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1. Introduction

Let k be an arbitrary field. In [4], the authors associated a Hopf algebra Hp over k, with each data D :=
(G, x,z, 1), consisting of:

a finite group G,

a central element z of G,

a character x of G with values in k such that x (z) # 1,

- an element X € k,

such that x” = 1 or A(z" — 1g) = 0, where # is the order of x(z). As an algebra Hp is generated by G
and x, subject to the group relations of G,

xg=x(ggx forallgeG and  x" = A" — 1g).
The coalgebra structure of Hp is determined by
Alg):=g®g forgeg, Ax)=10x+x®z,
€(@:=1 forgeg, €(x) :==0,
and its antipode is given by
S(@ = g_1 and S(x) = —xz~ L.

As was point out in [4], as a vector space Hp has basis {gx™|g € G,0 < m < n}. Consequently
dim Hp = n|G]|. The simplest examples are the Taft algebras H,2, which are the rank 1 Hopf algebra
obtained taking D := (C,, x,g,1), where C,, = (g) is the cyclic group of order n > 1 and x(g) is a
primitive n-th root of 1.

Also in [4] the authors introduced the concept of rank 1 Hopf algebras (and more generally of rank n
Hopf algebras for n € IN) and they prove that when k is an algebraically closed characteristic zero field,
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rank 1 Hopf algebras are the algebras Hp. In positive characteristic the Hopf algebras Hp also have
rank 1 but they are not all (for the classification see [6])

In [5] Masuoka studied the cleft extensions of the Taft algebras, giving a very elegant description of
its crossed product systems. In [2] the Masuoka description was reproduced with simplified proofs, and
studying this description were derived several interesting consequences. Motivated by these works, in
this paper we introduce a family of braided Hopf algebras that generalize the algebras Hp, and we study
their cleft extensions. Although the results we get are valid in this broader context we are particularly
interested in the case of the algebras Hp.

The paper is organized in the following way:

In Section 2 we recall the well known notions of Gaussian binomial coefficients and braided Hopf
algebra, and we make a quick review of some results obtained in [3]. The unique new result in this section
is the formulas obtained in Theorem 2.36(5). In Section 3 we associate a braided Hopf algebra with each
data D = (G, x,2, A, q) (where G is a finite group, x is a character of G, z is a central element of G and
g, A are scalars) that satisfy suitable conditions. The main result is Corollary 3.8, in which the algebras
Hp are introduced. When q = 1, we recover the rank 1 Hopf algebras defined by Krop y Radford. In
Section 4 we describe the Hp-space structures, the Hp-comodule structures and the Hp-comodule
algebra structures (in Proposition 4.5, Corollary 4.7 and Theorem 4.12, respectively). In Section 5 we
characterize the Hp cleft extensions, and, finally, in Section 5 we study two particular examples.

2. Preliminaries

In this paper k is an arbitrary field, we work in the category of k-vector spaces, and consequently all the
maps are k-linear maps. Moreover we let U ® V denote the tensor product U ®j V of each pair of vector
spaces U and V. We assume that the algebras are associative unitary and the coalgebras are coassociative
counitary. For an algebra A and a coalgebra C,weletu: A® A - A,n: k— A, A: C— C® Cand
n: C — kdenote the multiplication map, the unit, the comultiplication map and the counit, respectively,
specified with a subscript if necessary.

2.1. Gaussian binomial coefficients

Let g be a variable. For any j € INj set

1 -

‘ _ 71 . s _@-D@-D-(¢-1
)g = P and Vo= (1)g(2)g-+-(G)g = . .
(q ;‘1 i1 (Mg qgq - (g q—1
The Gauss binomials are the rational functions in g defined by
A N
q (])!q(l _])!q

A direct computation shows that

(r) = <l) =1 and (j) =47 (;_ 1) + (i B 1> for0 <j<i.
0 i -1 j
q q q q q

From these equalities it follows easily that the Gauss binomials are actually polynomials. The Gauss
binomials can be evaluated in arbitrary elements of k, but the equality (2.1) only makes sense for g = 1
and for g # 1 such that g' # 1 for all I < max(j,i — j). We will need the following well known result
(g-binomial formula). Let B be a k-algebra and g € k. If x, y € B satisfy yx = gxy, then

i :
(x+y) = Z C) *y' =i for each i > 0. (2.2)
=0 Y/
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Leti,j > 0andlet 0 < [ < i+ j. Using the equality (2.2) to compute (x + y)'(x + y) in two different
ways and comparing coeflicients we obtain that

(9),-20,0),
q q q

0<s<i
0<t<j
s+it=I

2.2, Braided Hopf algebras

Let V, W be vector spacesand letc: V® W — W ® V be a map. Recall that:
- If V is an algebra, then ¢ is compatible with the algebra structure of V if

comMIW)=We®n and co(UAW)=(WRuo(c®V)o(VR®o).
- If Vis a coalgebra, then c is compatible with the coalgebra structure of V if
W®e)oc=e®@W and WQRA)oc=(cQ®V)o(VRc)o (AR W).

More precisely, the first equality in the first item says that ¢ is compatible with the unit of V and the
second one says that it is compatible with the multiplication map of V, while the first equality in the
second item says that c is compatible with the counit of V and the second one says that it is compatible
with the comultiplication map of V. Of course, there are similar compatibilities when W is an algebra or
a coalgebra.

Definition 2.1. A braided bialgebra is a vector space H endowed with an algebra structure, a coalgebra
structure and a braiding operator ¢ € Auty(H ® H), called the braid of H, such that ¢ is compatible with
the algebra and coalgebra structures of H, 7 is a coalgebra morphism, € is an algebra morphism and

Aop=pRuo(HRcRH)o(AR®A).

Furthermore, if there exists amap S: H — H, which is the inverse of the identity map for the convolution
product, then we say that H is a braided Hopf algebra and we call S the antipode of H.

Usually H denotes a braided bialgebra, understanding the structure maps, and ¢ denotes its braid. If
necessary, we will write ¢y instead of c.

Let A and B be algebras. It is well known that if a map ¢: B® A —> A ® B is compatible with the
algebra structures of A and B, then A ® B endowed with the multiplication map

= (ua ® up) o (A®c® B),

is an associative algebra with unit 1 ® 1, which is called the twisted tensor product of A with B associated
with ¢ and denoted A ® B. Similarly, if C and D are coalgebras and c: C® D — D ® C is a map
compatible with the coalgebra structures of C and D, then C ® D endowed with the comultiplication
map

A:=(C®c®D)o(Ac® Ap),
is a coassociative coalgebra with counit € ® €, which is called the twisted tensor product of C with D
associated with ¢ and denoted C ®° D.
Remark 2.2. Let H be a vector space which is both an algebra and a coalgebra, and let

c:H®H — H®H
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be a braiding operator. Assume that c is compatible with the algebra and the coalgebra structures of H.
Then H is a braided bialgebra iff its comultiplication map A: H — H ®, H and its counite: H — k
are algebra maps.

2.3. Left H-spaces, left H-algebras and left H-coalgebras

Definition 2.3. Let H be a braided bialgebra. A left H-space (V, s) is a vector space V, endowed with a
bijectivemap s: H® V — V ® H, called the left transposition of H on V, which is compatible with the
bialgebra structure of H and satisfies

C®H) o(H®s)o(c®V)=(V®c)o(s®H) o (H®?5)

(compatibility of s with the braid). Sometimes, when it is evident, the map s is not explicitly specified. In
these cases we will say that V is a left H-braided space in order to point out that there is a left transposition
involved in the definition. We adopt a similar convention for all the definitions below. Let (V,s") be
another left H-space. A k-linear map f: V — V' is said to be a morphism of left H-spaces, from (V,s) to
V', if (f ®H)os =5 o (H®f).

Remark 2.4. Lets: H® V —> V ® H be a map compatible with the unit, the multiplication map and
the braid of H and let X C H be a set that generates H as an algebra. In order to show that s is a left
transposition it suffices to check the compatibility of s with the counit and the comultiplication map of
H on simple tensors h @ vwith h € Xandv € V.

We let LH B denote the category of all left H-braided spaces. It is easy to check that this is a monoidal
category with
- unit (k, 7), where 7: H® k — k ® H is the flip,
- tensor product

(U,sy) ® (V,sy) = (U V,sugv),

where sygy is the map sygy := (U ® sy) o (sy @ V),
— the usual associativity and unit constraints.

Definition 2.5. A left H-algebra (A, s) is an algebra in LHB.

Definition 2.6. A left transposition of H on an algebra A is a bijective map s: H® A — A®H, satistying
(1) (A,s) is aleft H-space,
(2) sis compatible with the algebra structure of A.

Remark 2.7. A left H-algebra is nothing but a pair (A,s) consisting of an algebra A and a left
transposition s: H ® A —> A ® H. Let (4’,s') be another left H-algebra. A map f: A — A’is
a morphism of left H-algebras, from (4,s) to (A’,s), iff it is a morphism of standard algebras and
f®H)os=50o(HQS).

Definition 2.8. A left H-coalgebra (C, s) is a coalgebra in LHB.

Definition 2.9. A left transposition of H on a coalgebra C is a bijective map s: H® C — C® H,
satisfying

(1) (C,s) is aleft H-space,

(2) sis compatible with the coalgebra structure of C.

Remark 2.10. A left H-coalgebra is nothing but a pair (C,s) consisting of a coalgebra C and a left
transposition s: H ® C —> C ® H. Let (C, ) be another left H-coalgebra. Amap f: C — C'isa
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morphism of left H-coalgebras, from (C,s) to (C, ), iff it is a morphism of standard coalgebras and
f®H)os=50o(H®).

Since (H, ¢) is an algebra and a coalgebra in £L# B, it makes sense to consider (H, ¢)-modules and
(H, ¢)-comodules in this monoidal category.

2.4. Left H-modules and left H-module algebras

Definition 2.11. We will say that (V, s) is a left H-module to mean that it is a left (H, ¢)-module in LHB.
Notice that the classical left H-modules can be identified with the left H-modules (V, s) in which s is the
flip.

Remark 2.12. A left H-space (V,s) is a left H-module ift V is a standard left H-module and
so(HRp)=(p®H)o(H®s)o (c® V),

where p denotes the action of H on V. Let (V’,s') be another left H-module. Amap f: V — V'isa
morphism of left H-modules, from (V, s) to (V’,s'), iff it is an H-linear map and the equality (f ® H) os =
s' o (H ® f) holds. We let LB denote the category of left H-modules in LHB.

Proposition 2.13 ([3, Proposition 5.6]). The category yLHB is monoidal. Its unit is (k, T) endowed with
the trivial left H-module structure, and the tensor product of the left H-modules (U, sy) and (V, sy), with
actions py and py respectively, is the left H-space (U, sy) @ (V, sv), endowed with the left H-module action
given by

puev = (u®pv)o (HRsy@ V) o (Ag@ U V).

The associativity and unit constraints are the usual ones.
Definition 2.14. We say that (4, s) is a left H-module algebra if it is an algebra in g LHB.

Remark 2.15. (4,s) is a left H-module algebra iff the following facts hold:
(1) Ais an algebra and a standard left H-module,
(2) sisaleft transposition of H on A,
(3)so(H®p)=(pQ@H)o(HQs)o(c®A),
(4) po(HRua) =pao(p®p)o(HR®s®A)o (AHRAR A),
(5) p(h®14) =€(h)1y forallh € H,
where p denotes the action of H on A.
Let (A',s) be another left H-module algebra. A map f: A — A’ is a morphism of left H-module
algebras, from (4, s) to (A',s'), iff it is an H-linear morphism of standard algebras that satisfies (f ® H) o
s=5o(H®S).

2.5. Right H-comodules and right H-comodule algebras
Definition 2.16. We will say that (V,s) is a right H-comodule if it is a right (H, ¢)-comodule in LHB.

Remark 2.17. A left H-space (V,s) is a right H-comodule iff V is a standard right H-comodule and
W®H)os=(V®co(s®@H)o(H®v), (2.4)

where v denotes the coaction of H on V. Let (V’,s") be another right H-comodule. A map f: V — V’
is a morphism of right H-comodules, from (V,s) to (V', ), iff it is an H-colinear map and (f ® H) o s =
s o (H® f). We let LHBH denote the category of right H-comodules in LH3.
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Definition 2.18. Let (V,s) be a right H-comodule. An element v € V is said to be coinvariant if v(v) =
v 1y.

Remark 2.19. For each right H-comodule (V,s), the set Vol of coinvariant elements of V, is a vector
subspace of V. Furthermore, s(H ® V<°H) = V°H @ H, and the pair (V°!, sycon), where syeon: H ®
yeoH s yeol @ [ is the restriction of s, is a left H-space.

Proposition 2.20 ([3, Proposition 5.2]). The category LHBH is monoidal. Its unit is (k,7), endowed
with the trivial right H-comodule structure, and the tensor product of the right H-comodules (U, sy) and
(V,sy), with coactions vy and vy respectively, is (U,sy) ® (V,sy), endowed with the right H-comodule
coaction

vev = U®VE®ur) o(Usy ®H)o (vy ® vy).

The associativity and unit constraints are the usual ones.
Definition 2.21. We say that (A, s) is a right H-comodule algebra if it is an algebra in LHBH.

Remark 2.22. (4,s) is a right H-comodule algebra iff the following facts hold:
(1) Aisan algebra and a standard right H-comodule,
(2) sisaleft transposition of H on A,
B) (W®H)os=(A®c)o(s®H)o(HRV),
(4) vous=(na®uu)o(AQ®s@H)o(vQv),
(5) v(14) = 14 ® 1,
where v denotes the coaction of H on A.
Let (A’,s') beanother right H-comodule algebra. Amap f: A — A’ isamorphism of right H-comodule
algebras, from (A, s) to (A, ), iff it is an H-colinear morphism of standard algebras that satisfies (f ®
H)os=so(H®/).

Recall that A @; H denotes the algebra with underlying vector space A ® H, multiplication map

MagH = (LA @ uH) 0 (A Qs ® H)

and unit 14 ® 1y. Conditions (4) and (5) of Remark 2.22 say that v: A — A ®; H is a morphism of
algebras.

2.6. Hopf crossed products and H-extensions

Definition 2.23. A left H-space (V,s), endowed with a map p: H® V — V, is said to be a weak left
H-module if

1) p(lg®v) =v,forallv e V,

(2) so(H®p)=(p@H)o(H®s)o (c® V).

The category ,,w LHB, of weak left H-modules in LH 3, becomes a monoidal category in the same
way that g LHB does. A weak left H-module algebra (A, s) is, by definition, an algebra in ,,y LHB.

Remark 2.24. (4,s) is a left weak H-module algebra iff A is an usual algebra, s is a left transposition of
H on A and the structure map p satisfies the following conditions:

(1) p(lg ®a) =a,foralla € A,

(2)so(H®p)=(p®H) o(H®s)o(c®A),

(3) po(HR®ua) =pao(p@p)o(HRs®A)o (AR AR A),

(4) p(h®14) =€(h)1a,forallh € H.
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Let A be an algebraands: H ® A — A ® H a left transposition. A map p: H ® A — A is said
to be a weak action of H on (A, s) or a weak s-action of H on A, if it satisfies the conditions of the above
remark.

Definition 2.25. Let A be an algebra, s: H® A —> A ® H a left transpositionand p: HQ A — Aa
weak action of H on (4,s). Leto: H® H — A be a map. We say that o is normal if

oc(lg®h) =0(h® 1) = €(h) forall h € H,

and that o is a cocycle that satisfies the twisted module condition if

-5 -

More precisely, the first equality is the cocycle condition and the second one is the twisted module
condition. Finally we say that o is compatible with s if it is a map in LHB. In other words, if

(0®H)o(H®c)o(c®H)=s0o(H® o).

Lets: H® A — A ® H be a left transposition, p: H® A — A a weak s-actionando: H® H —
A a normal cocycle compatible with s, that satisfies the twisted module condition. Consider the maps
X H®A — A®QHand F: H® H — A ® H defined by

x=(PQ®H) oH®s)o(ARA) and F=0Quy)oH®cRH)o (AR A).
Definition 2.26. The crossed product associated with (s, p, o) is the k-algebra A#), ; H, whose underlying

k-vector space is A ® H and whose multiplication map is

mi=(ua®@H)o(ua ® F) o (AR x ® H).
From now on, a simple tensor a ® h of A#, , H will usually be written a#h.
Theorem 2.27 ([3, Theorems 2.3, 6.3 and 9.3]). The algebra A#, , H is associative and has unity 14#1p.

Theorem 2.28 ([3, Propositions 10.3 and 10.4]). The map
S:H®A#, ;H — A#, H®H,

defined by’s := (A® c) o (s® H) is a left transposition of H on A#;, . H and the pair (A#;, . H,s), endowed
with the coaction vas 1= A ® A, is a right H-comodule algebra.

Definition 2.29. Let (B, s) be a right H-comodule algebra and let i: A < B be an algebra inclusion. We
say that (i: A < B,s) is an H-extension of A if i(A) = B<°H. Let (i': A < B',s') be another H-extension
of A. We say that (i: A < B,s)and (i': A < B/, s) are equivalent if there is a right H-comodule algebra
isomorphism f: (B,s) — (B',s'), which is also a left A-module homomorphism.

Remark 2.30. For each H-extension (i: A < B,s) of A,themapss: H® A — A ® H, induced by s,
is a left transposition (in other words, (A, s4) is a left H-algebra).
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Example 2.31. (i: A <> A#;’JH,'D, where i(a) := a#lp, is an H-extension of A.

Definition 2.32. Let (i: A < B, s) be an H-extension. We say that:

(1) (i,s) is cleft if there is a convolution invertible right H-comodule map y: (H,¢) — (B,s),

(2) (i,s) is H-Galois if the map Bp: B®4 B —> B® H, defined by Bp(b ® V') = (b ® 1g)v(V'), where
v denotes the coaction of B, is bijective,

(3) (i,s) has the normal basis property if there exists a left A-linear and right H-colinear isomorphism
¢: (AR® H,53) —> (B,s), where the coaction of AQ HisA® Aand 53 = (A®c) o (sa4 ® H).

Definition 2.33. Let (i: A — B,s) be an H-extension of A. If (i, s) is cleft, then each one of the maps
y satisfying the conditions required in item (1) of Definition 2.32 is called a cleft map of (i,s), and if
(i, 5) has the normal basis property, then each one of the left A-linear right and H-colinear isomorphism
¢: (A® H,s55) —> (B,s) is called a normal basis of B.

Remark 2.34 ([3, Section 10]). If y is a cleft map of (i: A — B,s), then y(1y) € B* and the map
¥’ := y(1g) "y is a cleft map that satisfies y' (1) = 1p.

Lemma 2.35. Let H be a braided Hopf algebra and let (i: A < B, s) be a cleft H-extension, with a cleft
map y. The map f: HQ® A — B, defined by
f=ppo(up®B)o(y®i®@y Ho(H®sa)o(A®A)

takes its values in i(A).

Proof. Let AX: X — X ® k be the canonical map. We must prove that
vof=(f®n) o(H®I).
A direct computation shows that
vof=voupo(up®B)o(y ®i®y Ho(H®ss)o(ARA)
=(up® ) o BOS®H) o (V@) o (up®B)o(y ®i®y ") o(H®sa)o (AR A)
= (1B @ um) o (up®s®H) o BOs@v)o(n®i®y oy ®sa)o(A®A)
=(up®pur) o (p®s@H) 0o (BRIGH@ V) o (¥ ®s4®y ) o (A®sa) o (AR®A)
= (U@ pun) o BRs®H) o (up®H®voy NoBR®i®A)o(y®sa)o(A®A)
=(up®H)o(up®L)o(B®i®H)o(y ®s4) o (A®A),
where
L:=BQur)o(s®@H) o(HRvoy oA,
Since, by [3, Lemma 10.7],
L=BRum o ®H) o(H®y '®So(H®coA) oA
=@ ' ®ur)o(c®S)o(H®)o(HRA)oA
=@ ' @umo(c®o(H®c)o(A®H)oA
= (' @M oco(up®H) o (HR® S®H) o (A®H) o A
= '®H)oco(noe ®H)o A
=y len
we have
vof = (up®@H)oBRY ' ®@n)o(up®r)o(BRI®H) o (y ®sa)o(ARA) = (f®n) o (HRAD),
as desired. O
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Theorem 2.36. Let H be a braided Hopf algebra and let (i: A — B, s) be an H-extension. The following

assertions are equivalent:

(1) (i,s) is cleft.

(2) (i, s) is H-Galois with a normal basis.

(3) There is a crossed product A#};\x H, with convolution invertible cocycle o : H @ H — A, and a right
H-comodule algebra isomorphism

(B) S) — (A#SpA:GH) SAA))

which is also left A-linear.
Furthermore, if y is a cleft map of (i,s) with y (1g) = 1p, then
(4) The map ¢: (A ® H,s3) —> (B,s), defined by ¢(a ® h) := i(a)y (h), is a normal basis of B.
(5) The weak action p and the cocycle o are given by

iop=ppo(us®B)o(y ®i®y )o(H®ss)o(ARA) (2.5)

and

ioo=pupo(UE®y Doy ®y ® uu) o AHgeH. (2.6)

Proof. The equivalence between the first three items is [3, Theorem 10.6], and the fourth item was proved
in the proof of that Theorem. It remains to check the last one. By item (4), the discussion below [3,
Definition 10.5] and the proof of Theorem 10.6 of [3], we know that ¢ is bijective, that

(i®H)op ' (b) = boyy (b)) ® bez),
and that the maps p: H® A — Aando: H® H — A are given by
ph®a):=(AQe)odp ' (y(i) and o@D :=Ae) od ' (y(yD).
We must check that p and o satisfy (2.5) and (2.6), respectively. Let f be as in Lemma 2.35 and let i !
be the compositional inverse of i: A — i(A). Since
upo (y ®i) =upo(up®npoe)o(BRI®H)o(y ®sa)o(A®A)

=pupo(BRup)oBRy '®@y)o(up®A)o(BRi®H)o(y ®sa)o(A®A)
= ppo (@ up)o(y ®i®y ' @y)o(H®sa @ H) o (A®sp) 0 (AR A)
=upo(f®y)o(H®sa)o(ARA),

and, by Lemma 2.35,
ppo (f®y)=¢o(i of ®H),

we have
iop=(i®€)op™ ougo(y®i
=(i®e)op loupo(f®y)o(H®sa)o (AR A)
=(®e) o lof®H)o(H®sa)o (A®A)
=pugo(u®B)o(y ®i®y ") o (H®s4) 0 (A®A).
Finally,

ico=(i®€eop oupo(y ®@y)
=ppo(B®y Novougo(y®y)
=pugo(B®y o (up®un)o(BRs®B)o(v@v)o(y ®y)
=upo(up®y o (y ®y ®un) o Augcn
as desired. O
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Remark 2.37. In the proof of Theorem 10.6 of [3], it was also shown that ¢: A#}'\; H — Bis an algebra
isomorphism.

3. Afamily of braided Hopf algebras

Let G be a finite group, x : G — k™ a character,n > 1in N, and T € kG, where kG denotes the group
algebra of G with coefficients in k. Set £ := (G, x, T, n) and write T := deG A8

Proposition 3.1. There exists an associative algebra Bg such that

— Bg is generated by G and an element x € Bg\kG,

- B:={gx': g € Gand 0 < i < n} is a basis of Be as a k-vector space,

- the multiplication of elements of B is given by:

gl = | X i<
X (WghTx™ =" ifi+j>n,

iff Apgh—1 = X" (W)Ag forallh,g € G, and x(g) = 1 for all g € G such that A # 0.

Proof. Let V := kxo @ - - - ® kxy—1, where xo, ..., x,_1 are indeterminate. We will prove the result by
showing that there is an associative and unitary algebra kG#V, with underlying vector space kG ® V,
whose multiplication map satisfies

(g®x)(g ®x0) = x'(g)gg ® x; foralliandallg € G
and
lg ®xiyj ifit+j<mn,
1 i) (1 i) =
(16 ® x)(16 ® x)) T®sxiyjn ifi4]=n,
iff
(1) x(g) = 1forallg € Gsuchthat 1, # 0,
(2) Apgh—1 = x"(h)Ag forall h,g € G.
By the theory of general crossed products developed in [1], for this it suffices to check that the maps

P:VRKG— kGRV and F:VQV—kGRYV,

given by
. lg ® Xitj ifi+j<1’l,
D ®g) = x'(9g R xi d  Fxi®x):=
xi®g) = x"(g®xi an (xi ® x7) {T®xi+j—n 4> n
satisfy
D ®1g) =16 xi, D(xo ® Q) =g ® xo, Flxo ® xi) = F(xi ® x0) = 16 ® xj,
Vv Vv Vv
F
and =
F

where X stands for @, iff conditions (1) and (2) are fulfilled.
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By the very definitions of ® and F, the first four conditions always hold. Assume that the other ones
hold. Evaluating the fifth one in x; ® x,—1 ® h we see that

Z hegh ® xo = Z x"(Wrghg @ xo forallg, h e G,
e pe
or equivalently,
Mpgh—1 = x"(Wig forallg,h e G,
and evaluating the sixth one in x; ® x,_; ® x; we see that
x(@ =1 forallg € Gwith A, # 0.

Conversely, a direct computation proves that if these facts are true, then the equalities in the last two
diagrams hold. O

Corollary 3.2. If there is an algebra Bg satisfying the conditions required in Proposition 3.1, and there
exists g in the center Z.G of G with Ag # 0, then x" = 1.

Remark 3.3. Tt is clear that if there exists, then Bg is a k-algebra unitary with unit 16x°, that kG is a
subalgebra of B¢ and that Bg is unique up to isomorphism.

Remark 3.4. Using that Bg has dimension n|G| it is easy to see that it is canonically isomorphic to the
algebra generated by the group G and the element x subject to the relations x” = T and xg = x (g)gx for
allg € G.

Given g € k*, let
g Bg ® Be —> Bg ® Bge

be the k-linear map defined by c;(gx' ® hv') := g/ hx' @ gx'. It is easy to check that ¢, is a braiding

operator that is compatible with the unit of B¢. Furthermore,

- adirect computation shows that ¢, is compatible with the multiplication map of B¢ iff T = Oorg" = 1,

- by Remark 3.4 there exists an algebra map €: Bg — k such thate(x) = 0ande(g) = 1forallge G
iff geG g = 0. Moreover, in this case, ¢, is compatible with €.

Proposition 3.5. Let £ be as at the beginning of this section, z € G and q € k™. Assume that Bg exists.
Then, the algebra Bg is a braided bialgebra with braid ¢, and comultiplication map A defined by

AX)=10x+x®z and Alg)=gRg forgeG (3.7)

iff
(1) (?)qx(Z) =0forall0 <j<n,
(2) z€e ZGand T = M(z" — 1g) for some A € k, where A = 0 if 2" # 1g and q" # 1.

Proof. Since Bg is generated by the group G and the element x subject to the relations x* = T and
xg = x(g)gx for all g € G, there exists an algebra map A: Be — Bg ®c, Be such that (3.7) is satisfied
iff the equalities
heh(g®g =hgQhg,
(1I®x+x®2)E®E =xQERHYURx+x®2)
and

1®x+x®2)"=) MI®I (3.8)
leG
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hold in Bg ® , Be for all h, g € G. The first equality is trivial, while the second one is equivalent to
XQER®gm+gx®zg) = x(QE g+ gx ®g2) forallg € G,
and so it is fulfilled iff z is in the center of G. In order to deal with the last one, we note that, in Bg ®c, Bes
(100E®2) =gx(@)*® 2z = gx(2)(x @ 2)(1 @ %),
and so, by formula (2.2),

n n
n . » n S
(1®x+x®z)”:Z(.> (x®z)J(1®x)”J=Z<‘) ¥ ®Zx".
im0 M ax@ i M ax@
Hence, equality (3.8) holds iff

n
E . ¥ QI = E MR,
(]>qx(2)

j=0 leG

which is clearly equivalent to

(n) =0 forall0 <j < n,
1/ ax@

and

D MIRI=1®x"+x"®"=19T+T®7"=Y 1M+ Y MEZ"

leG leG leG
If 2" = 1 this happens ifft A; = 0 for all I € G, while if 2" # 1g, this happens iff ;; = 0 for all
I # 16,2" and if A;n = —A1. By the way, this computation shows that if A exists, then the augmentation
€ introduced above, is well defined. Moreover, by formula (2.2),

forall g € Gand i > 0. Using this it is easy to see that ¢, is compatible with A. Since we already know
that ¢, is compatible with 1p,, the multiplication map of B¢ and ¢, in order to finish the proof we only
must check that A is coassociative and that € is its counit. But, since ¢, is compatible with A and A is an
algebra map, it suffices to verify these facts on x and g € G, which is trivial. O

ERYE®YARNT=)" C) g/ ® g2/x'™ (3.9)
j=0

qx (2) qx ()

Remark 3.6. Let & be as at the beginning of this section. If T = A(z" — 1) withz € ZG, 2" # 1g
and A € k*, then the hypothesis of Proposition 3.1 are equivalent to x” = 1, while if T = 0, then the
hypothesis of Proposition 3.1 are automatically satisfied.

Remark 3.7. Itis easy to see that ( " )qx @ = 0implies (gx (2))" = 1 and thatif gx (2) is an n-th primitive

n

root of unit, then (] ) =0forall0 <j < n.

qx(2)
Corollary 3.8. Each data D = (G, x,z, A, q) consisting of:
a finite group G,

a character x of G with values in k,

a central element z of G,

elements g € k* and ) € k,

such that

- qx(2) is a root of 1 of order n greater than 1,

- ifA(Z" —1g) # 0, then x" =1,
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has associated a braided Hopf algebra Hp. As an algebra, Hp is generated by the group G and the element
x subject to the relations x" = A(z" — 1) and xg = x(g)gx for all g € G, the coalgebra structure of Hp
is determined by

Al =g®g forgeg, Ax)=10x+x®z,
€(@:=1  forgegG, €(x):=0,
the braid cq of Hp is defined by
cq(gxi ® h) == qif hd ®gxi, (3.10)

and its antipode is given by

S(ex) = (D (qx(2) T ¥z g, (3.11)
Furthermore, as a vector space Hp has basis
{gx':g € Gand0 < i < n},
and consequently, diim (Hp) = n|G|.
Proof. Let & := (G, x,A(z" — 1), n) and let B¢ be the algebra obtained applying Proposition 3.1. Now
note that if A(z" — 1), then x” = 1 and so g" = q" x(2)" = 1. Hence, we can apply Proposition 3.5,
which implies that B¢ has a braided bialgebra structure with comultiplication map, counit and braid as

in its statement. Let Hp denote this bialgebra. It remains to check that the map S given by (3.11) is the
antipode of Hp. Since

Sou(gd ® hdl) = Lo (S® S) o ¢y(gx’ @ hxd),
for this it suffices to verify that
S(x) +x8(z) = S)x+ S(x)z=0 and S(9g=gS(g) =1 forallg eG,

which is evident. O
Remark 3.9. If A(z" — 1) = 0, then we can assume without loss of generality (and we do it), that A = 0.

Remark 3.10. Assume that n > 1. The previous corollary also holds if the hypothesis that gx (z) is a

root of 1 of order  is replaced by (;’)qx (»y = Oforall0 < j < n. However, from now on we will consider

that g (2) is a root of 1 of order n.

4, Right Hp-comodule algebras

Let G be a group, V be a k-vector space and s: k[G] ® V — V ® k[G] a k-linear map. Evidently, there is
a unique family of maps (ah: V- V)xyeG, such that

sx®v) = Zozi(v) ® y.
yeG

Proposition 4.1. The pair (V,s) is a left k[G]-space iff s is a bijective map and the following conditions
hold:

(1) (a%)yeg is a complete family of orthogonal idempotents, for all x € G,

(2) ol =id,

() oy =3 i oy, forallx,y,z € G.

Proof. Mimic the proof of 3, Proposition 4.10]. O
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For x,y € G, let Vi={ve Vis(x®v) =v®y}

Proposition 4.2. The pair (V,s) is a left k[G]-space iff:

(1) @D, Vi=V =P, Vi forallx € G,
2 vi=V,
3) ny =P,.,—.VinN V}‘,”, forallx,y,z € G.

Proof. Mimic the proof of [3, Propositions 4.11 and 4.13]. O

Theorem 4.3. If G is a finitely generated group, then each left k[G]-space (V,s) determines an Aut(G)-

gradation
v= P W
reAut(G)

onV, by
Ve = ﬂVf;(x) ={reV:is(x®v) =vQ®{(x) forallx € G}.

xeG

Moreover, the correspondence that each left k[G]-space (V,s), with underlying vector space V, assigns the
Aut(G)-gradation of V obtained as above, is bijective.

Proof. Mimic the proof of [3, Theorem 4.14]. O

In the sequel D := (G, x,2, A, q) and Hp are as in Corollary 3.8 and we will freely use the notations
and properties established there. Furthermore, to abbreviate expressions we set p := x(z). We now
begin with the study of the right Hp-braided comodule algebras. We let Aut, .(G) denote the subgroup
of Aut(G) consisting of all the automorphism ¢ such that ¢(z) = zand x o ¢ = .

Proposition 4.4. If (p,q) # (1, —1), then for all left Hp-space (V,s) it is true that
s(kGQR V) = VR kG,
sz®v)=v®z forallveV,
and there exists ¢ € Aut(V) such that
sx®v) =) ®x forallveV. (4.12)

Proof. Write
sl en =Y ﬁﬁj@)@hx]’.

L
<j<n
Since $2(gx') = q'~Vp~igx’, we have

gl Yy /355(11) @hxd = g Vpis(gx' @ v)

heG
0<j<n

=50(SQ@V)(gx' @)

= (VS8 os(gx' @ v)



3180 M. DA ROCHA ET AL.

=23 ﬂgj(v)@osz(hxf)
heG
0<j<n

= Y i Vp v @ hy,
heG
0<j<n
and consequently,
By 7&0:>q’(7 D=1 — pf=i, (4.13)

Using now that s is compatible with A, we obtain that

Z Z Q) ,Bh (v) ® h¥l @ hx'™

Oiezfn] 0
=(V®A)os(g®v)
=(G®Hp)o(Hp®s)o(A®V)(g® W)
=y > ﬁ /(V) ® hx' @ Wx'. (4.14)
heG HWeG
O<i<no<i'<n
Hence,
Ly
( o ) BEC L W =hZiandi+i <n,
By o Bhy = Y e (4.15)
0 otherwise.

Combining this with (4.13) we obtain that
By 750:>/3h % 0forallj <i=> gl =piforj<i.

Consequently, if /3h # 0forsomeg € Gandi > 1,thenp = q° = 1. Hence if p # 1, then ﬂgo =0

forallg € Gandi > 1. Assume that p = 1. If,Bh # 0for someg € Gandi > 2,theng*> = p? = 1.
But this is impossible, since it implies that n := ord(qp) = ord(g) < 2, which contradicts that i < n.
Therefore

Y B ®h ifp #1,

sg@v) = "¢ (4.16)
SN B eh+ > Bl @hx ifp=1.
heG heG

On the other hand, due to s is compatible with the counit of Hp, we get

Z ,Bi’g =id forallg € G,
heG

which, combined with the particular case of (4.15) obtained by taken i = /' = 0, shows that

(,Bf:g ) e 18 a complete family of orthogonal idempotents for all g € G. (4.17)
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Equality (4.16) shows that if p # 1, then s(kG ® V) C V ® kG. Assume now that p = 1 and g # —1
(which implies #n > 2). Using that s is compatible with the multiplication map of Hp we get that

vR1=sg 'g®)
= (v@u)o(s@Hp)o(HDm)(g”®g®v)

=Y B o B @+ 3 Y xBE, 0 B (v) @ hix

heG leG heG leG
10 0 10 0
Y Y By 0B WM @hx+Y Y x (DB, o Bl ) @K, (4.18)
heG leG heG leG

Consequently,

1o
Py 1o © g0 = idv,

heG
which by (4.17) implies that
,Bh,_ll’g(v) =v forallve Im(ﬂi’g) and h,g € G.
Since (,3;,‘ 0)heg and (,Bh 0 )he . are complete families of orthogonal idempotents, from this it follows
that
,Bg_l’ohfl,o = ,Bi’g forallh,g € G.
Combining this with (4.18), we conclude that

sz(l)ﬁhl o B (v)®hlx+zzl3ho o B} (v) ® hix

heG leG heG leG
= S B, o B S @b+ 33 B o B () @ hix
heG leG heG leG
-1
=Y @ P mes T x+ Y B m ex, (4.19)
heG heG
where the last equality follows from the fact that by (4.15)
0 . .
0 e By, ifh = hz, B ifW =,
B o Bl =1 M and B0 o B (4.20)
’ ’ 0 otherwise, 0 otherwise.

Note that by (4.17) and the second equality in (4.20), the images of the maps ﬁf’? are in direct sum,

for each ¢ € G. Hence, from (4.19) it follows that if z # 1, then ,Bﬁ”f = Oforall g,h € G, which
by equality (4.16) implies that s(kG ® V) C V ® kG. We now assume additionally that z = 1. Then
Prim(Hp) = kxand so, by [3, Proposition 4.4] there exists an automorphism ¢ of V such that s(x®@v) =
¢(v) ® x for all v € V. Furthermore, by the compatibility of s with c;,

S B oem@x@h+q) B op(v) ®x® hx
heG heG

=(V®c)o(s®Hp)o(Hp®s)(gRx® V)
=(s®Hp)o(Hp®s)o(cg®V)(gR®xQ )

=Y woBlim®x®h+ Y 9ol ®x® hx
heG heG
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for all g € G, and therefore

9o By =Bipop and gopf) =qpflop forallhgeG. (4.21)
Using now that s is compatible with the multiplication map of Hp, we obtain that
X @Y B 00 @hx+ x(©) Y B 0 p(v) ® hi?
heG heG
(V®u)o(s®Hp)o (Hp ®5)(x()g®x® V)
= (s®Hp)o(Hp®s) o (u® V)(x(8)g®x® V)
= (S®@Hp)o(Hp®s)o (W@ V)(xQg®v)
= (Vou)o(s®Hp)o(Hp ®5)(x®gQ V)
= Y xeoplimhx+ Y x(Wgopflv @ he
heG heG
for all ¢ € G, which combined with (4.21) gives

X@ By 0w =x(poBly =xMh By op (4.22)

and
X@ B o9 =x(go By = x(aBfy op (4.23)

forall g, h € G. Since ¢ is bijective, from (4.22) it follows that if ﬁﬁ:g # 0, then x (¢) = x (h). Combining
this with (4.20), we see that ﬂi’? #0= ﬂf,’g # 0 = x(g) = x(h). Therefore, from (4.23) it follows

that if there exist g, h € G such that ,Bi’(l) # 0, then ¢ = 1, which is false. So, ﬁi’f =0forallg,h € G.
This concludes the proof that s(kG ® V) € V ® kG. But then a similar computation with s replaced by
s~ shows that s(kG® V) D V @ kG, and so the equality holds.
We now return to the general case and we claim that
(1) ﬁ;j =0forallh € Gandj > 2,
() By =0forh # 1g,
(3) ,31111 is bijective,
(4) 20 =idand B7g = Oforh # z,
(5) By =0forh ¢ (1,2},
(6) If z # 1, then B} = —By, whileif z = 16, then B = 0,
In fact, s(kG® V) C V ® kG means that ,Bﬁ”;) = 0forallg,h € Gandj > 0. Hence, by the compatibility
of s with A,

> (Jl> Byi (v) @ hd @ halx'™1 = (V® A) o s(x® v)
heG j=0 qp

0<i<n
=@ ®Hp)o(Hp ®s) o (AQ V)(x®)
= > BRI

heG
0<i<n

+ Y B oM e ®h. (4.24)
h,leG

0<i<n

This implies that items (1) and (2) are true and that
(8) Bri=priopZand Bl o B7h = 0forallh € G\{z),
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) Byg = By © Brg and g = —PBiyp o By forall h € G\{lgl,
(10) By 0 Big =Oforallh € G.
By items (1) and (2) and condition (4.13),
Bli(v) ® x ifp#1,

sx®v) = . . (4.25)
Bl @x+ Y B ®h ifp=1
heG
This immediately implies that ,31111 is injective. In fact, if ,31111 (v) = 0, then s(x ® v) € s(kG® V), and

sov=0sinces: Hp ® V — VQ Hp is inﬂ'ective. Item (4) follows from item (8) and the injectivity of

ﬂlljll. Hence, by item (9), we have ﬂ;)’é = ﬂh:é ) ,3;:8 = 0 forall h € G\{1g,z}, proving item (5). Note

also that by items (4), (9) and (10),
| BB =B ifz# 1
P = L1 pl0 _ —
BiooBip =0 ifz=1g,

which proves item (6). Combining item (4) with the fact that ,3;:}9 =0forallh € Gandj > 0, we deduce
that

sZR®V)=v®z forallv e V.
Furthermore, by items (5) and (6), equality (4.25) becomes

/311,’11(")@76 ifp#lorz=1g,
s(x®v) = 0 0 - (4.26)
Bri(M) @ x+ By(v) ® 1up — By (v) ® z  otherwise.

Next we prove that if p = 1 and q # —1, then ﬂi’é = 0. If z = 1 this was checked above. So we can

assume that z # 1. To abbreviate expressions we set ¢ := ,31111 and 8 := ﬂllé Evaluating

(s®Hp)o(Hp ®s) o (¢g® V) and (V®cg) o (s®Hp) o (Hp ® s)
inx ® x @ vforall v e V, and using (4.26) and that these maps coincide, we see that
qBop=¢9opf and gqpof=Pog.
Then q*¢ o B = ¢ o B, and so B = 0, since g> # 1 and ¢ is injective. Hence (4.26) becomes
sx®V) =) Qv forallve V.
Consequently s(x® V) € V ®x and a similar computation with s replaced by s~! shows that s(x® V) 2
V ® x, which immediately proves that ¢ is a surjective map. O

In the rest of the paper we assume that (p, q) # (1, —1).

Proposition 4.5. Let V be a k-vector space endowed with an Aut, ,(G)-gradation
v= P W
ceAuty ,(G)

and an automorphism ¢: V — V fulfilling
- @(Vy) =V, forall ¢ € Aut, ,(G),
- @" =idif A" — 1g) # 0.
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Then the pair (V,s), wheres: Hp @ V. — V ® Hp is the map defined by
s(gxi Q) = <pi(v) ® g“(g)xi forallve Vg, (4.27)
is a left Hp-space. Furthermore, all the left Hp-spaces with underlying k-vector space V have this form.

Proof. It is easy to check that the map s defined by (4.27) is compatible with the unit, the counit, the
multiplication map and the braid of Hp. So, by Remark 2.4, in order to check that s is a left transposition
it suffices to verify that

SROHPp)o(Hp®$) o (AR V)x®v) = (VR A)os(x®v)
and
(s®@Hp)o(Hp®s)o(AQV)g®v)=(V®A)os(g®v) forgeG,

which is clear.
Conversely, assume that (V, s) is a left Hp-space. By Proposition 4.4 and Theorem 4.3, we know that
there exists an automorphism ¢ of V and a gradation

v= P v
ceAut(G)

of V,suchthat s(g ® v) = v® ¢(g9) and s(x ® v) = ¢(v) @ xforallg € Gand v € V,. Again by
Proposition 4.4, we also know that s(z ® v) = v ® zfor all v € V. Therefore, if V; # 0, then ¢(z) = z.
Now, let g € Gand v € V;\{0}. A direct computation shows that

P(v) @ x5 (g) = s(xg ®v)
=s(x(@gr®v)
= D oM@ x@e(x

peAut(G)

= > 9 @ x@x(#(©) 'xp(g).

peAut(G)
Since g is arbitrary, from this it follows that ¢ (v)¢ = 0 for ¢ # ¢ and that x (¢(g)) = x(g). So
o(Ve) =V¢ and Xol =gx.
Lastly, suppose that A(z" — 1) # 0. Then
v A" —16) = s(A(Z" — 16) ®v) =s(x" @ v) = ¢"(») @ x" = " (v) @ A" — 1¢),
for each v € V. This shows that ¢” = id and finishes the proof. O

Our next aim is to characterize the right Hp-braided comodule structures. Let (V,s) be a left Hp-
space and let

V= @ Ve and p:V—V
¢ €Auty (G)
be the decomposition and the automorphism associated with the left transposition s. Each map
v:V— V®Hp
determines and it is determined by a family of maps

(US: Vv — V) (4.28)

g€G,0<i<n
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via

v(v) = Z U,.g(v) ®gxi. (4.29)
geG
0<i<n

Proposition 4.6. The pair (V,s) is a right Hp-comodule via v iff
(1) Uig(V;) C V, forallg € G, ¢ € Auty .(G) and i € {0,1},

) (Us )geG is a complete family of orthogonal idempotents,

B) U =Us o US = US o US for allg €G,

(4) U = (l), UoUSo---0 U‘lg forallg €eGandl <i<n,

5) U0 U¥ o 0US I_OforallgeG
(6)(poUg UgogoandqgooUg Ugo<pforallgeG

Proof. Foreachv e V;,h e Gand 0 < j < n, write

Ul =Y U'Ws  withU'(my € Vy.
peAuty . (G)
Since
(v® Hp) o s(gx' ® v) = Z Ujh((pi(v)) ® h¥l ® £ (g)x'

heG

0<j<n
and

(VRc)o(s®@Hp)o(Hp@®v)@r @ =Y >  q7¢'(U'v)s) ®hd ® p(g)x'
Jeg ¢€AutxZ(G)
5J<

the map v satisfies condition (2.4) in Remark 2.17 iff

YUY m) e cgx=Y > ¢ (U'Wy) @h® e,
Oth OheG PeAuty, Z(G)
sj<n sj<

forall { € Auty ,(G),v € V;,g € Gand 0 < i < n. Since ¢, v and g are arbitrary, ¢(Vy) = Vy for all
¢ € Aut, ,(G), and ¢ is bijective, this happens iff

U'(Ve)S Ve  and  deoU!=Ulog, (4.30)
for all 1, j, and ¢. On the other hand, since €(gx’) = 8o;, the map v is counitary iff
> Us=id, (4.31)
geG

and since

(VR A)ov(v) = Z Ug(v) ® A(gx) = Z Z (J) Ug(v) ®ng ®ngx’ -

geG geG j=0
0<i<n 0<i<n

and

(v® Hp) o v(v) = Z v(Ulh(v)) ® hxl = Z Z U]ig(Ulh(v)) ®g¥ @ hx,

heG heG geG
0<l<n 0<l<no<j<n
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it is coassociative iff

Vol =

J

(J—i‘_l> U]‘.il ifh=g7andj+1<n,
= T [ (4.32)

0 otherwise.

Thus, in order to prove this proposition we must show items (1)-(6) are equivalent to conditions (4.30),
(4.31) and (4.32). It is evident that (4.30) implies items (1) and (6), while items (2) and (3) follow
from (4.31) and (4.32). Finally, using (4.32) again it is easy to prove by induction on j that items (4)
and (5) are also satisfied. Conversely, assume that the maps U;g satisty items (1)-(6). It is clear that
item (2) implies condition (4.31), and equality (4.30) follows from items (1), (4) and (6). It remains
to prove equality (4.32). We claim that

. (zf]) Ul ifitj<n,
vetF ={\ i/, (4.33)

0 ifi+j>n.

By item (2) this is true if j = i = 0. In order to check it whenj > Oandi = Oorj = Oandi > 0, it
suffices to note that by items (3) and (4),

1 i— 1 i—
Vol = —Uotlo ot =— o . otf =t
(!gp ®!gp
and
i 1 i—1 i 1 i1
U{OU{;Z:,— {o-~-oU{Z oU{;Z: - U{o-noU{Z :U{,
@l Dl

respectively. Assume now that j > 0 and i > 0. Then, by item (4),

i 1 1 i-1 i i+j—1
fotff oot o ot
l.qp -qp

and the claim follows immediately from items (4) and (5). Note now that (4.33) implies that

U{oU]hz LF{OU(/;ZIOU(];’O(th
which, combined with item (2), shows that
f ot : i
Ui oU'=0 ifh#f,
finishing the proof of (4.32). L]
Corollary 4.7. Let V be a k-vector space. Each data consisting of

- a G x Aut, ;(G)-gradation V = @(g,;)erAutX,z(G) Ve of V,
- an automorphism ¢: V. — V of V such that

" =idifr(z" — 1) #0 and @(Vgr) = Vg forall (g,¢) € G x Auty .(G),
-amap U: V — V, such that
Uop=qpolU, U"=0 and U(Vge) C ng—l,g-for all (g,¢) € G x Aut, .(G),

determines univocally a right Hp-comodule (V, s), in which
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-s: Hp ® V — V ® Hp is the left transposition of Hp on V associated as in (4.27) with the map ¢
and the Aut, . (G)-gradation of V

V= @ Ves where V; = @ Voo
s €Auty . (G) geG

- the coactionv: V — V & Hp of (V,s) is defined by
n—1

1 , o
v(v) = Z O)—!qPUJ(v) ®z /gd forallv e V,,

J=0
where, for all g € G,
Vo= P Ve
ehuty -(G)

Furthermore, all the right Hp-braided comodules with underlying k-vector space V have this form.

Proof. Assume we have a data as in the statement. Then we define a family of maps as in (4.28), by
- Ug(v) = mg(v), where g : V' — V is the projection onto V, along @heG\{g} Vi,
- Uig = Ugo Uo ng,
ji—1
- Uf: U);!W)UfonZo...onzj foralll <j < n.
We must check that these maps satisfy the conditions required in Proposition 4.6. Item (1) is fulfilled
since U(V;) € V; and U3 (V;) C V; forallg € G, items (2)-(4) hold by the very definition of the maps
U‘f, and item (6) is fulfilled since ¢ (Vg) = V, forallg € Gand Uog = q¢ o U. We next prove item (5).
Since U" = 0, this trivially follows if we prove that, forall j > 1,
UfoUfo--0 Ufzjil(\/) = V) ifve Vo) 4
0 ifv e Vj, with h # g7.

Clearly if v € V, with h # g2/, then ngj(v) = 0, and so
- - ‘
UsoUfo- oU¥ (=Ufo -0 U¥ oUS () =0.
It remains to consider the case v € V,; .. We proceed by induction on j. If j = 1, then
US(v) =Us o Uo US*(v) = Us 0 U(v) = U(v),

because U(v) € V,. Assume now j > 1 and the result is valid for j — 1. Then

i—1 j—2 i—1 i—2 .
Vol ool W=Uo--oU¥ oU¥ W=Uo---0U¥ oUW =Um),

where the last equality follows from the inductive hypothesis and the fact that U(v) € V1.
Conversely assume that (V,s) is a right Hp-comodule via a coaction v: V — V ® Hp. Let

V= @ Ve and p:V—V
{eAuty -(G)

be the decomposition and the automorphism associated with s (see Proposition 4.5). By items (1) and (2)
of Proposition 4.6, we know that, for each { € Aut, ;(G), the maps U§ s determine by restriction a
complete family (Us: V, — V, )¢eG of orthogonal idempotents. Let

Ve = @ Ve

geG
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be the decomposition associated with this family. Clearly

V= @ Ve

(g:)eGxAuty - (G)

By item (6) of Proposition 4.6, we have g o Us = Us o ¢ forall g € G. Since, by Proposition 4.5 we know
that (V) = V; forall { € Aut(G), this implies that

o(Vgr) = Vg forall (g,¢) € G x Auty ,(G).
We now defineamap U: V — V by
U) = U‘lg(v) forallv € Vg, .

From items (3) and (5) of Proposition 4.6, it follows that U” = 0, and using the second equality in item (6)
of the same proposition, we obtain that ¢ o U = q U o ¢. Finally, by items (1) and (3) of Proposition 4.6,
we have U(V,;) € Vo-igs forall (g,¢) € G x Aut, .(G).

We leave the reader the task to prove that the construction given in the two parts of this proof are
reciprocal one of each other. O

Remark 4.8. Assume that g = 1, or equivalently, that Hp is a Krop-Radford Hopf algebra. In this case
(V,s) is a standard Hp-comodule (that is, s is the flip) iff V. = 0 for ¢ # id and ¢ is the identity map.
Hence, in order to obtain the standard Hp-comodule structures, the conditions that we need verify
(given in Corollary 4.7) are considerably simplified.

Corollary 4.9. With the notations of the previous corollary, V<! = Vi Nker(U).
Proof. This is an immediate consequence of Corollary 4.7. O

Proposition 4.10. Let B be an algebra. If
B= @ B; (4.34)

ceAuty ,(G)°P
is an Aut, ,(G)°P-gradation of B as an algebra and ¢ : B — B an automorphism of algebras that satisfies
- ¢(B;) = B; forall{ € Aut, ,(G),
- " =idif A" — 1g) #0,
then, the map s: Hp @ B— B ® Hp, given by
s(@' ®b) =¢'(b) ®¢(g)x' forallb e B, (4.35)

is a left transposition of Hp on the algebra B. Furthermore, all the left transpositions of Hp on B have this
form.

Proof. By Proposition 4.5 in order to prove this it suffices to check that the formula (4.35) defines a map
compatible with the unit and the multiplication map of B iff (4.40) is a gradation of B as an algebra and
¢ is an automorphism of algebras. We left this task to the reader. O

The group Aut, .(G) acts on G via { - g := £(g). So, it makes sense to consider the semidirect
product G(x,z) := G°P x Aut, ,(G).

Definition 4.11. Let D = (G, x, 2, , q) be as in Corollary 3.8 and let B be an algebra endowed with an
algebra automorphism ¢: B — B,amap U: B — Band a G(), z)°P-gradation

B= P By (4.36)
(8:¢)€G(x,2)°P
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of B as a vector space. We will say that the decomposition (4.36) of B is compatible with the pair (U, D)
if one of the following conditions is fulfilled:
(1) A(z" — 1g) = 0 and (4.36) is a gradation of B as an algebra.
(2) )"(Zn - lG) # 0, 1p € Blc,ids
Be¢Bhg S By(ghpor ® Brnghgor  forall (g,¢), (h,¢) € G(x,2), (4.37)

and, for each b € Bg; and ¢ € Byp, the homogeneous component (bc) -ng (g)n,go; Of be of degree
(z7"¢(g)h, ¢ o ¢) is given by

(bc)z*”(p(g)h,qﬁo{ = Z (]) 'Z(i (_)J)' U](b)(pj (Un_] (C)) (438)

Theorem 4.12. Let B be an algebra. Each data consisting of
- a G(x,z)°P-gradation

B= @ By, (4.39)
(8:0)€G(x2)°P

of B as a vector space,
- an algebra automorphism ¢ : B — B of B such that

=idifa(z" — 1g) #0 and @(Bg¢) = By forall (g,¢) € G(x,2),
- amap U: B — B such that
the decomposition (3.39) is compatible with the pair (U, D),

Uop=qepoU,

U" =0,

U(Bgz) © B¢ forall (g,¢) € G(x,2)®
and

U(bc) = bU(c) + x(WU(b)p(c) forallb € Bandc € By, (4.40)
where

By= @ By forallheg,
teAuty -(G)

determines a right Hp-comodule algebra (B, s), in which s: Hp ® B —> B ® Hrp is the left transposition
of Hp on B associated with the map ¢ and the Aut, ,(G)°P-gradation of B

B= EB B, (4.41)

ceAut, -(G)°P
where By := @c Bg,¢- The coaction v: B—> B ® Hp of (B, s) is given by
n—1 1
v(b) = Z TU’(b) ®z gk forallb € By (4.42)
“ap

Furthermore, all the right Hp-braided comodule algebra structures with underlying algebra B are obtained
in this way.

Proof. Let (B, s) be a right Hp-comodule, with s a left transposition of Hp on the algebra B. Consider
the subspaces By, of Band the maps ¢ and U associated with (B, s) as in Corollary 4.7. By that corollary,
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Proposition 4.10, and Remarks 2.17 and 2.22, in order to finish the proof it suffices to show that the
coaction v of (B, s) satisfy

v(1g) =13 ® g,y and voug=(Up® UHp)o B&s®@ Hp)o (v Q@) (4.43)
iff the decomposition
B= @ By (4.44)
(8:0)eG(x2)P

of Bis compatible with (U, D) and U satisfies condition (4.40). First we make some remarks. Let b € Bg
and ¢ € By, 4. By the definition of v,

v(be) = ZZWUI (bo)y) ® 2 'f. (4.45)

i=0 feG

On the other hand, a direct computation shows that

n—1n—1
Fbye)=» > " P oxy U (b)g (U'(0)) ® 2~ Tp(g)hx'™

j=0 i=0 (])“IP( )'
TR W
- —-U] b [0k Rz B, 146
u=0 ]2: (Dgp(u — Dlgp ( )WJ( (C)) z P (ghx ( )
0<u—j<n

where to abbreviate expressions we write
F(b,c) = (up @ iHp) © (B®s® Hp)(v(b) ® v(0)).
Set
pU=iy (hy
Dlgpu—=lgp
Since x"* = A(z" — 1), equality (4.46) becomes

A, o) = Ul (b)p! (U ().

i n—1 n—i
F(b,c) = ZZA](b 0@z + 1Y Y AL (6,0 ® 2" (@h(" — 16)x'
i= 0] 0 i=0 j=i+1
- Z (ZAf(b Q)+ A Z AL, c)> ® z g (gHhx'
j=i+1
n—1 n—1
- Z Z AA] +n(b, 0 ®z " g (ghx'. (4.47)
i=0 j=i+1

Next we prove the part =). We assume that 1(z” — 1) # 0 and leave the case L(z" — 1) = 0, which
is easier, to the reader. To begin with note that by the first equality in (4.43),

1p € Blc = @ B]G,g.
eAut, . (G)
Since, on the other hand, (4.41) is a gradation of B as an algebra, necessarily

Ip € Big = @Bg,id>

g€G
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and so 15 € Bjgd- Recall that b € Bg; and ¢ € Byg. Since by the second equality in (4.43),
equations (4.45) and (4.47) coincide, we have

n—1
AY(b, )+ 2. Anbio) iff = ¢(@h,
j=1
b — n—1 i 448
©r=1_s 3 Albo itf = 2 "¢ ()h, (4:48)
j=1
0 otherwise,
and
1 ) n—1 )
> Hbo+rY A0 iff=¢@h,
j=0 j=2
U(» — n—1 ) 4.49
(( C)f) _x ZA]1+n(b’ C) iff — an(b(g)h) ( )
j=2
0 otherwise.

Since, by Proposition 4.10, we know that bc € Bgo;, from equality (4.48) it follows easily that the
decomposition (4.39) is compatible with (U, D) (recall that if A(z" — 1) # 0, then p” = 1). Finally,
by (4.49)

Ube) = > U((bo)y)
f

1 n—1 n—1
=Y Ao+ 1Y A, b0 =2 AlL(bo
j=0 j=2 =2

= AY(b,c) + A1 (b,0),

and so, (4.40) is true.

We now prove the part <=). So we assume that the decomposition (4.44) is compatible with (U, D)
and that U satisfies (4.40). Again we consider the case A(z" — 1g) # 0 and leave the case L(z" —15) = 0,
which is easier, to the reader. To begin with note that v(13) = 13 ® 1n,,, because

1 € Byg and U(lg) = 13U(15) + U(1p)1p = U(1p) = 0.

So, we are reduced to prove that the second condition in (4.43) is fulfilled. By equalities (4.45) and (4.47),
this is equivalent to prove thatforall0 <i < nandf € G,

i n—1
S Ao+r Y AL bo iff =e@h
j=0

j=it1

U'((bo)y) = (4.50)

n—1
(i) g —1 Y AL (bo) iff =z""¢()h,

j=it1

0 otherwise.

For i = 0 this follows easily from the fact that equality (4.38) holds and
AQ(b,©) = be = (b)) g (ghpor + (bO)zng(@)npor
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since the decomposition (4.44) is compatible with (U, D). Assume by inductive hypothesis that equal-
ity (4.38) is true for i and that i < n — 1. This implies that

i n—1
S UMb 0) +1 Y U(AL,(b:0) iff = p(@h,
j=0 j=it+1
,—UH_I ((bC)f) —
(0)lgp —A Z AL (b,0) iff = z7"$(g)h,
j=i+1
0 otherwise.
So, we must prove that
1 n—1 n—1 )
G+ 1oy Z ( l+n(b C) Z A]i+1+n(b’ ©) (4.51)
P j=it1 j=i+2
and
i+l
UAlb,0) =Y AL (b0 4.52
G +1)qp ZO (b,0)) Z 1 (B,0) (4.52)

Recall again that b € By and ¢ € By, 4. Using the equality (4.40) and the facts that U o ¢ = qp o U,
U"(c) € Biupg forall u € IN, and p" = 1, we obtain
P x (hy
(Dlap(E = lgp
P x (hy
T (=Dl

U(A)(b,0)) = U(U(b)¢ (U (0)))

(quf(b)wi (U (0) + P x (h) Uf'“(b)q)f“(U"—f(c)))
and

G~y (B
( z+n(b C)) £ JX(h)]

_ P xy
Since U" = 0, this implies that

U(U )¢ (U (0)))

(FU O (U7 @) + P DU 0y (U () ).

d =iy (hyg .
U(4l(b, PUOXBYE iy i (U1
]EO (b,0) = E i~ ey ()¢ ( (©)

G=DG+D 5 (py+1 ) .
Zp(z)v (zfj)')] U by (U ()
qp

j=0

PIX (WY  i
Ul (b)g/ (U1
Z it =l PP VTTO)

Dy
+
Z - 1)' p+1=7lgp

U (b)g/ (U1 7(0))
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and

n—1 . n—1 (—i)j (h)JqJ ' - |
U(A] b, = P X Ub yititn—j
j§1 (4, ,0) j;l Dl 71—y ()¢ ( (©)

GG gyl o
+ Y. Gtrn (—;’mp T e e)
i=it1

n—1 Y L
pU= iy (hy g , n

- Z U(b)¢/ (U j
e Dlgpli+n—Plgp ®)¢'( (©)

n—1 L '
Z pU=i=Diy (hy ; e

b t n—j .

+j:i+2 O_l)!qp(i-l-l—}-n_]')!qu( )SD/(U (C))

Consequently in order to finish the proof of equalities (4.51) and (4.52) it suffices to see that
i+ Dgp 1

(+ Dl g
i+ Dgpx (W™ x (!
(i+Dlgp (i)gp
(i + Dgpp™Vix Ry pi=Diy(hyg P iy (hy
Dl +1=Dlgp  Dlgpl—Dlgp G = Dlgpli+1—Nlgp

>

forl <j<i

and
(4 Dgpp=Dix(y  pi=Dix(hyg pU iy (hy
Dgpli+1+n—7y o Digpli+tn—7lgp  G—=Dlgpli+1+n—7y

But the first two equalities are trivial and the last ones are equivalent to

(+Dgp=pPdG+1—jgp+ (g forl<j=<i

fori+2<j<n.

and
(i+Dgp=pPdl+1+n—jg+ (g fori+2<j<n,
which can be easily checked. O

Remark 4.13. Using that x o ¢ = x forall ¢ € Aut, ,(G) and thatif A(z" — 1) # 0, then x(2)" =1,
it is easy to see that B is a B-bimodule via

bl . bz . b3 = X(h)blbzq)(b3) for all bl, bz € Band bz € Bh.
Let B x B be the cartesian product B x B endowed with the multiplication
(b1, c1)(b2, ©2) = (b1b2, by - 2 + c1 - by).

It is well known that B x B is an unitary associative algebra and that a map U: B — B satisfies
equality (4.40) if and only if the map 6: B — B X B, defined by 8(b) := (b, U(b)), is a morphism
of algebras.

Remark 4.14. Assume that ¢ = 1. Then (B, s) is a standard Hp-comodule algebra (that is, s is the flip)
iff B = 0 for ¢ # id and ¢ is the identity map. Hence, in order to obtain the standard Hp-comodule
algebra structures, the conditions that we need to verify (given in Theorem 4.12) are considerably
simplified.
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Example 4.15. Fix n > 1in IN. Assume that k contains a root of unity & of order n. Let
H,» :=k{g,x|g" =1, x" = 0and gx + £xg = 0)
be the Taft algebra. Clearly H,» = Hp, where D = (G, x, 2, A, q) with
G:=({(lg....8"", z=g A=1 g=1 and x(g) =E&.
Note that Aut, ,(G) = id, and hence G(x,g) = G. Consider the k-algebra

bl 78
B= (a Ilf ) = k(u, v|u" = o, v = B and vu — Euv = Su?),

where o, 8,8 € k. It is easy to see that B is a G-graded algebra via
B=Bi ®By® - ® By,

where

n—i—1

i
Byi = @k VT @ @ k- ity
=0 j=1

Let U: B — B be the k-linear map defined by
UW'v) =1 4+&+---+EHu'v™1  forallij>o0.
Clearly
U’ =0, U(Bg) € Bgn-1 and U(Bgi) € Byt forl <i<n.

Moreover, it follows easily from Remark 4.13 that U satisfies equality (4.40) with ¢ := id. Thus, by
Theorem 4.12, we know that B is an H,2-comodule algebra with coaction v: B — B ® H,2, given by

n—1
1 ~
v(b) = Z @Ul(b) ®g I forb e B,i.
1=0
Consequently,
i—=j o,
vV ) = Z (1 ;J) Wy ®gi_lxl for0 <j<i
1=0 §
and
n—j ;
vty = Z (n l_]> u iyl g gy forl<j<n-—i
1=0 §

Finally, by Corollary 4.9, we have Bt = By Nker(U) = k.

Remark 4.16. Let (B,s) be a right Hp-comodule algebra and let Bg := {b € B : v(b) € B® kG}. Note
that

Bg=ker(U)= @ By Nker(V).
(&:5)€G(x-2)P

Moreover,
v(Bg) € B ® kG,
because (v ® Hp) o v = B® A) o v. Consequently, since
(B®cq)o(s®@Hp)o(Hp®v)=(Q®Hp)os,
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we have s(Hp ® Bg) € Bg ® Hp. Similarly s~!(Bg ® Hp) € Hp ® Bg, and so,
s(Hp ® Bg) = Bg ® Hp.
Furthermore B is a subalgebra of B because
vou = (up® tup)o (B®s® Hp) o (v V).

Clearly s induces by restriction a left transposition s of kG on Bg. From the previous discussion it follows
that (Bg, S) is a right kG-comodule algebra.

5. Hp cleft extensions

Throughout this section we use freely the notations introduced in Section 4 and the characterization of
right Hp-comodule algebras obtained in Theorem 4.12. Let (B, s) be a right Hp-comodule algebra and
let C := BHP_ Recall that, by Corollary 4.9,

C = By, Nker(U) = @ Big Nker(U).
¢ eAuty . (G)

Theorem 5.1. The extension (C < B, s) is cleft iff there exists by € B and a family (bg)ecc of elements of
B*, such that
(a) by € Bgiga Nker(U) forallg € G,
(b) by € B;ia N U_I(IB);
(©) @(bx) = gby,
(d) @(bg) = bg forallg € G.
If this is the case, then the map y : Hp — B, defined by y (gx') := bybi, is a cleft map, and its convolution
inverse is given by
i(i—1)

Yy Hgx) = (=Di(gp) 7 bib !

xVgzi "

Proof. Assume that (C < B, s) is a cleft extension and fix a cleft map y : Hp — Bsuch that y(1) = 1.
Forevery g € Gand 0 < i < n, set by,i := y(gx). Since y is a right comodule map,

v(by) = b, ®¢ and v(by) =13 @ x+ by ® 2,
which, by formula (4.42), is equivalent to
bg € By Nker(U) and by € B,NU(1).

Moreover by is invertible for each ¢ € G, because y is convolution invertible. On the other hand
evaluating the equality (y ® Hp) o¢y = so (Hp ® y) inh ® x, x ® x, h ® g and x ® g, where
h € G is arbitrary, we obtain that

by € Big, o(bx) = gbs, by € Big and @(bg) = by,

for all g € G. Thus, items (a)-(d) hold. Conversely, assume that there exist b, € B and a family (bg)eeG
of elements of B* satisfying statements (a)—‘(d). We are going to prove that (C < B,s) is cleft and the
map y: Hp — B, defined by y (gx') := bgb;, is a cleft map. First note that

(y ® Hp) o cq(gxi ® h¥) = qijbhbzC ®gxi = s(gxi ® bhbzc) =so(Hp ® y)(gxi Q hxl),
forall h,g € Gand 0 < i,j < n. So we must only check that y is convolution invertible and

Vo y(gxi) = (y Q Hp) o A(gxi) forallg € Gand0 <i < n. (5.53)
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For g = 1 and i = 0 it is evident that this is true. Assume it is true for g = 1 and i = iy, and that
iop < n— 1. Then

v oy = v(y(x)by)

= (B ® Hp) 0 (B® s ® Hp) (v(y (x©)) ®@ v(by))

=Z<l]°> (1B ® 1rip) © (B®s® Hp) (b, @ Zx" T @ 15 ® )
j=0 ap

o . ) o
+Z(l]°> (14 ® prip) © (B® s ® Hp) (b, ® 77 @ by ® 2)
j=0 qap

iO i H . . . io 7 ; . . . . .
<l9> b, @ Zx0t1 4 Z (19) Ve (by) ® Zx 72
0 P =

(= a

io . ) io+1 . '
<10> 17; ® ijioJrl*j + Z ( ‘ ﬁ) 1) qi0+1*jpio+lfjb; ® ijio+17j
o N e = ap

i . )
S(PTY) deser
I Jap

-0

-

-

Thus, equality (5.53) holds when g = 1. But then
Vo y(gxi) = v(bgy(xi))

(i o
=Z<) (1B ® pHp) 0 (B® s ® Hp)(by ® g ® by ® Zx™7)
j=0 ap

i

i S
-3 () nthoh
=0 V/ gp

It remains to check that y is convolution invertible. As was noted in [2, Section 3],

i
i =0 (i 1 ifi=0,
S (g™ O - { ) o (5.54)
pary ap if0 <i<n
Using this it is easy to prove that y is invertible with

i(i—1)

V_l(gxi) — (_1)l(qp) 5 bi b*l

X gzi’

which finishes the proof. O
In the previous theorem we can assume without loss of generality that b; = 13.

Example 5.2. With the notations and assumptions of Example 4.15, the extension (k < B, s), where s
is the flip is cleft if and only if there exist

by € ByNU ' () ={hy-u+vid,ekl and by ByNker(U) ={hi u': % €kl

such that the b,i’s are invertible. Note that since u" = a, this is equivalent to say thata € k™.
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Theorem 5.3. Assume that (C < B,s) is cleft. Take by € B and a family (bg)ec of elements of B with

b1 = 1, in such a way that conditions (a)-(d) of Theorem 5.1 are fulfilled. Then

(1) Bis a free left C-module with basis {bsb’ : g € Gand 0 < i < n}.

(2) Setb := b,’:b!fl_” and forallg € Gsetag := b(lggl and ¢g := (bybg — X(g)bgbx)bg_lbz_l. Then ag € C*,
¢g € Coandifx" =0, thenb € C.

(3) The weak action of Hp on C associated with y according to item (5) of Theorem 2.36 is given by

g = c= Z(—l)j(qp)j(j%” C) bgb _]go](c)b’ bg(g) . forc € By Nker(U).

j=0
(4) The two cocycle o : Hp @ Hp — C associated with y according to item (5) of Theorem 2.36, is given
by

ogd @h) = Y (=D (j)qp (;)qpmp) S50 () bl by b
0<i<s
o<j<r

&ij<n

& r E,(E, 1)+s i s—i i ing,—
Y- 1>v(.> (1) (ap)™ T ()bl

0<i<s
0<j<r
&ij=n

’

& (S r /(E )+s] ij s—ip i &iny,—
—h ) (] LU qp(qp) X (W) bgbl bbbyl

where &;; :=s+r—i—jand§i’j =& —n

Proof.
(1) By item (4) of Theorem 2.36, the map ¢: C ® Hp — B, given by ¢ (¢ ® y) := cy (y), is a normal
basis. Item (1) is an immediate consequence of this fact.

(2) Using item (4) of Remark 2.22 it is easy to check by induction on i, that
v(b"g) = b,lg ®g and v(b,) = Z (}) V. ® Zx'  for allg e Gandi > 0. (5.55)

By the first equality
v(ag) =0, ® 1y, forallg € G,
and so a, € C. Since v: B — B ®; H is an algebra map, we have
v(ail) =a, ' lg, and v(b;l) = bgfl ®g71 forallg € G, (5.56)
which implies in particular that a; € C*. Note also that, by the second equality in (5.55),
v(by) =1p®@x" + by ® 2"
because (;l)qp = 0 for 0 < j < n. Consequently,
v(b) = v(B"BF ")
= (uB ® 1tip) 0 BOs@ Hp)(13@ X" @ b " @z "+ b1 @ 2" @ b " ® 77"
= (U@ U)LY " @x" @z "+ b Qb T @ @)
=T @X T b ® 1y,
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which implies that, if x” = 0, then b € C. Furthermore, forall g € G,
V(bybg) = (U ® UHp) o BRs@ Hp)(1p @ x @by g+ b ®2z2Q by ®g)
= (up® nup)(Ip @by ®x g+ by @by ®zRg)
= x(g) by ® gx + bxby @ zg
and
V(X (g) bgbx) = (up ® uHp) c (BRs® Hp)(x(8) by ®g® 1 ® x+ x(g) by ® g ® by ® 2)
= (uB® nap) (X Qb @3RI+ ()b ® b, RER 2)
= x(§) by ® gx + x(g) bgbx ® zg.
Combining this with the second equality in (5.56), we obtain
v(cg) = v((bxby — x () beba)b, 'b; ")
= (4B ® [tHp) © (B® s ® Hp)((bxbg — x(g) bgby) ® g @ b, 'b; ' @ g™'z7")
= (148 ® prp)((bxbg — x(Q) beby) ® b 'b; ' ® zg @ g1z 7)
= (bxbg — X(Q) bgb)by b7 ® 1hp,
and so ¢, € C, as desired.

(3) This follows by a direct computation from item (5) of Theorem 2.36, using equalities (3.9)
and (4.27), and the formulas for y and y ~! that appears in Theorem 5.1.

(4) This follows by a direct computation from item (5) of Theorem 2.36, using equalities (3.9)
and (3.10), and the formulas for y and y ~! that appears in Theorem 5.1. O

The following proposition and its corollary is useful to simplify the computation of the the right side
in the equality in Theorem 5.3(4).

Proposition 5.4. Letr,s,i > 0 with 0 < i <s. With the notations of the previous result, we have

r

Z(—l)g"o @ +sj—fj=!( D T =0,
] .

s 0 ifo<r<n.

Proof. Leta:=s—iand b :=r — j. Since &; = a + b, we have

Z(_I)Sij <> (@p) Sij ¢ +5j— Z( 1)a+b< ) (ap) @b)atb=1) | 0p g
j=0
Z( 1)”( ) g7

which combined with (5.54) gives the desired result. O

-1)

= (~1)(qp) 5

Corollary 5.5. Letr,s,i > 0with0 <i<s.If0 <r <n—s+i then

&&=
> 1)5”<'> (gp)F 9 =0,

0<j<r
&ij<n

Proof. By Proposition 5.4. O
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6. Examples

In this section we consider two examples of the braided Hopf algebras Hp defined in Corollary 3.8 and
we apply the results obtained in the previous section in order to determine their cleft extensions.

6.1. First example

Consider the datum D = (C; x C; x Cy, X, 2, A, q), where:
- C; = {1, g} is the multiplicative group of order 2,
- x: Cy x C3 x C; —> Cis the character given by x (g'!, g2, ¢%) := (—1)1Ti2+is,

- Zi= (g:g:g);

-g=landX =1

In this case p := x(z) = —1, n = 2 and the Hopf braided C-algebra Hp of Corollary 3.8 is the C-algebra
generated by the group G := C; x C; x C; and an element x subject to the relations

x2 — 22 —1g=0 and x(gh,giz,glé) — (_1)i1+i2+i3 (gil,giz,gi3)x,
endowed with the standard Hopf algebra structure with comultiplication map A, counit € and antipode
S, given by
A(g)  =gg, AX) =1Qx+xRQz,
(g =1, €(x): =0
S(g) == gfl, S(gx) == —xzflgfl,

where g denotes an arbitrary element of G. Let S3 be the symmetric group in {1, 2, 3}. It is easy to check
that the map

0: 8 — Auty,(G),
defined by 0 (') (g™, g2, ") := (go), glo®, glo®), is an isomorphism.

6.1.1. Hp-spaces
Let V be a C-vector space. By Proposition 4.5 to have a left Hp-space structure with underlying vector
space V is “the same” that to have a gradation

V=V,
0eS;
and an automorphism ¢: V — V such that ¢(V,) = V,; for all ¢ € S3. The structure map
ssHp® V — V®Hp,
constructed from these data, is given by
(@87, 87 ® v) = v @ (70, g7, g
and
("8, 8")x ® v) = p() ® (g, g, g0,

for eachv € V.

6.1.2. Hp-comodules
Let V be a C-vector space. By Corollary 4.7 each right Hp-comodule structure (V,s) with underlying
vector space V is univocally determined by the following data:
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(a) A decomposition

V= P Vo

(g,(r)erSgp

(b) An automorphism ¢: V — V that satisfies ¢(Vgy) = Vg0 forall (g,0) € G x S,
(¢c) Amap U: V — V such that

Uop=¢oU, U?=0 and U(Vg,g) C Vgo forall(g,0) € G x Sgp.

The formula for the transposition s of Hp on V is the one obtained in Section 6.1.1 (where we take
Vy = @gec Vg0 for each o € S3), while the Hp-coaction v is given by

V() =v® (g".¢%¢") + UW) ® (", g7, g,

forv e @0653 Vgo with g = (g",g",¢").

Next given a decomposition as in item (a), we give a proceeding to construct an automorphism
¢:V — Vandamap U: V — V satisfying the conditions required in items (b) and (c): First we
decompose each space Vg 5 as a direct sum

_ 0 1
Veo = Ve, @ Ve,

in such a way that dim¢ (Vgl,g) < dimg (Vg

. »)» and we fix an injective morphisms

. 1 0
Ugo: Voo — V,

82,0°

for each (g,0) € G x Sgp . Then we define U on Vgos by

Ugo(v) ifveV]

80’

U) = .
0 ifve VY,

It remains to construct ¢. Let (g,0) € G x S<3>p arbitrary. Since Uo g = @ o U, 9p(Vg) € Vg, and Uy,
is injective, there exist morphisms

0 .0 0 1.yl 1 10, y/1 0
Voot Voo — Vgoo Voot Voo = Vo and Voot Vo = Voo

such that
@0, v1) = (Pg5 (0) + P V1), 03, (V1)) forall (vo, 1) € Vg, @ Vg,

Moreover, since ¢ is an automorphism, the maps gog)g and gogl)o are also automorphisms. All these maps
can be constructed as follows: For each (g,0) € G x S3° we take an arbitrary automorphism ¢’é,a of

Vg - Then, for each (g,0) € G x 837, we choose ¢ , as an automorphism of Vg ; such that

gog)d (Ugzo ) = Ugo ((pg}z)d ) forallv e Vglw

(which is forced by the condition U o ¢ = ¢ o U). Finally, we take gogl)% as an arbitrary automorphism.

Remark 6.1. By Corollary 4.9 we know that yeolp — Vig Nker(U), where Vi, = @ Vigo-

g€eS3
Remark 6.2. We are in the classical case (i.e. s is the flip) iff Vg, = 0 for o # id and ¢ is the identity
map. So, in this case the decomposition in item a) above has at most eight nonzero summands, item b)
becomes trivial and the first condition in item c) also becomes trivial.



COMMUNICATIONS IN ALGEBRA® (&) 3201

6.1.3. Transpositions of Hp on an algebra
By Proposition 4.10, for each C-algebra B, to have a transposition s: Hp ® B — B ® Hp is equivalent
to have an algebra gradation

B= @ B,

op
0ES;s

and an automorphism of algebras ¢: B — B such that ¢(Bs) = B, for all ¢ € S3. The structure map
s: Hp ® B—> B ® Hp, constructed from these data, is the same as in Section 6.1.1.

6.1.4. Right Hp-comodule algebras
By the discussion above Definition 4.11 we know that the group S5 acts on G via

o - (gil )giz)gis) — (gi(r(l)’gi(r(z)’gio(fa))'

Consider the semidirect product G(x, z) := Gx S5 . We are going to work with G(x, z)°P. Its underlying
setis Cy x Cy x Cy x 83 and its product is given by

(gil )gizrgi3) 0)(ng 7gj2)gj3 > T) = (gjl—‘rit(l) agj2+ir(2) 1g73+ir(3) »O O 'L').
Let Bbe a C-algebra. By Theorem 4.12 to have a right Hp-comodule algebra (B, s) is equivalent to have
(a) a G(x,z)°P-gradation
B= (D By

(80)€G(x-2)P

of B as an algebra,
(b) an automorphism of algebras ¢ : B — B such that

¢(Bgo) € Bgo forall (g,0) € G(x,2)*P,

(¢) amap U: B — Bsuch that

- Uop=¢ol,

- U*=0,

- U(Bg,(,) C Bg; forall (g,0) € G(x,2),
the equality

U(be) = bU(c) + (=D 25U (b)g (o)
holds for all b € Band ¢ € By 4i gis) = Does, Bigin g g),0-

Remark 6.3. We are in the classical case (i.e. s is the flip) iff By ; = 0for o # id and ¢ is the identity map.
So, in this case the gradation in item (a) is a G-gradation, item (b) is trivial, and item (c) is considerably
simplified.

6.1.5. Right Hp-cleft extensions
Let C := B°HP_ By Corollary 4.9 we know that

C = By, Nker(U) = @ Bigo Nker(U).

0€S3

By Theorem 5.1 and the comment below that result, the extension (C < B,s) is cleft iff there exist
by € Band a family (bg)geG of elements of B, such that

(@) b =1,

(b) bg € Bgiq Nker(U) forallg € G,

(c) by € B(g,g,g),id N U_1(1)>

(d) @(by) = by,
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(e) ¢(bg) = by forallg € G.

By Theorem 5.3 we know that

(1) Bis a free left C-module with basis {bgbi :g€Gand0 <i<1}.

(2) By Theorem 5.3(3), the weak action of Hp on C associated with y according to item (5) of
Theorem 2.36 is given by

i1 oi2 i3 —b . . . ch]
§.8%8") —~c= b(g‘l,g’z,g“)Cb(g"a(n,gia<z>gia<3>)
and

(gll’glz gl3)x — = b(g‘l g2 g!})( <€ — @) by ) (g”(DH Fo@H gl

for ¢ € By, » Nker(U).
(3) By Theorem 5.3(3), the two cocycle o: Hp ® Hp — C, associated with y according to item (5) of
Theorem 2.36 is given by

o(g®h) = bgbpb!

gh’
o (gx ®h) = —x (Wbgbnbxbygy, . o) + bebxbnbyny e o)
o(g®@hx) =0
and
o (gx ® hx) = x (Wbgbnbiby,,
forg,h € G.
Remark 6.4. It is clear that once chosen b( = bg1,1), b = bq,g1) and b = b(1,1,9)> One can take

bggt) = by B¢, b = bbb g b<2>b< ' and b(g 00 = b“)b%“)

6.2. Second example

Consider the datum D = (Cs, X, 2, A, ), where:
- Cs ={1,g.¢% ¢ ¢* ¢°} is the multiplicative cyclic group of order 6,
- x: Cs —> Cis the character given by x (¢°) := &, where £ is a root of order 3 of 1,
-z:=g
-g=¢&andA =1
In this case p := x(z) = &, n = 3 and the Hopf braided C-algebra Hp of Corollary 3.8 is the C-algebra
generated by the group Cs and an element x subject to the relations
P=g-1==2 and xg = £gx,

endowed with the braided Hopf algebra structure with comultiplication map A, counit ¢, antipode S and
braid c¢, given by

Ag)=¢'®4¢, Ax) =10x+x®g,

€@):=1  €ex:=0

S(gixj) — (—l)jéj(j_l)xjg_j_i,
e (gixj ® gkxl) = Sﬂgkxl ® gixj .

It is clear that Aut, ,(Cs) = {id}.
6.2.1. Hp-spaces

Let V be a C-vector space. By Proposition 4.5 we know that to have an Hp-space structure with
underlying vector space V is equivalent to have an automorphism ¢: V — V such that 9> = id. The
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structure map s: Hp ® V — V ® Hp construct from these data is given by

s(gd ®@v) =9 (v) ® g'¥.

6.2.2. Hp-comodules

Let V be a C-vector space. By Corollary 4.7 the right Hp-comodule structures (V,s) with underlying
vector space V are univocally determined by the following data:

(a) a decomposition

V=P Vy=VidV,@ Ve ®Vp ® V@ Vs,
g"eCs
(b) an automorphism ¢: V — V that satisfies ¢ = id and (p(ng) = Vi for all 4,
(¢c) amap U: V — V such that

Uop=¢EpoU, U’ =0 and U(Vy) <V foralli

The formula for the transposition s of Hp on V is the one obtained in Section 6.2.1, while the Hp-
coaction v is given by

V() =vRZ + UMW ¢ x—EU? () @ g 2x? forall v € V,i.

6.2.3. Transpositions of Hp on an algebra

By Proposition 4.10, for each C-algebra B, to have a transposition s: Hp ® B — B ® Hp is equivalent
to have an automorphism of algebras ¢: B — B such that ¢ = id. The structure map s: Hp ® B —
B ® Hp, constructed from these data, is the same as in Section 6.2.1.

6.2.4. Right Hp-comodule algebras
Let B be a C-algebra. By Theorem 4.12 to have a right Hp-comodule algebra (B, s) is equivalent to have
(a) a Cg-gradation

B=Bl®Bg€9Bgz EBBgs @Bg4 @Bgs,

of B as a vector space such that 13 € B; and Bging C Bgi+j &) Bgi+j—3 for all 4, j.
(b) an automorphism of algebras ¢ : B — B such that

¢’ =id and <p(Bg,-) C B, for all 4,
(¢) amap U: B — Bsuch that

- Uop=E&polU,

- U =0,

- U(Bgi) C Bgi—l for all 4,
- the equality

U(bc) = bU(c) + E'U(b)g(c)

holds forallb € Band ¢ € Bgi,
- Forb e Bgi andc € Bg~, the component (bC)gH—j—S € Bgi+j—3 of bc is given by

(bo)givis = §Ub)p(U*(0) + 7 U (b)e* (U (o).

6.2.5. Right Hp-cleft extensions
Let C := B°HP, By Corollary 4.9 we know that

C = B; Nker(U).
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By Theorem 5.1 and the comment below that result, the extension (C < B,s) is cleft iff there exist
by € B and a family (bgi)gi€C6 of elements of B>, such that

(@) b =1,

(b) bgi € B,i N ker(U) forallg' € Cs,

(c) by € B, NUL(D),

) b) = £bs,

(e) go(bgi) = bg,- forall ¢’ € Ce.

By Theorem 5.3 we know that

(1) Bis a free left C-module with basis {bgibéc :g' € Cgand 0 <j < 2}.

(2) The weak action of Hp on C associated with y according to item (5) of Theorem 2.36, is given by

g —~c=b icb_,.l,
gx—\c—b (bxc — @(0)by )b_,+1
and
g% = ¢ = by(bie + Ebup(O)by + (OB bt

for c € C.
(3) The two cocycle o: Hp @ Hp — C, associated with y according to item (5) of Theorem 2.36, is
given by

o(g'®¢) = by bgfb_lﬂ’
o(gx®g) = _gjbg bglb b_+1+1 + byibib b_’ﬂ“’
0@ @) = 7 bbbl + 61 bybibybib L + bblbbi e,

o(g ®gx) =0,

o(g'x®gx) =0,

0§’ ®glx) = —EWbibyb sy — ETbybyb i+ EVbybybib i,

a(gi ® gsz) =0,

0 (g'x ® gx*) = —&byibyb IW — bbb 1+, + & byib bib;i;+3

and
0@ @) = & byubybab iy — E7 bybyibeb iy + 8 bgibebgb iy
+ E byibibyb ;m + £V byib i bib ,L+4 E byibibyblb ,;H
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