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1. Introduction and notations

The main goal of this paper is to study the optimal inverses of a certain opera-
tor and the solutions of a given abstract smoothing spline problem by means of two 
algebraic-geometric tools, the compatibility property between positive operators and 
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closed subspaces and the range additivity between two operators. Let us fix some no-
tations. Throughout, H, K are Hilbert spaces and L(H, K) the space of bounded linear 
operators from H into K. In particular, the algebra L(H, H) is denoted by L(H). A pos-
itive operator A ∈ L(H) is a bounded linear operator such that 〈Ah, h〉 ≥ 0 for every 
h ∈ H. We denote by L(H)+ the cone of positive operators of L(H). Given C ∈ L(H, K), 
R(C) denotes the range of C and N(C) its nullspace. If C ∈ L(H, K) has closed range, 
there exists a unique operator C† ∈ L(K, H) such that CC†C = C, C†CC† = C† and 
CC†, C†C are selfadjoint; C† is called the Moore–Penrose inverse of C.

Optimal inverses: Given two Hilbert spaces H, K and operators B ∈ L(H, K) and A ∈
L(K ⊕H) such that B has closed range and A is positive, an A-optimal inverse of B is 
an operator G ∈ L(K, H) such that

∥∥∥
(
BGk − k

Gk

)∥∥∥
A

= min
h∈H

∥∥∥
(
Bh− k

h

)∥∥∥
A

(1.1)

for every k ∈ K. Here ‖.‖A denotes the seminorm defined by A: 
∥∥∥
(

k

h

)∥∥∥
A

=

∥∥∥A1/2

(
k

h

)∥∥∥. The problem consists in providing conditions for the existence of optimal 

inverses and, in such cases, finding all such G’s.
It was S.K. Mitra [15] who defined the optimal inverses for matrices. His goal was the 

search of the best approximate solutions of inconsistent linear systems under seminorms 
defined by positive semidefinite matrices. This notion had attracted some interest in 
the statistics community (see the comments in Mitra’s paper). Here, we extend Mitra’s 
concept to Hilbert space operators in order to apply the results to abstract interpolation 
theory.

Abstract interpolating splines and smoothing problems: Consider a partition of [0, 1], 
0 ≤ t1 < t2 < . . . < tn ≤ 1 and (real or complex) numbers z1, . . . , zn. An interpolation 
problem which appears frequently is to find σ ∈ C(2)[0, 1] such that σ(tk) = zk, k =
1, . . . , n and 

∫ 1
0 |σ(2)(t)|dt is minimal. On the other hand, given a parameter ρ > 0, 

with the same data tk, zk, the smoothing problem consists in finding σ ∈ C(2)[0, 1]
such that 

∫ 1
0 |σ(2)(t)|dt + ρ 

∑n
k=1 |σ(tk) − zk|2 is minimal (in statistics it is called a case 

of non-parametric regression). It turns out that the unique solution for both problems 
is provided by a natural cubic spline, which is a σ ∈ C(2)[0, 1] such that σ is a cubic 
polynomial on each interval [tk, tk+1], σ(2)(t1) = σ(2)(tn) = 0 and σ is linear on [0, t1] and 
[tn, 1]. These results, due to Schoenberg [16] and Holladay [14], started the so-called spline 
theory, where different families of relatively simple smooth functions were found in order 
to solve a variety of more complex interpolation and smoothing problems. After several 
attempts to unify the different approaches, Atteia [3] defined the notion of abstract 
splines.
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Given Hilbert spaces H, E , F , f0 ∈ F and T ∈ L(H, E), V ∈ L(H, F) with closed 
range, an abstract interpolating spline (for these data) is h0 ∈ H such that V h0 = f0
and ‖Th0‖ ≤ ‖Th‖ for every h ∈ H such that V h = f0. Denote by spl(T, N(V ), f0) the 
set of such abstract interpolating splines, i.e.,

spl(T,N(V ), f0) = {h0 ∈ H : V h0 = f0, ‖Th0‖ = min
V h=f0

‖Th‖}. (1.2)

Consider also a parameter ρ > 0 and define on E × F the inner product 〈(e1, f1),
(e2, f2)〉ρ = 〈e1, e2〉 +ρ〈f1, f2〉. An abstract smoothing spline for the data above is hρ ∈ H
such that

‖(Thρ, V hρ) − (0, f0)‖ ≤ ‖(Th, V h) − (0, f0)‖

for every h ∈ H, where the norm is defined by the inner product 〈 , 〉ρ.
Again, as in the classical case, any smoothing spline is an interpolating spline. We refer 

the reader to the excellent expository papers [4,5]. Here, we slightly extend the definition 
of abstract splines so that we shall compare their performance with the optimal inverses 
of Mitra. We use the following definition, where the parameter ρ is supposed to be 1, 
just to simplify the exposition: with T , V as before and f0 ∈ F an abstract smoothing 
spline is h0 ∈ H such that

‖Th0‖2 + ‖V h0 − f0‖2 ≤ ‖Th‖2 + ‖V h− f0‖2

for all h ∈ H.
Before stating our main results we need to introduce another notion. A closed subspace 

S of a Hilbert space H and A ∈ L(H)+ are said to be compatible if there exists an 
idempotent E ∈ L(H) (an oblique projection) such that R(E) = S and AE = E∗A. 
This means that there exists a kind of “orthogonal projection” onto S if, instead of the 
original inner product of H, we use the semi-inner product defined by A, i.e., 〈h1, h2〉A :=
〈Ah1, h2〉.

We describe now our main results. First, we prove that if B ∈ L(H, K) has closed 
range, A ∈ L(K ⊕H)+ has a block form

A =
(
A1 0
0 A2

)

with A1 ∈ L(K)+ and A2 ∈ L(H)+ such that R(A1) and R(B) +N(A1) are closed, then 
the following are equivalent:

i. B admits an A-optimal inverse;
ii. R(B∗A1B + A2) = R(B∗A1B) + R(A2);
iii. A2 and N(A1B) are compatible.

This is Theorem 2.3 below.
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Second, consider a smoothing problem as before, with T ∈ L(H, E) and V ∈ L(H, F)
such that R(V ) is closed. The following are equivalent:

1. for every f0 ∈ F , there is a solution of min
h∈H

(‖Th‖2 + ‖V h − f0‖2);
2. R(T ∗T + V ∗V ) = R(T ∗T ) + R(V ∗V );
3. T ∗T and N(V ) are compatible;
4. there exists a global solution of the problem stated in item 1, i.e., there exists G ∈

L(F , H) such that

‖TGf‖2 + ‖V Gf − f‖2 = min
h∈H

(‖Th‖2 + ‖V h− f0‖2)

for every f ∈ F .

Moreover, if R(V ) = H and R(T ∗T ) ∩ R(V ∗) = {0}, then for every f0 ∈ F , f0 
= 0
the set of solutions of the problem in the above item 1 is

{Gf0 : G is a global solution}.

This is Theorem 4.2 together with Proposition 4.4.

2. Optimal inverses

In this section we obtain necessary and sufficient conditions for a closed range operator 
B ∈ L(H, K) to admit an A-optimal inverse, for some A ∈ L(K ⊕H)+.

The next result due to S.K. Mitra [15, Theorem 4.2] provides a condition for the 
existence of an A-optimal inverse of a closed range operator. The proof in the infinite 
dimensional case is similar, but we include it for the sake of completeness.

Theorem 2.1. Consider two operators B ∈ L(H, K) with closed range and A ∈ L(K⊕H)+. 
Then B admits an A-optimal inverse if and only if the equation

(B∗A11B + B∗A12 + A∗
12B + A22)X = B∗A11 + A∗

12 (2.1)

admits a solution. In this case, the set of A-optimal inverses of B is the set of solutions 
of (2.1).

Proof. By definition (see equation (1.1)), an operator G ∈ L(K, H) is an A-optimal 
inverse of B if and only if

∥∥∥
(
BGy − y

Gy

)∥∥∥
A
≤

∥∥∥
(
BGy − y

Gy

)
+

(
B(z −Gy)
z −Gy

)∥∥∥
A

for every y ∈ K, z ∈ H. Or equivalently,
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∥∥∥
(
BGy − y

Gy

)∥∥∥
A
≤

∥∥∥
(
BGy − y

Gy

)
− t

(
Bw

w

)∥∥∥
A

for every y ∈ K, w ∈ H, t ∈ C. By a usual orthogonality argument, it is not difficult to 
see that this inequality is equivalent to

〈
(
BGy − y

Gy

)
,

(
Bw

w

)
〉A = 0

for every y ∈ K, w ∈ H, or, using the matricial form of A,

〈
(
A11(BG− I)y + A12Gy

A∗
12(BG− I)y + A22Gy

)
,

(
Bw

w

)
〉 = 0

for every y ∈ K, w ∈ H. Then G is an A-optimal inverse of B if and only if

〈B∗(A11(BG− I) + A12G)y, w〉 + 〈(A∗
12(BG− I) + A22G)y, w〉 = 0 (2.2)

for every y ∈ K, w ∈ H; this is equivalent to B∗A11(BG −I) +B∗A12G +A∗
12(BG −I) +

A22G = 0, i.e., G is a solution of the equation

(B∗A11B + B∗A12 + A∗
12B + A22)X = B∗A11 + A∗

12. �
Corollary 2.2. Consider two operators B ∈ L(H, K) with closed range and A ∈ L(K⊕H)+. 
Then B admits an A-optimal inverse if and only if

R(B∗A11 + A∗
12) ⊆ R(B∗A11B + B∗A12 + A∗

12B + A22).

Proof. It follows from Theorem 2.1 and Douglas’ theorem [11, Theorem 1]. �

From now on, A is a diagonal weight on K⊕H, i.e., A =
(
A1 0
0 A2

)
with A1 ∈ L(K)+, 

A2 ∈ L(H)+. In this case, by Theorem 2.1, G is an A-optimal inverse of B if and only if 
G is a solution of

(B∗A1B + A2)X = B∗A1. (2.3)

Several remarks are in order. Notice, first, that for given operators A, B as before, 
an A-optimal inverse need not exist and, if there exists one, it will not be unique, in 
general. In fact, any A-optimal inverse of B, for a diagonal weight A, can be written as

G = (B∗A1B + A2)†B∗A1 + Z

where Z ∈ L(K, N(B∗A1B + A2)).
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Notice also that an A-optimal inverse of B is not necessarily a generalized inverse 
of B. For example, suppose that A2 ∈ L(H)+ is invertible. In this case, it follows from 
(2.3) that G = (B∗A1B + A2)−1B∗A1 is the unique A-optimal inverse of B and

B −BGB = B −B(B∗A1B + A2)−1B∗A1B

= B(I − (B∗A1B + A2)−1B∗A1B)
= B(B∗A1B + A2)−1(B∗A1B + A2 −B∗A1B)
= B(B∗A1B + A2)−1A2

so that B −BGB = 0 if and only if B = 0.
If A is a diagonal weight and G is an A-optimal inverse of B, then BG is A1-selfadjoint. 

In fact, by equation (2.2), an operator G is an A-optimal inverse of B if and only if

〈[B∗A1(BG− I) + A2G]y, w〉 = 0

for all y ∈ K and w ∈ H. In particular, if w = Gy it follows that

〈B∗A1BGy,Gy〉 − 〈B∗A1y,Gy〉 + 〈A2Gy,Gy〉 = 0

for all y ∈ K, or equivalently, ‖BGy‖2
A1

+ ‖Gy‖2
A2

= 〈(BG)∗A1y, y〉, for all y ∈ K. 
Therefore, (BG)∗A1 ∈ L(K)+, so that A1BG = (BG)∗A1. Hence, BG is A1-selfadjoint.

The next result gives a different set of necessary and sufficient conditions for the 
existence of an A-optimal inverse for a closed range operator.

Theorem 2.3. Let B ∈ L(H, K) be a closed range operator and suppose A =
(
A1 0
0 A2

)
∈

L(K ⊕ H)+, and R(A1) and R(B) + N(A1) are closed. Then the following statements 
are equivalent:

1. B admits an A-optimal inverse;
2. R(B∗A1B + A2) = R(B∗A1B) + R(A2);
3. A2 and N(A1B) are compatible.

Proof. Since R(A1) and R(B) are closed, if R(B) + N(A1) is closed, then the 
sum of their orthogonal complements N(B∗) + R(A1) is also closed, see [10, The-
orem 2.13]. Then, by [10, Theorem 4.1] it holds that R(B∗A1) is closed. Hence, 
R(B∗A1) = R(B∗A1) ⊆ R(B∗A

1/2
1 ) ⊆ R(B∗A1) because N(A1B) = N(A1/2

1 B). There-
fore R(B∗A1) = R(B∗A

1/2
1 ) and it is closed so that R(B∗A1) = R(B∗A1B).

1. ↔ 2. By Corollary 2.2, B admits an A-optimal inverse if and only if R(B∗A1) ⊆
R(B∗A1B + A2), or R(B∗A1B) ⊆ R(B∗A1B + A2). Equivalently R(B∗A1B + A2) =
R(B∗A1B) + R(A2); for a study of pairs C, D of operators such that R(C + D) =
R(C) + R(D), see [1,2].
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2. ↔ 3. follows from [2, Theorem 4.4] since B∗A1B has closed range and N(A1B) =
N(B∗A1B). �
Remark 2.4.

i. The condition “R(B) + N(A1) closed” in the previous result is equivalent to the 
compatibility of the pair (A1, R(B)) because R(A1) is closed, see [8, Theorem 6.2].

ii. It would be interesting to extend the theorem for a weight A not necessarily of 
diagonal type.

3. Smoothing problems

In this section, we study abstract smoothing problems in Hilbert spaces. The inter-
polating and smoothing problems were introduced by Atteia [3] and they are known as 
abstract splines problems, as mentioned in the introduction.

In what follows, we consider T ∈ L(H, E) and V ∈ L(H, F) such that R(V ) is closed.
In the next proposition we collect some results on abstract splines; the proofs can be 

found in [9, Proposition 3.1 and Theorem 3.2].

Proposition 3.1. Let A = T ∗T , h0 ∈ H and f0 = V h0. Then

spl(T,N(V ), f0) = (h0 + N(V )) ∩ (A(N(V ))⊥.

Moreover, spl(T, N(V ), f0) is not empty for every f0 ∈ R(V ) if and only if A and N(V )
are compatible.

We state again the problem which is naturally associated to (1.2): finding the set of 
solutions of:

min (‖Th‖2 + ‖V h− f0‖2), for h ∈ H, (3.1)

where f0 ∈ F . This is known as a smoothing problem.
In [7, Theorem 6.4] it was proved that if V is surjective, then the compatibility of 

T ∗T and N(V ) implies the existence of solutions of problem (3.1). In what follows, we 
prove that for any closed range operator V , the compatibility of T ∗T and N(V ) is in 
fact equivalent to the existence of solutions of problem (3.1), for every f0 ∈ F .

In order to do so, define K :H → E ×F , Kh = (Th, V h), for h ∈ H, and consider the 
following inner product on E × F

〈(e, f), (e′, f ′)〉 = 〈e, e′〉 + 〈f, f ′〉, for e, e′ ∈ H, f, f ′ ∈ F ,

and the associated norm ‖(e, f)‖2 = 〈e, e〉 + 〈f, f〉, for (e, f) ∈ E × F .
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Then problem (3.1) can be restated as the following least squares problem: find the 
set of solutions of

min
h∈H

‖Kh− (0, f0)‖2. (3.2)

Theorem 3.2. The following statements are equivalent:

1. Problem (3.1) admits a solution for all f0 ∈ F ;
2. R(T ∗T + V ∗V ) = R(T ∗T ) + R(V ∗V );
3. T ∗T and N(V ) are compatible.

Proof. 1. ↔ 2.: Consider the operator K defined before. It is straightforward to check 
that the adjoint of K, K∗ :E ×F → H, is given by K∗(e, f) = T ∗e + V ∗f , for e ∈ E and 
f ∈ F .

Given f0 ∈ F , problem (3.2) (or equivalently, problem (3.1)) admits a solution if and 
only if the associated normal equation K∗Kh = K∗(0, f0) has a solution: observe that 
‖Kh0− (0, f0)‖ ≤ ‖Kh − (0, f0)‖ for every h ∈ H if and only if Kh0− (0, f0) ∈ R(K)⊥ =
N(K∗) (see [12,13]). But the last condition is equivalent to K∗(Kh0 − (0, f0)) = 0. 
Then, problem (3.2) has a solution if and only if for every f0 ∈ F there exists h ∈ H
such that K∗(0, f0) = K∗Kh or, equivalently, V ∗f0 = T ∗Th + V ∗V h. But this means 
that R(V ∗) ⊆ R(T ∗T + V ∗V ). Since R(V ) is closed it holds R(V ∗) = R(V ∗V ), so that 
(3.2) has a solution if and only if R(V ∗V ) ⊆ R(T ∗T + V ∗V ). Finally, this is equivalent 
to R(T ∗T + V ∗V ) = R(V ∗V ) + R(T ∗T ).

2. ↔ 3.: It follows from [2, Theorem 4.4] noticing that N(V ∗V ) = N(V ). �
From the proof of the above proposition it follows that problem (3.1) admits a solution 

for all f0 ∈ F if and only if it admits a solution for all f0 ∈ R(V ).

Corollary 3.3. If R(T ∗T ) ∩ R(V ∗V ) = {0}, then problem (3.1) admits a solution for all 
f0 ∈ F if and only if N(T ) + N(V ) = H.

Proof. By Theorem 3.2, problem (3.1) admits a solution for every f0 ∈ F if and only 
if R(T ∗T + V ∗V ) = R(T ∗T ) + R(V ∗V ), or equivalently, H = N(T ∗T ) + N(V ∗V ) =
N(T ) + N(V ). �
Corollary 3.4. If T ∈ L(H, E) is a closed range operator, then problem (3.1) admits a 
solution for all f0 ∈ F if and only if N(T ) + N(V ) is closed.

Proof. By Theorem 3.2, problem (3.1) admits a solution for all f0 ∈ F if and only if T ∗T

and N(V ) are compatible, but this is equivalent to the condition N(T ) + N(V ) closed, 
because T has closed range, see [8, Theorem 6.2]. �
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4. Global solutions of the smoothing problem

In what follows, we use the results on optimal inverses to find, for every f ∈ F , 
a solution of the smoothing problem (3.1) which depends continuously on f .

Definition 4.1. An operator G ∈ L(F , H) is a global solution of problem (3.1) if

‖TGf‖2 + ‖V Gf − f‖2 = min
h∈H

(‖Th‖2 + ‖V h− f‖2), for every f ∈ F .

Observe that if G is a global solution of problem (3.1), then Gf is a solution of the 
smoothing problem (3.1) for every f ∈ F . The next theorem shows that the existence of 
a solution of problem (3.1) for every f0 ∈ F is actually equivalent to the existence of a 
global solution. Then we can add another equivalent condition to those of Theorem 3.2.

Theorem 4.2. The following statements are equivalent:

1. Problem (3.1) admits a solution for all f0 ∈ F ;
2. R(T ∗T + V ∗V ) = R(T ∗T ) + R(V ∗V );
3. T ∗T and N(V ) are compatible;
4. problem (3.1) admits a global solution.

Proof. 2. ↔ 4.: By Theorem 2.3, R(T ∗T + V ∗V ) = R(T ∗T ) + R(V ∗V ) if and only if V
admits an A-optimal inverse where A1 = I ∈ L(F), A2 = T ∗T ∈ L(H), A = A1 ⊕ A2
and B = V . Equivalently, problem (3.1) admits a global solution. In fact, G ∈ L(F , H)
is an A-optimal inverse of V if for every f ∈ F , it holds that

‖V Gf − f‖2
A1

+ ‖Gf‖2
A2

≤ ‖V h− f‖2
A1

+ ‖h‖2
A2

, for all h ∈ H,

equivalently, for every f ∈ F ,

‖V Gf − f‖2 + ‖TGf‖2 ≤ ‖V h− f‖2 + ‖Th‖2, for all h ∈ H,

i.e., G is a global solution of the smoothing problem (3.1). �
Remarks 4.3.

1. It follows from the above proof and (2.3) that the set of global solutions of problem 
(3.1) is the set of solutions of

(T ∗T + V ∗V )X = V ∗.

Moreover, it is not difficult to see that problem (3.1) admits a unique global solution 
if and only if N(T ) ∩N(V ) = {0}.
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2. If T ∗T and N(V ) are compatible and V is surjective, then for each f0 ∈ F the 
solutions of problem (3.1) can be described as an abstract spline, see [7, Theorem 6.4]. 
In fact, it holds that for every f0 ∈ F the set of solutions of problem (3.1) is

spl(T,N(V ), f̃0)

where f̃0 = (PR(V ) + V †∗T ∗T (I −E)V †)†f0, with E a projection such that R(E) =
N(V ) and T ∗TE = E∗T ∗T .
In particular, if R(T ∗T ) ∩R(V ∗) = {0}, then the solution of problem (3.1) is

spl(T,N(V ), f0)

for every f0 ∈ F . In fact, if h ∈ H is a solution of problem (3.1), then, as observed in 
the proof of Theorem 3.2, it holds V ∗f0 = T ∗Th + V ∗V h, so that V ∗f0 − V ∗V h =
T ∗Th = 0 because R(T ∗T ) ∩ R(V ∗V ) = {0} and R(V ∗V ) = R(V ∗). Therefore 
V ∗f0 = V ∗V h and

f0 = V ∗†V ∗f0 = V ∗†V ∗V h = V h

because V V † = I. On the other hand, h is such that V h = f̃0. Hence f̃0 = f0.

Proposition 4.4. Suppose T ∗T and N(V ) are compatible, R(T ∗T ) ∩R(V ∗) = {0} and V
is surjective. Then, for each f0 ∈ F , f0 
= 0, the set of solutions of (3.1) is

{Gf0, G a global solution of (3.1)}.

Proof. By the remark above, the set of solutions of (3.1) is spl(T, N(V ), f0). Observe 
that V †f0 
= 0, because N(V †) = N(V ∗) = {0} and f0 
= 0. Let A = T ∗T . Then, by 
[6, Proposition 4.24], it holds that

spl(T,N(V ), f0) = {(I − Z)V †f0, Z ∈ Π(A,N(V ))}

where Π(A, N(V )) = {Z ∈ L(H) : R(Z) ⊆ N(V ), AZ = Z∗A, AZPN(V ) = APN(V )}. 
Therefore, every solution of (3.1) can be written as (I−Z)V †f0 for some Z ∈ Π(A, N(V )). 
Finally, observe that G = (I − Z)V † is a global solution of (3.1). The other inclusion 
follows from the definition of global solution. �
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