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Abstract

We shall prove some simultaneous localization or concentration inequalities for the Continuous

Wavelet Transform. We will also show that simultaneous localization in the scale-time(space) is

impossible, in the sense that the scale sections of the support of the wavelet transform of a non null

Lp-function can not have finite Lebesgue measure. Finally, some properties of the support of the

continuous wavelet transform of band-limited functions are studied.
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1. INTRODUCTION

The Lebesgue Lp spaces have proved to be useful in modelling signals which are not necessarily

restricted to the usual finite energy case of L2(R), and on the other hand, Wavelet transforms are

nowadays a standard signal analysis-synthesis tool [15]. Let f ∈ Lp(Rn), p ∈ (1, +∞), then its

continuous wavelet transform (CWT) is defined as (here we use the L1 normalization) [10, 16]:

Wf (a, b) = 1
an

∫

Rn ψ
(

x−b
a

)

f (x)dx , (1)

(a, b) ∈ R>0 × Rn, R>0 = (0, +∞) ,

for an admissible wavelet ψ [15]. The variable a represents, in some sense, the scales of the

signal f “acting” in an interval of time centered in the location parameter b. In view of that this

integral transform gives an alternative description to the ordinary windowed Fourier transform

time-frequency decomposition of f , it is of interest to describe its simultaneous time-frequency or

time-scale localization properties. We shall see that if we want to study the time-scale localization

in terms of the Lebesgue measure of the support of Wf we have a similar restriction to that given

by Benedicks for the Fourier transform, which says:

Theorem 1.1 ([2]). Let f ∈ L1(Rn), such that both supports of f and f̂ , have finite Lebesgue

measure, then f = 0 a.e.

An analogue result is given in [11] for Wigner distributions. Some generalizations of Benedicks’

result are also studied in [19]. There, the results are presented as simultaneous restrictions on the

measure of the supports of f and its Fourier transform f̂ for certain locally compact groups, and in
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particular the affine group . It is of also of practical interest to study similar localization principles

for wavelets [9][21]. On the other hand, localization properties can also be stated as uncertainty

inequalities like Heisenberg’s classical principle for the Fourier transform [7, 9]:

Theorem 1.2. Given f ∈ L2(R), then :

‖f ‖2
L2

4π
≤ ‖xf (x)‖L2

∥

∥

∥
λf̂ (λ)

∥

∥

∥

L2
.

The inequality becomes an equality if and only if f (x) = Ce−kx2
, with C ∈ C and k > 0.

This type of inequalities are studied for example in [4, 17, 18, 20, 21], for the Cohen class

transforms in [12], for the Linear Canonical Transform in [5, 13, 24] and in [8] for the Gabor-

STFT transforms. Other generalizations can be found in [14].

1.1. Paper outline

We shall first study in section 3 some localization properties of the CWT of an Lp function-signal

in terms of some norm inequalities relating its CWT and its Fourier transform. Afterwords, in a

similar way to [2, 19], we shall prove in section 4 that the -scale- sections of the support of the

wavelet transform of a non null Lp-function cannot have finite Lebesgue measure. In particular,

that it cannot have finite Lebesgue measure in the time-scale space (corollary 1). Finally, we shall

study briefly some simple properties of the support of the continuous wavelet transform of band

limited functions, this intuitive result characterizes in terms of the wavelet transform the bandwidth

of a band limited function.
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2. SOME PRELIMINARY RESULTS

2.1. Fourier transform

If S(Rn) denotes the Schwartz class of functions [7], for f ∈ S(Rn) we shall define its Fourier

transform as [7]:

F(f )(λ) = f̂ (λ) =
∫

Rn

f (x)e−i 2π x.λdx .

This linear operator extends to the Lebesgue spaces Lp(Rn) and to the dual of S(Rn): S ′(Rn).

We assume the reader to be familiar with the usual properties of the Fourier transform [7, 22],

the inverse Fourier transform F−1f =
∨
f and Plancherel’s identity, of which an immediate

generalization is the Hausdorff-Young Inequality: if p ∈ (1, 2], then

∥

∥

∥
f̂

∥

∥

∥

Lq
≤ ‖f ‖Lp , with 1

p
+ 1

q
= 1 .

A sharper inequality is the Babenko-Beckner inequality [1]: if p ∈ (1, 2], then

∥

∥

∥
f̂

∥

∥

∥

Lq
≤ B(p, q) ‖f ‖Lp , (2)

with B(p, q) =
(

p1/p

q1/q

)
n
2
, 1

p
+ 1

q
= 1 .

Finally, as it is well known that the Fourier transform is not an involution in Lp(Rn), we recall an

auxiliary a known result which will be useful in the sequel.

Proposition 1. Let f , g ∈ Lp(Rn), p ∈ (1, 2], then

∫

Rn

f (x)ĝ(x)dx =
∫

Rn

f̂ (x)g(x)dx .
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The same holds for
∨
f . Given a several variables function f (x1, . . . , xn), we denote Fxj

f to the

operation of taking Fourier transform only with respect to the variable xj.

2.2. Wavelet transform

We recall that, for suitable wavelet function ψ , eq. 1 defines a bounded linear operator and indeed

the following characterization of the Lp spaces in terms of the continuous Wavelet transform holds

[10, 16, 22]:

Theorem 2.1. Let f ∈ Lp(R), p ∈ (1, +∞), then there exists positive constants cψ(p), Cψ(p), only

depending on ψ and p, such that:

Aψ(p) ‖f ‖Lp ≤
(

∫

R>0

(∫

R

|Wf (a, b)|2 da

a

)

p
2

db

)
1
p

≤ Bψ(p) ‖f ‖Lp .

Some properties of the continuous wavelet transform in Lp spaces are also studied in e.g. [16]

for more references. We will assume that the wavelet function ψ ∈ L1(Rn)
⋂

L2(Rn) verifies the

admissibility condition on ψ [7, 15]: Cψ =
∫

[0,∞)
|ψ̂(tλ)|2

t
dt < ∞ for every λ ∈ Rn \ {0}. In our

discussion, we will use extensively the following:
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2.2.1. Fact

If ψ is a wavelet function then ψ ∈ Lp(Rn), for all p ∈ [1, 2]. Indeed, this is a direct consequence

of Hölder’s inequality with appropriate indexes: if p ∈ (1, 2) then

‖ψ‖p

Lp =
∫

Rn

|ψ(x)|2p−2|ψ(x)|2−pdx ≤ ‖ψ‖2(p−1)

L2 ‖ψ‖2−p

L1 < ∞ .

3. A HEISENBERG TYPE UNCERTAINTY PRINCIPLE FOR THE WAVELET

TRANSFORM

First, we have the following claim on the Fourier Transform. The following result, for the case

p = q = 2 reduces to the classic uncertainty principle.

Lemma 1. Let f ∈ Lq(R) and p ∈ [2, ∞), then if 1
p

+ 1
q

= 1:

1

2πpB(p, q)

∥

∥

∥
f̂

∥

∥

∥

p

Lp
≤
(∫

R

|λ|q|f̂ (λ)|pdλ

)
1
q
(∫

R

|x|q|f (x)|qdx

)
1
q

,

where B(p, q) =
(

p1/p

q1/q

)
1
2

(the constant of the Babenko-Beckner inequality). If p 6= 2, equality is

attained if and only if f = 0 a.e.

Proof. In case of
∫

R
|x|q|f (x)|qdx = ∞ the result is trivial. Otherwise if f (x) and xf (x) ∈ Lq(R)

then the distributional derivative of f̂ , (f̂ )′ is a function in Lp(R) and moreover f̂ coincides a.e. with

an absolutely continuous function with derivative (f̂ )′. If f̂ is absolutely continuous then, over any

finite interval [−N, N], the same holds for |f̂ |p, and (|f̂ |p)′ = p
2
(|f̂ |2)

p
2
−12Re(f̂ (f̂ )′). Therefore the

6
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integration by parts formula for absolutely continuous functions [23] yields

∫

R

|f̂ (λ)|pdλ = lim
N−→∞

N|f̂ (N)|p + N|f̂ (−N)|p −
∫ N

−N

pλ (|f̂ |2)
p
2
−1 Re(f̂ (f̂ )′) dλ . (3)

If liminf
N−→∞

N|f̂ (N)|p > 0 then |f̂ (λ)|p ∼ C
λ

, which is a contradiction since f̂ ∈ Lp(R). So, by Hölder’s

inequality eq. 3 becomes
∫

R

|f̂ (λ)|pdλ ≤
∣

∣

∣

∣

∫

R

pλ (|f̂ |2)
p
2
−1 f̂ (f̂ )′ dλ

∣

∣

∣

∣

≤ p

(∫

R

|λ|q|f̂ (λ)|q(p−1)dλ

)
1
q
(∫

R

|(f̂ )′(λ)|pdλ

)
1
p

, (4)

with 1
p

+ 1
q

= 1 by Hölder’s inequality. But q(p − 1) = p, thus:

∫

R

|f̂ (λ)|pdλ ≤
(∫

R

|λ|q|f̂ (λ)|pdλ

)
1
q
(∫

R

|(f̂ )′(λ)|pdλ

)
1
p

Recalling the formula for the derivative of the Fourier transform [7]:

|F−1((f̂ )′)(x)| = 2π |x||f (x)| ,

and the Babenko-Beckner inequality (eq.2 section 2):

∫

R

|f̂ (λ)|pdλ ≤
(∫

R

|λ|q|f̂ (λ)|pdλ

)
1
q

2πB(p, q)

(∫

R

|x|q|f (x)|qdλ

)
1
q

. (5)

Finally, if equality holds then the same holds for eq.4. But this is true if f̂ verifies

(f̂ (λ))′ = αλ|λ|p−2f̂ |f̂ |p(p−2) ,

but the non null solutions of this differential equation belongs to Lp(R) if and only if p = 2.
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3.1. Application to the wavelet transform

We shall analyse the concentration of Wf . We will compare the localization of f (resp. f̂ ) with the

localization of its wavelet transform proving the following Heisenberg type uncertainty principle

for the Lp Wavelet transform (in the variable b):

Theorem 3.1. Let f ∈ Lp(R), p ∈ [2, +∞) and f̂ ∈ Lq(R) with 1
p

+ 1
q

= 1, then:

A
p
ψ(p) ‖f ‖p

Lp

(B(p, q)Cψ2πp)
1
q

≤
∥

∥

∥
λf̂

∥

∥

∥

Lq

(

∫

R>0

(∫

R

|b|q|Wf (a, b)|pdb

)
2
p da

a

)

p−1
2

.

Remark

The constant Aψ(p) is the same of theorem 2.1. However, theorem 2.1 shows that the Lp-norm is

essentially equivalent to the inner integral of this double sided inequality. This result, if p = 2,

reduces to one obtained in [6].

Proof. Recalling the before mentioned fact 2.2.1, is immediate that ψ ∈ Lq(R) with q ∈ (1, 2],

and as f is a real function
∨
f = f̂ ∈ Lq(R), thus by proposition 1, and since f =

∨̂
f , eq. 1 can be

written as:

Wf (a, b) = 1

a

∫

R

ψ

(

x − b

a

)

f (x)dx = 1

a

∫

R

ψ

(

x − b

a

) ∨̂
f (x)dx

=
∫

R

ψ̂ (aλ) f̂ (λ)e−i2πλbdλ . (6)
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thus, if 1
p

+ 1
q

= 1, by lemma 1 :
∫

R

|Wf (a, b)|pdb

≤ 2π p B(p, q)

(∫

R

|b|q|Wf (a, b)|pdb

)
1
q
(∫

R

|λ|q|ψ̂ (aλ) f̂ (λ)|qdλ

)
1
q

,

therefore:

I1 =
∫

R>0

(∫

R

|Wf (a, b)|pdb

)
2
p da

a

≤
∫

R>0

(

2π pB(p, q)

(∫

R

|b|q|Wf (a, b)|pdb

)
1
q

)

2
p

×
(

(∫

R

|λ|q|ψ̂ (aλ) f̂ (λ)|qdλ

)
1
q

)

2
p

da

a
,

then by Hölder’s inequality:

I1

(2π p B(p, q))
2
p

≤
(

∫

R>0

(∫

R

|b|q|Wf (a, b)|pdb

)
2
p da

a

)

1
q

×
(

∫

R>0

(∫

R

|λ|q|ψ̂ (aλ) f̂ (λ)|qdλ

)
2
q da

a

)

1
p

= I2I3 ,

But, since q ≤ 2 then 2
q

≥ 1 and therefore by Minkowski’s integral inequality we get that:

I3 ≤





∫

R

(

∫

R>0

(

|λ|q|ψ̂ (aλ) f̂ (λ)|q
)

2
q da

a

)

q
2

dλ





2
qp

=
(

∫

R

|λ|q|f̂ (λ)|q
(∫

R>0

|ψ̂ (aλ) |2 da

a

)

q
2

dλ

)
2

qp

≤ C
1
p

ψ

(∫

R

|λ|q|f̂ (λ)|qdλ

)
2

qp

.

Finally, as p ≥ 2, again by Minkowski’s inequality:

I1 ≥
(

∫

R

(∫

R>0

|Wf (a, b)|2 da

a

)

p
2

db

)
2
p
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Combining these bounds on I1, I3, and theorem 2.1 we get the desired result.

4. ON THE SIZE OF SUBSETS OF THE TIME-SCALE PLANE

Denote the Lebesgue measure of a measurable subset A: |A|, and for a measurable function f

define C(f ) := {f 6= 0}. Note that this subset differs with the usual definition of the support of a

function, and as we are dealing with f ∈ Lp(Rn) which consists of equivalence classes of functions

this definition may lead to apparent confusions. However as we shall actually only consider the

measure of these sets any contradiction is avoided. In practice it is important to compare the time

concentration versus the bandwidth of a signal [3]. For example, this can be done by comparison

of the size of the supports of f and f̂ or other time-frequency representation. Next we give an

uncertainty principle for the continuous wavelet transform. We shall prove that the scale sections of

the support of the wavelet transform of a non null Lp-function cannot have finite Lebesgue measure,

and in particular that it cannot have finite Lebesgue measure in the time-scale space (corollary 1).

For this result we will assume that the measure of the support of ψ̂ is finite (but not necessarily

band limited). In [6] a similar result is proved for p = 2. However that proof which does not need

ψ̂ to be supported on a set of finite measure, relies heavily on Hilbert space methods, so it cannot

be directly modified for the case p 6= 2.

Theorem 4.1. Let f ∈ Lp(Rn), p ∈ (1, 2], and ψ an admissible wavelet such that |C(ψ̂)| < ∞. If

for almost all a ∈ R>0 :

|Sa|Rn =
∣

∣

{

b ∈ Rn : |Wf (a, b)| > 0
}∣

∣

Rn < ∞ ,
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then f = 0 a.e.

We remark that the result also holds with the L2 normalization:Wf (a, b) = 1√
an

∫

Rn ψ
(

x−b
a

)

f (x)dx.

Proof. (Of theorem 4.1) Recalling proposition 1 we can take in account again equation 6 (now in

Rn), then there exists A ⊂ R>0 such that |Ac ∩ R>0| = 0 such that for all a ∈ A, |Sa|Rn < ∞, and

on the other hand:

F
−1
b (Wf (a, . ))(λ) = ψ̂(aλ)f̂ (λ) , ∀a ∈ A.

Then for each a ∈ A:
∣

∣

∣

{

λ ∈ R : |ψ̂(aλ)f̂ (λ)| > 0
}∣

∣

∣
≤
∣

∣

∣

{

λ ∈ R : |ψ̂(aλ)| > 0
}∣

∣

∣

= 1

an

∣

∣

∣

{

λ ∈ R : |ψ̂(λ)| > 0
}∣

∣

∣
< ∞ .

Now, let us verify that ψ̂(a . )f̂ ( . ) ∈ L1(Rn). Recalling that ψ ∈ L2(Rn), thus by Hölder’s

inequality:

∫

Rn

|ψ̂(λ)|pdλ ≤
(∫

C(ψ̂)

|ψ̂(λ)|2dλ

)

p
2

|C(ψ̂)|1− p
2 .

Thus, again by Hölder’s inequality and the Hausdorff-Young theorem:

∫

Rn

|ψ̂(aλ)f̂ (λ)|dλ ≤ 1

a
n
p

∥

∥

∥
ψ̂

∥

∥

∥

Lp

∥

∥

∥
f̂

∥

∥

∥

Lq
≤ 1

a
n
p

∥

∥

∥
ψ̂

∥

∥

∥

Lp
‖f ‖Lp < ∞ ,

with 1
q

= 1 − 1
p
. Then by theorem 1.1, we have that if a ∈ A:

Wf (a, b) = 0 ,
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for almost all b ∈ Rn. Now, by Fubini’s theorem:

∣

∣

{

(a, b) ∈ R>0 × Rn : |Wf (a, b)| > 0
}∣

∣

R×Rn

=
∫

A

∣

∣

{

b ∈ Rn : |Wf (a, b)| > 0
}∣

∣

Rn da = 0 .

Thus Wf = 0 a.e. and then f = 0 a.e.

From this result one obtains immediately:

Corollary 1. Let f ∈ Lp(Rn), p ∈ (1, 2], and ψ an admissible wavelet such that |C(ψ̂)| < ∞. If

|{(a, b) ∈ R>0 × Rn : |Wf (a, b)| > 0}|R×Rn < ∞, then f = 0 a.e.

In theorem 4.1 we gave a result on the size of the support of the wavelet transform, about the

impossibility of an instantaneous time-scale description of a non-null function. On the other hand,

in a similar way to STFT, we can see briefly that a function cannot be concentrated on small sets in

the time-scale plane. We shall find a lower bound for the size, in terms of the Lebesgue measure,

of a non null L2 function:

Theorem 4.2. Let ‖f ‖L2 = 1, 1 > ǫ ≥ 0 and U ⊂ R>0 × Rn a measurable set such that:

1

‖ψ‖2
L2

∫ ∫

U

|Wf (a, b)|2andadb ≥ 1 − ǫ , (7)

then |U| ≥ 1 − ǫ.
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Remark

a similar statement holds for the L2-normalization with eq. 7 replaced by 1

‖ψ‖2

L2

∫ ∫

U
|Wf (a, b)|2dadb.

Proof. From eq. 6 and the Cauchy-Schwartz inequality one immediately obtains:

|Wf (a, b)| ≤
∥

∥

∥
f̂

∥

∥

∥

L2

∥

∥

∥
ψ̂(a . )

∥

∥

∥

L2
=

∥

∥

∥
ψ̂

∥

∥

∥

L2√
an

.

Then:

1 − ǫ ≤ 1

‖ψ‖2
L2

∫ ∫

U

|Wf (a, b)|2andadb ≤ 1

‖ψ‖2
L2

∫ ∫

U

∣

∣

∣

∣

∣

∣

∣

∥

∥

∥
ψ̂

∥

∥

∥

L2√
an

∣

∣

∣

∣

∣

∣

∣

2

andadb = |U| .

4.1. On the continuous wavelet transform of Band-Limited functions

Now, in contrast to time localization, we describe briefly some properties of functions whose

Fourier transforms are supported on a finite interval.

The main result of this section is:

Theorem 4.3. Let ψ be a bandpass wavelet, f ∈ Lp(R), p ∈ (1, 2], f 6= 0 and Wf ∈ C(R>0 ×R).

If

α = sup
{

x > 0 : ψ̂(λ) = 0 , ∀ λ ∈ [−x , x]
}

,
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then the following assertions are equivalent:

(1) f̂ ∈ Lq(R) has compact support, 1
p

+ 1
q

= 1.

(2) ∃ R > 0 such that Wf (a, b) = 0 for every a ≤ R and all b ∈ R. Moreover if such R exists then

α

σ
= sup {R > 0 : |Wf (a, b)| = 0, ∀ (a, b) ∈ (0, R] × R } ,

where σ = inf
{

x ∈ R : f̂ = 0 a.e. in [−x, x]c
}

.

The continuity condition of Wf may look rather restrictive, however this can achieved imposing

relatively mild decay conditions on ψ . The following proposition gives sufficient conditions for

the continuity of Wf .

Proposition 2. Let ψ be an admissible wavelet and a function η, such that |ψ̂ | ≤ η ∈ L1(R) ∩

L∞(R), which is an even function that verifies η(x1) ≤ η(x2), if 0 ≤ x2 ≤ x1. If f ∈ Lp(R),

p ∈ (1, 2], then Wf , given by eq. 1, defines a continuous function of the variables (a, b) ∈ R>0×R.

Proof. To prove the continuity on the variables (a, b): Let |h| < 1 and |k| < 1, recalling the

definition of Wf (a, b) (eq. 1), and by proposition 1, since from the hypothesis f ∈ Lp(R) and
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ψ̂ ∈ Lp(R), we can consider again eq. 6. Indeed:

∥

∥

∥
ψ̂

∥

∥

∥

Lp
≤
∥

∥

∥
ψ̂

∥

∥

∥

1− 1
p

L∞

∥

∥

∥
ψ̂

∥

∥

∥

1
p

L1
< ∞, and thus:

|Wf (a + h, b + k)− Wf (a, b)|

=
∣

∣

∣

∣

∫

R

(ψ̂(a λ) − ψ̂((a + h) λ)e−i2π k λ)f̂ (λ) dλ

∣

∣

∣

∣

≤
∫

R

∣

∣

∣
ψ̂(a λ) − ψ̂((a + h) λ)e−i2πkλ

∣

∣

∣

∣

∣

∣
f̂ (λ)

∣

∣

∣
dλ

≤ ‖f ‖Lp

(∫

R

∣

∣

∣
ψ̂(a λ) − ψ̂((a + h) λ)e−i2πkλ

∣

∣

∣

p

dλ

)
1
p

(8)

the last inequality is a consequence of Hölder’s inequality and the Hausdorff-Young theorem [22]

combined on f . Now, the result follows from Lebesgue’s dominated convergence theorem and the

continuity of ψ̂ , since ψ ∈ L1(R):
∣

∣

∣
ψ̂(a λ) − ψ̂((a + h) λ)e−i2πkλ

∣

∣

∣

p

≤ 2p
∣

∣

∣
ψ̂(aλ)

∣

∣

∣

p

+ 2p
∣

∣

∣
ψ̂((a + h)λ)

∣

∣

∣

p

≤ 2p+1|η(aλ)|p

and from this eq. 8 tends to zero .

Now, one can prove the main result:

Proof. (Of Theorem 4.3) (1) H⇒(2)

Again, recall eq. 6 and write for all b ∈ R:

Wf (a, b) =
∫

R

1

a
f (x)ψ

(

x − b

a

)

dx =
∫

R

ψ̂(a λ)f̂ (λ) e−i2π b λdλ . (9)
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Again, these equalities follow from proposition 1, (with the inverse Fourier transform F−1) since

f , ψ̂ ∈ Lp(R) and ψ =
ˆ
(

∨
ψ). Fix R = α

σ
, from eq. 9 it suffices to prove that |C(f̂ )∩ C( ˆψ(a. ))| = 0,

this follows from the fact, ψ̂(aλ) = 0 for all λ ≤ σ if a ≤ R, and that |C(f̂ )△ [−σ , σ ]| = 0.

(2) H⇒) (1)

Now, from equation 9 we get that there exists R > 0 such that for each a ∈ (0, R], for all b ∈ R :

Wf (a, b) =
∫

R

ψ̂(a λ)f̂ (λ) e−i2π b λdλ = 0 . (10)

From the Hausdorff-Young theorem we have that f̂ ∈ Lq(R), then as ψ̂ ∈ Lp(R)we have ψ̂(a. )f̂ ∈

L1(R), but if the Fourier transform of this L1 function vanishes everywhere, then for a ∈ (0, R]:

ψ̂(a λ)f̂ (λ) = 0 for almost every λ ∈ R . (11)

Now define Ea = {λ : ψ̂(a λ)f̂ (λ) 6= 0 }, and taking in account that ψ̂ ∈ C(R), since ψ ∈ L1(R),

then there exists δ > 0 such that ψ̂(λ) 6= 0 for all λ ∈ (α,α + δ), and thus ψ̂(a λ) 6= 0 for all

λ ∈
(

α
a

, α+δ
a

)

. From all these facts, we can write:

{

λ : f̂ (λ) 6= 0, |λ| > α

R

}

=
⋃

a∈Q∩(0,R]

{

λ : f̂ (λ) 6= 0, |λ| ∈
(

α

a
,
α + δ

a

)}

⊆
⋃

a∈Q∩(0,R]
Ea ,

and since |Ea| = 0, then

∣

∣

∣

{

λ : f̂ (λ) 6= 0, |λ| > α
R

}∣

∣

∣
= 0.
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Let us prove that,

α

σ
= sup {x ∈ R>0 : |Wf (a, b)| = 0 ∀ (a, b) ∈ (0, x] × R } .

Note that C(Wf ) = {(a, b) ∈ R>0 × R : |Wf (a, b)| > 0} is an open set in R>0 × R since

Wf (a, b) : R>0 × R → C is a continuous function (proposition 2). Defining In =
(

α
σ

, α
σ

+ 1
n

)

it suffices to show that for all n ∈ N there exists a ∈ In, b ∈ R, U ⊂ R>0 × R open sets such that

(a, b) ∈ U ⊂ C(Wf ). On the other hand In is open and then In × R is open, and since C(Wf ) is

open, thus we need to prove that In × R ∩ C(Wf ) 6= ⊘. In order to prove this fact, suppose the

contrary. This means that for some n0 ∈ N: Wf (a, b) = 0 for all (a, b) ∈ In0
×R. Using a similar

argument to that of eq. 11, given a ∈ In0
:

ψ̂(a λ)f̂ (λ) = 0 for almost every λ ∈ R (12)

If α = sup
{

x > 0 : ψ̂(λ) = 0 , ∀ λ ∈ [−x , x]
}

, and since ψ ∈ L1(R) is a real function then ψ̂

is a continuous even function, Cψ̂ is an open set and α = inf(C(ψ̂)∩R>0). Then for every n ∈ N

there exists αn such that ψ̂(αn) 6= 0 and

αn − σ

n
< α ≤ αn . (13)

Now taking n = n0 from equation (11) we have f̂ (λ) = 0 a.e. in
(

αn σ
α+ σ

n
, αn σ
α

)

. Since αn ≥ α ⇒
αn σ
α

≥ σ , and from equation (13) we get αn < α + σ
n

and from this αn σ
α+ σ

n
< σ , on the other hand

this implies inf
{

x ∈ R : f̂ = 0 a.e. in [−x, x]c
}

< σ which is a contradiction. On the other hand
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is straightforward to see that ψ̂(y λ)f̂ (λ) = 0 for almost every λ, with y ≤ α
σ

and from (10) we get

Wf (y, b) = 0 for all b ∈ R and y ≤ α
σ

.

5. CONCLUSIONS

We characterized some scale-time localization principles for the continuous wavelet transform.

These are described as norm inequalities or as qualitative principles related to the size or measure

of sets in the time-scale plane.

ACKNOWLEDGEMENTS

This work was partially financed by Universidad de Buenos Aires, grant No. UBACyT

20020100100503 and CONICET.

REFERENCES

1. W. Beckner (1975). Inequalities in fourier analysis. Ann. of Math. 102(1):159-182.

2. M. Benedicks (1985). On the fourier transform of functions supported on sets of finite lebesgue

measure. J. Math. Anal. and Appl. 106(1):180–183.

3. M. G. Cowling and J. F. Price (1984). Bandwidth versus time concentration: the heisenberg-

pauli-weyl inequality. SIAM J. Math. Anal. 15(1):151–165.

4. S. Dahlke and P. Maass (1995). He affine uncertainty principle in one and two dimensions.

Computers Math. Appl. 30(3):293–305.

18

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Fl

or
id

a]
 a

t 0
6:

31
 0

7 
A

ug
us

t 2
01

7 



A
cc
ep
te
d
M
an
us
cr
ip
t

5. P. Dang, G. T. Dang, and T. Qian (2013). A tighter uncertainty principle for the linear canonical

transform in terms of phase derivative. IEEE Trans. Signal Proc. 61(21):5153–5164.

6. E. Wilczok (2000). New uncertainty principles for the continuous gabor transform and the

continuous wavelet transform. Documenta Math. 5:201–226.

7. L. Grafakos (2004). Classic and Modern Fourier Analysis. Pearson.

8. K. Gröchenig (1996). An uncertainty principle related to the poisson summation formula.

Studia Math. 121(1):87–104.

9. K. Gröchenig (2001). Foundations of Time-Frequency Analysis. Birkhäuser.

10. A. Grossman and J. Morlet (1984). Decomposition of hardy functions into square integrable

wavelets of constant shape. SIAM J. Math. Anal. 15(4):721–736.

11. A. J. E. M. Janssen (1998). Proof of a conjecture on the supports of wigner distributions. J.

Fourier Anal. Appl. 6:723–726.

12. P. Korn (2005). Some uncertainty principles for time-frequency transforms of the cohen class.

IEEE Trans. Signal Proc. 53(2):523–527.

13. S. K. Sharma and D. Joshi (2008). Uncertainty principle for real signals in the linear canonical

transforms domains. IEEE Trans. Signal Proc. 56(7):2677–2683.

14. P. J. Loughlin and L. Cohen (2004). The uncertainty principle: Global, local or both? IEEE

Trans. Signal Proc. 53(5):1218–1227.

15. S. Mallat (2008). A Wavelet Tour of Signal Processing. Academic Press.

16. V. Perrier and C. Basdevant (1996). Besov norms in terms of the continuous wavelet transform.

Application to structure functions. Math. Models Methods Appl. Sci. 6(5):649–664.

17. J. F. Price (1983). Inequalities and local uncertainty principles. J. Math. Phys. 24:1711–1714.

19

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Fl

or
id

a]
 a

t 0
6:

31
 0

7 
A

ug
us

t 2
01

7 



A
cc
ep
te
d
M
an
us
cr
ip
t

18. J. F. Price (1987). Sharp local uncertainty principles. Studia Math. 85(1):37–45.

19. J. F. Price and A. Sitaram (1988). Functions and their fourier transforms with supports of finite

measure for certain locally compact groups. J. Funct. Anal. 79(1):166–188.

20. C. Sagiv, N. A. Sochen, and Y. Y. Zeevi (2006). The uncertainty principle: Group theoretic

approach, possible minimizers and scale-space properties. J. Math. Imaging Vis. 26(1–2):149–

166.

21. P. Singer (1999). Uncertainty inequalities for the continuous wavelet transform. IEEE Trans.

Inf. Theory 45(3):1039–1042.

22. A. Torchinsky (2004). Real Variable Methods in Harmonic Analysis. Dover.

23. A. Zygmund and R. L. Wheeden (1977). Measure and Integral: an Introduction to Real

Analysis. Chapman and Hall-CRC.

24. Y. L. Li, J. Zhao, and R. Tao (2009). Uncertainty principles for linear canonical transform.

IEEE Trans. Signal Proc. 57(7):2856–2858.

20

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Fl

or
id

a]
 a

t 0
6:

31
 0

7 
A

ug
us

t 2
01

7 



A
cc
ep
te
d
M
an
us
cr
ip
t

Figure 1: Absolute value of the (Meyer) wavelet transform of the band-limited function f (x) =

100 sin(10x)
x

.
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