n are coprime. Hence A′ = (a′/l, b′) with a′ ∈ Z and b′ ∈ N0. Now we 
prove that stρ,σ(P ) ∼ (1, 0) or, equivalently, that b′ = 0. Assume by contradiction that 
b′ > 0. By Remark 2.8 we can write

�ρ,σ(P ) = x
ma′

l ymb′f(z) and �ρ,σ(Q) = x
na′
l ynb

′
g(z),

where z := x−σ
ρ y and f(z), g(z) ∈ K[z]. Since nb′, mb′ ≥ 1, the term y divides both 

�ρ,σ(P ) and �ρ,σ(Q). Consequently y is a factor of [�ρ,σ(P ), �ρ,σ(Q)]. Since by Proposi-
tion 1.13, we know that [�ρ,σ(P ), �ρ,σ(Q)] = �ρ,σ([P, Q]) ∈ K×, this is a contradiction 
which proves that b′ = 0.

We next prove l − a/b > 1 in this case. Since, by Corollary 5.7(1),

a′ = l

ρ
vρ,σ

(
a′

l
, 0
)

= l

ρm
vρ,σ(enρ,σ(P )) > 0,

it suffices to show that l− a/b > a′. Assume that this is false. Then 1 − a′

l ≤ a
bl , and so

vρ,σ

(
1 − a′

l
, 1
)

≤ 1
b
vρ,σ

(a
l
, b
)

= 1
bm

vρ,σ(enρ,σ(P )),

since ρ > 0. Moreover,

vρ,σ

(
a′

l
, 0
)

= 1
m
vρ,σ(stρ,σ(P )),

and so, by Proposition 1.13,
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vρ,σ(P ) + vρ,σ(Q) = ρ + σ = vρ,σ

(
1 − a′

l
, 1
)

+ vρ,σ

(
a′

l
, 0
)

≤
(

1
bm

+ 1
m

)
vρ,σ(P )

≤ vρ,σ(P ).

But this is impossible since vρ,σ(Q) > 0 by Corollary 5.7(1).
b) By Proposition 1.13,

[�ρ,σ(P ), �ρ,σ(Q)] = �ρ,σ([P,Q]) ∈ K×,

and consequently, by Proposition 2.4(1),

stρ,σ(P ) + stρ,σ(Q) = (1, 1).

Therefore equality (5.5) is true for some k ∈ Z. Applying vρ,σ we obtain{
ρ
k

l
, ρ

(
1 − k

l

)
+ σ

}
= {vρ,σ(P ), vρ,σ(Q)},

which by Corollary 5.7(1), implies k > 0. Assume that stρ,σ(Q) =
(
1 − k

l , 1
)
. By Corol-

lary 5.7(2),

n
(
ρ
a

l
+ σb

)
= vρ,σ(enρ,σ(Q)) = vρ,σ

(
1 − k

l
, 1
)

= ρ− ρ
k

l
+ σ,

and so

k = l − na + σl

ρ
(1 − bn). (5.7)

On the other hand, since vρ,σ(P ) > 0 and l
ρbm > 0, we have

lσ

ρ
+ a

b
= l

ρb

(
ρ
a

l
+ σb

)
= l

ρbm
vρ,σ(enρ,σ(P )) > 0.

Multiplying this inequality by bn − 1 > 0, we obtain

σl

ρ
(1 − bn) < a

b
(bn− 1).

Combining this with equality (5.7) we conclude that

k = l − na + σl

ρ
(1 − bn) < l − na + a

b
(bn− 1) = l − a

b
,

as desired. In the case stρ,σ(P ) =
(
1 − k

l , 1
)

the proof of k < l− a
b is similar. Since k ≥ 1

we also obtain l − a/b > 1 in the case b). �
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Proposition 5.14 (Case II). Let (P, Q) be an (m, n)-pair in L(l), let ((a/l, b), (ρ, σ)) be a 
regular corner of (P, Q) and let F be as in Theorem 2.6. Assume that [�ρ,σ(P ), �ρ,σ(Q)] =
0 and write �ρ,σ(P ) = xk/lp(z), where z := x−σ/ρy and p(z) ∈ K[z]. If # factors(p(z)) >
1, then

(1) enρ,σ(F ) ∼ (a/l, b).
(2) ρ/ gcd(ρ, l) ≤ b.

Set d := gcd(a, b), a := a/d, b := b/d and write enρ,σ(F ) = μ(a/l, b). We have:

(3) (ρ, σ) = dir (enρ,σ(F ) − (1, 1)) = dir(μa− l, μbl − l).
(4) μ ∈ N, μ ≤ l(bl − a) + 1/b, d � μ and d > 1.

Proof. Write F = x1+σ/ρf(z), where f(z) ∈ K[z]. Note that p(z) = zsp(z) and f(z) =
zvf(z), where p, f , s and v are the same as in Proposition 2.11. Moreover s > 0 implies 
v > 0 by Remark 2.8 and Theorem 2.6(2), and so, by Proposition 2.11(1), each irreducible 
factor of p divides f. Since # factors(p(z)) > 1, we have deg(f) ≥ 2. Hence enρ,σ(F ) �=
(1, 1) by Remark 2.8. Consequently, by Theorem 2.6(3), we have enρ,σ(F ) ∼ enρ,σ(P )
which yields statement (1).

Now we prove statement (2). Let A′
1 := 1

m stρ,σ(P ). By Remark 3.1(2) we have 
A′

1 ∈ 1
lZ × N0. Write A′

1 = (a′/l, b′). Since b′ < b by Remark 2.8, and vρ,σ(a/l, b) =
vρ,σ(a′/l, b′), there exists h ∈ N, such that

(
−σhl/ρ

l
, h

)
= h

(
−σ

ρ
, 1
)

=
(a
l
, b
)
−

(
a′

l
, b′

)
∈ 1

l
Z×N0.

Hence ρ divides σhl. Set

ρ := ρ

gcd(ρ, l) and l := l

gcd(ρ, l) .

Clearly ρ divides hσl, and so ρ | h = b − b′, which implies ρ ≤ b, as desired.
Statement (3) follows from Remark 3.2 and the fact that enρ,σ(F ) �= (1, 1).
It remains to prove statement (4). First note that μ ∈ N, since b ∈ N, μb ∈ N, 

μa ∈ Z and gcd(a, b) = 1. On the other hand, by Remark 3.1 we know that there exists 
λP , λQ ∈ K× and a (ρ, σ)-homogeneous element R ∈ L(l), such that

�ρ,σ(P ) = λPR
m and �ρ,σ(Q) = λQR

n,

which implies

enρ,σ(R) = (a/l, b) = d(a/l, b) = d enρ,σ(F ).

μ
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Next we prove that d � μ. In fact, if we assume that d|μ, then we have

vρ,σ(Rμ/d) = vρ,σ(F ) = ρ + σ and [Rμ/d, �ρ,σ(P )] = 0,

where the last equality follows from the fact that [−, −] is a Poisson bracket and 
[Rn, �ρ,σ(P )] = 0. But this contradicts Proposition 2.11(5) and proves d � μ. From this 
it follows immediately that d > 1. Finally we prove that μ ≤ l(bl − a) + 1/b. Since

(μa− l) − (μbl − l) = μ(a− bl) = μ

d
(a− bl) < 0,

from equalities (3.2) and statement (3) it follows that

ρ = (μb− 1)l
d1

, where d1 := gcd(μa− l, μbl − l).

Now note that d1 divides bl(μa− l) − a(μbl − l) = l(a− bl), and therefore

d1 ≤ l(bl − a),

since bl − a > 0. Hence, by statement (2),

b ≥ ρ

gcd(ρ, l) ≥ ρ

l
= (μb− 1)

d1
≥ (μb− 1)

l(bl − a)
,

which implies μb− 1 ≤ bl(bl − a) = bl(bl − a), as desired. �
Remark 5.15. Let ((a/l, b), (ρ, σ)) be a regular corner of an (m, n)-pair (P, Q) and let L
be the straight line that includes Supp(�ρ,σ(P )). The intersection of L with the diagonal 
x = y is the point

λ(1, 1), where λ = m

l

(
aρ + blσ

ρ + σ

)
(Fig. 2).

In fact

λ(ρ + σ) = vρ,σ
(
λ(1, 1)

)
= vρ,σ(�ρ,σ(P )) = vρ,σ(m(a/l, b)) = m

l
(aρ + blσ),

from which the assertion follows.

The following proposition about multiplicities can be traced back to [6, Corol-
lary 2.6(2)]. The algebraic parallel is not so clear, but the geometric meaning, which 
will be proved in Proposition 5.18, is that one can cut the support of �ρ,σ(P ) above the 
diagonal.
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Fig. 2. Remark 5.15 with λ = m
l

(
aρ+blσ
ρ+σ

)
.

Proposition 5.16 (Case II.b)). Let (P, Q) and ((a/l, b), (ρ, σ)) be as in Proposition 5.14. 
Assume that [�ρ,σ(P ), �ρ,σ(Q)] = 0 and write �ρ,σ(P ) = xk/lp(z) where z := x−σ/ρy and 
p(z) ∈ K[z]. If # factors(p(z)) > 1 and v1,−1(stρ,σ(P )) > 0, then there exists λ ∈ K×

such that z − λ has multiplicity

mλ ≥ m

l

(
aρ + blσ

ρ + σ

)
in p(z).

Proof. Let F be as in Theorem 2.6 and write F = x1+σ/ρf(z). In the proof of Propo-
sition 5.14 it was shown that each irreducible factor of p divides f. Hence, there is 
a linear factor of p with multiplicity greater than or equal to deg(p)/ deg(f). Since 
enρ,σ(P ) = (ma/l, mb), it follows from Remark 2.8, that deg(p) = mb. Similarly, if 
we write enρ,σ(F ) = (M0, M), then M = deg(f), an so deg(p)/ deg(f) = mb/M . Conse-
quently, in order to finish the proof it suffices to check that

mb

M
= m

l

(
aρ + blσ

ρ + σ

)
. (5.8)

Since

ρ + σ = vρ,σ(F ) = ρM0 + σM,

we have

M0 = 1
ρ
(ρ + σ − σM).

Hence, by Proposition 5.14(1),
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a

bl
= M0

M
= ρ + σ − σM

ρM
,

which implies

M = bl(ρ + σ)
aρ + blσ

.

Therefore equality (5.8) is true. �
Proposition 5.17 (Case III). Let (P, Q) be an (m, n)-pair in L(l) and let ((a/l, b), (ρ, σ))
be a regular corner of (P, Q). Assume that [�ρ,σ(P ), �ρ,σ(Q)] = 0 and write �ρ,σ(P ) =
xk/lp(z) where z := x−σ/ρy and p(z) ∈ K[z]. If there exist μ, λ ∈ K× and r ∈ N, such 
that p(z) = μ(z − λ)r, then ρ | l. Moreover, the automorphism ϕ of L(l), defined by 
ϕ(x1/l) := x1/l and ϕ(y) := y + λxσ/ρ, satisfies

(1) enρ,σ(ϕ(P )) = enρ,σ(P ) and for all (ρ, σ) < (ρ′′, σ′′) < (−ρ, −σ) the equalities

�ρ′′,σ′′(ϕ(P )) = �ρ′′,σ′′(P ) and �ρ′′,σ′′(ϕ(Q)) = �ρ′′,σ′′(Q),

hold.
(2) (ϕ(P ), ϕ(Q)) is an (m, n)-pair in L(l).
(3) ((a/l, b), (ρ′, σ′)) is a regular corner of (ϕ(P ), ϕ(Q)), where (ρ′, σ′) := Predϕ(P )(ρ, σ).
(4) (a/l, b) = 1

m stρ,σ(ϕ(P )).

Proof. Clearly the conditions imply that

�ρ,σ(P ) = xk/lμ

(
λr −

(
r

1

)
λr−1z + · · ·

)
.

Hence (k/l− σ/ρ, 1) ∈ Supp(�ρ,σ(P )) ⊆ 1
lZ ×N0. So σ/ρ ∈ 1

lZ, which evidently implies 
ρ|l, because gcd(ρ, σ) = 1. From Proposition 3.9 we obtain statement (1). Statement (2) 
follows easily from Proposition 3.10, statement (1) and the fact that by Proposition 3.9
we know that en1,0(ϕ(P )) = en1,0(P ), even in the case where (ρ, σ) = (1, 0). Finally, 
statements (3) and (4) follow from Propositions 3.7, 3.9 and 5.4. �

By Proposition 5.16 the hypotheses of the next proposition are always fulfilled in 
Case II.b). Sometimes they are fulfilled in Case II.a).

Proposition 5.18 (Case II). Let (P, Q) and ((a/l, b), (ρ, σ)) be as in Proposition 5.14 and 
let l′ := lcm(ρ, l). Assume that [�ρ,σ(P ), �ρ,σ(Q)] = 0 and write �ρ,σ(P ) = xk/lp(z) where 
z := x−σ/ρy and p(z) ∈ K[z]. Assume also that # factors(p(z)) > 1 and that there exists 
λ ∈ K× such that the multiplicity mλ of z − λ in p(z), satisfies

mλ ≥ m
(
aρ + blσ

)
. (5.9)
l ρ + σ
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Define ϕ ∈ Aut(L(l′)) by ϕ(x1/l′) := x1/l′ and ϕ(y) := y + λxσ/ρ, and set

A(1) := 1
m

stρ,σ(ϕ(P )) and (ρ′, σ′) := Predϕ(P )(ρ, σ).

Then

(1) We have enρ,σ(ϕ(P )) = enρ,σ(P ) and for all (ρ, σ) < (ρ′′, σ′′) < (−ρ, −σ) the equal-
ities

�ρ′′,σ′′(ϕ(P )) = �ρ′′,σ′′(P ) and �ρ′′,σ′′(ϕ(Q)) = �ρ′′,σ′′(Q)

hold.
(2) (ϕ(P ), ϕ(Q)) is an (m, n)-pair in L(l′).
(3) (ρ, σ) ∈ Dir(ϕ(P )), stρ,σ(ϕ(P )) =

(
k
l , 0

)
+ mλ

(
−σ

ρ , 1
)

and m | mλ.
(4) (A(1), (ρ′, σ′)) and ((a/l, b), (ρ, σ)) are regular corners of (ϕ(P ), ϕ(Q)). The second 

one is of type IIa).

Proof. Statements (1) and (2) follows as in the proof of Proposition 5.17. Now we are 
going to prove item (3). For this we write p(z) = (z − λ)mλp(z) with p(λ) �= 0. Since

ϕ(z) = ϕ(x−σ/ρ)ϕ(y) = x−σ/ρ(y + λxσ/ρ) = z + λ,

by Proposition 3.9, we have

�ρ,σ(ϕ(P )) = ϕ(�ρ,σ(P )) = ϕ(xk/lp(z)) = xk/lϕ((z − λ)mλp(z)) = xk/lzmλp(z + λ),

which implies that (ρ, σ) ∈ Dir(ϕ(P )), because

# factors(zmλp(z + λ)) = # factors(p(z)) > 1.

Moreover, since p(λ) �= 0, from the first equality in (2.8) it follows that

stρ,σ(ϕ(P )) = (k/l, 0) + mλ(−σ/ρ, 1),

and so statement (3) holds. By statement (2) and Remarks 5.10 and 5.11, in order to 
prove statement (4) it suffices to verify that (ρ, σ) ∈ A(ϕ(P )). Since (ρ, σ) ∈ Dir(ϕ(P )) ∩I
we only must check that

v1,−1(stρ,σ(ϕ(P ))) < 0 and v0,−1(stρ,σ(ϕ(P ))) < −1. (5.10)

Since

kρ = vρ,σ

(k
, 0
)

= vρ,σ(P ) = vρ,σ

(ma
,mb

)
= m (aρ + blσ),
l l l l
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by inequality (5.9), we have

v1,−1(stρ,σ(ϕ(P ))) = k

l
−mλ

(
σ

ρ
+ 1

)
≤ m

ρl
(aρ + blσ) − m

l

(
aρ + blσ

ρ + σ

)(
ρ + σ

ρ

)
= 0.

But v1,−1(stρ,σ(ϕ(P ))) = 0 is impossible by Theorem 2.6(4), and hence the first inequal-
ity in (5.10) holds. We next deal with the second one. By Proposition 3.10,

[�ρ,σ(ϕ(P )), �ρ,σ(ϕ(Q))] = 0,

while by Proposition 3.9 and Corollary 5.7(1),

vρ,σ(ϕ(P )) = vρ,σ(P ) > 0 and vρ,σ(ϕ(Q)) = vρ,σ(Q) > 0.

Hence, by Remark 3.1(2), we have 1
m stρ,σ(ϕ(P )) ∈ 1

l′Z ×N0, and so m | mλ and

v0,−1(stρ,σ)(ϕ(P )) ≤ −m < −1,

since v0,1(stρ,σ(ϕ(P ))) = mλ ≥ 1, by statement (3). �
Proposition 5.19 (First criterion for regular corners). If (a/l, b) is the first entry of a 
regular corner of an (m, n)-pair in L(l), then it is the first entry of a regular corner of 
an (possibly different) (m, n)-pair in L(l) of type I or type II. Moreover, in the first case 
l− a/b > 1, while in the second one gcd(a, b) > 1. If l = 1 then necessarily case II holds.

Proof. Assume that we are in case III. By Proposition 5.17(3), there exists ϕ ∈ Aut(L(l))
such that ((a/l, b), (ρ1, σ1)) is a regular corner of (ϕ(P ), ϕ(Q)), where (ρ1, σ1) :=
Predϕ(P )(ρ, σ). If Case III holds for this corner, then we can find (ρ2, σ2) < (ρ1, σ1)
such that ((a/l, b), (ρ2, σ2)) is a regular corner. As long as Case III occurs, we can find 
(ρk+1, σk+1) < (ρk, σk) such that ((a/l, b), (ρk+1, σk+1)) is a regular corner. But there 
are only finitely many ρk’s with ρk|l. Moreover, 0 < −σk < ρk, since (1, −1) < (ρk, σk) <
(1, 0), and so there are only finitely many (ρk, σk) possible, which proves that eventually 
cases I or II must occur. In case I Proposition 5.13 gives l − a/b > 1 and in case II, by 
Proposition 5.14(4), we have gcd(a, b) > 1. The last statement is clear, since 1 −a/b < 1, 
because a, b > 0. �
Proposition 5.20. For each (m, n)-pair (P, Q) in L(1), there exists an automorphism ϕ
of L(1) such that (ϕ(P ), ϕ(Q)) is a standard (m, n)-pair with

v1,1(ϕ(P )) = v1,1(P ), v1,1(ϕ(Q)) = v1,1(Q) and en1,0(ϕ(P )) = en1,0(P ).

Moreover, if (−1, 1) < SuccP (1, 0), SuccQ(1, 0) < (−1, 0), then
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(−1, 1) < Succϕ(P )(1, 0), Succϕ(Q)(1, 0) < (−1, 0).

Furthermore, if P, Q ∈ L, then we can take ϕ ∈ Aut(L).

Proof. If v1,−1(st1,0(P )) < 0, then we can take ϕ := id. Otherwise 
( 1
m en1,0(P ), (1, 0)

)
is a regular corner. Write (a, b) := 1

m en1,0(P ). Case I is impossible because a, b >
0 and Proposition 5.13 gives 1 − a/b > 1, and the Case II.a) is discarded, because 
v1,−1(st1,0(P )) ≥ 0. By Propositions 5.16 and 5.18 in Case II.b) and by Proposition 5.17
in Case III, we can find a ϕ ∈ Aut(L(1)) such that

–
( 1
m st1,0(ϕ(P )), (ρ′, σ′)

)
is a regular corner, for some (ρ′, σ′),

– �1,1(ϕ(P )) = �1,1(P ), �1,1(ϕ(Q)) = �1,1(Q) and en1,0(ϕ(P )) = en1,0(P ),
– If SuccP (1, 0), SuccQ(1, 0) < (−1, 0), then

Succϕ(P )(1, 0) = SuccP (1, 0) and Succϕ(Q)(1, 0) = SuccQ(1, 0).

– ϕ(x) = x and ϕ(y) = y + λ, for some λ ∈ K×.

The assertions in the statement follow immediately from these facts. �
Corollary 5.21. If B < ∞ (i.e., if the Jacobian conjecture is false), then there exists a 
Jacobian pair (P, Q) and m, n ∈ N coprime with m, n > 1, such that

(1) (P, Q) is a standard (m, n)-pair in L,
(2) (P, Q) is a minimal pair (i.e., gcd

(
v1,1(P ), v1,1(Q)

)
= B),

(3) st1,1(P ) = en1,0(P ),
(4) (−1, 1) < SuccP (1, 0), SuccQ(1, 0) < (−1, 0).

Proof. By Propositions 3.7, 4.7 and 5.20. �
Proposition 5.22. Each (m, n)-pair (P, Q) in L(l) has a unique regular corner ((a/l, b),
(ρ, σ)) with (ρ, σ) /∈ A(P ).

Proof. If A(P ) �= ∅, then the existence follows from Remarks 5.10 and 5.11, since

PredP (min(A(P ))) /∈ A(P ).

Otherwise, by Proposition 5.4, we know that (ρ, σ) := PredP (ρ1, σ1) ∈ I, where

(ρ1, σ1) := min
(
SuccP (1, 0), SuccQ(1, 0)

)
.

Clearly item (2) of Definition 5.5 is fulfilled for 
( 1
m enρ,σ(P ), (ρ, σ)

)
. Moreover, by Propo-

sition 3.7 and Proposition 4.6(3),
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Fig. 3. Applying ψ1 and ψ2 to elements P with v2,−1(P ) ≤ 4.

1
m

enρ,σ(P ) = 1
m

en1,0(P ) ∈ 1
l
Z×N,

and so item (3) is also satisfied. In order to prove item (1) we write (a/l, b) := 1
m enρ,σ(P ). 

By Definition 4.3,

a/l − b = v1,−1

(
1
m

enρ,σ(P )
)

= v1,−1

(
1
m

en1,0(P )
)

< 0,

while by Proposition 4.6(4), we have b = −v0,−1(en1,0(P )) > 1. This ends the proof of 
the existence. The uniqueness follows from Proposition 5.2 and the fact that, by Proposi-
tion 3.7 and Definition 5.5, if (A, (ρ, σ)) is a regular corner of (P, Q), then SuccP (ρ, σ) ∈ I

implies that SuccP (ρ, σ) ∈ A(P ). �
6. Lower bounds

By Corollary 5.21, if B < ∞ (i.e., if the Jacobian conjecture is false), then 
there exists a standard (m, n)-pair (P, Q) in L, which is also a minimal pair (i.e., 
gcd(v1,1(P ), v1,1(Q)) = B). In this section we will first prove that B ≥ 16. The argument 
is nearly the same as in [4], but we will also need lower bounds for (m, n)-pairs in L(1), 
and not only in L. The reason is the following: One technical result, Proposition 6.9, 
says something about (m, n)-pairs in L with 1

mv2,−1(P ) ≤ 4.
Via the flip ψ1 this is the same as saying something about Jacobian pairs in L with 
1
mv−1,2(P ) ≤ 4. Applying the automorphism ψ2 defined by ψ2(x) := x and ψ2(y) := x2y, 
this amounts to proving facts about (m, n)-pairs in L(1) with 1

mv1,0(P ) ≤ 4 (Fig. 3), 
which we will do in the sequel.

Proposition 6.1. Let (P, Q) be a standard (m, n)-pair. There exists exactly one regular 
corner ((a, b), (ρ, σ)) of (P, Q) of type II.b). Moreover,

(1) σ < 0,
(2) vρ,σ(P ) > 0 and vρ,σ(Q) > 0,
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(3) vρ,σ(P )
vρ,σ(Q) = m

n ,
(4) [�ρ,σ(P ), �ρ,σ(Q)] = 0,
(5) (ρ, σ) ∈ Dir(P ) ∩ Dir(Q),
(6) There exists μ ∈ Q greater than 0 such that

enρ,σ(F ) = μ

m
enρ,σ(P ),

where F ∈ L(1) is the (ρ, σ)-homogeneous element obtained in Theorem 2.6,
(7) v1,−1

(
enρ,σ(P )

)
< 0 and v1,−1

(
enρ,σ(Q)

)
< 0,

(8) vρ′,σ′ (P )
vρ′,σ′ (Q) = m

n for all (ρ, σ) < (ρ′, σ′) < (1, 0),
(9) v1,1(enρ,σ(P )) ≤ v1,1(en1,0(P )).

Proof. The uniqueness follows immediately from the definition of A(P ) and Proposi-
tion 5.22. The same proposition yields a regular corner ((a, b), (ρ, σ)) such that

(ρ, σ) /∈ A(P ). (6.1)

Statements (2), (3) and (5) follow now from Corollary 5.7. By Remark 5.8 we have 1 −
a/b < 1. Hence, by Proposition 5.13 we are in case II or in case III, and so statement (4) 
holds. Furthermore, by Remark 3.1 we have

1
m

stρ,σ(P ) = 1
n

stρ,σ(Q),

which implies 1
m stρ,σ(P ) ∈ Z ×N0. We will prove that

v1,−1(stρ,σ(P )) > 0. (6.2)

Assume by contradiction that v1,−1(stρ,σ(P )) ≤ 0, which implies v1,−1(stρ,σ(P )) < 0, by 
Theorem 2.6(4). If v0,−1( 1

m stρ,σ(P )) ≤ −1 then (ρ, σ) ∈ A(P ), which contradicts (6.1). 
Hence v0,−1( 1

m stρ,σ(P )) = 0, and so stρ,σ(P ) = (k, 0), for some k < 0. But then

0 < vρ,σ(P ) = ρk < 0,

a contradiction which proves (6.2). This implies statement (1) since, by the definition of 
standard (m, n)-pair, v1,−1(st1,0(P )) < 0.

Assume that ((a, b), (ρ, σ)) is of type III. Then, by Proposition 5.17, we know that 
ρ|l = 1, and so (ρ, σ) = (1, 0), which contradicts statement (1). Hence, by inequality (6.2), 
we are in case II.b).

Statement (6) follows from items (1) and (4) of Proposition 5.14. Statement (7) for 
P follows from Definition 5.5, and then it follows for Q, by Corollary 5.7(2).

By Proposition 3.7 and Definition 5.5, if SuccP (ρ, σ) ∈ I, then SuccP (ρ, σ) ∈ A(P ). 
Consequently, by Proposition 5.2,
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Dir(P )∩ ](ρ, σ), (1, 0)] ⊆ A(P ).

Statement (8) now follows easily from Proposition 3.7, Remark 3.1 and the fact that, by 
Proposition 5.4, statement (3) holds for all (ρj , σj) ∈ A(P ). Finally, by Proposition 3.7
and Remark 1.8,

v1,1(enρ′,σ′(P )) = v1,1(stρ′′,σ′′(P )) < v1,1(enρ′′,σ′′(P ))

for consecutive directions (ρ′, σ′) < (ρ′′, σ′′) in Dir(P ) ∩ I, from which statement (9) 
follows. �
Definition 6.2. The starting triple of a standard (m, n)-pair (P, Q) is (A0, A′

0, (ρ, σ)), 
where (A0, (ρ, σ)) is the unique regular corner of (P, Q) with (ρ, σ) /∈ A(P ), and A′

0 =
1
m stρ,σ(P ). The point A0 is called the primitive corner of (P, Q).

Remark 6.3. By Propositions 5.22 and 6.1 and Remark 5.10, in the previous definition 
(A0, (ρ, σ)) is the unique regular corner of type II.b). Consequently v1,−1(stρ,σ(P )) > 0.

Let (P, Q) be a standard (m, n)-pair and (A0, A′
0, (ρ, σ)) its starting triple. Let λ and 

mλ be as in Proposition 5.16, let ϕ ∈ Aut(L(ρ)) and A(1) be as in Proposition 5.18 and 
let F be as in Proposition 5.14. Note that F ∈ L. In fact, for (i, j) ∈ Supp(F ), we have

ρi + σj = vρ,σ(i, j) = vρ,σ(F ) = ρ + σ > 0,

which implies that i ≥ 0, since ρ > 0, σ < 0 and j ≥ 0. Write

(f1, f2) := enρ,σ(F ), (u, v) := A0, (r′, s′) := A′
0 and γ := mλ

m
.

Proposition 6.4. It is true that A0, A′
0 ∈ N0 × N0 and vρ,σ(A0) = vρ,σ(A′

0) (Fig. 4). 
Moreover,

(1) s′ < r′ < u < v,
(2) 2 ≤ f1 < u,
(3) gcd(u, v) > 1,
(4) enρ,σ(F ) = μA0 for some 0 < μ < 1,
(5) uf2 = vf1 and ρ ≤ u,
(6) (ρ, σ) = dir(f1 − 1, f2 − 1) =

(
f2−1
d , 1−f1

d

)
, where d := gcd(f1 − 1, f2 − 1),

(7) A(1) = A′
0 + (γ − s′) 

(
−σ

ρ , 1
)
,

(8) If A(1) = (a′/ρ, b′), then ρ − a′/b′ > 1 or gcd(a′, b′) > 1,
(9) γ ≤ (v − s′)/ρ. Moreover, if d = gcd(f1 − 1, f2 − 1) = 1, then γ = (v − s′)/ρ.
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Fig. 4. Illustration of Proposition 6.4.

Proof. By statements (2), (3) and (4) of Proposition 6.1 and statement (2b) of Propo-
sition 2.1, there exist λP , λQ ∈ K× and a (ρ, σ)-homogeneous element R ∈ L(1) such 
that

�ρ,σ(P ) = λPR
m and �ρ,σ(Q) = λPR

n. (6.3)

This implies that

A0 = enρ,σ(R) and A′
0 = stρ,σ(R).

Hence, vρ,σ(A0) = vρ,σ(A′
0). Moreover, the same argument given above for F shows that 

R ∈ L, and so A0, A′
0 ∈ N0 ×N0

Statement (1) follows from the fact that, by inequality (6.2) and Proposition 6.1(7)

v1,−1(enρ,σ(P )) < 0 and v1,−1(stρ,σ(P )) > 0,

and, by Remark 1.8,

v1,0(stρ,σ(P )) < v1,0(enρ,σ(P )), (6.4)

since (1, −1) < (ρ, σ) < (1, 0). Proposition 6.1(6) gives statement (4) except the inequal-
ity μ < 1. But this is true because μ ≥ 1 implies

vρ,σ(A′
0) = vρ,σ(A0) = 1

vρ,σ(F ) ≤ vρ,σ(F ) = ρ + σ,

μ
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which is impossible since, by statement (1) and Proposition 6.1(1),

vρ,σ(A′
0) = r′ρ + s′σ = (r′ − s′)ρ + s′(ρ + σ) ≥ (r′ − s′)ρ ≥ ρ > ρ + σ.

We claim that v1,0(stρ,σ(F )) ≥ 1. In fact, otherwise stρ,σ(F ) = (0, h) for some h ∈ N0, 
which implies vρ,σ(F ) = σh ≤ 0. But this is impossible since vρ,σ(F ) = ρ +σ > 0. Hence, 
by Remark 1.8,

f1 = v1,0(enρ,σ(F )) > v1,0(stρ,σ(F )) ≥ 1,

which combined with f1 = μu and 0 < μ < 1 proves statement (2). Moreover, if 
gcd(u, v) = 1, then there is no μ ∈ ]0, 1[ such that μ(u, v) ∈ N0×N0, and so statement (3) 
is true. Next we prove statement (5). From statement (4) it follows that uf2 = vf1. 
Equivalently u(f1, f2) = f1(u, v), and so

vρ,σ(f1A
′
0) = f1vρ,σ(A′

0) = f1vρ,σ(A0) = uvρ,σ(F ) = uvρ,σ(1, 1) = vρ,σ(u, u).

Hence there exists t ∈ Z such that f1A
′
0 = (u, u) − t(−σ, ρ). Thus

u− tρ = v0,1(f1A
′
0) = f1v0,1(A′

0) ≥ 0,

and so u ≥ tρ. Therefore, in order to finish the proof of statement (5) we only must note 
that t ≤ 0 is impossible, because it implies f1v1,−1(A′

0) ≤ 0, contradicting Remark 6.3.
The first equality in statement (6) follows from the fact that vρ,σ(f1, f2) = vρ,σ(1, 1)

and Remark 3.2. So, by (3.2)

(ρ, σ) = ±
(
f2 − 1

d
,
1 − f1

d

)
,

where d := gcd(f1 − 1, f2 − 1). Since ρ + σ > 0 and, by statements (1) and (4), we have 
f2 − f1 > 0, necessarily

(ρ, σ) =
(
f2 − 1

d
,
1 − f1

d

)
,

which ends the proof of statement (6). Next we prove statement (7). The point A(1)

is completely determined by v0,1(A(1)) and vρ,σ(A(1)). Let ϕ be as in Proposition 5.18. 
Since

v0,1

(
A′

0 + (γ − s′)
(
−σ

ρ
, 1
))

= γ = v0,1(A(1))

by Proposition 5.18(3), and

vρ,σ

(
A′

0 + (γ − s′)
(
−σ

, 1
))

= vρ,σ(A′
0) = vρ,σ(A(1))
ρ
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because ϕ is (ρ, σ)-homogeneous, statement (7) is true. Statement (8) follows directly 
from Propositions 5.18(4) and 5.19. It remains to prove statement (9). Write �ρ,σ(P ) =
xrysp(z), where z = x−σ/ρy and p(0) �= 0. Since R ∈ L and �ρ,σ(P ) = λPR

m, we have 
�ρ,σ(P ) ∈ L, which implies p(z) ∈ K[x, y]. Hence

�ρ,σ(P ) = xrysp(zρ), where p(zρ) ∈ K[zρ].

By Proposition 5.16 we know that λ �= 0, so mλ is the multiplicity of a root of p(z). 
Since the multiplicities of the roots of p(z) are the same as the multiplicities of the roots 
of p(z), we have mλ ≤ deg(p). Combining this with Remark 2.8, we obtain

mλ ≤ deg(p) = v0,1(enρ,σ(P )) − v0,1(stρ,σ(P ))
ρ

= m

(
v − s′

ρ

)
,

which proves the first part of statement (9). We claim that stρ,σ(F ) = (1, 1). In fact, 
otherwise

(α, β) := stρ,σ(F ) = (1 − σi, 1 + ρi), with i > 0.

Note that α < β, since ρ > −σ. But this is impossible because r′ > s′, and, by Theo-
rem 2.6(2), we have

stρ,σ(F ) ∼ stρ,σ(P ) = m(r′, s′).

Consequently, if d = 1, then by statement (6)

v0,1(enρ,σ(F )) − v0,1(stρ,σ(F )) = f2 − 1 = ρ,

and so, by Proposition 2.11(4),

mλ = 1
ρ

(v0,1(enρ,σ(P )) − v0,1(stρ,σ(P ))) = m(v − s′)
ρ

,

as desired. �
Proposition 6.5. If A0 is as before Proposition 6.4, then v1,1(A0) ≥ 16.

Proof. By Proposition 6.4 it suffices to prove that there is no pair A0 = (u, v) with 
u + v ≤ 15, for which there exist (f1, f2), A′

0 = (r′, s′), γ and A(1), such that all the 
conditions of that proposition are satisfied. In Table 1 we first list all possible pairs 
(u, v) with v > u > 2, gcd(u, v) > 1 and u + v ≤ 15. We also list all the possible 
(f1, f2) = μ(u, v) with f1 ≥ 2 and 0 < μ < 1. Then we compute the corresponding 
(ρ, σ) using Proposition 6.4(6) and we verify if there is an A′

0 := (r′, s′) with s′ < r′ < u

and vρ,σ(u, v) = vρ,σ(r′, s′). This happens in five cases. In all these cases d := gcd(f1 −
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Table 1
Possible pairs (u, v) with v > u > 2, gcd(u, v) > 1 and u + v ≤ 15.

A0 (f1, f2) (ρ, σ) A′
0 d γ A(1)

(3,6) (2,4) (3,−1) (1,0) 1 2
( 5
3 , 2

)
(3,9) (2,6) (5,−1) ×
(3,12) (2,8) (7,−1) ×
(4,6) (2,3) (2,−1) (1,0) 1 3

( 5
2 , 3

)
(4,8) (2,4) (3,−1) ×
(4,8) (3,6) (5,−2) ×
(4,10) (2,5) (4,−1) ×
(5,10) (2,4) (3,−1) (2,1) 1 3

( 8
3 , 3

)
(5,10) (3,6) (5,−2) (1,0) 1 2

( 9
5 , 2

)
(5,10) (4,8) (7,−3) ×
(6,8) (3,4) (3,−2) ×
(6,9) (2,3) (2,−1) (2,1) 1 4

( 7
2 , 4

)
(6,9) (4,6) (5,−3) ×

1, f2 − 1) = 1. Then, by Proposition 6.4(9), we have γ = (v − s′)/ρ. Using these values, 
we compute A(1) in each of the five cases using statement (7) of the same proposition. 
Finally we verify that in none of this cases condition (8) of Proposition 6.4 is satisfied, 
concluding the proof. �
Corollary 6.6. We have B ≥ 16.

Proof. Suppose B < ∞ and take (P, Q) and (m, n) as in Corollary 5.21. Assume that 
(ρ, σ) and A0 are as above Proposition 6.4. By Proposition 6.5,

B = gcd
(
v1,1(P ), v1,1(Q)

)
= 1

m
v1,1(P ) ≥ 1

m
v1,1(enρ,σ(P )) = v1,1(A0) ≥ 16,

as desired. �
Proposition 6.7. Let (P, Q) be a standard (m, n)-pair and let A0 = (u, v) be as before 
Proposition 6.4. Then v ≤ u(u − 1) and u ≥ 4.

Proof. Let F , (f1, f2) = enρ,σ(F ) and d = gcd(f1−1, f2−1) be as before Proposition 6.4. 
By statements (5) and (6) of Proposition 6.4,

f1v − u

du
= f2 − 1

d
= ρ ≤ u.

Hence

v ≤ du2 + u

f1
= u

du + 1
f1

≤ u
(f1 − 1)u + 1

f1
= u

f1u− (u− 1)
f1

= u

(
u− u− 1

f1

)
≤ u(u− 1),

where the last inequality follows from Proposition 6.4(2). Again by Proposition 6.4(2), 
we know that u ≥ 3, so we must only check that the case u = 3 is impossible. But if 
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A0 = (3, v), then by the first statement necessarily v ≤ 6, which contradicts Proposi-
tion 6.5. �
Remark 6.8. The inequality u ≥ 4 is related to [5, Proposition 2.22]. It shows that for 
a standard (m, n)-pair (P, Q), the greatest common divisor of degx(P ) = v1,0(P ) and 
degx(Q) = v1,0(Q) is greater than or equal to 4. Using similar techniques as in the proof 
of Proposition 4.7, one can prove that this inequality holds for any counterexample.

Let ψ1 ∈ Aut(L) be the map defined by ψ1(x) := y and ψ1(y) := −x. Since 
[ψ1(x), ψ1(y)] = 1, by Proposition 3.10, this map preserves Jacobian pairs. Moreover, 
the action induced by ψ1 on the Newton polygon of a polynomial P is the orthogonal 
reflection at the main diagonal, and so, it maps edges of the convex hull of Supp(P ) into 
edges of the convex hull of Supp(ψ1(P )), interchanging st and en.

Similarly the automorphism ψ2 of L(1), defined by ψ2(x) := −x−1 and ψ2(y) := x2y

preserves Jacobian pairs and it induces on the Newton polygon of each P ∈ L(1) a 
reflection at the main diagonal, parallel to the X-axis. Hence it also maps edges of the 
convex hull of Supp(P ) into edges of the convex hull of Supp(ψ2(P )), interchanging st
and en.

Moreover, an elementary computation shows that if we define

ψ1(ρ, σ) := (σ, ρ) and ψ2(ρ, σ) := (−ρ, 2ρ + σ), (6.5)

and set (ρk, σk) := ψk(ρ, σ) for k = 1, 2, then

vρk,σk
(ψk(P )) = vρ,σ(P ) and �ρk,σk

(ψk(P )) = ψk(�ρ,σ(P )), (6.6)

for all (ρ, σ) ∈ V and P ∈ L(1) (when k = 1 we assume P ∈ L).

Proposition 6.9. Let (P, Q) be a standard (m, n)-pair in L and let (ρ, σ) and A0 be as 
before Proposition 6.4. If (ρ, σ) = (2, −1), then it is impossible that vρ,σ(A0) ≤ 3.

Proof. Let ϕ : L → L(1) be the morphism defined by ϕ := ψ2 ◦ ψ1. Write en2,−1(P ) =
(a, b), so that A0 = 1

m (a, b). We claim that en1,0(ϕ(P )) = (2a − b, a). In order to prove 
the claim, note first that

ψ1(−1, 1) = (1,−1), ψ1(2,−1) = (−1, 2), ψ2(−1, 2) = (1, 0) and

ψ2(1,−1) = (−1, 1).

Since, by Remark 1.8,

Supp
(
�−1,1(�2,−1(P ))

)
= en2,−1(P ) = (a, b),

and, by the second equality in (6.6),
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�−1,1(�1,0(ϕ(P ))) = �−1,1(ψ2(�−1,2(ψ1(P )))) = ψ2(�1,−1(ψ1(�2,−1P )))

= ϕ(�−1,1(�2,−1(P ))),

we have, again by Remark 1.8,

en1,0(ϕ(P )) = Supp(ϕ(xayb)) = (2a− b, a),

which proves the claim. Moreover, (ϕ(P ), ϕ(Q)) is an (m, n)-pair, because by Proposi-
tion 3.10, we have [ϕ(P ), ϕ(Q)] = 1; it is true that

v1,−1(en1,0(ϕ(P ))) = a− b = v1,−1(en2,−1(P )) < 0;

and, by the first equality in (6.6), statements (3) and (8) of Proposition 6.1, and the fact 
that ψ2(ψ1(2, −1)) = (1, 0) and ψ2(ψ1(3, −1)) = (1, 1), we have

v1,0(ϕ(P ))
v1,0(ϕ(Q)) = v2,−1(P )

v2,−1(Q) = m

n
and v1,1(ϕ(P ))

v1,1(ϕ(Q)) = v3,−1(P )
v3,−1(Q) = m

n
.

Applying Proposition 5.20 we obtain a standard (m, n)-pair (P̃ , Q̃) with

1
m

en1,0(P̃ ) = 1
m

en1,0(ϕ(P )) = 1
m

(2a− b, a).

Hence,

1
m
v1,0(P̃ ) = 1

m
v1,0(en1,0(P̃ )) = 1

m
(2a− b) = 1

m
v2,−1(en2,−1(P )) = vρ,σ(A0).

Let Ã0 = (u, v) be the primitive corner of (P̃ , Q̃). Since m(u, v) ∈ Supp(P̃ ), we have

u ≤ 1
m
v1,0(P̃ ) = vρ,σ(A0).

So, if vρ,σ(A0) ≤ 3, then u ≤ 3, which contradicts Proposition 6.7 and concludes the 
proof. �
Proposition 6.10. Let (P, Q) be a standard (m, n)-pair in L, A0 = (u, v) as before Propo-
sition 6.4 and μ as in Proposition 6.4(4). Then μ �= 1/2 and gcd(u, v) �= 2.

Proof. Let (ρ, σ), A′
0 = (r′, s′) and F be as before Proposition 6.4. By Proposition 6.1(1) 

we know that (1, −1) < (ρ, σ) < (1, 0) and by Proposition 6.4(1), we have

A′
0 �= (2, 2) and v1,−1(A′

0) = r′ − s′ > 0 = v1,−1(2, 2). (6.7)

Assume by contradiction that μ = 1/2, which implies
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vρ,σ(A′
0) = vρ,σ(A0) = 2vρ,σ(F ) = 2vρ,σ(1, 1) = vρ,σ(2, 2).

Then, by Remark 3.2

dir(A′
0 − (2, 2)) = (ρ, σ) < (1, 0).

From this, the second inequality in (6.7) and Lemma 3.5, it follows that

0 ≤ s′ < r′ = v1,0(A′
0) < v1,0(2, 2) = 2.

Hence necessarily A′
0 = (1, 0). Therefore (ρ, σ) = (2, −1) and Lemma 6.9 yields the 

desired contradiction, since then v2,−1(A0) = v2,−1(A′
0) = 2. Finally, since μ �= 1/2, 

necessarily gcd(u, v) �= 2. �
7. More conditions on B

In this section we prove that B �= 2p for all prime p. Abhyankar allegedly developed 
a proof of this result according to [5, Page 50], but we could not find any published 
article of Abhyankar with such proof. Heitmann says that it is possible to adapt the 
proof of [5, Proposition 2.21] to prove B �= 2p, however we were not able to do this. 
On the other hand this is also claimed to be proven in [12, Theorem 4.12]. But the 
proof relies on [12, Lemma 4.10], which has a gap, since it claims without proof that 
I2 ⊆ 1

mΓ(f2), an assertion which cannot be proven to be true. The main technical results 
in this section are Propositions 7.1 and 7.3, together with its Corollaries 7.2 and 7.4. 
They are closely related to [9, Propositions 6.3 and 6.4] and seem to be a generalization 
of them. These results are interesting on their own, but they also allow to establish a 
very strong criterion for the possible regular corners (Theorem 7.6) which leads to the 
proof of B �= 2p.

Proposition 7.1. Let m, n ∈ N be coprime with m, n > 1 and let P, Q ∈ L(l) with

[P,Q] ∈ K× and v1,1(P )
v1,1(Q) = v1,0(P )

v1,0(Q) = m

n
.

Take T0 ∈ K[P, Q] and set Tj := [Tj−1, P ] for j ≥ 1. Assume that (ρ0, σ0) ∈ V≥0
satisfies

(1) (ρ0, σ0) ∈ Dir(P ) and vρ0,σ0(P ) > 0,
(2) enρ0,σ0(Tj) ∼ enρ0,σ0(P ) for all j with Tj �= 0,
(3) 1

m enρ0,σ0(P ) = 1
n enρ0,σ0(Q) ∈ 1

lZ ×N,
(4) b > a/l, where (a/l, b) := 1

m enρ0,σ0(P ).

Let I0 := [(ρ0, σ0), (0, −1)[ and



64 C. Valqui et al. / Journal of Algebra 471 (2017) 13–74
(ρ̃, σ̃) := max{(ρ, σ) ∈ Dir(P ) ∩ I0 : vρ′,σ′(P ) > 0 for all (ρ0, σ0) ≤ (ρ′, σ′) ≤ (ρ, σ)}

Then for all (ρ, σ) ∈ V with (ρ0, σ0) < (ρ, σ) ≤ (ρ̃, ̃σ) and all j ≥ 0 we have

[�ρ,σ(Tj), �ρ,σ(P )] = 0 and vρ,σ(Tj)
vρ,σ(P ) = vρ0,σ0(Tj)

vρ0,σ0(P ) . (7.1)

Idea of the proof: We must prove that there is a partial homothety between P and Tj for 
(ρ, σ) > (ρ0, σ0). The basic idea is that otherwise en(Tj+n) � en(P ) for some direction 
and all n > 0, and then Tj+n �= 0 for all n > 0, which is impossible.

Proof. Let

(ρ1, σ1) < · · · < (ρk, σk) = (ρ̃, σ̃)

be the directions in Dir(P ) between (ρ0, σ0) and (ρ̃, ̃σ). We will use freely that vρ′,σ′(P ) >
0 for all (ρ0, σ0) ≤ (ρ′, σ′) ≤ (ρ̃, ̃σ). By Remark 1.15 and conditions (2), (3) and (4), we 
have

v1,−1(enρ0,σ0(P )) < 0 and enρ0,σ0(Tj) = μj enρ0,σ0(P ) with μj ≥ 0, (7.2)

for all j with Tj �= 0. We claim that if there exists 0 ≤ i < k such that

v1,−1(enρi,σi
(P )) < 0 and enρi,σi

(Tj) = μj enρi,σi
(P ) with μj ≥ 0, (7.3)

for all j with Tj �= 0, then

(a) If Tj �= 0, then enρi,σi
(Tj) = stρi+1,σi+1(Tj).

(b) [�ρi+1,σi+1(Tj), �ρi+1,σi+1(P )] = 0, for all j.

In order to check this, we write

enρi,σi
(P ) = ri(ai/l, bi) with ri ≥ 0 and gcd(ai, bi) = 1.

We define the auxiliary direction

(ρ, σ) := 1
d
(lbi,−ai), where d := gcd(lbi, ai).

By (3.2) and the inequality in (7.3), we have (ρ, σ) = dir(ai/l, bi). Furthermore ri ∈ N, 
because gcd(ai, bi) = 1 and enρi,σi

(P ) �= (0, 0). Note that

(c, d) ∼ (ai/l, bi) if and only if vρ,σ(c, d) = 0. (7.4)

Since vρi,σi
(ai/l, bi), vρi+1,σi+1(ai/l, bi) > 0, by Remarks 2.10 and 3.3 we know that
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(ρ, σ) < (ρi, σi) < (ρi+1, σi+1) < (−ρ,−σ). (7.5)

Next we prove condition (a). For this it suffices to prove that if Tj �= 0, then

Dir(Tj)∩ ](ρi, σi), (ρi+1, σi+1)[ = ∅.

In order to check this fact, assume by contradiction that it is false and set (ρ̂, ̂σ) :=
SuccTj

(ρi, σi). Since (ρ̂, ̂σ) ∈](ρi, σi), (ρi+1, σi+1)[, by (7.5) we have

(ρ, σ) < (ρ̂, σ̂) < (−ρ,−σ). (7.6)

By Remark 1.8 and (7.4), we have

vρ,σ(enρ̂,σ̂(Tj)) < vρ,σ(stρ̂,σ̂(Tj)) = 0, (7.7)

since (ai/l, bi) ∼ enρi,σi
(Tj) = stρ̂,σ̂(Tj), by (7.3). We assert that

Tj+k �= 0 and enρ̂,σ̂(Tj+k) = enρ̂,σ̂(Tj) + k enρ̂,σ̂(P ) − k(1, 1), (7.8)

for all k ∈ N0. We will prove this by induction on k. For k = 0 this is trivial. Assume 
that (7.8) is true for some k. Then,

vρ,σ(enρ̂,σ̂(Tj+k)) = vρ,σ(enρ̂,σ̂(Tj)) + kvρ,σ(enρ̂,σ̂(P )) − kvρ,σ(1, 1)

= vρ,σ(enρ̂,σ̂(Tj)) − k(ρ + σ)

< 0,

since vρ,σ(enρ̂,σ̂(P )) = vρ,σ(enρi,σi
(P )) = 0 by Proposition 3.7 and (7.4), vρ,σ(enρ̂,σ̂(Tj))

< 0 by (7.7), and ρ + σ > 0. But then, again by (7.4),

enρ̂,σ̂(Tj+k) � enρ̂,σ̂(P ) = ri(ai/l, bi).

Hence, by Propositions 1.13 and 2.3

�ρ̂,σ̂(Tj+k+1) = [�ρ̂,σ̂(Tj+k), �ρ̂,σ̂(P )] �= 0.

Consequently, by Proposition 2.4(2) and (7.8) for k,

enρ̂,σ̂(Tj+k+1) = enρ̂,σ̂(Tj+k) + enρ̂,σ̂(P ) − (1, 1)

= enρ̂,σ̂(Tj) + (k + 1) enρ̂,σ̂(P ) − (k + 1)(1, 1),

which ends the proof of the assertion. But Tj+k �= 0 for all k is impossible, since from 
[P, Q] ∈ K× and T0 ∈ K[P, Q] it follows easily that Tn = 0 for n large enough. Therefore 
statement (a) is true.
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Now we are going to prove statement (b). Assume by contradiction that

[�ρi+1,σi+1(Tj), �ρi+1,σi+1(P )] �= 0,

which by Proposition 1.13 implies

[�ρi+1,σi+1(Tj), �ρi+1,σi+1(P )] = �ρi+1,σi+1([Tj , P ]) = �ρi+1,σi+1(Tj+1). (7.9)

By (7.5) we have (ρ, σ) < (ρi+1, σi+1) < (−ρ, −σ) and so, by Remark 1.8

stρi+1,σi+1(P ) = Supp(�ρ,σ(�ρi+1,σi+1(P ))),

stρi+1,σi+1(Tj) = Supp(�ρ,σ(�ρi+1,σi+1(Tj))),

stρi+1,σi+1(Tj+1) = Supp(�ρ,σ(�ρi+1,σi+1(Tj+1))).

But then, by Proposition 1.13 and equivalence (7.4),

vρ,σ(stρi+1,σi+1(Tj+1)) = vρ,σ(�ρi+1,σi+1(Tj+1))

≤ vρ,σ(�ρi+1,σi+1(Tj)) + vρ,σ(�ρi+1,σi+1(P )) − (ρ + σ)

= vρ,σ(stρi+1,σi+1(Tj)) + vρ,σ(stρi+1,σi+1(P )) − (ρ + σ)

= −(ρ + σ) < 0,

since by item (a), Proposition 3.7 and (7.3),

stρi+1,σi+1(Tj) = enρi,σi
(Tj) ∼ (ai/l, bi) ∼ enρi,σi

(P ) = stρi+1,σi+1(P ).

Hence, by item (a), Proposition 3.7 and (7.4),

enρi,σi
(Tj+1) = stρi+1,σi+1(Tj+1) � (ai/l, bi) ∼ enρi,σi

(P ),

which contradicts (7.3), thus proving (b) and finishing the proof of the claim.
In order to prove (7.1), we must check that

[�ρ,σ(Tj), �ρ,σ(P )] = 0 and vρ,σ(Tj)
vρ,σ(P ) = vρi,σi

(Tj)
vρi,σi

(P ) (7.10)

hold for all (ρ, σ) with (ρi+1, σi+1) ≥ (ρ, σ) > (ρi, σi) and all i. We proceed by induction, 
using the claim and (7.2). More precisely, we are going to prove for any i, that (7.3)
implies that (7.10) hold for all (ρ, σ) with (ρi+1, σi+1) ≥ (ρ, σ) > (ρi, σi), and that 
condition (7.3) is true for i + 1.

In fact, if (ρi+1, σi+1) > (ρ, σ) > (ρi, σi), then by Proposition 3.7,

enρi,σi
(P ) = Supp(�ρ,σ(P )) = stρi+1,σi+1(P ), (7.11)
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while, again by Proposition 3.7 and statement (a), for the same (ρ, σ)

enρi,σi
(Tj) = Supp(�ρ,σ(Tj)) = stρi+1,σi+1(Tj). (7.12)

Consequently, since enρi,σi
(Tj) ∼ enρi,σi

(P ),

[�ρ,σ(Tj), �ρ,σ(P )] = 0 for all (ρ, σ) with (ρi+1, σi+1) > (ρ, σ) > (ρi, σi)

and

vρ,σ(Tj)
vρ,σ(P ) = vρi,σi

(Tj)
vρi,σi

(P ) for all (ρ, σ) with (ρi+1, σi+1) ≥ (ρ, σ) > (ρi, σi).

Hence the equalities in (7.10) hold for all required (ρ, σ)’s. Next we prove that condi-
tion (7.3) is true for i + 1. We first prove that

v1,−1(enρi+1,σi+1(P )) < 0. (7.13)

If ρi+1 + σi+1 ≥ 0, then by Proposition 3.7, Remark 1.8 and the inequality in (7.3),

v1,−1(enρi+1,σi+1(P )) ≤ v1,−1(stρi+1,σi+1(P )) = v1,−1(enρi,σi
(P )) < 0,

as desired. Assume that ρi+1 + σi+1 < 0 and set A := enρi+1,σi+1(P ). First we are going 
to prove that v1,−1(A) �= 0. Otherwise A = k(1, 1) for some k ∈ N0, which is impossible, 
since then

vρi+1,σi+1(P ) = vρi+1,σi+1(A) = k(ρi+1 + σi+1) ≤ 0,

contradicting the definition of (ρ̃, ̃σ). Assume that

v1,−1(A) > 0 = v1,−1(0, 0). (7.14)

Since ρi+1 + σi+1 < 0, (ρi+1, σi+1) ∈ I0 and A ∈ Supp(P ), we have

(−1, 1) < (ρi+1, σi+1) < (0,−1) and v0,1(A) ≥ 0 = v0,1(0, 0).

Thus, by Corollary 3.6 (which we can apply because (−ρi+1,−σi+1) < (0, 1) in V>0), 
we have

vρi+1,σi+1(P ) = vρi+1,σi+1(A) = −v−ρi+1,−σi+1(A) < −v−ρi+1,−σi+1(0, 0) = 0,

which contradicts again the definition of (ρ̃, ̃σ) and ends the proof of (7.13).
It remains to check that the second assertion in (7.3) holds for i +1. By equalities (7.11)

and (7.12),
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stρi+1,σi+1(Tj) = enρi,σi
(Tj) = μj enρi,σi

(P ) = μj stρi+1,σi+1(P ),

which implies vρi+1,σi+1(Tj) = μjvρi+1,σi+1(P ) ≥ 0. Therefore, by (b), we can apply 
Remark 3.1 in order to obtain that

enρi+1,σi+1(Tj) = μj enρi+1,σi+1(P ),

as desired. This proves (7.1) and concludes the proof. �
Corollary 7.2. Let m, n ∈ N be coprime with m, n > 1 and let P, Q ∈ L(l) with

[P,Q] ∈ K× and v1,1(P )
v1,1(Q) = v1,0(P )

v1,0(Q) = m

n
.

Assume that (ρ0, σ0) ∈ V≥0 satisfies

(1) (ρ0, σ0) ∈ Dir(P ) and vρ0,σ0(P ) > 0,
(2) 1

m enρ0,σ0(P ) = 1
n enρ0,σ0(Q) ∈ 1

lZ ×N,
(3) b > a/l, where (a/l, b) := 1

m enρ0,σ0(P ).

Let (ρ̃, ̃σ) be as in Proposition 7.1 and let F ∈ L(l) be the (ρ0, σ0)-homogeneous element 
obtained in Theorem 2.6. If there exist p, q ∈ N coprime such that enρ0,σ0(F ) = p

q (a/l, b), 
then for all (ρ, σ) ∈ V with (ρ0, σ0) < (ρ, σ) ≤ (ρ̃, ̃σ) there exists a (ρ, σ)-homogeneous 
element R ∈ L(l) such that �ρ,σ(P ) = Rqm.

Proof. Let G0 and G1 be as in Theorem 2.6. Since G0, P �= 0, by the last equality in (2.7)
we have

[�ρ0,σ0(G0), �ρ0,σ0(P )] �= 0,

which, by Proposition 1.13, implies that

�ρ0,σ0(G1) = [�ρ0,σ0(G0), �ρ0,σ0(P )] �= 0.

By Proposition 2.3 and Theorem 2.6(5) there exists g1 ∈ Q such that

enρ0,σ0(G1) = g1 enρ0,σ0(P ). (7.15)

Moreover,

enρ0,σ0(F ) = p

q
(a/l, b) = p

qm
enρ0,σ0(P ). (7.16)

On the other hand, using again the last equality in (2.7), we obtain



C. Valqui et al. / Journal of Algebra 471 (2017) 13–74 69
�ρ0,σ0(G1)F = �ρ0,σ0(G0)�ρ0,σ0(P ),

and hence

enρ0,σ0(G1) + enρ0,σ0(F ) = enρ0,σ0(G0) + enρ0,σ0(P ).

Consequently, by (7.15) and (7.16),

enρ0,σ0(G0) = enρ0,σ0(G1) + enρ0,σ0(F ) − enρ0,σ0(P ) =
(
g1 + p

qm
− 1

)
enρ0,σ0(P ).

Set g0 := g1 + p
qm − 1 and take r ∈ Z and s ∈ N coprime, such that g0 = r/s. Note that 

by (7.15), (7.16) and the fact that g1 = r
s + 1 − p

qm , we have

1
vρ0,σ0(P )

(
vρ0,σ0(G0), vρ0,σ0(G1), vρ0,σ0(P ), vρ0,σ0(Q)

)
=

(
r

s
,
r

s
+ 1 − p

qm
, 1, n

m

)
.

(7.17)

Let (ρ, σ) > (ρ0, σ0). Applying Proposition 7.1 with T0 := G0, with T0 := G1 and with 
T0 := Q, we obtain that

[�ρ,σ(G0), �ρ,σ(P )] = 0, [�ρ,σ(G1), �ρ,σ(P )] = 0 and [�ρ,σ(Q), �ρ,σ(P )] = 0.

Hence, by Proposition 2.1(2b), there exist γ0, γ1, γ2, γ3 ∈ K×, a (ρ, σ)-homogeneous 
element R0 ∈ L and u0, u1, u2, u3 ∈ N, such that

�ρ,σ(G0) = γ0R
u0
0 , �ρ,σ(G1) = γ1R

u1
0 , �ρ,σ(P ) = γ2R

u2
0 and �ρ,σ(Q) = γ3R

u3
0 ,

and clearly we can assume that gcd(u0, u1, u2, u3) = 1. But then, by Proposition 7.1 and 
equality (7.17),

vρ,σ(R0)(u0, u1, u2, u3) =
(
vρ,σ(G0), vρ,σ(G1), vρ,σ(P ), vρ,σ(Q)

)
= vρ,σ(P )

vρ0,σ0(P )
(
vρ0,σ0(G0), vρ0,σ0(G1), vρ0,σ0(P ), vρ0,σ0(Q)

)
= vρ,σ(P )

sqm
(rqm, rqm + sqm− ps, sqm, sqn),

and so we have u2 = sqm
d , where d := gcd(rqm, rqm + sqm − ps, sqm, sqn). Since

d = gcd(rqm, ps, sqm, sqn) = gcd(qm, s),

we obtain that d|s. Consequently we can write �ρ,σ(P ) = γ2R
sqm/d
0 = γ2(Rs/d

0 )qm. We 
conclude the proof setting R := γR

s/d
0 , where we choose γ ∈ K× such that γqm = γ2. �
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Proposition 7.3. Let m, n ∈ N be coprime with m, n > 1 and let P, Q ∈ L(l) with

[P,Q] ∈ K× and v1,1(P )
v1,1(Q) = v0,1(P )

v0,1(Q) = m

n
.

Take T0 ∈ K[P, Q] and set Tj := [Tj−1, P ] for j ≥ 1. Assume that (ρ0, σ0) ∈ V≥0
satisfies

(1) (ρ0, σ0) ∈ Dir(P ) and vρ0,σ0(P ) > 0,
(2) stρ0,σ0(Tj) ∼ stρ0,σ0(P ) for all j with Tj �= 0,
(3) 1

m stρ0,σ0(P ) = 1
n stρ0,σ0(Q) ∈ 1

lZ ×N,
(4) b < a/l, where (a/l, b) := 1

m stρ0,σ0(P ).

Let I1 := [(0, −1), (ρ0, σ0)] and

(ρ̃, σ̃) := min{(ρ, σ) ∈ Dir(P ) ∩ I1 : vρ′,σ′(P ) > 0 for all (ρ0, σ0) ≥ (ρ′, σ′) ≥ (ρ, σ)}.

Then for all (ρ, σ) ∈ V with (ρ̃, ̃σ) ≤ (ρ, σ) < (ρ0, σ0) and all j ≥ 0 we have

[�ρ,σ(Tj), �ρ,σ(P )] = 0 and vρ,σ(Tj)
vρ,σ(P ) = vρ0,σ0(Tj)

vρ0,σ0(P ) .

Proof. Mimic the proof of Proposition 7.1. �
Corollary 7.4. Let m, n ∈ N be coprime with m, n > 1 and let P, Q ∈ L(l) with

[P,Q] ∈ K× and v1,1(P )
v1,1(Q) = v0,1(P )

v0,1(Q) = m

n
.

Assume that (ρ0, σ0) ∈ V≥0 satisfies

(1) (ρ0, σ0) ∈ Dir(P ) and vρ0,σ0(P ) > 0,
(2) 1

m stρ0,σ0(P ) = 1
n stρ0,σ0(Q) ∈ 1

lZ ×N,
(3) b < a/l, where (a/l, b) := 1

m stρ0,σ0(P ).

Let (ρ̃, ̃σ) be as in Proposition 7.3 and let F ∈ L(l) be the (ρ0, σ0)-homogeneous element 
obtained in Theorem 2.6. If there exist p, q ∈ N coprime, such that stρ0,σ0(F ) = p

q (a/l, b), 
then for all (ρ, σ) ∈ V with (ρ̃, ̃σ) ≤ (ρ, σ) < (ρ0, σ0) there exists a (ρ, σ)-homogeneous 
element R ∈ L(l) such that �ρ,σ(P ) = Rqm.

Proof. Mimic the proof of Corollary 7.2. �
Remark 7.5. Let P ∈ L(l) \ {0} and let (ρ′, σ′) and (ρ′′, σ′′) be consecutive elements 
in Dir(P ). It follows from Remarks 2.10 and 3.3 that if vρ′,σ′(P ), vρ′′,σ′′(P ) > 0, then 
vρ,σ(P ) > 0 for all (ρ′, σ′) < (ρ, σ) < (ρ′′, σ′′).
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The following theorem is related to [5, Proposition 1.10] and also to [12, Remark 5.12]. 
In this theorem we consider the order in I = ](1, −1), (1, 0)].

Theorem 7.6. Let (A0, (ρ0, σ0)), (A1, (ρ1, σ1)), . . . , (Ak, (ρk, σk)) be the regular corners of 
an (m, n)-pair (P, Q) in L(l), where (ρi, σi) < (ρi+1, σi+1) for all i < k. The following 
facts hold:

(1) A(P ) = {(ρ1, σ1), . . . , (ρk, σk)}. In particular, if (P, Q) is a standard (m, n)-pair, 
then (A0, A′

0, (ρ0, σ0)) is the starting triple of (P, Q), where A′
0 := 1

m stρ0,σ0(P ).
(2) For all j ≥ 1 there exists dj ∈ N maximum such that �ρj ,σj

(P ) = R
mdj

j for some 
(ρj , σj)-homogeneous Rj ∈ L(l). If A0 is of type II, then this holds also for j = 0.

(3) For all j > 0 the element Fj constructed via Theorem 2.6 satisfies

enρj ,σj
(Fj) = pj

qj

1
m

enρj ,σj
(P ),

where pj and qj are coprime. If A0 is of type II, then this holds also for j = 0.
(4) qi � di for all i > 0.
(5) qj | di for all i > j > 0.
(6) qi � qj for all i > j > 0.

Set Dj := gcd(aj , bj , aj−1, bj−1), where Aj = (aj/l, bj) and Aj−1 = (aj−1/l, bj−1). Then

(7) dj | Dj and Ω(Dj) ≥ Ω(dj) ≥ j − 1 for all j > 0, where for n ∈ N we let Ω(n)
denote the number of prime factors of n, counted with multiplicity.

(8) If A0 is of type II, then q0 � d0 and for all i > 0, we have

q0 | di, qi � q0, and Ω(di) ≥ i.

Proof. By Remark 5.10 and Propositions 5.2 and 5.22 statement (1) is true. By 
Corollary 5.7(1) we know that vρj ,σj

(P ) > 0 for all j. If A0 is of type II, then 
[�ρ0,σ0(P ), �ρ0,σ0(Q)] = 0. In the general case, when j ≥ 1, by Remark 5.10, we are in 
Case II.a), and so [�ρj ,σj

(P ), �ρj ,σj
(Q)] = 0. Hence, by Proposition 2.1(2b), statement (2) 

holds. Statement (3) follows from Remark 5.10 and Proposition 5.14(1).
In order to prove statement (4), assume by contradiction that qj | dj . Then R̃ :=

R
pjdj/qj
j satisfies

[R̃, �ρj ,σj
(P )] = 0 and vρj ,σj

(R̃) = vρj ,σj
(Fj) = ρj + σj , (7.18)

where the second equality follows from the fact that

enρj ,σj
(Fj) = pj 1 enρj ,σj

(P ) = enρj ,σj
(R̃).
qj m
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But the existence of R̃ satisfying (7.18) contradicts Proposition 2.11(5) (The condition 
s > 0 or # factors(p) > 1 required in Proposition 2.11(5) is satisfied if and only if 
# factors(p(z)) > 1, which holds because we are in case II).

By Corollary 5.7(1) we have vρj ,σj
(P ) > 0 for all j ≥ 0, and hence, by Remark 7.5, 

we have vρ,σ(P ) > 0 if (ρ, σ) lies between (ρ0, σ0) and (ρk, σk). Let (ρ̃, ̃σ) be as in 
Proposition 7.1. By its very definition (ρ̃, ̃σ) ≥ (ρi, σi) > (ρj , σj). Thus the hypotheses 
of Corollary 7.2 are satisfied with (ρ0, σ0) = (ρj , σj) and (ρ, σ) = (ρi, σi), and hence we 
have

Rmdi
i = �ρiσi

(P ) = Rmqj for some R ∈ L(l),

which gives statement (5) by the maximality of di.
Statement (6) follows from (4) and (5). In order to prove statement (7), note that 

dj |Dj since

Aj = dj enρjσj
(Rj) and Aj−1 = dj stρjσj

(Rj),

and a straightforward computation using (4), (5) and (6) proves the last assertion of (7). 
The proof of statement (8) follows along the lines of the proofs of (4), (5), (6) and (7). �

In the proof the next corollary, nearly all facts were more or less known, except 
Proposition 6.10, which is the missing piece of the puzzle.

Corollary 7.7. Let (P, Q) be a standard (m, n)-pair in L. Write (a, b) := 1
m en1,0(P ). 

Then (a, b) ∈ N ×N and gcd(a, b) > 2. Furthermore B �= p and B �= 2p for any prime 
p, where B is as at the beginning of Section 4.

Proof. By Remark 5.12 we know that (a, b) is the first component of a regular corner of 
(P, Q). Hence, by Remark 5.8 we have (a, b) ∈ N ×N and by Proposition 5.19 we know 
gcd(a, b) > 1. Next we discard gcd(a, b) = 2. Let k be the number of regular corners 
in A(P ). If k = 0, then gcd(a, b) = 2 contradicts Proposition 6.10. Assume k > 0. 
Then (a, b) = (ak, bk) and the very definitions of qk and dk show that qk| gcd(a, b) and 
dk| gcd(a, b). Moreover, by Theorem 7.6(8) we have q0|dk, q0 � d0 and qk � q0. Hence 
gcd(a, b) is a composite number and so gcd(a, b) > 2.

Now assume that (P, Q) is as in Corollary 5.21. In particular,

B = gcd(v1,1(P ), v1,1(Q)) = 1
m
v1,1(P ) and (a, b) = 1

m
en1,0(P ) = 1

m
st1,1(P ),

and so a + b = B, which implies gcd(a, b) | B. Now, if B = p or B = 2p for some prime 
p, then gcd(a, b) ∈ {1, 2, p, 2p}. Since gcd(a, b) > 2 and gcd(a, b) = 2p is impossible, we 
have to discard only the case gcd(a, b) = p. But in that case a = b = p, which contradicts 
a < b and finishes the proof. �
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In the following proposition we give a condition under which the Newton polygon of 
P has no vertical edge at the right hand side.

Corollary 7.8. Let (P, Q) be a standard (m, n)-pair and let (ρ, σ), A0 and F be as in the 
discussion above Proposition 6.4. By Proposition 6.4(4) there exist p, q ∈ N coprime, 
such that enρ,σ(F ) = p

qA0. Assume that A0 = 1
m st1,0(P ). If A0 = (q, b), then st1,0(P ) =

en1,0(P ).

Proof. Along the proof we use the notations of Theorem 7.6. Assume that st1,0(P ) �=
en1,0(P ). Note that (ρ0, σ0) = (ρ, σ), q0 = q, k = 1 and (A1, (ρ1, σ1)) =

( 1
m en1,0(P ),

(1, 0)
)
. By Theorem 7.6(3),

en1,0(F1) = p1

q1

1
m

en1,0(P ),

and so 1 = v1,0(F1) = p1v1,0(A0)/q1 = p1q/q1. Consequently, q1 = q = q0, which 
contradicts Theorem 7.6(6) and concludes the proof. �
Remark 7.9. As long as we are not able to discard the possibility B = 16, there can 
be expected no real progress in proving or disproving the JC just by describing the 
admissible A0’s. However we submit without proof a complete list of small values. Let

B0 := 1
m

st1,0(P ) and B1 := 1
m

en1,0(P ).

If B ≤ 50, then necessarily

a) A0 belongs to the following set:

X := {(4, 12), (5, 20), (6, 15), (6, 30), (7, 21), (7, 35), (7, 42), (8, 24), (8, 28), (9, 21),
(9, 24), (9, 36), (10, 25), (10, 30), (10, 40), (11, 33), (12, 28), (12, 30), (12, 33),
(12, 36), (14, 35), (15, 35), (18, 30)}.

b) B0 ∈ X or B0 = (8, 40) and A0 = (4, 12).
c) B1 ∈ X or B1 ∈ {(8, 32), (8, 40), (6, 18), (6, 24), (6, 36), (6, 42), (9, 27)}. Furthermore,

– if B1 = (8, 32), then B0 = (8, 28),
– if B1 = (8, 40) then B0 = B1 or B0 = (8, 28),
– if B1 = (6, 18 + 6k), then B0 = (6, 15),
– if B1 = (9, 27), then B0 = (9, 21) or B0 = (9, 24).

The cases listed in a) and b) coincide with the list for B0 given in [5, Theorem 2.24(1)], 
where B0 = (E1, D1) is written as (D1, E1) and B1 = (E, D) is written as (D, E). 
However, our list in c), in addition to the cases considered in [5], contains the pairs 
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{(6, 18), (6, 24), (6, 36), (6, 42), (9, 27)}. His result follows from a computer search and 
some computations on a parameter α, which should be the same as our q.
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