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Abstract Many traits of biological interest in tree breeding
are assessed using more than two ordered discrete categories.
These scores have a more or less arbitrary and subjective
assignment by the assessors, which could lead to a strong
departure from the Gaussian distribution. Different assessors
may also use different regions of the available scale. This
study describes the use of the multi-threshold mixed model
proposed by Varona et al. (J Anim Sci 87:1210–1217, 2009),
which allows different thresholds for different assessors on an
underlying Gaussian distribution. This method was applied to a
six-point score for stem quality in an open-pollinated progeny
trial of Prosopis alba Griseb. Four mixed models were used: (1)
a linear mixed model with observed score (LMM); (2) a linear
mixed model with transformed “normal scores” (LMM_NS);
(3) a threshold mixed model (TMM); and (4) an assessor-
specific multi-threshold mixed model (MTMM). Dispersion
parameters were estimated using Bayesian techniques via the
Gibbs sampling with a data augmentation step. The proposed
MTMM produced higher posterior mean heritabilities (0.096)
than the commonly used LMM (0.077). Posterior mean

heritabilities from LMM_NS (0.094) and TMM (0.097) were
comparable to those obtained using MTMM; however,
MTMM yielded slightly more precise estimates than TMM.
Although correlations of the estimated breeding values
were high between different models (from 0.88 to 0.99), the
heterogeneity in the estimated posterior means of the thresholds
between the three assessors caused notable changes in the top
10 families between TMM and MTMM. The proposed model
is helpful in fitting subjective ordered categorical traits assessed
by different assessors in tree breeding.
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Introduction

Many traits assumed to be under polygenic control and of
biological interest or economic importance in tree breeding
are visually assessed along some hypothetical gradient using
more than two ordered discrete categories. Examples of these
ordered categorical traits include stem straightness (Bannister
1979; Gwaze et al. 2001; Wu and Matheson 2005); crown
form integrated into one score (Raymond and Cotterill 1990)
or a separate visual score assigned for each component:
branch thickness (Hai et al. 2008), branch angle (Hannrup
et al. 2003), branch whorls, ramicorn branches, and forks;
resistance to insect and diseases (Yanchuk et al. 1988; Wu
et al. 1996); cold acclimation (Wei et al. 2001); frost damage
(Codesido and Fernández-López 2009); drought damage
(Dutkowski and Potts 2012); foliage color and foliage density
(Zas et al. 2008); and flowering intensity (Cané-Retamales
et al. 2010). Statistical analysis of these traits with standard
linear mixed models (LMM) (Henderson 1984) is the most
common method in forest genetic evaluation (e.g., Gwaze
et al. 2001;Wei et al. 2001;Wu andMatheson 2005; Codesido
and Fernández-López 2009; Dutkowski and Potts 2012).
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However, the visual score representing a phenotype expression
in a predefined scale is usually arbitrary and subjective, and the
output could lead to a strong departure from the Gaussian
distribution (Gianola and Foulley 1983). Therefore, statistical
genetic analyses based on these mixed models are generally
unsuitable for such traits (Gianola 1980).

Alternatively, generalized linear models (Agresti 2007)
account for the discrete distribution of the data assuming an
underlying continuous distribution (liability). The observed
response category is a function of the liability and fixed
unknown thresholds (Wright 1934; Dempster and Lerner
1950; Gianola 1982; Gianola and Foulley 1983); the observed
categorical phenotype will be expressed when the underlying
value is contained in the region defined by the thresholds for
that value. The most common liability distributions are the
Gaussian (probit approach) and logistic (logit approach).
However, biological and statistical reasons favor the use of
the Gaussian approach for modeling ordered categorical data
in genetic evaluations. From a biological perspective, the
parameters are easier to interpret and considered the result of
a linear combination of small effects stemming from alleles at a
large number of loci, plus random environmental components
(Gianola and Foulley 1983). From a statistical perspective, it can
be easily implemented (Albert and Chib 1993; McCulloch
1994). The generalized linear mixed models with a Gaussian
underlying liability distribution (threshold mixed model
(TMM)) have been used in tree breeding for binary traits (e.g.,
Steane et al. 2006; Li et al. 2006; Cappa et al. 2010; Hamilton
et al. 2010) and to a lesser extent in categorical traits (e.g., Cané-
Retamales et al. 2010).

Another technique to account for discrete distribution of
categorical data and departure from the Gaussian distribution
is transforming the data into “normal score” i.e., “optimal
score” (Gianola and Norton 1981), before estimating variance
components based on the linear mixed model (LMM_NS).
This method also assumes an underlying normal distribution
of the phenotype and is frequently called “normal score
transformation” in the literature. Transformation of categorical
data to normal score is routinely employed in the Swedish tree
breeding program (e.g., Ericsson et al. 1994; Hannerz et al.
1999; Högberg et al. 2010). Comparisons between LMM_NS
and the traditional LMM and TMM of more than two ordered
discrete categories from forest genetic trials are limited.

In addition to the discrete distribution of these traits, there
are other problems related to these traits. Despite consensus
about the subjective score for each tree, as recommended by
Cotterill and Dean (1990), different assessors tend to use
different regions of the available scale during their observations
(Bannister 1979). For example, each individual assessor may
use a wider or narrower range of values (Cotterill and Dean
1990).Moreover, the assessor's expertise influences the assessed
visual score (Cotterill and Dean 1990; Sierra de Grado et al.
1999).

To account for both the discrete distribution of these traits
and the different categorization patterns of each assessor,
Varona and Hernández (2006) proposed to fit a set of specific
thresholds for each assessor (i.e., panelist) for sensory analysis
of panel data, despite a common underlying Gaussian distri-
bution to all panelists. Varona et al. (2009) extended this multi-
threshold model to a mixed model approach in an animal
breeding context. This assessor-specific multi-threshold mixed
model (MTMM) has not been applied to forest genetics yet.

A serious limitation of parameter estimation under thresh-
old and multi-threshold mixed models is that the likelihood or
marginal posterior distributions do not have close forms and
some approximations have to be used (Wang et al. 1997).
Albert and Chib (1993) showed that Markov Chain Monte
Carlo (MCMC) Bayesian methods via Gibbs sampling, in
conjunction with data augmentation (Tanner and Wong
1987), lead to fully posterior distributions that are easy to
sample from. Sorensen et al. (1995) applied this approach to
estimate genetic parameters of a threshold mixed model in an
animal breeding context with more than two ordered discrete
categories. Recently, Bayesian inference using MCMC algo-
rithms has become available for estimating the parameters
from a LMM in tree breeding (e.g., Cappa and Cantet 2006;
Cappa and Cantet 2008;Waldmann et al. 2008; Apiolaza et al.
2010). However, their use for estimating the parameters of
ordered categorical traits from multi-threshold mixed model
has not been reported in forest breeding programs.

The objective of this study was to apply the assessor-
specific multi-threshold mixed model proposed by Varona
et al. (2009) to estimate variance components (or function of
them) via Gibbs sampling with a data augmentation step, from
mixed model for data with more than two ordered discrete
categories from forest genetic trials. The method was applied
to data from a six-point subjective score for stem quality trait
recorded on a progeny trial of Prosopis alba Griseb (hereafter
P. alba). The resulting estimates of all dispersion parameters
and predicted breeding values for the proposed MTMM are
compared with those from the conventional LMM, LMM_NS,
and TMM.

Materials and methods

Data

As part of a broadP. alba tree breeding program of the National
Institute of Agricultural Technology (Instituto Nacional de
Tecnología Agropecuaria, INTA, projects PNFOR-4234 and
PNFOR-44341), more than 400 mature open-pollinated (OP)
parent trees were phenotypically selected in wild populations.
Candidate trees were healthy and in “good shape” and well
developed (Verga et al. 2009). Five open-pollinated progeny
trials were established in Salta, Santiago del Estero, Chaco,
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Formosa, and Entre Ríos provinces, Argentina. A progeny trial
with 201 OP families of P. alba was used in this study. The
average progeny per mother was 16 trees varying from 6 to 22.
Ten genetic groups were formed according to provenances. The
trial site was located in Vivero San Martin (latitude 27°94′56″
S, longitude 64°21′92″ W, elevation 174 m) southeastern
Santiago del Estero province. The soil was formed from
loessical silt with scarce development; their profiles being
characterized by A-AC-C horizons (Galizzini et al. 1999).
The experimental design was a randomized complete block,
with three replicates of 1 to 10 multiple-tree non-contiguous
plots, and the spacing was 4×4m. Total height (mean, 1.94m;
standard deviation, 0.83 m), diameter at root collar (mean,
3.95 cm; standard deviation, 2.23 cm), and stem quality, the trait
analyzed in this study, were assessed at the age of 28 months in
the 2,723 surviving trees. The stem quality of each tree was
visually assessed using a six-point subjective score, which
was divided into two groups for ease of measurement in the
field: scores 1, 2, and 3 were trees without a defined main
stem or forking, and scores 4, 5, and 6 were trees with a well-
definedmain stem. However, the six categories resulted mainly
from the branch diameter trait. A detailed description of the
scoring system is shown in Table 1 and Fig. 1. Each tree was
visually assessed by one of a total of three assessors, each
person assessing alternating individual columns in a serpentine

fashion. Thus, each assessor evaluated the stem quality trait on
all families.

Statistical models of analysis

The stem quality trait was analyzed using the following mixed
models.

1. LMM and LMM_NS

yi ¼ x
0
iβþ z

0
i f þ ei ð1Þ

where yi is the phenotypic data for each record i on the
observed original scale (LMM) or the corresponding
transformed normal score (Gianola and Norton 1981)
(LMM_NS). The stem quality data were transformed into
normal score within each block. In addition, β is a p×1
vector of fixed effects including blocks (3 levels), genetic
groups to account for the means of the different origins of
parents (10 levels), and assessors (3 levels); f eNð0;Iσ2

f
) is

a f×1 random vector containing the family (genetic) effects,
where σf

2 is the family variance; and ei is the random error
term included in [e1

′|… | ei
′ |… | en

′]=e and distributed as
e ~N(0,Iσe

2), where σe
2 is the error variance. Furthermore,

x ′i is a 1×p row vector of the known incidence matrix (X),
which relates y i to the elements of β , and z ′i is a 1×f
row vector of the known incidence matrix (Z ), which
relates y i to the elements of f .

The Bayesian approach via Gibbs sampling was used to
estimate the marginal posterior distribution of all the pa-
rameters in model (1), following Sorensen and Gianola
(2002). Conjugate prior densities were chosen for all pa-
rameters. To reflect a prior state of uncertainty for the fixed
effects while keeping the posterior distribution proper, we
selected β~Np (0 , K) with K a diagonal matrix with large
elements (kii>10

8). For the prior distributions of σf
2 and σe

2,
we used a scaled inverted chi-square. Therefore, the joint
and conditional posterior densities are Gaussian forβ and f
and scaled inverted chi-square for σf

2 and σe
2.

2. TMM
In this model, the variable y i is the expression of an

underlying continuous unobserved random variable (l i)

1 2 3 4 5 6

Fig. 1 Detail of the stem quality
score

Table 1 Six-point subjective score system used to assess stem quality in
an open-pollinated progeny trial of P. alba

Score Well-defined or not defined main stem and number
and diameter of branches

1 Not defined main stem with several thick branches of
similar sizes

2 Without a defined main stem with a separation of the trunk
into two stems with similar sizes

3 Poorly defined main stem with a separation of the trunk
into two and one of the two stems with fewer size

4 Well-defined main stem with branches of diameters equal
or less than the diameter of the main stem

5 Well-defined main stem with fewer thin branches

6 Well-defined main stem without branches or fewer very
thin branches
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for each record i , called liability. Each y i represents an
assignment into one C mutually exclusive ordered cate-
gories more or less arbitrarily delimited by C +1 thresh-
olds (t ), such that tmin<t1<t2<…<tC−1<tmax and where
tmin=−∞ and tmax=+∞. Then, in matrix notation, the
TMM to analyze the liability is:

li ¼ x
0
iβþ z

0
i f þ ei: ð2Þ

In ensure identifiability of all parameters in (2), two
values need to be restricted. The threshold between cate-
gories 2 and 3 was set to 0, and the residual variance was
set to 1 (i.e., e ~N (0, I )).

We used a Bayesian approach following Sorensen et al.
(1995). To facilitate the development of Gibbs sampling,
the unobserved liability l was included as an unknown
parameter. This approach, known as data augmentation
(Tanner and Wong 1987), yields full conditional posterior
distributions that have a standard form and are easy to
sample from (Sorensen et al. 1995). Truncated normal prior
distribution was assumed for l and uniform prior distribu-
tion in the interval [tmin, tmax] for the thresholds t . Prior and
conditional posterior distributions of β , f , and σf

2 are the
same as for LMM. Conditional posterior distributions were
truncate Gaussian for the underlying variable (l) and uni-
form in the interval [tmin, tmax] for the thresholds.

3. MTMM
This model assumes that a random variable y ij is

observed for each tree j for j =1,… , ni (number of trees
assessed by the i th assessor) and for i assessors for i =1,
… , a (number of assessors). Then, following the work of
Varona and Hernández (2006), the variable y ij is the
expression of the underlying continuous unobserved lia-
bility (l ij) for the record j and assessor i . Each yij repre-
sents an assignment into one Ci mutually exclusive or-
dered categories more or less arbitrarily delimited by Ci+
1 thresholds for each assessor (t i), such that tmin< t i1
< t i2<…<t iCi−1<tmax, and where t ij is the j th threshold
for the i th assessor and tmin=−∞ and tmax=+∞. These
thresholds for each assessor transform the liability to the
observed scale. In matrix notation, the corresponding
MTMM to analyze the liability is:

lij ¼ x
0
iβþ z

0
i f þ eij ð3Þ

The presence of a specific threshold for each assessor
took into account the variation captured by the assessor
effect in LMM and TMM; thus, the fixed effect of asses-
sor was not included in the model (3). The MTMM
included a vector β with 3 blocks and 10 genetic groups.
The threshold between categories 2 and 3 was set to 0 in
the assessor 3, and the residual variance was set to 1 (i.e.,

e ~N (0, I )), in order to achieve identifiability.
Again, a Bayesian approach via Gibbs sampling with a

data augmentation step (Tanner and Wong 1987;
Sorensen et al. 1995) was used to estimate the parameters
in model (3). Appendix provides a detailed description of
the prior distributions of all parameters, the likelihood of
the data, the joint, and marginal conditional posterior
densities for MTMM (3), as well as the Gibbs sampling
algorithms.

A set of programs were written in FORTRAN to per-
form all calculations of the two linear mixed models and
the two generalized linear mixed models. The FORTRAN
programs are available from the first author on request.

Posterior inference, estimation of heritabilities, and model
comparison

The values of the hypervariances for the variance components
of LMM_NS, TMM, and MTMM were estimated from the
same original data set using an empirical Bayes approach via
Gibbs sampling, with a classical mixed model including fixed
effects of blocks, genetic groups and assessors, and random
family genetic effects (i.e., from LMM). The degrees of belief
(υ ) were set to 10 to reflect a relatively high degree of
uncertainty.

A single Gibbs chain of 1,010,000 samples was drawn, and
the first 10,000 iterates were discarded as burn-in for the four
linear and generalized mixed models of analysis. The
1,000,000 additional samples were used for computing the
summary from the marginal posterior distribution. Conver-
gence was monitored by plotting the iterations against the
mean of the draws up to each iteration (running mean plots)
and using the Z criterion of Geweke (1992) for each param-
eter. Marginal posterior densities for all parameters were esti-
mated by the Gaussian kernel method (Silverman 1986; Chap.
2). Mean, mode, median, standard deviation, and 95 % high
posterior density interval (95 % HPD) were then calculated
with Bayesian Output Analysis (version 1.1.7; Smith 2003)
for all parameters from the individual marginal posteriors,
under the free-software R (R Development Core Team
2011). At the end of each iteration, and assuming that all the
families were maternal half sibs (Bessega et al. 2009), indi-
vidual heritability in the original scale for LMM and in the
transformed normal score for LMM_NS was calculated

as bh2 ¼ 4� eσ2
f =ðeσ2

f þ eσ2
eÞ and in the underlying scale for

TMM andMTMM asbh2 ¼ 4� eσ2
f =ðeσ2

f þ 1Þ , where eσ2
f andeσ2

e are the values of the family and error variances sampled at
a given iteration.

The estimates of all dispersion parameters were used to
compare the fit between all the linear (LMM and LMM_NS)
and the threshold (TMM and MTMM) mixed models.

Tree Genetics & Genomes



Additionally, the Deviance Information Criterion (DIC;
Spiegelhalter et al. 2002) was computed to compare the fit of
the LMM, TMM, and MTMM. The DIC value was not
calculated for the LMM_NS since this model used a different
set of data, i.e., transformed “normal scores” instead of ob-
served phenotype (i.e., raw data). The DIC criterion is defined

as: DIC ¼ D θMð Þ þ pD , where D (θM) is the posterior mean
of the deviance and pD the “effective number of parameters.”A
smaller DIC value indicates a better fit and lower degree of
model complexity. Further comparisons were provided by
Spearman rank correlations and Pearson product–moment cor-
relation coefficients to compare whether the predicted breeding
values differed among models.

Results

Table 2 describes the distribution of stem quality scores
assigned by the three assessors and by each assessor. Clearly,
it did not follow a Gaussian distribution. Table 2 also shows the
heterogeneity in the distribution of the observed phenotype (i.e.,
raw data) across assessors. For example, assessor 1 assigned
category 1 to only 7.3 % of the trees, whereas assessor 2
assigned the same category to about 39.0%.Moreover, assessor
3 used only five of the six categories available to evaluate the
stem quality. These results show that each assessor placed the
trees in different regions of the six-point quality score categories
and highlight the importance of accounting for differences
between assessor distributions in the stem quality trait analysis.

Estimates of variances and heritabilities for the two linear
(LMM and LMM_NS) and two generalized (TMM and
MTMM) mixed models are summarized in Table 3. In gener-
al, posterior means, medians, and modes were quite similar for
all parameters, thus indicating that the marginal posterior
distributions are nearly symmetric. Estimates of marginal
posterior means of σf

2 and h2 were relatively similar for
TMM (0.025 and 0.097, respectively) and MTMM (0.026
and 0.096, respectively). However, HPD (95%) interval using
MTMMwas slightly narrower than the corresponding interval
using TMM, which suggests more certainty of the estimate

obtained from the model that accounted for heterogeneity
between assessors. Estimated heritabilities from TMM (0.97)
and MTMM (0.96) were similar to those estimated from
LMM_NS (0.094). As expected from the theory (Gianola
1979), heritability estimates from threshold and multi-
threshold mixed models were much higher (0.097 and
0.096, respectively) than those from LMM (0.077).

Table 4 shows rank and product–moment correlations be-
tween predicted breeding values of family genetic effects for
stem quality from four different linear and generalized mixed
models. Overall, Spearman and Pearson correlations for the
stem quality trait were high (from 0.88 to 0.99), but larger
between the linear models (i.e., LMM vs. LMM_NS; 0.99 for
rank and product–moment correlations, respectively) than
between linear and generalized mixed models (from 0.93 to
0.96), followed by the correlations between generalized
models (TMM vs. MTMM; 0.88 and 0.89 for rank and prod-
uct–moment correlations, respectively). Figure 2 shows a
scatter plot of the predicted breeding values of family genetic
effects from TMM and MTMM.

Although Spearman rank correlations were high, the rank-
ing among families differed across models. Table 5 shows the
ranking of the 10 best and 10 worst families based onMTMM
for the two linear and two generalized mixed models. As
shown above, the largest difference was found between
TMM and MTMM. Families 64, 107, and 195 performed
very well in MTMM (ranked 7, 9, and 10, respectively);
however, they were not among the best 10 families in the
other three models. The proportion of common families in the
top 10 families (5%) was 0.7 betweenMTMMand LMM, 0.7
between MTMM and LMM_NS, and 0.5 between MTMM
and TMM.

Table 2 Distribution of stem quality scores generated by all three asses-
sors and by each assessor as a proportion of the total number of trees
scored (total)

Assessor Score Total

1 2 3 4 5 6

1, 2, and 3 18.11 37.97 29.34 8.41 4.52 1.65 2,723

1 7.27 33.30 43.14 6.25 6.45 3.59 976

2 38.97 32.53 12.45 10.15 4.80 1.09 916

3 7.82 49.46 31.77 9.03 1.93 0 831

Table 3 Posterior statistics for family variance (σf
2), error variance (σe

2),
and heritability (h2) for the four linear and generalized mixed models
studied

Model Parameter Mean Median Mode SD 95 % HPD

LMM σf
2 0.023 0.022 0.020 0.007 0.013–0.037

σe
2 1.169 1.168 1.167 0.035 0.113–0.227

h2 0.077 0.074 0.066 0.025 0.043–0.123

LMM_NS σf
2 0.020 0.019 0.018 0.006 0.012–0.030

σe
2 0.826 0.825 0.820 0.025 0.786–0.867

h2 0.094 0.091 0.084 0.027 0.057–0.143

TMM σf
2 0.025 0.024 0.022 0.008 0.014–0.040

σe
2 1.00 – – – –

h2 0.097 0.094 0.086 0.030 0.055–0.153

MTMM σf
2 0.026 0.024 0.022 0.008 0.014–0.039

σe
2 1.00 – – – –

h2 0.096 0.092 0.086 0.030 0.054–0.151

Abbreviations used for the models were described in the text

SD standard deviation, HPD high posterior density interval
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Figure 3 presents the posterior mean estimates for five
threshold parameters (assessors 1 and 2) and four threshold
parameters (assessor 3), which indicates a large variation
between assessors. For example, the threshold between cate-
gories 2 and 3 was set to 0 by assessor 3, whereas posterior
mean estimates by assessor 1 and 2 were negative (−0.431)
and positive (0.389), respectively, and their 95%HPD did not
include the 0 (−0.529 – −0.335 and 0.294–0.485 for assessors
1 and 2, respectively). Category 2 was delimited by thresholds
whose posterior mean estimates were −1.673 and −0.431,
−0.479 and 0.389, and −1.643 and 0 for assessors 1, 2, and
3, respectively. These estimates agree with the difference
found in the observed phenotype (Table 2 and Fig. 3). For
example, 43.1 and 31.8 % of the raw data were assigned to
category 3 by assessors 1 and 3, respectively, whereas only
12.5 % was assigned to this category by assessor 2.

Discussion

This study proposed anMTMM to fit ordered categorical traits
assessed by different assessors in forest genetic evaluations.

The precise alignment of the estimated posterior means of the
thresholds with the distribution of the individual assessor's
score (Fig. 3) suggests that the proposed model is a helpful
model-to-fit subjective ordered categorical traits assessed by
different assessors in tree breeding. The comparison between
the proposed MTMM and the conventional TMM, which fits
common thresholds for the three assessors and accounts for the
differences between assessors by a systematic fixed effect,
showed similar estimates of the posterior means of σf

2 and
h2 for the stem quality trait (Table 3). The MTMM displayed a
slightly higher DIC than the TMM (i.e., 4,931.78 vs. 4,924.58,
respectively), most possibly due to the higher penalty of hav-
ing a larger “effective number of parameters.” However,
MTMM yielded slightly more precise estimates (i.e., narrower
95 % HPD interval; Table 3) than TMM. We expect that the
advantage of using MTMM will be greater for ordered cate-
gorical data sets showing more heterogeneity of the subjective
visual scale across assessors. Although there were practically
no differences between posterior mean estimates obtained from
MTMMand TMM for variance components, the heterogeneity
in the estimated posterior means of the thresholds between
assessors (Fig. 3) had a higher impact on the predicted breed-
ing values from TMM and MTMM (Table 4 and Fig. 2).
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Fig. 2 Scatter plot of predicted breeding values of family genetic effects
from the threshold mixed model (TMM) and the assessor-specific multi-
threshold mixed model (MTMM)

Table 4 Spearman rank correlations (upper diagonal) and Pearson prod-
uct–moment correlation coefficients (lower diagonal) between the breed-
ing values predicted using linear and generalized mixed models

Models LMM LMM_NS TMM MTMM

LMM 1.0 0.988 0.947 0.931

LMM_NS 0.990 1.0 0.950 0.939

TMM 0.950 0.955 1.0 0.884

MTMM 0.929 0.939 0.886 1.0

Abbreviations for the models were described in the text. In all cases,
correlations off-diagonal were highly significant from zero (p <0.001)

Table 5 Ranking of the 10 best and 10worst families of P. alba based on
the assessor-specific multi-threshold mixed model (MTMM) for the
linear and threshold models studied

Rank LMM LMM_NS TMM MTMM

Best 9 9 16 1

1 2 1 2

2 1 4 3

7 6 5 4

4 3 3 5

5 4 8 6

16 14 53 7

8 7 13 8

11 19 22 9

27 28 21 10

Worst 187 186 138 192

172 174 143 193

171 184 190 194

164 172 178 195

186 187 169 196

193 196 193 197

198 197 198 198

197 198 197 199

201 201 201 200

200 200 200 201

Abbreviations for the models were described in the text
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Fig. 3 Posterior mean estimates
for thresholds for each assessor
in the assessor-specific multi-
threshold mixed model. Numbers
on the upper part of each figure
refer to distribution of the
assessment generated by a
proportion of the total number
of trees scored. Numbers on the
lower part of each figure refer
to categories of the stem quality
score. Observe that assessor
3 used only five of the six
categories available to evaluate
the stem quality
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Therefore, selecting the 10 best families based on MTMM
(Table 5) would have consequences on selection decision and
rate of genetic progress. This is the first study applying a multi-
threshold model to the analysis of ordered categorical traits
from forest genetic trials. Therefore, making comparisons with
other studies is not possible. However, in an animal breeding
context, Varona et al. (2009) showed that the multi-threshold
mixed model with a specific set of thresholds for each slaugh-
terhouse had a better fit (smallest DIC value) than the threshold
animal mixed model for the subjective conformation and fat
cover score in the Pirenaica beef cattle breed. In addition, they
also found slight differences in terms of variance components;
the estimated posterior means of the threshold and multi-
threshold mixed models of h2 were 0.24 and 0.23 for confor-
mation and 0.13 and 0.13 for fat cover scores, respectively.

Variance components and heritabilities of the six-point
ordered categorical stem quality score were also estimated
using a conventional linear model in the observed score
(LMM). Given that the stem quality score used in this study
has a non-normal distribution (Table 2), the differences in the
estimated posterior means of h2 between the standard LMM
and TMM (0.077 vs. 0.097) and between LMM and MTMM
(0.077 vs. 0.096) were greater than between heritability esti-
mates from TMM and MTMM (0.097 vs. 0.096, respective-
ly). However, the linear model produces a heritability estimate
in observed scale, while the threshold and multi-threshold
models provide a heritability estimate in underlying scale
(liability). When the LMM estimate of heritabilities on the
observed scale (0.077) was transformed into the same under-
lying scale (Gianola 1979; Eq. (11), the LMM estimate of the
heritability was higher (0.085) than in the original scale
(0.077), but no greater than those estimated by the direct
estimation procedures, i.e., TMM (0.097) and MTMM
(0.096). Gianola (1979) described smaller estimated heritabil-
ity on the linear scale with respect to the underlying scale for
ordered categorical traits, which is consistent with the results
of previous research (e.g., Olesen et al. 1994; Yang et al. 1998;
Varona et al. 1999; Abdel-Azim and Berger 1999). For exam-
ple, Yang et al. (1998) analyzed six-point score responses of
lodgepole pine to infection of western gall rust and found that
the estimated heritability on the underlying scale (0.44) was
higher than that estimated on the discontinuous scale (0.25).
These higher estimates of the heritabilities for both threshold
and multi-threshold models should contribute, in part, to
greater genetic improvement and are indicative of superiority
of the threshold models over the linear model. Additionally,
the TMM and MTMM had a better fit (smallest DIC values)
than the standard LMM (i.e., 4,924.58 and 4,931.78 vs.
5,117.54, respectively). Instead, strong rank (0.95) and prod-
uct–moment (0.95) correlations were found between the pos-
terior mean breeding values from LMM and TMM, in keeping
with those reported by Varona et al. (2009) for two subjective

categorical traits: fat cover (0.95) and conformation score
(0.92). These high correlations may be due to the relatively
wide range of categories observed in the outward scale. In
general, results show superiority of the threshold over the
linear models for the analysis of ordered categorical traits
(e.g., Abdel-Azim and Berger 1999). In a simulation research,
Abdel-Azim and Berger (1999) investigated the goodness of
fit of threshold models for analyzing categorical traits with
different number of categories (2, 5, and 10), incidence of
categories (extreme, moderate, and normal), heritabilities in
the underlying scale (0.04, 0.20, and 0.50), and data structure
(unbalanced and balanced). The authors reported that thresh-
old models had better fit than all the linear models studied and
showed that accuracy of genetic parameters increased signif-
icantly with a larger number of categories, a more normal
distribution of incidences, increased heritability, and more
balanced data.

TMM andMTMMexplore a direct estimation procedure of
the variance components based on a generalized linear mixed
model, while LMM_NS uses a two-step approach, i.e., prior
to the analysis with a LMM, the observed scores are
transformed into normal score (Gianola and Norton 1981).
Interestingly, when we transformed the observed six-point
score by creating this new set of scores for the stem quality
trait, LMM_NS yielded comparable heritability estimates
(0.094) with TMM (0.097) andMTMM (0.096). Furthermore,
rank and product–moment correlations were high between
LMM_NS and TMM (0.96 and 0.94, respectively) and be-
tween LMM_NS and MTMM (0.95 and 0.94, respectively).
Canonical scaling was applied in forest genetic studies, but to
the best of our knowledge, this is the first research in tree
breeding to compare LMM with transformed normal score
with the conventional LMM and generalized linear mixed
models for ordered categorical traits. In animal breeding,
Matilainen et al. (2009) also found comparable correlations
(0.97) for the five-point calving ease score between the linear
model with a normalized score and the threshold model for the
direct genetic effects. Therefore, based on the results of this
particular case, it appears that the transformation to normal
score is a recommendedmethod to ordered categorical traits in
forest genetic analysis.

The assignment of ordered categorical scores to response
categories is not trivial. Gianola and Norton (1981) showed
that heritability in the observed scale is not invariant with
respect to the scores. Yang et al. (1998) confirmed this finding
using nine different categories (from 3 to 11) in a simulation
study and also in a polychotomous response of lodgepole pine
to western gall rust using six- and two-score categories.
Therefore, working on the underlying continuous scale using
LMM_NS, TMM, or MTMM presents several advantages
over working on the observed scale using the traditional
LMM. In our study, transforming the data into a common
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underlying continuous distribution made it possible to correct
the heterogeneity of assessors' perceptions. Additionally, it
allowed us to compare heritability estimates obtained from
different breeding populations to determine whether any dif-
ference observed among populations truly reflected unequal
scope for genetic improvement or they were simply a conse-
quence of difference in the observed scale (Yang et al. 1998).
The proposed model would also be advantageous when esti-
mating genetic parameters of ordered categorical traits of
multi-environmental forest genetic trials, especially when sites
influence the degree of site-specific categorical trait expres-
sion. In this case, assessors usually apply a relative score to the
trees in a single test location (i.e., site-specific score) rather
than relative to all trees in genetic tests (i.e., standardized
absolute score). This methodology may limit the utility of
these data in genetic analyses across sites, since the scale of
grading may be different according the different site (e.g.,
Pswarayi et al. 1997; Wu and Matheson 2005). The use of a
particular set of thresholds for each site should correct the
heterogeneity between sites, thus transforming the data into a
common underlying continuous distribution.

A Bayesian procedure coupled with a MCMC technique
(i.e., Gibbs sampling with a data augmentation step) has been
used to estimate the variance components. An alternative
approach for estimating dispersion parameters is the use of
an approximation of the marginal density of the variance
components, referred to as marginal maximum likelihood
(MML; Tempelman 1998). Various approximated MML esti-
mation methods have been used for estimating variance com-
ponents of threshold mixed models, including approximated
expectation-maximization (Harville and Mee 1984; Stiratelli
et al. 1984), and Laplacian (Raudenbush et al. 2000) methods.
Comparison of frequentist and Bayesian estimators is difficult
because central issues related to the comparison of frequentist
estimators (such as repeated sampling or bias) do not have the
same meaning in the Bayesian school (Gelman et al. 1995, p.
108). There is no small sample distribution for MML ap-
proaches, but asymptotic normality under certain conditions
on the eigenvalues of the information matrix (see Cressie and
Lahiri 1993). Even for generalized linear mixed models with a
Gaussian underlying liability distributions (i.e., TMM and
MTMM), the calculation of the information matrix using
MML methods may be unfeasible with large data sets. More-
over, whereas MML provides only point estimates of the
parameters and the asymptotic approximation of their vari-
ances, the Bayesian approach allows more general inferences
as the exact posterior distribution is available. Therefore,
variance, or standard errors, or posterior HPD intervals, or
the probability of a parameter being less than a given value
can be reported. However, no significant differences between
posterior mean, mode, and median of the genetic parameters
σf

2 and h2 were found in the two linear and the two threshold

models studied; thus, we would not anticipate a substantial
difference between the MCMC Bayesian approach applied in
our study and theMMLmethods for these genetic parameters.
Hence, the methodological effects of MML and MCMC tech-
niques on parameter estimates should be less important than
the effects of different modeling of the ordered categorical
traits shown above.

A data augmentation step in the Gibbs sampling algorithm
facilitates computations as stated by Sorensen et al. (1995).
However, they also noted that threshold parameters have very
slow mixing properties, and this is probably related to the data
augmentation approach. In spite of the visual inspection of the
running mean plots and the results of the Geweke's test, our
data showed no evidence that lack of convergence was a
problem for the σf

2 and h2. Geweke's test detected a slight lack
of convergence (p values less than 0.05 for the Z scores) in 3 of
the 13 threshold parameters estimated (p value equal to 0.03,
0.03, and 0.01). The slow convergences for these thresholds
could be more critical with an individual additive tree mixed
model. Cowles (1996) presented a Metropolis–Hastings algo-
rithm for generating liability data and thresholds jointly, instead
of individually from their respective full conditionals. For a
simulated seven-point categorical data set with a Gaussian
liability, she showed a much faster convergence with this new
algorithm.

Conclusions

This study applied an assessor-specific multi-threshold mixed
model for the analysis of an ordered categorical trait from a
forest genetic trial to estimate family variance and heritability
using a Bayesian method via Gibbs sampling with a data
augmentation step. This mixed model with heterogeneous
thresholds regarding assessors account for both the discrete
distribution of these traits and the different categorization
patterns of each assessor. It was found to be well suited to
the analysis of subjective ordered categorical data of forest
genetic evaluations assessed by different assessors. This ap-
proach will be most effective for those ordered categorical
data sets that have a strong departure from the Gaussian
distribution and significant difference between assessors.
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Appendix A

Prior distributions and joint posterior densities for all
parameters of the assessor-specific multi-threshold mixed
model

In a conjugate approach, the prior densities for all parameters
are chosen to be closed under sampling (Robert and Casella
1999), which means that both prior and posterior belong to the
same family of distributions. In order to reflect a prior state of
uncertainty for the fixed effects in a mixed linear model, while
keeping the posterior distribution proper (Hobert and Casella
1996), β is taken to be Np (0 , K ). The matrix K is diagonal
with large elements (k ii >10

8), and the prior density of β is
then proportional to:

p βð jKÞ∝j∏
i¼1

p

kii
−1
2

��� exp −
1

2

X
i¼1

p β2
i

kii

( )
ð4Þ

The vector of family effects is distributed a priori as f ~N
(0, I σf

2), so that:

p f σ2
f

���� �
∝ σ2

f

� �− f
2
exp −

f 0 f
2σ2

f

( )
ð5Þ

Following Sorensen and Gianola (2002), we chose to use
independent scaled inverted chi-square densities as a priori

distributions for the variance components σf
2 with known

parameters υ and δ2, so that:

p σ2
f

� ���υ;δ2Þ∝p σ2
f

� �− υ
2þ1ð Þ

exp
υδ2

2σ2
f

( )
ð6Þ

Finally, the thresholds for each assessor t i=(t i1, t i2,… ,
t iCi−1) are assumed to be distributed as order statistics from a
uniform distribution in the interval [tmin, tmax]:

p tið Þ ¼ Ci−1ð Þ! 1

tmin−tmax

� �Ci−1

I ti∈Tið Þ ð7Þ

where I (.) is an indicator function and Ti¼ ti1; ti2;…;ðf
tiCi−1Þjtmin≤ ti1≤ ti2≤…≤ tiCi−1≤ tmaxg:

Likelihood functions of the assessor-specific multi-threshold
mixed model

Applying Bayesian theorem, the augmenting joint posterior
density, i.e., the density of all unknown parameters, including
the liability (β , f , t , l , σ f

2) given the observed data (y ) and the
prior information, is written as the product of the prior distri-
butions (4), (5), (6), and (7), and the likelihood function,
which results in:

p β; f ; l; t;σ2
f jy;υ;δ2Þ∝pðβÞp f jσ2

fð Þp σ f
2

� ���υ;δ2Þpðljβ; fÞpðtÞpðyjβ; f ;l;t;σ2
fÞ

�
ð8Þ

Following Varona and Hernández (2006), last term in (8),
the likelihood of the observed data, can be expressed as:

p yð jβ; f ;l;t;σ2
f Þ ¼ ∏

i¼1

a

∏
j¼1

ni

1 lij < tij
� �

1ðyij ¼ 0Þ

þ 1 ti1 < lij < ti2
� �

1ðyij ¼ 1Þ þ…

þþ1 ti1 < lij < ti2
� �

1ðyij ¼ Ci þ 1Þ ð9Þ

Conditional posterior densities for all parameters
of the assessor-specific multi-threshold mixed model

Inference on any parameter by means of the Gibbs sampler
requires conditional posterior densities in close form.
Collecting the fourth and last terms to the right of (8), the full

conditional posterior distribution of the liability follows a
truncate normal distribution with density:

p lij
� ��β; f ; l�ij; tÞ ¼

ϕ x
0
iβþ z

0
i f ; 1

� �
Φ tikþ1−x

0
iβ−z0i fð Þ−Φ tik −x

0
iβ−z0i fð Þ

(10)

For the thresholds, collecting the last two terms in (8), the
full conditional posterior distribution of the j th threshold for
the i th assessor t ij (Varona and Hernádez 2006) is:

p tij
� ��β; f ; l; t�ij;σ

2
f ; yÞ¼

1

min ljy ¼ jþ 1ð Þi−max lð jy ¼ jÞi
(11)

where min(l | y =j +1)i is the maximum liability for the records
that failed in the j +1 category from the i th assessors, and
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max(l |y =j )i is the minimum liability for the records that failed
in the j +1 category for the i th assessors.

The posterior conditional density of the family variance
σf
2 is:

p σ2
f

� ���β; f ; l; yÞ∝p σ2
f

� �− nþυ
2 þ1ð Þ

exp
eυeδ2

2σ2
f

( )
ð12Þ

which is a scaled inverted χ2 density with eυ¼nþυ degrees of
freedom and scale parameter eδ2 ¼ f 0 f þ υδ2

� �
= υþ nð Þ .

Following Sorensen and Gianola (2002), the joint condi-
tional density of β and f is equal to

bβbf
24 35 l;σ2

f ; yeN��� bβbf
24 35; X ′XþK −1 X ′Z

Z ′X Z ′Z þ I σ−2
f

" #−1
0@ 1A

ð13Þ

The vectors bβ and bf in (14) are the solutions to the following
system of equations

X ′XþK −1 X ′Z

Z ′X Z ′Z þ I σ−2
f

" # bβbf
24 35 ¼ X ′l

Z ′l

	 

ð14Þ

At each iteration, the Gibbs algorithm proceeds by first
sampling l from (10), then t j from (11), the family variance σf

2

from (12), and the linear parameters bβ and bf of model (3)
from (13).
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