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ABSTRACT

We introduce a family of braided Hopf algebras that (in characteristic zero)
generalizes the rank 1 Hopf algebras introduced by Krop and Radford and we
study its cleft extensions.
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1. Introduction

Let k be an arbitrary �eld. In [4], the authors associated a Hopf algebra HD over k, with each dataD :=
(G,χ , z, λ), consisting of:
– a �nite group G,
– a central element z of G,
– a character χ of G with values in k such that χ(z) �= 1,
– an element λ ∈ k,
such that χn = 1 or λ(zn − 1G) = 0, where n is the order of χ(z). As an algebra HD is generated by G
and x, subject to the group relations of G,

xg = χ(g)gx for all g ∈ G and xn = λ(zn − 1G).

The coalgebra structure of HD is determined by

�(g) := g ⊗ g for g ∈ G, �(x) := 1 ⊗ x + x ⊗ z,

ε(g) := 1 for g ∈ G, ε(x) := 0,

and its antipode is given by

S(g) = g−1 and S(x) = −xz−1.

As was point out in [4], as a vector space HD has basis {gxm|g ∈ G, 0 ≤ m < n}. Consequently
dimHD = n|G|. The simplest examples are the Ta� algebras Hn2 , which are the rank 1 Hopf algebra
obtained taking D := (Cn,χ , g, 1), where Cn = 〈g〉 is the cyclic group of order n > 1 and χ(g) is a
primitive n-th root of 1.

Also in [4] the authors introduced the concept of rank 1 Hopf algebras (and more generally of rank n
Hopf algebras for n ∈ N) and they prove that when k is an algebraically closed characteristic zero �eld,
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rank 1 Hopf algebras are the algebras HD . In positive characteristic the Hopf algebras HD also have
rank 1 but they are not all (for the classi�cation see [6])

In [5] Masuoka studied the cle� extensions of the Ta� algebras, giving a very elegant description of
its crossed product systems. In [2] the Masuoka description was reproduced with simpli�ed proofs, and
studying this description were derived several interesting consequences. Motivated by these works, in
this paper we introduce a family of braided Hopf algebras that generalize the algebrasHD , and we study
their cle� extensions. Although the results we get are valid in this broader context we are particularly
interested in the case of the algebras HD .

The paper is organized in the following way:
In Section 2 we recall the well known notions of Gaussian binomial coe�cients and braided Hopf

algebra, andwemake a quick review of some results obtained in [3]. The unique new result in this section
is the formulas obtained in Theorem 2.36(5). In Section 3 we associate a braided Hopf algebra with each
data D = (G,χ , z, λ, q) (where G is a �nite group, χ is a character of G, z is a central element of G and
q, λ are scalars) that satisfy suitable conditions. The main result is Corollary 3.8, in which the algebras
HD are introduced. When q = 1, we recover the rank 1 Hopf algebras de�ned by Krop y Radford. In
Section 4 we describe the HD-space structures, the HD-comodule structures and the HD-comodule
algebra structures (in Proposition 4.5, Corollary 4.7 and Theorem 4.12, respectively). In Section 5 we
characterize the HD cle� extensions, and, �nally, in Section 5 we study two particular examples.

2. Preliminaries

In this paper k is an arbitrary �eld, we work in the category of k-vector spaces, and consequently all the
maps are k-linear maps. Moreover we letU⊗V denote the tensor productU⊗k V of each pair of vector
spacesU andV . We assume that the algebras are associative unitary and the coalgebras are coassociative
counitary. For an algebra A and a coalgebra C, we let µ : A ⊗ A → A, η : k → A, � : C → C ⊗ C and
η : C → k denote themultiplicationmap, the unit, the comultiplicationmap and the counit, respectively,
speci�ed with a subscript if necessary.

2.1. Gaussian binomial coe�cients

Let q be a variable. For any j ∈ N0 set

(j)q :=

j−1∑

i=0

qi =
qj − 1

q − 1
and (j)!q := (1)q(2)q · · · (j)q =

(q − 1)(q2 − 1) · · · (qj − 1)

(q − 1)j
.

The Gauss binomials are the rational functions in q de�ned by
(
i
j

)

q

:=
(i)!q

(j)!q(i − j)!q
for 0 ≤ j ≤ i. (2.1)

A direct computation shows that
(
r
0

)

q

=

(
i
i

)

q

= 1 and

(
i
j

)

q

= qi−j

(
i − 1
j − 1

)

q

+

(
i − 1
j

)

q

for 0 < j < i.

From these equalities it follows easily that the Gauss binomials are actually polynomials. The Gauss
binomials can be evaluated in arbitrary elements of k, but the equality (2.1) only makes sense for q = 1
and for q �= 1 such that ql �= 1 for all l ≤ max(j, i − j). We will need the following well known result
(q-binomial formula). Let B be a k-algebra and q ∈ k. If x, y ∈ B satisfy yx = qxy, then

(x + y)i =

i∑

j=0

(
i
j

)

q

xjyi−j for each i ≥ 0. (2.2)
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Let i, j ≥ 0 and let 0 ≤ l ≤ i + j. Using the equality (2.2) to compute (x + y)i(x + y)j in two di�erent
ways and comparing coe�cients we obtain that

(
i + j
l

)

q

=
∑

0≤s≤i
0≤t≤j
s+t=l

q(i−s)t

(
i
s

)

q

(
j
t

)

q

. (2.3)

2.2. Braided Hopf algebras

Let V ,W be vector spaces and let c : V ⊗ W → W ⊗ V be a map. Recall that:
– If V is an algebra, then c is compatible with the algebra structure of V if

c ◦ (η ⊗ W) = W ⊗ η and c ◦ (µ ⊗ W) = (W ⊗ µ) ◦ (c ⊗ V) ◦ (V ⊗ c).

– If V is a coalgebra, then c is compatible with the coalgebra structure of V if

(W ⊗ ε) ◦ c = ε ⊗ W and (W ⊗ �) ◦ c = (c ⊗ V) ◦ (V ⊗ c) ◦ (� ⊗ W).

More precisely, the �rst equality in the �rst item says that c is compatible with the unit of V and the
second one says that it is compatible with the multiplication map of V , while the �rst equality in the
second item says that c is compatible with the counit of V and the second one says that it is compatible
with the comultiplication map of V . Of course, there are similar compatibilities whenW is an algebra or
a coalgebra.

De�nition 2.1. A braided bialgebra is a vector space H endowed with an algebra structure, a coalgebra
structure and a braiding operator c ∈ Autk(H ⊗H), called the braid ofH, such that c is compatible with
the algebra and coalgebra structures of H, η is a coalgebra morphism, ε is an algebra morphism and

� ◦ µ = (µ ⊗ µ) ◦ (H ⊗ c ⊗ H) ◦ (� ⊗ �).

Furthermore, if there exists amap S : H → H, which is the inverse of the identitymap for the convolution
product, then we say that H is a braided Hopf algebra and we call S the antipode of H.

Usually H denotes a braided bialgebra, understanding the structure maps, and c denotes its braid. If
necessary, we will write cH instead of c.

Let A and B be algebras. It is well known that if a map c : B ⊗ A −→ A ⊗ B is compatible with the
algebra structures of A and B, then A ⊗ B endowed with the multiplication map

µ := (µA ⊗ µB) ◦ (A ⊗ c ⊗ B),

is an associative algebra with unit 1⊗ 1, which is called the twisted tensor product of A with B associated
with c and denoted A ⊗c B. Similarly, if C and D are coalgebras and c : C ⊗ D −→ D ⊗ C is a map
compatible with the coalgebra structures of C and D, then C ⊗ D endowed with the comultiplication
map

� := (C ⊗ c ⊗ D) ◦ (�C ⊗ �D),

is a coassociative coalgebra with counit ε ⊗ ε, which is called the twisted tensor product of C with D
associated with c and denoted C ⊗c D.

Remark 2.2. Let H be a vector space which is both an algebra and a coalgebra, and let

c : H ⊗ H −→ H ⊗ H
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be a braiding operator. Assume that c is compatible with the algebra and the coalgebra structures of H.
Then H is a braided bialgebra i� its comultiplication map � : H → H ⊗c H and its counit ε : H → k
are algebra maps.

2.3. LeftH-spaces, leftH-algebras and leftH-coalgebras

De�nition 2.3. Let H be a braided bialgebra. A le� H-space (V , s) is a vector space V , endowed with a
bijective map s : H⊗V −→ V ⊗H, called the le� transposition of H on V , which is compatible with the
bialgebra structure of H and satis�es

(s ⊗ H) ◦ (H ⊗ s) ◦ (c ⊗ V) = (V ⊗ c) ◦ (s ⊗ H) ◦ (H ⊗ s)

(compatibility of swith the braid). Sometimes, when it is evident, the map s is not explicitly speci�ed. In
these caseswewill say thatV is a le�H-braided space in order to point out that there is a le� transposition
involved in the de�nition. We adopt a similar convention for all the de�nitions below. Let (V ′, s′) be
another le�H-space. A k-linear map f : V → V ′ is said to be amorphism of le� H-spaces, from (V , s) to
(V ′, s′), if (f ⊗ H) ◦ s = s′ ◦ (H ⊗ f ).

Remark 2.4. Let s : H ⊗ V −→ V ⊗ H be a map compatible with the unit, the multiplication map and
the braid of H and let X ⊆ H be a set that generates H as an algebra. In order to show that s is a le�
transposition it su�ces to check the compatibility of s with the counit and the comultiplication map of
H on simple tensors h ⊗ v with h ∈ X and v ∈ V .

We letLHB denote the category of all le�H-braided spaces. It is easy to check that this is a monoidal
category with
– unit (k, τ), where τ : H ⊗ k → k ⊗ H is the �ip,
– tensor product

(U, sU) ⊗ (V , sV) := (U ⊗ V , sU⊗V),

where sU⊗V is the map sU⊗V := (U ⊗ sV) ◦ (sU ⊗ V),
– the usual associativity and unit constraints.

De�nition 2.5. A le� H-algebra (A, s) is an algebra in LHB.

De�nition 2.6. A le� transposition of H on an algebra A is a bijectivemap s : H⊗A −→ A⊗H, satisfying
(1) (A, s) is a le� H-space,
(2) s is compatible with the algebra structure of A.

Remark 2.7. A le� H-algebra is nothing but a pair (A, s) consisting of an algebra A and a le�
transposition s : H ⊗ A −→ A ⊗ H. Let (A′, s′) be another le� H-algebra. A map f : A → A′ is
a morphism of le� H-algebras, from (A, s) to (A′, s′), i� it is a morphism of standard algebras and
(f ⊗ H) ◦ s = s′ ◦ (H ⊗ f ).

De�nition 2.8. A le� H-coalgebra (C, s) is a coalgebra in LHB.

De�nition 2.9. A le� transposition of H on a coalgebra C is a bijective map s : H ⊗ C −→ C ⊗ H,
satisfying
(1) (C, s) is a le� H-space,
(2) s is compatible with the coalgebra structure of C.

Remark 2.10. A le� H-coalgebra is nothing but a pair (C, s) consisting of a coalgebra C and a le�
transposition s : H ⊗ C −→ C ⊗ H. Let (C′, s′) be another le� H-coalgebra. A map f : C → C′ is a
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morphism of le� H-coalgebras, from (C, s) to (C′, s′), i� it is a morphism of standard coalgebras and
(f ⊗ H) ◦ s = s′ ◦ (H ⊗ f ).

Since (H, c) is an algebra and a coalgebra in LHB, it makes sense to consider (H, c)-modules and
(H, c)-comodules in this monoidal category.

2.4. LeftH-modules and leftH-module algebras

De�nition 2.11. Wewill say that (V , s) is a le� H-module to mean that it is a le� (H, c)-module inLHB.
Notice that the classical le�H-modules can be identi�ed with the le�H-modules (V , s) in which s is the
�ip.

Remark 2.12. A le� H-space (V , s) is a le� H-module i� V is a standard le� H-module and

s ◦ (H ⊗ ρ) = (ρ ⊗ H) ◦ (H ⊗ s) ◦ (c ⊗ V),

where ρ denotes the action of H on V . Let (V ′, s′) be another le� H-module. A map f : V → V ′ is a
morphism of le� H-modules, from (V , s) to (V ′, s′), i� it is anH-linear map and the equality (f ⊗H)◦ s =

s′ ◦ (H ⊗ f ) holds. We let HLHB denote the category of le� H-modules in LHB.

Proposition 2.13 ([3, Proposition 5.6]). The category HLHB is monoidal. Its unit is (k, τ) endowed with
the trivial le� H-module structure, and the tensor product of the le� H-modules (U, sU) and (V , sV), with
actions ρU and ρV respectively, is the le�H-space (U, sU)⊗(V , sV), endowedwith the le�H-module action
given by

ρU⊗V := (ρU ⊗ ρV) ◦ (H ⊗ sU ⊗ V) ◦ (�H ⊗ U ⊗ V).

The associativity and unit constraints are the usual ones.

De�nition 2.14. We say that (A, s) is a le� H-module algebra if it is an algebra in HLHB.

Remark 2.15. (A, s) is a le� H-module algebra i� the following facts hold:
(1) A is an algebra and a standard le� H-module,
(2) s is a le� transposition of H on A,
(3) s ◦ (H ⊗ ρ) = (ρ ⊗ H) ◦ (H ⊗ s) ◦ (c ⊗ A),
(4) ρ ◦ (H ⊗ µA) = µA ◦ (ρ ⊗ ρ) ◦ (H ⊗ s ⊗ A) ◦ (�H ⊗ A ⊗ A),
(5) ρ(h ⊗ 1A) = ε(h)1A for all h ∈ H,
where ρ denotes the action of H on A.

Let (A′, s′) be another le� H-module algebra. A map f : A → A′ is a morphism of le� H-module
algebras, from (A, s) to (A′, s′), i� it is anH-linear morphism of standard algebras that satis�es (f ⊗H)◦

s = s′ ◦ (H ⊗ f ).

2.5. RightH-comodules and rightH-comodule algebras

De�nition 2.16. We will say that (V , s) is a right H-comodule if it is a right (H, c)-comodule in LHB.

Remark 2.17. A le� H-space (V , s) is a right H-comodule i� V is a standard right H-comodule and

(ν ⊗ H) ◦ s = (V ⊗ c) ◦ (s ⊗ H) ◦ (H ⊗ ν), (2.4)

where ν denotes the coaction of H on V . Let (V ′, s′) be another right H-comodule. A map f : V → V ′

is amorphism of right H-comodules, from (V , s) to (V ′, s′), i� it is anH-colinear map and (f ⊗H) ◦ s =

s′ ◦ (H ⊗ f ). We let LHBH denote the category of right H-comodules in LHB.
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De�nition 2.18. Let (V , s) be a rightH-comodule. An element v ∈ V is said to be coinvariant if ν(v) =

v ⊗ 1H .

Remark 2.19. For each right H-comodule (V , s), the set VcoH, of coinvariant elements of V , is a vector
subspace of V . Furthermore, s(H ⊗ VcoH) = VcoH ⊗ H, and the pair (VcoH, sVcoH), where sVcoH : H ⊗

VcoH → VcoH ⊗ H is the restriction of s, is a le� H-space.

Proposition 2.20 ([3, Proposition 5.2]). The category LHBH is monoidal. Its unit is (k, τ), endowed
with the trivial right H-comodule structure, and the tensor product of the right H-comodules (U, sU) and
(V , sV), with coactions νU and νV respectively, is (U, sU) ⊗ (V , sV), endowed with the right H-comodule
coaction

νU⊗V := (U ⊗ V ⊗ µH) ◦ (U ⊗ sV ⊗ H) ◦ (νU ⊗ νV).

The associativity and unit constraints are the usual ones.

De�nition 2.21. We say that (A, s) is a right H-comodule algebra if it is an algebra in LHBH .

Remark 2.22. (A, s) is a right H-comodule algebra i� the following facts hold:
(1) A is an algebra and a standard right H-comodule,
(2) s is a le� transposition of H on A,
(3) (ν ⊗ H) ◦ s = (A ⊗ c) ◦ (s ⊗ H) ◦ (H ⊗ ν),
(4) ν ◦ µA = (µA ⊗ µH) ◦ (A ⊗ s ⊗ H) ◦ (ν ⊗ ν),
(5) ν(1A) = 1A ⊗ 1H ,
where ν denotes the coaction of H on A.

Let (A′, s′)be another rightH-comodule algebra.Amap f : A → A′ is amorphismof rightH-comodule
algebras, from (A, s) to (A′, s′), i� it is an H-colinear morphism of standard algebras that satis�es (f ⊗

H) ◦ s = s′ ◦ (H ⊗ f ).

Recall that A ⊗s H denotes the algebra with underlying vector space A ⊗ H, multiplication map

µA⊗sH := (µA ⊗ µH) ◦ (A ⊗ s ⊗ H)

and unit 1A ⊗ 1H . Conditions (4) and (5) of Remark 2.22 say that ν : A → A ⊗s H is a morphism of
algebras.

2.6. Hopf crossed products andH-extensions

De�nition 2.23. A le� H-space (V , s), endowed with a map ρ : H ⊗ V → V , is said to be a weak le�
H-module if
(1) ρ(1H ⊗ v) = v, for all v ∈ V ,
(2) s ◦ (H ⊗ ρ) = (ρ ⊗ H) ◦ (H ⊗ s) ◦ (c ⊗ V).

The category wHLHB, of weak le� H-modules in LHB, becomes a monoidal category in the same
way that HLHB does. A weak le� H-module algebra (A, s) is, by de�nition, an algebra in wHLHB.

Remark 2.24. (A, s) is a le� weak H-module algebra i� A is an usual algebra, s is a le� transposition of
H on A and the structure map ρ satis�es the following conditions:
(1) ρ(1H ⊗ a) = a, for all a ∈ A,
(2) s ◦ (H ⊗ ρ) = (ρ ⊗ H) ◦ (H ⊗ s) ◦ (c ⊗ A),
(3) ρ ◦ (H ⊗ µA) = µA ◦ (ρ ⊗ ρ) ◦ (H ⊗ s ⊗ A) ◦ (�H ⊗ A ⊗ A),
(4) ρ(h ⊗ 1A) = ε(h)1A, for all h ∈ H.
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Let A be an algebra and s : H ⊗ A −→ A ⊗ H a le� transposition. A map ρ : H ⊗ A → A is said
to be a weak action of H on (A, s) or a weak s-action of H on A, if it satis�es the conditions of the above
remark.

De�nition 2.25. Let A be an algebra, s : H ⊗ A −→ A ⊗ H a le� transposition and ρ : H ⊗ A → A a
weak action of H on (A, s). Let σ : H ⊗ H → A be a map. We say that σ is normal if

σ(1H ⊗ h) = σ(h ⊗ 1H) = ε(h) for all h ∈ H,

and that σ is a cocycle that satis�es the twisted module condition if

= and = , where = σ .

More precisely, the �rst equality is the cocycle condition and the second one is the twisted module
condition. Finally we say that σ is compatible with s if it is a map in LHB. In other words, if

(σ ⊗ H) ◦ (H ⊗ c) ◦ (c ⊗ H) = s ◦ (H ⊗ σ).

Let s : H ⊗ A → A ⊗ H be a le� transposition, ρ : H ⊗ A → A a weak s-action and σ : H ⊗ H →

A a normal cocycle compatible with s, that satis�es the twisted module condition. Consider the maps
χ : H ⊗ A −→ A ⊗ H and F : H ⊗ H −→ A ⊗ H de�ned by

χ := (ρ ⊗ H) ◦ (H ⊗ s) ◦ (� ⊗ A) and F := (σ ⊗ µH) ◦ (H ⊗ c ⊗ H) ◦ (� ⊗ �).

De�nition 2.26. The crossed product associated with (s, ρ, σ) is the k-algebraA#sρ,σH, whose underlying
k-vector space is A ⊗ H and whose multiplication map is

µ := (µA ⊗ H) ◦ (µA ⊗ F) ◦ (A ⊗ χ ⊗ H).

From now on, a simple tensor a ⊗ h of A#sρ,σH will usually be written a#h.

Theorem 2.27 ([3, Theorems 2.3, 6.3 and 9.3]). The algebra A#sρ,σH is associative and has unity 1A#1H.

Theorem 2.28 ([3, Propositions 10.3 and 10.4]). The map

ŝ : H ⊗ A#sρ,σH −→ A#sρ,σH ⊗ H,

de�ned by ŝ := (A⊗ c)◦ (s⊗H) is a le� transposition of H on A#sρ,σH and the pair (A#sρ,σH ,̂ s), endowed
with the coaction νA#sρ,σH := A ⊗ �, is a right H-comodule algebra.

De�nition 2.29. Let (B, s) be a rightH-comodule algebra and let i : A ↪→ B be an algebra inclusion. We
say that (i : A ↪→ B, s) is anH-extension ofA if i(A) = BcoH. Let (i′ : A ↪→ B′, s′) be anotherH-extension
ofA. We say that (i : A ↪→ B, s) and (i′ : A ↪→ B′, s′) are equivalent if there is a rightH-comodule algebra
isomorphism f : (B, s) → (B′, s′), which is also a le� A-module homomorphism.

Remark 2.30. For each H-extension (i : A ↪→ B, s) of A, the map sA : H ⊗ A −→ A ⊗ H, induced by s,
is a le� transposition (in other words, (A, sA) is a le� H-algebra).
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Example 2.31. (i : A ↪→ A#sρ,σH ,̂ s), where i(a) := a#1H , is an H-extension of A.

De�nition 2.32. Let (i : A ↪→ B, s) be an H-extension. We say that:
(1) (i, s) is cle� if there is a convolution invertible right H-comodule map γ : (H, c) → (B, s),
(2) (i, s) is H-Galois if the map βB : B ⊗A B −→ B ⊗ H, de�ned by βB(b ⊗ b′) = (b ⊗ 1H)ν(b′), where

ν denotes the coaction of B, is bijective,
(3) (i, s) has the normal basis property if there exists a le� A-linear and right H-colinear isomorphism

φ : (A ⊗ H, ŝA) −→ (B, s), where the coaction of A ⊗ H is A ⊗ � and ŝA = (A ⊗ c) ◦ (sA ⊗ H).

De�nition 2.33. Let (i : A ↪→ B, s) be an H-extension of A. If (i, s) is cle�, then each one of the maps
γ satisfying the conditions required in item (1) of De�nition 2.32 is called a cle� map of (i, s), and if
(i, s) has the normal basis property, then each one of the le� A-linear right andH-colinear isomorphism
φ : (A ⊗ H, ŝA) −→ (B, s) is called a normal basis of B.

Remark 2.34 ([3, Section 10]). If γ is a cle� map of (i : A ↪→ B, s), then γ (1H) ∈ B× and the map
γ ′ := γ (1H)−1γ is a cle� map that satis�es γ ′(1H) = 1B.

Lemma 2.35. Let H be a braided Hopf algebra and let (i : A ↪→ B, s) be a cle� H-extension, with a cle�
map γ . The map f : H ⊗ A → B, de�ned by

f := µB ◦ (µB ⊗ B) ◦ (γ ⊗ i ⊗ γ −1) ◦ (H ⊗ sA) ◦ (� ⊗ A)

takes its values in i(A).

Proof. Let λXr : X → X ⊗ k be the canonical map. We must prove that

ν ◦ f = (f ⊗ η) ◦ (H ⊗ λAr ).

A direct computation shows that

ν ◦ f = ν ◦ µB ◦ (µB ⊗ B) ◦ (γ ⊗ i ⊗ γ −1) ◦ (H ⊗ sA) ◦ (� ⊗ A)

= (µB ⊗ µH) ◦ (B ⊗ s ⊗ H) ◦ (ν ⊗ ν) ◦ (µB ⊗ B) ◦ (γ ⊗ i ⊗ γ −1) ◦ (H ⊗ sA) ◦ (� ⊗ A)

= (µB ⊗ µH) ◦ (µB ⊗ s ⊗ H) ◦ (B ⊗ s ⊗ ν) ◦ (ν ⊗ i ⊗ γ −1) ◦ (γ ⊗ sA) ◦ (� ⊗ A)

= (µB ⊗ µH) ◦ (µB ⊗ s ⊗ H) ◦ (B ⊗ i ⊗ H ⊗ ν) ◦ (γ ⊗ sA ⊗ γ −1) ◦ (� ⊗ sA) ◦ (� ⊗ A)

= (µB ⊗ µH) ◦ (B ⊗ s ⊗ H) ◦ (µB ⊗ H ⊗ ν ◦ γ −1) ◦ (B ⊗ i ⊗ �) ◦ (γ ⊗ sA) ◦ (� ⊗ A)

= (µB ⊗ H) ◦ (µB ⊗ L) ◦ (B ⊗ i ⊗ H) ◦ (γ ⊗ sA) ◦ (� ⊗ A),

where

L := (B ⊗ µH) ◦ (s ⊗ H) ◦ (H ⊗ ν ◦ γ −1) ◦ �.

Since, by [3, Lemma 10.7],

L = (B ⊗ µH) ◦ (s ⊗ H) ◦ (H ⊗ γ −1 ⊗ S) ◦ (H ⊗ c ◦ �) ◦ �

= (γ −1 ⊗ µH) ◦ (c ⊗ S) ◦ (H ⊗ c) ◦ (H ⊗ �) ◦ �

= (γ −1 ⊗ µH) ◦ (c ⊗ S) ◦ (H ⊗ c) ◦ (� ⊗ H) ◦ �

= (γ −1 ⊗ H) ◦ c ◦ (µH ⊗ H) ◦ (H ⊗ S ⊗H) ◦ (� ⊗ H) ◦ �

= (γ −1 ⊗ H) ◦ c ◦ (η ◦ ε ⊗ H) ◦ �

= γ −1 ⊗ η,

we have

ν ◦ f = (µB ⊗H)◦ (B⊗γ −1 ⊗η)◦ (µB ⊗λHr )◦ (B⊗ i⊗H)◦ (γ ⊗ sA)◦ (�⊗A) = (f ⊗η)◦ (H⊗λAr ),

as desired.
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Theorem 2.36. Let H be a braided Hopf algebra and let (i : A ↪→ B, s) be an H-extension. The following
assertions are equivalent:
(1) (i, s) is cle�.
(2) (i, s) is H-Galois with a normal basis.
(3) There is a crossed product A#sAρ,σH, with convolution invertible cocycle σ : H ⊗c H → A, and a right

H-comodule algebra isomorphism

(B, s) −→ (A#sAρ,σH, ŝA),

which is also le� A-linear.
Furthermore, if γ is a cle� map of (i, s) with γ (1H) = 1B, then
(4) The map φ : (A ⊗ H, ŝA) −→ (B, s), de�ned by φ(a ⊗ h) := i(a)γ (h), is a normal basis of B.
(5) The weak action ρ and the cocycle σ are given by

i ◦ ρ = µB ◦ (µB ⊗ B) ◦ (γ ⊗ i ⊗ γ −1) ◦ (H ⊗ sA) ◦ (� ⊗ A) (2.5)

and

i ◦ σ = µB ◦ (µB ⊗ γ −1) ◦ (γ ⊗ γ ⊗ µH) ◦ �H⊗cH . (2.6)

Proof. The equivalence between the �rst three items is [3, Theorem10.6], and the fourth itemwas proved
in the proof of that Theorem. It remains to check the last one. By item (4), the discussion below [3,
De�nition 10.5] and the proof of Theorem 10.6 of [3], we know that φ is bijective, that

(i ⊗ H) ◦ φ−1(b) = b(0)γ
−1(b(1)) ⊗ b(2),

and that the maps ρ : H ⊗ A → A and σ : H ⊗ H → A are given by

ρ(h ⊗ a) := (A ⊗ ε) ◦ φ−1(γ (h)i(a)) and σ(h ⊗ l) := (A ⊗ ε) ◦ φ−1(γ (h)γ (l)).

We must check that ρ and σ satisfy (2.5) and (2.6), respectively. Let f be as in Lemma 2.35 and let i−1

be the compositional inverse of i : A → i(A). Since

µB ◦ (γ ⊗ i) = µB ◦ (µB ⊗ ηB ◦ ε) ◦ (B ⊗ i ⊗ H) ◦ (γ ⊗ sA) ◦ (� ⊗ A)

= µB ◦ (B ⊗ µB) ◦ (B ⊗ γ −1 ⊗ γ ) ◦ (µB ⊗ �) ◦ (B ⊗ i ⊗ H) ◦ (γ ⊗ sA) ◦ (� ⊗ A)

= µB ◦ (µB ⊗ µB) ◦ (γ ⊗ i ⊗ γ −1 ⊗ γ ) ◦ (H ⊗ sA ⊗ H) ◦ (� ⊗ sA) ◦ (� ⊗ A)

= µB ◦ (f ⊗ γ ) ◦ (H ⊗ sA) ◦ (� ⊗ A),

and, by Lemma 2.35,

µB ◦ (f ⊗ γ ) = φ ◦ (i−1 ◦ f ⊗ H),

we have

i ◦ ρ = (i ⊗ ε) ◦ φ−1 ◦ µB ◦ (γ ⊗ i)

= (i ⊗ ε) ◦ φ−1 ◦ µB ◦ (f ⊗ γ ) ◦ (H ⊗ sA) ◦ (� ⊗ A)

= (i ⊗ ε) ◦ (i−1 ◦ f ⊗ H) ◦ (H ⊗ sA) ◦ (� ⊗ A)

= µB ◦ (µB ⊗ B) ◦ (γ ⊗ i ⊗ γ −1) ◦ (H ⊗ sA) ◦ (� ⊗ A).

Finally,

i ◦ σ = (i ⊗ ε) ◦ φ−1 ◦ µB ◦ (γ ⊗ γ )

= µB ◦ (B ⊗ γ −1) ◦ ν ◦ µB ◦ (γ ⊗ γ )

= µB ◦ (B ⊗ γ −1) ◦ (µB ⊗ µH) ◦ (B ⊗ s ⊗ B) ◦ (ν ⊗ ν) ◦ (γ ⊗ γ )

= µB ◦ (µB ⊗ γ −1) ◦ (γ ⊗ γ ⊗ µH) ◦ �H⊗cH ,

as desired.
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Remark 2.37. In the proof of Theorem 10.6 of [3], it was also shown that φ : A#sAρ,σH → B is an algebra
isomorphism.

3. A family of braided Hopf algebras

Let G be a �nite group, χ : G → k× a character, n > 1 inN, and T ∈ kG, where kG denotes the group
algebra of G with coe�cients in k. Set E := (G,χ ,T, n) and write T :=

∑
g∈G λgg.

Proposition 3.1. There exists an associative algebra BE such that
– BE is generated by G and an element x ∈ BE\kG,
– B := {gxi : g ∈ G and 0 ≤ i < n} is a basis of BE as a k-vector space,
– the multiplication of elements of B is given by:

gxihxj :=

{
χ i(h)ghxi+j if i + j < n,

χ i(h)ghTxi+j−n if i + j ≥ n,

i� λhgh−1 = χn(h)λg for all h, g ∈ G, and χ(g) = 1 for all g ∈ G such that λg �= 0.

Proof. Let V := kx0 ⊕ · · · ⊕ kxn−1, where x0, . . . , xn−1 are indeterminate. We will prove the result by
showing that there is an associative and unitary algebra kG#V , with underlying vector space kG ⊗ V ,
whose multiplication map satis�es

(g ⊗ xi)(g
′ ⊗ x0) = χ i(g′)gg′ ⊗ xi for all i and all g ∈ G

and

(1G ⊗ xi)(1G ⊗ xj) =

{
1G ⊗ xi+j if i + j < n,

T ⊗ xi+j−n if i + j ≥ n,

i�
(1) χ(g) = 1 for all g ∈ G such that λg �= 0,
(2) λhgh−1 = χn(h)λg for all h, g ∈ G.
By the theory of general crossed products developed in [1], for this it su�ces to check that the maps

� : V ⊗ kG −→ kG ⊗ V and F : V ⊗ V −→ kG ⊗ V ,

given by

�(xi ⊗ g) := χ i(g)g ⊗ xi and F(xi ⊗ xj) :=

{
1G ⊗ xi+j if i + j < n,

T ⊗ xi+j−n if i + j ≥ n,

satisfy

�(xi ⊗ 1G) = 1G ⊗ xi, �(x0 ⊗ g) = g ⊗ x0, F(x0 ⊗ xi) = F(xi ⊗ x0) = 1G ⊗ xi,

V kG kG

=

V kG kG

,

V V kG

F

=

V V kG

F

and

V V V

F

F
=

V V V

F

F

,

where stands for �, i� conditions (1) and (2) are ful�lled.
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By the very de�nitions of � and F , the �rst four conditions always hold. Assume that the other ones
hold. Evaluating the ��h one in x1 ⊗ xn−1 ⊗ h we see that

∑

g∈G

λggh ⊗ x0 =
∑

g∈G

χn(h)λghg ⊗ x0 for all g, h ∈ G,

or equivalently,

λhgh−1 = χn(h)λg for all g, h ∈ G,

and evaluating the sixth one in x1 ⊗ xn−1 ⊗ x1 we see that

χ(g) = 1 for all g ∈ G with λg �= 0.

Conversely, a direct computation proves that if these facts are true, then the equalities in the last two
diagrams hold.

Corollary 3.2. If there is an algebra BE satisfying the conditions required in Proposition 3.1, and there
exists g in the center ZG of G with λg �= 0, then χn = 1.

Remark 3.3. It is clear that if there exists, then BE is a k-algebra unitary with unit 1Gx
0, that kG is a

subalgebra of BE and that BE is unique up to isomorphism.

Remark 3.4. Using that BE has dimension n|G| it is easy to see that it is canonically isomorphic to the
algebra generated by the groupG and the element x subject to the relations xn = T and xg = χ(g)gx for
all g ∈ G.

Given q ∈ k×, let

cq : BE ⊗ BE −→ BE ⊗ BE

be the k-linear map de�ned by cq(gx
i ⊗ hxj) := qij hxj ⊗ gxi. It is easy to check that cq is a braiding

operator that is compatible with the unit of BE . Furthermore,
– a direct computation shows that cq is compatible with themultiplicationmap ofBE i�T = 0 or qn = 1,
– by Remark 3.4 there exists an algebra map ε : BE → k such that ε(x) = 0 and ε(g) = 1 for all g ∈ G
i�

∑
g∈G λg = 0. Moreover, in this case, cq is compatible with ε.

Proposition 3.5. Let E be as at the beginning of this section, z ∈ G and q ∈ k×. Assume that BE exists.
Then, the algebra BE is a braided bialgebra with braid cq and comultiplication map � de�ned by

�(x) := 1 ⊗ x + x ⊗ z and �(g) := g ⊗ g for g ∈ G (3.7)

i�
(1)

( n
j

)
qχ(z)

= 0 for all 0 < j < n,

(2) z ∈ ZG and T = λ(zn − 1G) for some λ ∈ k, where λ = 0 if zn �= 1G and qn �= 1.

Proof. Since BE is generated by the group G and the element x subject to the relations xn = T and
xg = χ(g)gx for all g ∈ G, there exists an algebra map � : BE −→ BE ⊗cq BE such that (3.7) is satis�ed
i� the equalities

(h ⊗ h)(g ⊗ g) = hg ⊗ hg,

(1 ⊗ x + x ⊗ z)(g ⊗ g) = χ(g)(g ⊗ g)(1 ⊗ x + x ⊗ z)

and

(1 ⊗ x + x ⊗ z)n =
∑

l∈G

λl l ⊗ l (3.8)
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hold in BE ⊗cq BE for all h, g∈G. The �rst equality is trivial, while the second one is equivalent to

χ(g)(g ⊗ gx + gx ⊗ zg) = χ(g)(g ⊗ gx + gx ⊗ gz) for all g ∈ G,

and so it is ful�lled i� z is in the center ofG. In order to deal with the last one, we note that, in BE ⊗cq BE ,

(1 ⊗ x)(x ⊗ z) = qχ(z) x ⊗ zx = qχ(z)(x ⊗ z)(1 ⊗ x),

and so, by formula (2.2),

(1 ⊗ x + x ⊗ z)n =

n∑

j=0

(
n
j

)

qχ(z)

(x ⊗ z)j(1 ⊗ x)n−j =

n∑

j=0

(
n
j

)

qχ(z)

xj ⊗ zjxn−j.

Hence, equality (3.8) holds i�

n∑

j=0

(
n
j

)

qχ(z)

xj ⊗ zjxn−j =
∑

l∈G

λl l ⊗ l,

which is clearly equivalent to
(
n
j

)

qχ(z)

= 0 for all 0 < j < n,

and
∑

l∈G

λl l ⊗ l = 1 ⊗ xn + xn ⊗ zn = 1 ⊗ T + T ⊗ zn =
∑

l∈G

1 ⊗ λll +
∑

l∈G

λll ⊗ zn.

If zn = 1G this happens i� λl = 0 for all l ∈ G, while if zn �= 1G, this happens i� λl = 0 for all
l �= 1G, z

n and if λzn = −λ1G . By the way, this computation shows that if� exists, then the augmentation
ε introduced above, is well de�ned. Moreover, by formula (2.2),

�(gxi) :=

i∑

j=0

(
i
j

)

qχ(z)

(g ⊗ g)(x ⊗ z)j(1 ⊗ x)i−j =

i∑

j=0

(
i
j

)

qχ(z)

gxj ⊗ gzjxi−j (3.9)

for all g ∈ G and i ≥ 0. Using this it is easy to see that cq is compatible with �. Since we already know
that cq is compatible with 1BE , the multiplication map of BE and ε, in order to �nish the proof we only
must check that� is coassociative and that ε is its counit. But, since cq is compatible with� and� is an
algebra map, it su�ces to verify these facts on x and g ∈ G, which is trivial.

Remark 3.6. Let E be as at the beginning of this section. If T = λ(zn − 1G) with z ∈ ZG, zn �= 1G
and λ ∈ k×, then the hypothesis of Proposition 3.1 are equivalent to χn = 1, while if T = 0, then the
hypothesis of Proposition 3.1 are automatically satis�ed.

Remark 3.7. It is easy to see that
(
n
1

)
qχ(z)

= 0 implies (qχ(z))n = 1 and that if qχ(z) is an n-th primitive

root of unit, then
( n
j

)
qχ(z)

= 0 for all 0 < j < n.

Corollary 3.8. Each dataD = (G,χ , z, λ, q) consisting of:
– a �nite group G,
– a character χ of G with values in k,
– a central element z of G,
– elements q ∈ k× and λ ∈ k,
such that
– qχ(z) is a root of 1 of order n greater than 1,
– if λ(zn − 1G) �= 0, then χn = 1,



3178 M. DA ROCHA ET AL.

has associated a braided Hopf algebra HD . As an algebra, HD is generated by the group G and the element
x subject to the relations xn = λ(zn − 1G) and xg = χ(g)gx for all g ∈ G, the coalgebra structure of HD

is determined by

�(g) := g ⊗ g for g ∈ G, �(x) := 1 ⊗ x + x ⊗ z,

ε(g) := 1 for g ∈ G, ε(x) := 0,

the braid cq of HD is de�ned by

cq(gx
i ⊗ hxj) := qij hxj ⊗ gxi, (3.10)

and its antipode is given by

S(gxi) := (−1)i(qχ(z))
i(i−1)

2 xiz−ig−1. (3.11)

Furthermore, as a vector space HD has basis

{gxi : g ∈ G and 0 ≤ i < n},

and consequently, dim
(
HD

)
= n|G|.

Proof. Let E :=
(
G,χ , λ(zn − 1G), n

)
and let BE be the algebra obtained applying Proposition 3.1. Now

note that if λ(zn − 1G), then χn = 1 and so qn = qnχ(z)n = 1. Hence, we can apply Proposition 3.5,
which implies that BE has a braided bialgebra structure with comultiplication map, counit and braid as
in its statement. Let HD denote this bialgebra. It remains to check that the map S given by (3.11) is the
antipode of HD . Since

S ◦ µ(gxi ⊗ hxj) = µ ◦ (S ⊗ S) ◦ cq(gx
i ⊗ hxj),

for this it su�ces to verify that

S(x) + xS(z) = S(1)x + S(x)z = 0 and S(g)g = gS(g) = 1 for all g ∈ G,

which is evident.

Remark 3.9. If λ(zn−1G) = 0, then we can assume without loss of generality (and we do it), that λ = 0.

Remark 3.10. Assume that n > 1. The previous corollary also holds if the hypothesis that qχ(z) is a
root of 1 of order n is replaced by

( n
j

)
qχ(z)

= 0 for all 0 < j < n. However, from now onwe will consider

that qχ(z) is a root of 1 of order n.

4. RightHD-comodule algebras

Let G be a group, V be a k-vector space and s : k[G] ⊗V → V ⊗ k[G] a k-linear map. Evidently, there is
a unique family of maps (α

y
x : V → V)x,y∈G, such that

s(x ⊗ v) =
∑

y∈G

α
y
x(v) ⊗ y.

Proposition 4.1. The pair (V , s) is a le� k[G]-space i� s is a bijective map and the following conditions
hold:
(1) (α

y
x)y∈G is a complete family of orthogonal idempotents, for all x ∈ G,

(2) α1
1 = id,

(3) αz
xy =

∑
uw=z αu

x ◦ αw
y , for all x, y, z ∈ G.

Proof. Mimic the proof of [3, Proposition 4.10].
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For x, y ∈ G, let V
y
x := {v ∈ V : s(x ⊗ v) = v ⊗ y}.

Proposition 4.2. The pair (V , s) is a le� k[G]-space i�:
(1)

⊕
z∈G Vz

x = V =
⊕

z∈G Vx
z , for all x ∈ G,

(2) V1
1 = V,

(3) Vz
xy =

⊕
uw=z V

u
x ∩ Vw

y , for all x, y, z ∈ G.

Proof. Mimic the proof of [3, Propositions 4.11 and 4.13].

Theorem 4.3. If G is a �nitely generated group, then each le� k[G]-space (V , s) determines an Aut(G)-
gradation

V =
⊕

ζ∈Aut(G)

Vζ

on V, by

Vζ :=
⋂

x∈G

V
ζ(x)
x = {v ∈ V : s(x ⊗ v) = v ⊗ ζ(x) for all x ∈ G}.

Moreover, the correspondence that each le� k[G]-space (V , s), with underlying vector space V, assigns the
Aut(G)-gradation of V obtained as above, is bijective.

Proof. Mimic the proof of [3, Theorem 4.14].

In the sequel D := (G,χ , z, λ, q) and HD are as in Corollary 3.8 and we will freely use the notations
and properties established there. Furthermore, to abbreviate expressions we set p := χ(z). We now
begin with the study of the rightHD-braided comodule algebras. We let Autχ ,z(G) denote the subgroup
of Aut(G) consisting of all the automorphism φ such that φ(z) = z and χ ◦ φ = χ .

Proposition 4.4. If (p, q) �= (1,−1), then for all le� HD-space (V , s) it is true that

s(kG ⊗ V) = V ⊗ kG,

s(z ⊗ v) = v ⊗ z for all v ∈ V ,

and there exists ϕ ∈ Aut(V) such that

s(x ⊗ v) = ϕ(v) ⊗ x for all v ∈ V . (4.12)

Proof. Write

s(gxi ⊗ v) =
∑

h∈G
0≤j<n

β
g,i
h,j(v) ⊗ hxj.

Since S2(gxi) = qi(i−1)p−igxi, we have

qi(i−1)p−i
∑

h∈G
0≤j<n

β
g,i
h,j(v) ⊗ hxj = qi(i−1)p−is(gxi ⊗ v)

= s ◦ (S2 ⊗ V)(gxi ⊗ v)

= (V ⊗ S2) ◦ s(gxi ⊗ v)
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=
∑

h∈G
0≤j<n

β
g,i
h,j(v) ⊗ S2(hxj)

=
∑

h∈G
0≤j<n

qj(j−1)p−jβ
g,i
h,j(v) ⊗ hxj,

and consequently,

β
g,i
h,j �= 0 �⇒ qj(j−1)−i(i−1) = pj−i. (4.13)

Using now that s is compatible with �, we obtain that

∑

h∈G
0≤i<n

i∑

j=0

(
i
j

)

qp

β
g,0
h,i (v) ⊗ hxj ⊗ hzjxi−j

= (V ⊗ �) ◦ s(g ⊗ v)

= (s ⊗ HD) ◦ (HD ⊗ s) ◦ (� ⊗ V)(g ⊗ v)

=
∑

h∈G
0≤i<n

∑

h′∈G
0≤i′<n

β
g,0
h,i ◦ β

g,0
h′,i′(v) ⊗ hxi ⊗ h′xi

′

. (4.14)

Hence,

β
g,0
h,i ◦ β

g,0
h′,i′ =





(
i + i′

i

)

qp

β
g,0
h,i+i′ if h′ = hzi and i + i′ < n,

0 otherwise.

(4.15)

Combining this with (4.13) we obtain that

β
g,0
h,i �= 0 �⇒ β

g,0
h,j �= 0 for all j ≤ i �⇒ qj(j−1) = pj for j ≤ i.

Consequently, if β
g,0
h,i �= 0 for some g ∈ G and i ≥ 1, then p = q0 = 1. Hence if p �= 1, then β

g,0
h,i = 0

for all g ∈ G and i ≥ 1. Assume that p = 1. If β
g,0
h,i �= 0 for some g ∈ G and i ≥ 2, then q2 = p2 = 1.

But this is impossible, since it implies that n := ord(qp) = ord(q) ≤ 2, which contradicts that i < n.
Therefore

s(g ⊗ v) =





∑

h∈G

β
g,0
h,0(v) ⊗ h if p �= 1,

∑

h∈G

β
g,0
h,0(v) ⊗ h +

∑

h∈G

β
g,0
h,1(v) ⊗ hx if p = 1.

(4.16)

On the other hand, due to s is compatible with the counit of HD , we get
∑

h∈G

β
g,0
h,0 = id for all g ∈ G,

which, combined with the particular case of (4.15) obtained by taken i = i′ = 0, shows that
(
β
g,0
h,0

)
h∈G

is a complete family of orthogonal idempotents for all g ∈ G. (4.17)
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Equality (4.16) shows that if p �= 1, then s(kG ⊗ V) ⊆ V ⊗ kG. Assume now that p = 1 and q �= −1
(which implies n > 2). Using that s is compatible with the multiplication map of HD we get that

v ⊗ 1 = s(g−1g ⊗ v)

= (v ⊗ µ) ◦ (s ⊗ HD) ◦ (HD ⊗ s)(g−1 ⊗ g ⊗ v)

=
∑

h∈G

∑

l∈G

β
g−1,0
h,0 ◦ β

g,0
1,0 (v) ⊗ hl +

∑

h∈G

∑

l∈G

χ(l)β
g−1,0
h,1 ◦ β

g,0
l,0 (v) ⊗ hlx

+
∑

h∈G

∑

l∈G

β
g−1,0
h,0 ◦ β

g,0
l,1 (v) ⊗ hlx +

∑

h∈G

∑

l∈G

χ(l)β
g−1,0
h,1 ◦ β

g,0
l,1 (v) ⊗ hlx2. (4.18)

Consequently,

∑

h∈G

β
g−1,0

h−1,0
◦ β

h,0
g,0 = idV ,

which by (4.17) implies that

β
h−1,0
g−1,0

(v) = v for all v ∈ Im
(
β
g,0
h,0

)
and h, g ∈ G.

Since
(
β
h,0
g,0

)
h∈G

and
(
β
g−1,0
h,0

)
h∈G

are complete families of orthogonal idempotents, from this it follows
that

βg−1,0
h−1,0 = β

g,0
h,0 for all h, g ∈ G.

Combining this with (4.18), we conclude that

0 =
∑

h∈G

∑

l∈G

χ(l)β
g−1,0
h,1 ◦ β

g,0
l,0 (v) ⊗ hlx +

∑

h∈G

∑

l∈G

β
g−1,0
h,0 ◦ β

g,0
l,1 (v) ⊗ hlx

=
∑

h∈G

∑

l∈G

χ(l)β
g−1,0
h,1 ◦ β

g−1,0

l−1,0
(v) ⊗ hlx +

∑

h∈G

∑

l∈G

β
g,0

h−1,0
◦ β

g,0
l,1 (v) ⊗ hlx

=
∑

h∈G

χ(z−1h−1)β
g−1,0
h,1 (v) ⊗ z−1x +

∑

h∈G

β
g,0
h,1(v) ⊗ x, (4.19)

where the last equality follows from the fact that by (4.15)

β
g,0
h,1 ◦ β

g,0
h′,0 =

{
β
g,0
h,1 if h′ = hz,

0 otherwise,
and β

g,0
h,0 ◦ β

g,0
h′,1 =

{
β
g,0
h,1 if h′ = h,

0 otherwise.
(4.20)

Note that by (4.17) and the second equality in (4.20), the images of the maps β
g,0
h,1 are in direct sum,

for each g ∈ G. Hence, from (4.19) it follows that if z �= 1, then β
g,0
h,1 = 0 for all g, h ∈ G, which

by equality (4.16) implies that s(kG ⊗ V) ⊆ V ⊗ kG. We now assume additionally that z = 1. Then
Prim(HD) = kx and so, by [3, Proposition 4.4] there exists an automorphism ϕ ofV such that s(x⊗v) =

ϕ(v) ⊗ x for all v ∈ V . Furthermore, by the compatibility of s with cq,
∑

h∈G

β
g,0
h,0 ◦ ϕ(v) ⊗ x ⊗ h + q

∑

h∈G

β
g,0
h,1 ◦ ϕ(v) ⊗ x ⊗ hx

= (V ⊗ cq) ◦ (s ⊗ HD) ◦ (HD ⊗ s)(g ⊗ x ⊗ v)

= (s ⊗ HD) ◦ (HD ⊗ s) ◦ (cq ⊗ V)(g ⊗ x ⊗ v)

=
∑

h∈G

ϕ ◦ β
g,0
h,0(v) ⊗ x ⊗ h +

∑

h∈G

ϕ ◦ β
g,0
h,1(v) ⊗ x ⊗ hx
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for all g ∈ G, and therefore

ϕ ◦ β
g,0
h,0 = β

g,0
h,0 ◦ ϕ and ϕ ◦ β

g,0
h,1 = qβ

g,0
h,1 ◦ ϕ for all h, g ∈ G. (4.21)

Using now that s is compatible with the multiplication map of HD , we obtain that

χ(g)
∑

h∈G

β
g,0
h,0 ◦ ϕ(v) ⊗ hx + χ(g)

∑

h∈G

β
g,0
h,1 ◦ ϕ(v) ⊗ hx2

= (V ⊗ µ) ◦ (s ⊗ HD) ◦ (HD ⊗ s)(χ(g)g ⊗ x ⊗ v)

= (s ⊗ HD) ◦ (HD ⊗ s) ◦ (µ ⊗ V)(χ(g)g ⊗ x ⊗ v)

= (s ⊗ HD) ◦ (HD ⊗ s) ◦ (µ ⊗ V)(x ⊗ g ⊗ v)

= (V ⊗ µ) ◦ (s ⊗ HD) ◦ (HD ⊗ s)(x ⊗ g ⊗ v)

=
∑

h∈G

χ(h) ϕ ◦ β
g,0
h,0(v) ⊗ hx +

∑

h∈G

χ(h) ϕ ◦ β
g,0
h,1(v) ⊗ hx2

for all g ∈ G, which combined with (4.21) gives

χ(g) β
g,0
h,0 ◦ ϕ = χ(h) ϕ ◦ β

g,0
h,0 = χ(h) β

g,0
h,0 ◦ ϕ (4.22)

and

χ(g) β
g,0
h,1 ◦ ϕ = χ(h) ϕ ◦ β

g,0
h,1 = χ(h)qβ

g,0
h,1 ◦ ϕ (4.23)

for all g, h ∈ G. Since ϕ is bijective, from (4.22) it follows that if β
g,0
h,0 �= 0, then χ(g) = χ(h). Combining

this with (4.20), we see that β
g,0
h,1 �= 0 ⇒ β

g,0
h,0 �= 0 ⇒ χ(g) = χ(h). Therefore, from (4.23) it follows

that if there exist g, h ∈ G such that β
g,0
h,1 �= 0, then q = 1, which is false. So, β

g,0
h,1 = 0 for all g, h ∈ G.

This concludes the proof that s(kG ⊗ V) ⊆ V ⊗ kG. But then a similar computation with s replaced by
s−1 shows that s(kG ⊗ V) ⊇ V ⊗ kG, and so the equality holds.

We now return to the general case and we claim that
(1) β

1,1
h,j = 0 for all h ∈ G and j ≥ 2,

(2) β
1,1
h,1 = 0 for h �= 1G,

(3) β
1,1
1,1 is bijective,

(4) β
z,0
z,0 = id and β

z,0
h,0 = 0 for h �= z,

(5) β
1,1
h,0 = 0 for h /∈ {1G, z},

(6) If z �= 1, then β
1,1
z,0 = −β

1,1
1,0 while if z = 1G, then β

1,1
1,0 = 0,

In fact, s(kG⊗V) ⊆ V ⊗ kGmeans that β
g,0
h,j = 0 for all g, h ∈ G and j > 0. Hence, by the compatibility

of s with �,

∑

h∈G
0≤i<n

i∑

j=0

(
i
j

)

qp

β
1,1
h,i (v) ⊗ hxj ⊗ hzjxi−j = (V ⊗ �) ◦ s(x ⊗ v)

= (s ⊗ HD) ◦ (HD ⊗ s) ◦ (� ⊗ V)(x ⊗ v)

=
∑

h∈G
0≤i<n

β
1,1
h,i (v) ⊗ 1 ⊗ hxi

+
∑

h,l∈G
0≤i<n

β
1,1
l,i ◦ β

z,0
h,0(v) ⊗ lxi ⊗ h. (4.24)

This implies that items (1) and (2) are true and that
(8) β

1,1
1,1 = β

1,1
1,1 ◦ β

z,0
z,0 and β

1,1
1,1 ◦ β

z,0
h,0 = 0 for all h ∈ G\{z},
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(9) β
1,1
h,0 = β

1,1
h,0 ◦ β

z,0
h,0 and β

1,1
h,0 = −β

1,1
1,0 ◦ β

z,0
h,0 for all h ∈ G\{1G},

(10) β
1,1
h,0 ◦ β

z,0
1,0 = 0 for all h ∈ G.

By items (1) and (2) and condition (4.13),

s(x ⊗ v) =





β
1,1
1,1 (v) ⊗ x if p �= 1,

β
1,1
1,1 (v) ⊗ x +

∑

h∈G

β
1,1
h,0(v) ⊗ h if p = 1.

(4.25)

This immediately implies that β
1,1
1,1 is injective. In fact, if β

1,1
1,1 (v) = 0, then s(x ⊗ v) ∈ s(kG ⊗ V), and

so v = 0 since s : HD ⊗ V → V ⊗ HD is injective. Item (4) follows from item (8) and the injectivity of
β
1,1
1,1 . Hence, by item (9), we have β

1,1
h,0 = β

1,1
h,0 ◦ β

z,0
h,0 = 0 for all h ∈ G\{1G, z}, proving item (5). Note

also that by items (4), (9) and (10),

β
1,1
z,0 =





−β
1,1
1,0 ◦ β

z,0
z,0 = −β

1,1
1,0 if z �= 1G,

β
1,1
1,0 ◦ β

1,0
1,0 = 0 if z = 1G,

which proves item (6). Combining item (4) with the fact that βz,0
h,j = 0 for all h ∈ G and j > 0, we deduce

that

s(z ⊗ v) = v ⊗ z for all v ∈ V .

Furthermore, by items (5) and (6), equality (4.25) becomes

s(x ⊗ v) =





β
1,1
1,1 (v) ⊗ x if p �= 1 or z = 1G,

β
1,1
1,1 (v) ⊗ x + β

1,1
1,0 (v) ⊗ 1HD

− β
1,1
1,0 (v) ⊗ z otherwise.

(4.26)

Next we prove that if p = 1 and q �= −1, then β
1,1
1,0 = 0. If z = 1G this was checked above. So we can

assume that z �= 1G. To abbreviate expressions we set ϕ := β
1,1
1,1 and β := β

1,1
1,0 . Evaluating

(s ⊗ HD) ◦ (HD ⊗ s) ◦ (cq ⊗ V) and (V ⊗ cq) ◦ (s ⊗ HD) ◦ (HD ⊗ s)

in x ⊗ x ⊗ v for all v ∈ V , and using (4.26) and that these maps coincide, we see that

qβ ◦ ϕ = ϕ ◦ β and qϕ ◦ β = β ◦ ϕ.

Then q2ϕ ◦ β = ϕ ◦ β , and so β = 0, since q2 �= 1 and ϕ is injective. Hence (4.26) becomes

s(x ⊗ v) = ϕ(v) ⊗ v for all v ∈ V .

Consequently s(x⊗V) ⊆ V⊗x and a similar computation with s replaced by s−1 shows that s(x⊗V) ⊇

V ⊗ x, which immediately proves that ϕ is a surjective map.

In the rest of the paper we assume that (p, q) �= (1,−1).

Proposition 4.5. Let V be a k-vector space endowed with an Autχ ,z(G)-gradation

V =
⊕

ζ∈Autχ ,z(G)

Vζ

and an automorphism ϕ : V → V ful�lling
– ϕ(Vζ ) = Vζ for all ζ ∈ Autχ ,z(G),
– ϕn = id if λ(zn − 1G) �= 0.
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Then the pair (V , s), where s : HD ⊗ V −→ V ⊗ HD is the map de�ned by

s(gxi ⊗ v) := ϕi(v) ⊗ ζ(g)xi for all v ∈ Vζ , (4.27)

is a le� HD-space. Furthermore, all the le� HD-spaces with underlying k-vector space V have this form.

Proof. It is easy to check that the map s de�ned by (4.27) is compatible with the unit, the counit, the
multiplicationmap and the braid ofHD . So, by Remark 2.4, in order to check that s is a le� transposition
it su�ces to verify that

(s ⊗ HD) ◦ (HD ⊗ s) ◦ (� ⊗ V)(x ⊗ v) = (V ⊗ �) ◦ s(x ⊗ v)

and

(s ⊗ HD) ◦ (HD ⊗ s) ◦ (� ⊗ V)(g ⊗ v) = (V ⊗ �) ◦ s(g ⊗ v) for g ∈ G,

which is clear.
Conversely, assume that (V , s) is a le�HD-space. By Proposition 4.4 and Theorem 4.3, we know that

there exists an automorphism ϕ of V and a gradation

V =
⊕

ζ∈Aut(G)

Vζ

of V , such that s(g ⊗ v) = v ⊗ ζ(g) and s(x ⊗ v) = ϕ(v) ⊗ x for all g ∈ G and v ∈ Vζ . Again by
Proposition 4.4, we also know that s(z ⊗ v) = v ⊗ z for all v ∈ V . Therefore, if Vζ �= 0, then ζ(z) = z.
Now, let g ∈ G and v ∈ Vζ \{0}. A direct computation shows that

ϕ(v) ⊗ xζ(g) = s(xg ⊗ v)

= s
(
χ(g)gx ⊗ v

)

=
∑

φ∈Aut(G)

ϕ(v)φ ⊗ χ(g)φ(g)x

=
∑

φ∈Aut(G)

ϕ(v)φ ⊗ χ(g)χ(φ(g))−1xφ(g).

Since g is arbitrary, from this it follows that ϕ(v)φ = 0 for φ �= ζ and that χ(ζ(g)) = χ(g). So

ϕ(Vζ ) = Vζ and χ ◦ ζ = χ .

Lastly, suppose that λ(zn − 1G) �= 0. Then

v ⊗ λ(zn − 1G) = s
(
λ(zn − 1G) ⊗ v

)
= s(xn ⊗ v) = ϕn(v) ⊗ xn = ϕn(v) ⊗ λ(zn − 1G),

for each v ∈ V . This shows that ϕn = id and �nishes the proof.

Our next aim is to characterize the right HD-braided comodule structures. Let (V , s) be a le� HD-
space and let

V =
⊕

ζ∈Autχ ,z(G)

Vζ and ϕ : V −→ V

be the decomposition and the automorphism associated with the le� transposition s. Each map

ν : V −→ V ⊗ HD

determines and it is determined by a family of maps
(
U

g
i : V −→ V

)
g∈G, 0≤i<n

(4.28)
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via

ν(v) :=
∑

g∈G
0≤i<n

U
g
i (v) ⊗ gxi. (4.29)

Proposition 4.6. The pair (V , s) is a right HD-comodule via ν i�
(1) U

g
i (Vζ ) ⊆ Vζ for all g ∈ G, ζ ∈ Autχ ,z(G) and i ∈ {0, 1},

(2) (U
g
0 )g∈G is a complete family of orthogonal idempotents,

(3) U
g
1 = U

g
0 ◦ U

g
1 = U

g
1 ◦ U

gz
0 for all g ∈ G,

(4) U
g
i = 1

(i)!qp
U

g
1 ◦ U

gz
1 ◦ · · · ◦ U

gzi−1

1 for all g ∈ G and 1 ≤ i < n,

(5) U
g
1 ◦ U

gz
1 ◦ · · · ◦ U

gzn−1

1 = 0 for all g ∈ G,

(6) ϕ ◦ U
g
0 = U

g
0 ◦ ϕ and qϕ ◦ U

g
1 = U

g
1 ◦ ϕ for all g ∈ G.

Proof. For each v ∈ Vζ , h ∈ G and 0 ≤ j < n, write

Uh
j (v) =

∑

φ∈Autχ ,z(G)

Uh
j (v)φ with Uh

j (v)φ ∈ Vφ .

Since

(ν ⊗ HD) ◦ s(gxi ⊗ v) =
∑

h∈G
0≤j<n

Uh
j

(
ϕi(v)

)
⊗ hxj ⊗ ζ(g)xi

and

(V ⊗ cq) ◦ (s ⊗ HD) ◦ (HD ⊗ ν)(gxi ⊗ v) =
∑

h∈G
0≤j<n

∑

φ∈Autχ ,z(G)

qij ϕi
(
Uh
j (v)φ

)
⊗ hxj ⊗ φ(g)xi

the map ν satis�es condition (2.4) in Remark 2.17 i�
∑

h∈G
0≤j<n

Uh
j

(
ϕi(v)

)
⊗ hxj ⊗ ζ(g)xi =

∑

h∈G
0≤j<n

∑

φ∈Autχ ,z(G)

qij ϕi
(
Uh
j (v)φ

)
⊗ hxj ⊗ φ(g)xi,

for all ζ ∈ Autχ ,z(G), v ∈ Vζ , g ∈ G and 0 ≤ i < n. Since ζ , v and g are arbitrary, ϕ(Vφ) = Vφ for all
φ ∈ Autχ ,z(G), and ϕ is bijective, this happens i�

Uh
j (Vζ ) ⊆ Vζ and qj ϕ ◦ Uh

j = Uh
j ◦ ϕ, (4.30)

for all h, j, and ζ . On the other hand, since ε(gxi) = δ0i, the map ν is counitary i�
∑

g∈G

U
g
0 = id, (4.31)

and since

(V ⊗ �) ◦ ν(v) =
∑

g∈G
0≤i<n

U
g
i (v) ⊗ �(gxi) =

∑

g∈G
0≤i<n

i∑

j=0

(
i
j

)

qp

U
g
i (v) ⊗ gxj ⊗ gzjxi−j

and

(ν ⊗ HD) ◦ ν(v) =
∑

h∈G
0≤l<n

ν
(
Uh
l (v)

)
⊗ hxl =

∑

h∈G
0≤l<n

∑

g∈G
0≤j<n

U
g
j

(
Uh
l (v)

)
⊗ gxj ⊗ hxl,
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it is coassociative i�

U
g
j ◦ Uh

l =





(
j + l

j

)

qp

U
g
j+l if h = gzj and j + l < n,

0 otherwise.

(4.32)

Thus, in order to prove this proposition we must show items (1)–(6) are equivalent to conditions (4.30),
(4.31) and (4.32). It is evident that (4.30) implies items (1) and (6), while items (2) and (3) follow
from (4.31) and (4.32). Finally, using (4.32) again it is easy to prove by induction on j that items (4)
and (5) are also satis�ed. Conversely, assume that the maps U

g
i satisfy items (1)–(6). It is clear that

item (2) implies condition (4.31), and equality (4.30) follows from items (1), (4) and (6). It remains
to prove equality (4.32). We claim that

U
f
i ◦ U

fzi

j =





(
i + j

i

)

qp

U
f
i+j if i + j < n,

0 if i + j ≥ n.

(4.33)

By item (2) this is true if j = i = 0. In order to check it when j > 0 and i = 0 or j = 0 and i > 0, it
su�ces to note that by items (3) and (4),

U
f
0 ◦ U

f
i =

1

(i)!qp
U

f
0 ◦ U

f
1 ◦ · · · ◦ U

fzi−1

1 =
1

(i)!qp
U

f
1 ◦ · · · ◦ U

fzi−1

1 = U
f
i

and

U
f
i ◦ U

fzi

0 =
1

(i)!qp
U

f
1 ◦ · · · ◦ U

fzi−1

1 ◦ U
fzi

0 =
1

(i)!qp
U

f
1 ◦ · · · ◦ U

fzi−1

1 = U
f
i ,

respectively. Assume now that j > 0 and i > 0. Then, by item (4),

U
f
i ◦ U

fzi

j =
1

(i)!qp

1

(j)!qp
U

f
1 ◦ · · · ◦ U

fzi−1

1 ◦ U
fzi

1 ◦ · · · ◦ U
fzi+j−1

1 ,

and the claim follows immediately from items (4) and (5). Note now that (4.33) implies that

U
f
i ◦ Uh

j = U
f
i ◦ U

fzi

0 ◦ Uh
0 ◦ Uh

j

which, combined with item (2), shows that

U
f
i ◦ Uh

j = 0 if h �= fzi,

�nishing the proof of (4.32).

Corollary 4.7. Let V be a k-vector space. Each data consisting of
– a G × Autχ ,z(G)-gradation V =

⊕
(g,ζ )∈G×Autχ ,z(G) Vg,ζ of V,

– an automorphism ϕ : V → V of V such that

ϕn = id if λ(zn − 1G) �= 0 and ϕ(Vg,ζ ) = Vg,ζ for all (g, ζ ) ∈ G × Autχ ,z(G),

– a map U : V → V, such that

U ◦ ϕ = qϕ ◦ U, Un = 0 and U(Vg,ζ ) ⊆ Vgz−1,ζ for all (g, ζ ) ∈ G × Autχ ,z(G),

determines univocally a right HD-comodule (V , s), in which



COMMUNICATIONS IN ALGEBRA® 3187

– s : HD ⊗ V −→ V ⊗ HD is the le� transposition of HD on V associated as in (4.27) with the map ϕ

and the Autχ ,z(G)-gradation of V

V =
⊕

ζ∈Autχ ,z(G)

Vζ , where Vζ :=
⊕

g∈G

Vg,ζ ,

– the coaction ν : V → V ⊗ HD of (V , s) is de�ned by

ν(v) :=

n−1∑

j=0

1

(j)!qp
Uj(v) ⊗ z−jgxj for all v ∈ Vg ,

where, for all g ∈ G,

Vg :=
⊕

ζ∈Autχ ,z(G)

Vg,ζ .

Furthermore, all the right HD-braided comodules with underlying k-vector space V have this form.

Proof. Assume we have a data as in the statement. Then we de�ne a family of maps as in (4.28), by
– U

g
0 (v) := πg(v), where πg : V → Vg is the projection onto Vg along

⊕
h∈G\{g} Vh,

– U
g
1 := U

g
0 ◦ U ◦ U

gz
0 ,

– U
g
j = 1

(j)!qp
U

g
1 ◦ U

gz
1 ◦ · · · ◦ U

gzj−1

1 for all 1 < j < n.

We must check that these maps satisfy the conditions required in Proposition 4.6. Item (1) is ful�lled
sinceU(Vζ ) ⊆ Vζ andU

g
0 (Vζ ) ⊆ Vζ for all g ∈ G, items (2)–(4) hold by the very de�nition of the maps

U
g
i , and item (6) is ful�lled since ϕ(Vg) = Vg for all g ∈ G andU ◦ϕ = qϕ ◦U. We next prove item (5).

Since Un = 0, this trivially follows if we prove that, for all j ≥ 1,

U
g
1 ◦ U

gz
1 ◦ · · · ◦ U

gzj−1

1 (v) =

{
Uj(v) if v ∈ Vgzj ,

0 if v ∈ Vh with h �= gzj.

Clearly if v ∈ Vh with h �= gzj, then U
gzj

0 (v) = 0, and so

U
g
1 ◦ U

gz
1 ◦ · · · ◦ U

gzj−1

1 (v) = U
g
1 ◦ · · · ◦ U

gzj−1

1 ◦ U
gzj

0 (v) = 0.

It remains to consider the case v ∈ Vgzj,ζ . We proceed by induction on j. If j = 1, then

U
g
1 (v) = U

g
0 ◦ U ◦ U

gz
0 (v) = U

g
0 ◦ U(v) = U(v),

because U(v) ∈ Vg . Assume now j > 1 and the result is valid for j − 1. Then

U
g
1 ◦ U

gz
1 ◦ · · · ◦ U

gzj−1

1 (v) = U
g
1 ◦ · · · ◦ U

gzj−2

1 ◦ U
gzj−1

1 (v) = U
g
1 ◦ · · · ◦ U

gzj−2

1 ◦ U(v) = Uj(v),

where the last equality follows from the inductive hypothesis and the fact that U(v) ∈ Vgzj−1 .
Conversely assume that (V , s) is a right HD-comodule via a coaction ν : V → V ⊗ HD . Let

V =
⊕

ζ∈Autχ ,z(G)

Vζ and ϕ : V −→ V

be the decomposition and the automorphism associated with s (see Proposition 4.5). By items (1) and (2)
of Proposition 4.6, we know that, for each ζ ∈ Autχ ,z(G), the maps U

g
0 ’s determine by restriction a

complete family (U
g
0 : Vζ → Vζ )g∈G of orthogonal idempotents. Let

Vζ =
⊕

g∈G

Vg,ζ
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be the decomposition associated with this family. Clearly

V =
⊕

(g,ζ )∈G×Autχ ,z(G)

Vg,ζ .

By item (6) of Proposition 4.6, we have ϕ ◦U
g
0 = U

g
0 ◦ϕ for all g ∈ G. Since, by Proposition 4.5 we know

that ϕ(Vζ ) = Vζ for all ζ ∈ Aut(G), this implies that

ϕ(Vg,ζ ) = Vg,ζ for all (g, ζ ) ∈ G × Autχ ,z(G).

We now de�ne a map U : V → V by

U(v) = U
g
1 (v) for all v ∈ Vgz,ζ .

From items (3) and (5) of Proposition 4.6, it follows thatUn = 0, andusing the second equality in item (6)
of the same proposition, we obtain that ϕ ◦U = qU ◦ϕ. Finally, by items (1) and (3) of Proposition 4.6,
we have U(Vg,ζ ) ⊆ Vz−1g,ζ for all (g, ζ ) ∈ G × Autχ ,z(G).

We leave the reader the task to prove that the construction given in the two parts of this proof are
reciprocal one of each other.

Remark 4.8. Assume that q = 1, or equivalently, that HD is a Krop-Radford Hopf algebra. In this case
(V , s) is a standardHD-comodule (that is, s is the �ip) i� Vg,ζ = 0 for ζ �= id and ϕ is the identity map.
Hence, in order to obtain the standard HD-comodule structures, the conditions that we need verify
(given in Corollary 4.7) are considerably simpli�ed.

Corollary 4.9. With the notations of the previous corollary, VcoH = V1G ∩ ker(U).

Proof. This is an immediate consequence of Corollary 4.7.

Proposition 4.10. Let B be an algebra. If

B =
⊕

ζ∈Autχ ,z(G)op

Bζ (4.34)

is an Autχ ,z(G)op-gradation of B as an algebra and ϕ : B → B an automorphism of algebras that satis�es
– ϕ(Bζ ) = Bζ for all ζ ∈ Autχ ,z(G),
– ϕn = id if λ(zn − 1G) �= 0,
then, the map s : HD ⊗ B −→ B ⊗ HD , given by

s(gxi ⊗ b) = ϕi(b) ⊗ ζ(g)xi for all b ∈ Bζ , (4.35)

is a le� transposition of HD on the algebra B. Furthermore, all the le� transpositions of HD on B have this
form.

Proof. By Proposition 4.5 in order to prove this it su�ces to check that the formula (4.35) de�nes a map
compatible with the unit and the multiplication map of B i� (4.40) is a gradation of B as an algebra and
ϕ is an automorphism of algebras. We le� this task to the reader.

The group Autχ ,z(G) acts on Gop via ζ · g := ζ(g). So, it makes sense to consider the semidirect
product G(χ , z) := Gop

� Autχ ,z(G).

De�nition 4.11. Let D = (G,χ , z, λ, q) be as in Corollary 3.8 and let B be an algebra endowed with an
algebra automorphism ϕ : B → B, a map U : B → B and a G(χ , z)op-gradation

B =
⊕

(g,ζ )∈G(χ ,z)op

Bg,ζ , (4.36)
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of B as a vector space. We will say that the decomposition (4.36) of B is compatible with the pair (U,D)

if one of the following conditions is ful�lled:
(1) λ(zn − 1G) = 0 and (4.36) is a gradation of B as an algebra.
(2) λ(zn − 1G) �= 0, 1B ∈ B1G,id,

Bg,ζBh,φ ⊆ Bφ(g)h,φ◦ζ ⊕ Bz−nφ(g)h,φ◦ζ for all (g, ζ ), (h,φ) ∈ G(χ , z)op, (4.37)

and, for each b ∈ Bg,ζ and c ∈ Bh,φ , the homogeneous component (bc)z−nφ(g)h,φ◦ζ of bc of degree
(z−nφ(g)h,φ ◦ ζ ) is given by

(bc)z−nφ(g)h,φ◦ζ := −λ

n−1∑

j=1

pj
2
χ(h)j

(j)!qp(n − j)!qp
Uj(b)ϕj

(
Un−j(c)

)
. (4.38)

Theorem 4.12. Let B be an algebra. Each data consisting of
– a G(χ , z)op-gradation

B =
⊕

(g,ζ )∈G(χ ,z)op

Bg,ζ , (4.39)

of B as a vector space,
– an algebra automorphism ϕ : B → B of B such that

ϕn = id if λ(zn − 1G) �= 0 and ϕ(Bg,ζ ) = Bg,ζ for all (g, ζ ) ∈ G(χ , z)op,

– a map U : B → B such that

the decomposition (3.39) is compatible with the pair (U,D),

U ◦ ϕ = qϕ ◦ U,

Un = 0,

U(Bg,ζ ) ⊆ Bz−1g,ζ for all (g, ζ ) ∈ G(χ , z)op

and

U(bc) = bU(c) + χ(h)U(b)ϕ(c) for all b ∈ B and c ∈ Bh, (4.40)

where

Bh :=
⊕

ζ∈Autχ ,z(G)

Bh,ζ for all h ∈ G,

determines a right HD-comodule algebra (B, s), in which s : HD ⊗ B −→ B⊗HD is the le� transposition
of HD on B associated with the map ϕ and the Autχ ,z(G)op-gradation of B

B =
⊕

ζ∈Autχ ,z(G)op

Bζ , (4.41)

where Bζ :=
⊕

g∈G Bg,ζ . The coaction ν : B −→ B ⊗ HD of (B, s) is given by

ν(b) :=

n−1∑

i=0

1

(i)!qp
Ui(b) ⊗ z−igxi for all b ∈ Bg . (4.42)

Furthermore, all the right HD-braided comodule algebra structures with underlying algebra B are obtained
in this way.

Proof. Let (B, s) be a right HD-comodule, with s a le� transposition of HD on the algebra B. Consider
the subspaces Bg,ζ of B and the maps ϕ andU associated with (B, s) as in Corollary 4.7. By that corollary,
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Proposition 4.10, and Remarks 2.17 and 2.22, in order to �nish the proof it su�ces to show that the
coaction ν of (B, s) satisfy

ν(1B) = 1B ⊗ 1HD
and ν ◦ µB = (µB ⊗ µHD

) ◦ (B ⊗ s ⊗ HD) ◦ (ν ⊗ ν) (4.43)

i� the decomposition

B =
⊕

(g,ζ )∈G(χ ,z)op

Bg,ζ , (4.44)

of B is compatible with (U,D) andU satis�es condition (4.40). First wemake some remarks. Let b ∈ Bg,ζ
and c ∈ Bh,φ . By the de�nition of ν,

ν(bc) =

n−1∑

i=0

∑

f∈G

1

(i)!qp
Ui

(
(bc)f

)
⊗ z−ifxi. (4.45)

On the other hand, a direct computation shows that

F(b, c) =

n−1∑

j=0

n−1∑

i=0

p−ijχ(h)j

(j)!qp(i)!qp
Uj(b)ϕj

(
Ui(c)

)
⊗ z−i−jφ(g)hxi+j

=

2n−2∑

u=0

n−1∑

j=0
0≤u−j<n

p−(u−j)jχ(h)j

(j)!qp(u − j)!qp
Uj(b)ϕj

(
Uu−j(c)

)
⊗ z−uφ(g)hxu, (4.46)

where to abbreviate expressions we write

F(b, c) := (µB ⊗ µHD
) ◦ (B ⊗ s ⊗ HD)(ν(b) ⊗ ν(c)).

Set

A
j
u(b, c) :=

p(j−u)jχ(h)j

(j)!qp(u − j)!qp
Uj(b)ϕj

(
Uu−j(c)

)
.

Since xn = λ(zn − 1G), equality (4.46) becomes

F(b, c) =

n−1∑

i=0

i∑

j=0

A
j
i(b, c) ⊗ z−iφ(g)hxi + λ

n−1∑

i=0

n−i∑

j=i+1

A
j
i+n(b, c) ⊗ z−n−iφ(g)h(zn − 1G)xi

=

n−1∑

i=0

( i∑

j=0

A
j
i(b, c) + λ

n−1∑

j=i+1

A
j
i+n(b, c)

)
⊗ z−iφ(g)hxi

−

n−1∑

i=0

n−1∑

j=i+1

λA
j
i+n(b, c) ⊗ z−n−iφ(g)hxi. (4.47)

Next we prove the part⇒). We assume that λ(zn−1G) �= 0 and leave the case λ(zn−1G) = 0, which
is easier, to the reader. To begin with note that by the �rst equality in (4.43),

1B ∈ B1G =
⊕

ζ∈Autχ ,z(G)

B1G,ζ .

Since, on the other hand, (4.41) is a gradation of B as an algebra, necessarily

1B ∈ Bid =
⊕

g∈G

Bg,id,
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and so 1B ∈ B1G,id. Recall that b ∈ Bg,ζ and c ∈ Bh,φ . Since by the second equality in (4.43),
equations (4.45) and (4.47) coincide, we have

(bc)f =





A0
0(b, c) + λ

n−1∑

j=1

A
j
n(b, c) if f = φ(g)h,

−λ

n−1∑

j=1

A
j
n(b, c) if f = z−nφ(g)h,

0 otherwise,

(4.48)

and

U
(
(bc)f

)
=





1∑

j=0

A
j
1(b, c) + λ

n−1∑

j=2

A
j
1+n(b, c) if f = φ(g)h,

−λ

n−1∑

j=2

A
j
1+n(b, c) if f = z−nφ(g)h,

0 otherwise.

(4.49)

Since, by Proposition 4.10, we know that bc ∈ Bφ◦ζ , from equality (4.48) it follows easily that the
decomposition (4.39) is compatible with (U,D) (recall that if λ(zn − 1G) �= 0, then pn = 1). Finally,
by (4.49)

U(bc) =
∑

f

U
(
(bc)f

)

=

1∑

j=0

A
j
1(b, c) + λ

n−1∑

j=2

A
j
1+n(b, c) − λ

n−1∑

j=2

A
j
1+n(b, c)

= A0
1(b, c) + A1

1(b, c),

and so, (4.40) is true.
We now prove the part ⇐). So we assume that the decomposition (4.44) is compatible with (U,D)

and thatU satis�es (4.40). Again we consider the case λ(zn−1G) �= 0 and leave the case λ(zn−1G) = 0,
which is easier, to the reader. To begin with note that ν(1B) = 1B ⊗ 1HD

, because

1B ∈ B1G and U(1B) = 1BU(1B) + U(1B)1B ⇒ U(1B) = 0.

So, we are reduced to prove that the second condition in (4.43) is ful�lled. By equalities (4.45) and (4.47),
this is equivalent to prove that for all 0 ≤ i < n and f ∈ G,

1

(i)!qp
Ui

(
(bc)f

)
=





i∑

j=0

A
j
i(b, c) + λ

n−1∑

j=i+1

A
j
i+n(b, c) if f = φ(g)h,

−λ

n−1∑

j=i+1

A
j
i+n(b, c) if f = z−nφ(g)h,

0 otherwise.

(4.50)

For i = 0 this follows easily from the fact that equality (4.38) holds and

A0
0(b, c) = bc = (bc)φ(g)h,φ◦ζ + (bc)z−nφ(g)h,φ◦ζ ,
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since the decomposition (4.44) is compatible with (U,D). Assume by inductive hypothesis that equal-
ity (4.38) is true for i and that i < n − 1. This implies that

1

(i)!qp
Ui+1

(
(bc)f

)
=





i∑

j=0

U
(
A
j
i(b, c)

)
+ λ

n−1∑

j=i+1

U
(
A
j
i+n(b, c)

)
if f = φ(g)h,

−λ

n−1∑

j=i+1

U
(
A
j
i+n(b, c)

)
if f = z−nφ(g)h,

0 otherwise.

So, we must prove that

1

(i + 1)qp

n−1∑

j=i+1

U
(
A
j
i+n(b, c)

)
=

n−1∑

j=i+2

A
j
i+1+n(b, c) (4.51)

and

1

(i + 1)qp

i∑

j=0

U
(
A
j
i(b, c)

)
=

i+1∑

j=0

A
j
i+1(b, c). (4.52)

Recall again that b ∈ Bg,ζ and c ∈ Bh,φ . Using the equality (4.40) and the facts that U ◦ ϕ = qϕ ◦ U,
Uu(c) ∈ Bz−uh,φ for all u ∈ N, and pn = 1, we obtain

U
(
A
j
i(b, c)

)
=

p(j−i)jχ(h)j

(j)!qp(i − j)!qp
U

(
Uj(b)ϕj

(
Ui−j(c)

))

=
p(j−i)jχ(h)j

(j)!qp(i − j)!qp

(
qjUj(b)ϕj

(
Ui+1−j(c)

)
+ pj−iχ(h)Uj+1(b)ϕj+1

(
Ui−j(c)

))

and

U
(
A
j
i+n(b, c)

)
=

p(j−i)jχ(h)j

(j)!qp(i + n − j)!qp
U

(
Uj(b)ϕj

(
Ui+n−j(c)

))

=
p(j−i)jχ(h)j

(j)!qp(i + n − j)!qp

(
qjUj(b)ϕj

(
Uj+1+n−j(c)

)
+ pj−iχ(h)Uj+1(b)ϕj+1

(
Ui+n−j(c)

))
.

Since Un = 0, this implies that

i∑

j=0

U
(
A
j
i(b, c)

)
=

i∑

j=0

p(j−i)jχ(h)jqj

(j)!qp(i − j)!qp
Uj(b)ϕj

(
Ui+1−j(c)

)

+

i∑

j=0

p(j−i)(j+1)χ(h)j+1

(j)!qp(i − j)!qp
Uj+1(b)ϕj+1

(
Ui−j(c)

)

=

i∑

j=0

p(j−i)jχ(h)jqj

(j)!qp(i − j)!qp
Uj(b)ϕj

(
Ui+1−j(c)

)

+

i+1∑

j=1

p(j−i−1)jχ(h)j

(j − 1)!qp(i + 1 − j)!qp
Uj(b)ϕj

(
Ui+1−j(c)

)
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and

n−1∑

j=i+1

U
(
A
j
i+n(b, c)

)
=

n−1∑

j=i+1

p(j−i)jχ(h)jqj

(j)!qp(i + n − j)!qp
Uj(b)ϕj

(
Ui+1+n−j(c)

)

+

n−1∑

j=i+1

p(j−i)(j+1)χ(h)j+1

(j)!qp(i + n − j)!qp
Uj+1(b)ϕj+1

(
Ui+n−j(c)

)

=

n−1∑

j=i+2

p(j−i)jχ(h)jqj

(j)!qp(i + n − j)!qp
Uj(b)ϕj

(
Ui+1+n−j(c)

)

+

n−1∑

j=i+2

p(j−i−1)jχ(h)j

(j − 1)!qp(i + 1 + n − j)!qp
Uj(b)ϕj

(
Ui+1+n−j(c)

)
.

Consequently in order to �nish the proof of equalities (4.51) and (4.52) it su�ces to see that

(i + 1)qp

(i + 1)!qp
=

1

(i)!qp
,

(i + 1)qpχ(h)i+1

(i + 1)!qp
=

χ(h)i+1

(i)!qp
,

(i + 1)qpp
(j−i−1)jχ(h)j

(j)!qp(i + 1 − j)!qp
=

p(j−i)jχ(h)jqj

(j)!qp(i − j)!qp
+

p(j−i−1)jχ(h)j

(j − 1)!qp(i + 1 − j)!qp
for 1 ≤ j ≤ i

and

(i + 1)qpp
(j−i−1)jχ(h)j

(j)!qp(i + 1 + n − j)!qp
=

p(j−i)jχ(h)jqj

(j)!qp(i + n − j)!qp
+

p(j−i−1)jχ(h)j

(j − 1)!qp(i + 1 + n − j)!qp
for i + 2 ≤ j < n.

But the �rst two equalities are trivial and the last ones are equivalent to

(i + 1)qp = pjqj(i + 1 − j)qp + (j)qp for 1 ≤ j ≤ i

and

(i + 1)qp = pjqj(i + 1 + n − j)qp + (j)qp for i + 2 ≤ j < n,

which can be easily checked.

Remark 4.13. Using that χ ◦ φ = χ for all φ ∈ Autχ ,z(G) and that if λ(zn − 1G) �= 0, then χ(z)n = 1,
it is easy to see that B is a B-bimodule via

b1 · b2 · b3 := χ(h)b1b2ϕ(b3) for all b1, b2 ∈ B and b2 ∈ Bh.

Let B� B be the cartesian product B × B endowed with the multiplication

(b1, c1)(b2, c2) = (b1b2, b1 · c2 + c1 · b2).

It is well known that B � B is an unitary associative algebra and that a map U : B → B satis�es
equality (4.40) if and only if the map θ : B → B � B, de�ned by θ(b) := (b,U(b)), is a morphism
of algebras.

Remark 4.14. Assume that q = 1. Then (B, s) is a standard HD-comodule algebra (that is, s is the �ip)
i� Bg,ζ = 0 for ζ �= id and ϕ is the identity map. Hence, in order to obtain the standard HD-comodule
algebra structures, the conditions that we need to verify (given in Theorem 4.12) are considerably
simpli�ed.



3194 M. DA ROCHA ET AL.

Example 4.15. Fix n > 1 inN. Assume that k contains a root of unity ξ of order n. Let

Hn2 := k〈g, x|gn = 1, xn = 0 and gx + ξxg = 0〉

be the Ta� algebra. Clearly Hn2 = HD , whereD = (G,χ , z, λ, q) with

G := {1, g, . . . , gn−1}, z = g, λ = 1, q = 1 and χ(g) = ξ .

Note that Autχ ,g(G) = id, and hence G(χ , g) = G. Consider the k-algebra

B =

(
α,β , δ

k

)
:= k〈u, v|un = α, vn = β and vu − ξuv = δu2〉,

where α,β , δ ∈ k. It is easy to see that B is a G-graded algebra via

B = B1 ⊕ Bg ⊕ · · · ⊕ Bgn−1 ,

where

Bgi :=

i⊕

j=0

k · ujvi−j ⊕

n−i−1⊕

j=1

k · ui+jvn−j.

Let U : B → B be the k-linear map de�ned by

U(uivj) := (1 + ξ + · · · + ξ j−1)uivj−1 for all i, j ≥ 0.

Clearly

Un = 0, U(Bg0) ⊆ Bgn−1 and U(Bgi) ⊆ Bgi−1 for 1 ≤ i < n.

Moreover, it follows easily from Remark 4.13 that U satis�es equality (4.40) with ϕ := id. Thus, by
Theorem 4.12, we know that B is an Hn2 -comodule algebra with coaction ν : B → B ⊗ Hn2 , given by

ν(b) :=

n−1∑

l=0

1

(l)!ξ
Ul(b) ⊗ gi−lxl for b ∈ Bgi .

Consequently,

ν(ujvi−j) =

i−j∑

l=0

(
i − j
l

)

ξ

ujvi−j−l ⊗ gi−lxl for 0 ≤ j ≤ i

and

ν(ui+jvn−j) =

n−j∑

l=0

(
n − j
l

)

ξ

ui+jvn−j−l ⊗ gi−lxl for 1 ≤ j < n − i.

Finally, by Corollary 4.9, we have BcoHn2 = Bg0 ∩ ker(U) = k.

Remark 4.16. Let (B, s) be a right HD-comodule algebra and let BG := {b ∈ B : ν(b) ∈ B ⊗ kG}. Note
that

BG = ker(U) =
⊕

(g,ζ )∈G(χ ,z)op

Bg,ζ ∩ ker(U).

Moreover,

ν(BG) ⊆ BG ⊗ kG,

because (ν ⊗ HD) ◦ ν = B ⊗ �) ◦ ν. Consequently, since

(B ⊗ cq) ◦ (s ⊗ HD) ◦ (HD ⊗ ν) = (ν ⊗ HD) ◦ s,



COMMUNICATIONS IN ALGEBRA® 3195

we have s(HD ⊗ BG) ⊆ BG ⊗ HD . Similarly s−1(BG ⊗ HD) ⊆ HD ⊗ BG, and so,

s(HD ⊗ BG) = BG ⊗ HD .

Furthermore BG is a subalgebra of B because

ν ◦ µ = (µB ⊗ µHD
) ◦ (B ⊗ s ⊗ HD) ◦ (ν ⊗ ν).

Clearly s induces by restriction a le� transposition s̃ of kG on BG. From the previous discussion it follows
that (BG, s̃) is a right kG-comodule algebra.

5. HD cleft extensions

Throughout this section we use freely the notations introduced in Section 4 and the characterization of
right HD-comodule algebras obtained in Theorem 4.12. Let (B, s) be a right HD-comodule algebra and
let C := BcoHD . Recall that, by Corollary 4.9,

C = B1G ∩ ker(U) =
⊕

ζ∈Autχ ,z(G)

B1G,ζ ∩ ker(U).

Theorem 5.1. The extension (C ↪→ B, s) is cle� i� there exists bx ∈ B and a family (bg)g∈G of elements of
B×, such that
(a) bg ∈ Bg,id ∩ ker(U) for all g ∈ G,
(b) bx ∈ Bz,id ∩ U−1(1B),
(c) ϕ(bx) = qbx,
(d) ϕ(bg) = bg for all g ∈ G.

If this is the case, then the map γ : HD → B, de�ned by γ (gxi) := bgb
i
x, is a cle� map, and its convolution

inverse is given by

γ −1(gxi) = (−1)i(qp)
i(i−1)

2 bixb
−1
gzi

.

Proof. Assume that (C ↪→ B, s) is a cle� extension and �x a cle� map γ : HD → B such that γ (1) = 1.
For every g ∈ G and 0 ≤ i < n, set bgxi := γ (gxi). Since γ is a right comodule map,

ν(bg) = bg ⊗ g and ν(bx) = 1B ⊗ x + bx ⊗ z,

which, by formula (4.42), is equivalent to

bg ∈ Bg ∩ ker(U) and bx ∈ Bz ∩ U−1(1).

Moreover bg is invertible for each g ∈ G, because γ is convolution invertible. On the other hand
evaluating the equality (γ ⊗ HD) ◦ cq = s ◦ (HD ⊗ γ ) in h ⊗ x, x ⊗ x, h ⊗ g and x ⊗ g, where
h ∈ G is arbitrary, we obtain that

bx ∈ Bid, ϕ(bx) = qbx, bg ∈ Bid and ϕ(bg) = bg ,

for all g ∈ G. Thus, items (a)–(d) hold. Conversely, assume that there exist bx ∈ B and a family (bg)g∈G
of elements of B× satisfying statements (a)–(d). We are going to prove that (C ↪→ B, s) is cle� and the
map γ : HD → B, de�ned by γ (gxi) := bgb

i
x, is a cle� map. First note that

(γ ⊗ HD) ◦ cq(gx
i ⊗ hxj) = qijbhb

j
x ⊗ gxi = s(gxi ⊗ bhb

j
x) = s ◦ (HD ⊗ γ )(gxi ⊗ hxj),

for all h, g ∈ G and 0 ≤ i, j < n. So we must only check that γ is convolution invertible and

ν ◦ γ (gxi) = (γ ⊗ HD) ◦ �(gxi) for all g ∈ G and 0 ≤ i < n. (5.53)
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For g = 1 and i = 0 it is evident that this is true. Assume it is true for g = 1 and i = i0, and that
i0 < n − 1. Then

ν ◦ γ (xi0+1) = ν
(
γ (xi0)bx

)

= (µB ⊗ µHD
) ◦ (B ⊗ s ⊗ HD)

(
ν(γ (xi0)) ⊗ ν(bx)

)

=

i0∑

j=0

(
i0
j

)

qp

(µB ⊗ µHD
) ◦ (B ⊗ s ⊗ HD)(b

j
x ⊗ zjxi0−j ⊗ 1B ⊗ x)

+

i0∑

j=0

(
i0
j

)

qp

(µB ⊗ µHD
) ◦ (B ⊗ s ⊗ HD)(b

j
x ⊗ zjxi0−j ⊗ bx ⊗ z)

=

i0∑

j=0

(
i0
j

)

qp

b
j
x ⊗ zjxi0+1−j +

i0∑

j=0

(
i0
j

)

qp

b
j
xϕ

i0−j(bx) ⊗ zjxi0−jz

=

i0∑

j=0

(
i0
j

)

qp

b
j
x ⊗ zjxi0+1−j +

i0+1∑

j=1

(
i0

j − 1

)

qp

qi0+1−jpi0+1−jb
j
x ⊗ zjxi0+1−j

=

i0∑

j=0

(
i0 + 1

j

)

qp

b
j
x ⊗ zjxi0+1−j.

Thus, equality (5.53) holds when g = 1G. But then

ν ◦ γ (gxi) = ν
(
bgγ (xi)

)

=

i∑

j=0

(
i

j

)

qp

(µB ⊗ µHD
) ◦ (B ⊗ s ⊗ HD)(bg ⊗ g ⊗ b

j
x ⊗ zjxi−j)

=

i∑

j=0

(
i

j

)

qp

bgb
j
x ⊗ gzjxi−j.

It remains to check that γ is convolution invertible. As was noted in [2, Section 3],

i∑

j=0

(−1)j(qp)
j(j−1)

2

(
i
j

)

qp

=

{
1 if i = 0,

0 if 0 < i < n.
(5.54)

Using this it is easy to prove that γ is invertible with

γ −1(gxi) = (−1)i(qp)
i(i−1)

2 bixb
−1
gzi

,

which �nishes the proof.

In the previous theorem we can assume without loss of generality that b1 = 1B.

Example 5.2. With the notations and assumptions of Example 4.15, the extension (k ↪→ B, s), where s
is the �ip is cle� if and only if there exist

bx ∈ Bg ∩ U−1(1) = {λu · u + v : λu ∈ k} and bgi ∈ Bgi ∩ ker(U) = {λi · u
i : λi ∈ k},

such that the bgi ’s are invertible. Note that since u
n = α, this is equivalent to say that α ∈ k×.
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Theorem 5.3. Assume that (C ↪→ B, s) is cle�. Take bx ∈ B and a family (bg)g∈G of elements of B× with
b1 = 1B, in such a way that conditions (a)–(d) of Theorem 5.1 are ful�lled. Then
(1) B is a free le� C-module with basis {bgb

i
x : g ∈ G and 0 ≤ i < n}.

(2) Set b := bnxb
|z|−n
z and for all g ∈ G set ag := b

|g|
g and cg := (bxbg −χ(g)bgbx)b

−1
g b−1

z . Then ag ∈ C×,
cg ∈ C, and if xn = 0, then b ∈ C.

(3) The weak action of HD on C associated with γ according to item (5) of Theorem 2.36 is given by

gxi ⇀ c =

i∑

j=0

(−1)j(qp)
j(j−1)

2

(
i
j

)

qp

bgb
i−j
x ϕj(c)b

j
xb

−1
ζ(g)zi

for c ∈ B1G,ζ ∩ ker(U).

(4) The two cocycle σ : HD ⊗ HD → C associated with γ according to item (5) of Theorem 2.36, is given
by

σ(gxs ⊗ hxr) =
∑

0≤i≤s
0≤j≤r
ξij<n

(−1)ξij
(
s
i

)

qp

(
r
j

)

qp

(qp)
ξij(ξij−1)

2 +sj−ijχ(h)s−ibgb
i
xbhb

s+r−i
x b−1

ghzs+r

+ λ
∑

0≤i≤s
0≤j≤r
ξij≥n

(−1)
ξ ′
ij

(
s
i

)

qp

(
r
j

)

qp

(qp)
ξ ′
ij(ξ

′
ij−1)

2 +sj−ijχ(h)s−ibgb
i
xbhb

ξin
x b−1

ghzs+r

− λ
∑

0≤i≤s
0≤j≤r
ξij≥n

(−1)
ξ ′
ij

(
s
i

)

qp

(
r
j

)

qp

(qp)
ξ ′
ij(ξ

′
ij−1)

2 +sj−ijχ(h)s−ibgb
i
xbhb

ξin
x b−1

ghzs+r−n ,

where ξij := s + r − i − j and ξ ′
ij := ξij − n.

Proof.
(1) By item (4) of Theorem 2.36, the map φ : C ⊗ HD → B, given by φ(c ⊗ y) := cγ (y), is a normal

basis. Item (1) is an immediate consequence of this fact.

(2) Using item (4) of Remark 2.22 it is easy to check by induction on i, that

ν(big) = big ⊗ gi and ν(bix) =

i∑

j=0

(
i
j

)

qp

b
j
x ⊗ zjxi−j for all g ∈ G and i ≥ 0. (5.55)

By the �rst equality

ν(ag) = ag ⊗ 1HD
for all g ∈ G,

and so ag ∈ C. Since ν : B → B ⊗s H is an algebra map, we have

ν(a−1
g ) = a

−1
g ⊗ 1HD

and ν(b−1
g ) = b−1

g ⊗ g−1 for all g ∈ G, (5.56)

which implies in particular that ag ∈ C×. Note also that, by the second equality in (5.55),

ν(bnx) = 1B ⊗ xn + bnx ⊗ zn.

because
( n
j

)
qp

= 0 for 0 < j < n. Consequently,

ν(b) = ν(bnxb
|z|−n
z )

= (µB ⊗ µHD
) ◦ (B ⊗ s ⊗ HD)(1B ⊗ xn ⊗ b

|z|−n
z ⊗ z−n + bnx ⊗ zn ⊗ b

|z|−n
z ⊗ z−n)

= (µB ⊗ µHD
)(1B ⊗ b

|z|−n
z ⊗ xn ⊗ z−n + bnx ⊗ b

|z|−n
z ⊗ zn ⊗ z−n)

= b
|z|−n
z ⊗ xnz−n + b ⊗ 1HD

,
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which implies that, if xn = 0, then b ∈ C. Furthermore, for all g ∈ G,

ν(bxbg) = (µB ⊗ µHD
) ◦ (B ⊗ s ⊗ HD)(1B ⊗ x ⊗ bg ⊗ g + bx ⊗ z ⊗ bg ⊗ g)

= (µB ⊗ µHD
)(1B ⊗ bg ⊗ x ⊗ g + bx ⊗ bg ⊗ z ⊗ g)

= χ(g) bg ⊗ gx + bxbg ⊗ zg

and

ν(χ(g) bgbx) = (µB ⊗ µHD
) ◦ (B ⊗ s ⊗ HD)(χ(g) bg ⊗ g ⊗ 1B ⊗ x + χ(g) bg ⊗ g ⊗ bx ⊗ z)

= (µB ⊗ µHD
)(χ(g) bg ⊗ 1B ⊗ g ⊗ x + χ(g) bg ⊗ bx ⊗ g ⊗ z)

= χ(g) bg ⊗ gx + χ(g) bgbx ⊗ zg.

Combining this with the second equality in (5.56), we obtain

ν(cg) = ν
(
(bxbg − χ(g) bgbx)b

−1
g b−1

z

)

= (µB ⊗ µHD
) ◦ (B ⊗ s ⊗ HD)

(
(bxbg − χ(g) bgbx) ⊗ zg ⊗ b−1

g b−1
z ⊗ g−1z−1)

= (µB ⊗ µHD
)
(
(bxbg − χ(g) bgbx) ⊗ b−1

g b−1
z ⊗ zg ⊗ g−1z−1)

= (bxbg − χ(g) bgbx)b
−1
g b−1

z ⊗ 1HD
,

and so cg ∈ C, as desired.

(3) This follows by a direct computation from item (5) of Theorem 2.36, using equalities (3.9)
and (4.27), and the formulas for γ and γ −1 that appears in Theorem 5.1.

(4) This follows by a direct computation from item (5) of Theorem 2.36, using equalities (3.9)
and (3.10), and the formulas for γ and γ −1 that appears in Theorem 5.1.

The following proposition and its corollary is useful to simplify the computation of the the right side
in the equality in Theorem 5.3(4).

Proposition 5.4. Let r, s, i ≥ 0 with 0 ≤ i ≤ s. With the notations of the previous result, we have

r∑

j=0

(−1)ξij
(
r
j

)

qp

(qp)
ξij(ξij−1)

2 +sj−ij =

{
(−1)s−i(qp)

(s−i)(s−i−1)
2 if r = 0,

0 if 0 < r < n.

Proof. Let a := s − i and b := r − j. Since ξij = a + b, we have

r∑

j=0

(−1)ξij
(
r
j

)

qp

(qp)
ξij(ξij−1)

2 +sj−ij =

r∑

b=0

(−1)a+b

(
r
b

)

qp

(qp)
(a+b)(a+b−1)

2 +ar−ab

= (−1)a(qp)ar+
a(a−1)

2

r∑

b=0

(−1)b
(
r
b

)

qp

(qp)
b(b−1)

2 ,

which combined with (5.54) gives the desired result.

Corollary 5.5. Let r, s, i ≥ 0 with 0 ≤ i ≤ s. If 0 < r < n − s + i, then

∑

0≤j≤r
ξij<n

(−1)ξij
(
r
j

)

qp

(qp)
ξij(ξij−1)

2 +sj−ij = 0.

Proof. By Proposition 5.4.
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6. Examples

In this section we consider two examples of the braided Hopf algebras HD de�ned in Corollary 3.8 and
we apply the results obtained in the previous section in order to determine their cle� extensions.

6.1. First example

Consider the datumD = (C2 × C2 × C2,χ , z, λ, q), where:
– C2 = {1, g} is the multiplicative group of order 2,
– χ : C2 × C2 × C2 −→ C is the character given by χ(gi1 , gi2 , gi3) := (−1)i1+i2+i3 ,
– z := (g, g, g),
– q = 1 and λ = 1.
In this case p := χ(z) = −1, n = 2 and theHopf braidedC-algebraHD of Corollary 3.8 is theC-algebra
generated by the group G := C2 × C2 × C2 and an element x subject to the relations

x2 = z2 − 1G = 0 and x(gi1 , gi2 , gi3) = (−1)i1+i2+i3(gi1 , gi2 , gi3)x,

endowed with the standard Hopf algebra structure with comultiplication map �, counit ε and antipode
S, given by

�(g) := g ⊗ g, �(x) := 1 ⊗ x + x ⊗ z,

ε(g) := 1, ε(x) := 0

S(g) := g−1, S(gx) := −xz−1g−1,

where g denotes an arbitrary element of G. Let S3 be the symmetric group in {1, 2, 3}. It is easy to check
that the map

θ : S
op
3 → Autχ ,z(G),

de�ned by θ(σ )(gi1 , gi2 , gi3) := (giσ(1) , giσ(2) , giσ(3) ), is an isomorphism.

6.1.1. HD-spaces

Let V be a C-vector space. By Proposition 4.5 to have a le� HD-space structure with underlying vector
space V is “the same” that to have a gradation

V =
⊕

σ∈S3

Vσ

and an automorphism ϕ : V → V such that ϕ(Vσ ) = Vσ for all σ ∈ S3. The structure map

s : HD ⊗ V −→ V ⊗ HD ,

constructed from these data, is given by

s
(
(gi1 , gi2 , gi3) ⊗ v

)
:= v ⊗ (giσ(1) , giσ(2) , giσ(3) )

and

s
(
(gi1 , gi2 , gi3)x ⊗ v

)
:= ϕ(v) ⊗ (giσ(1) , giσ(2) , giσ(3) )x,

for each v ∈ Vσ .

6.1.2. HD-comodules

Let V be a C-vector space. By Corollary 4.7 each right HD-comodule structure (V , s) with underlying
vector space V is univocally determined by the following data:
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(a) A decomposition

V =
⊕

(g,σ)∈G×S
op
3

Vg,σ ,

(b) An automorphism ϕ : V → V that satis�es ϕ
(
Vg,σ

)
= Vg,σ for all (g, σ) ∈ G × S

op
3 ,

(c) A map U : V → V such that

U ◦ ϕ = ϕ ◦ U, U2 = 0 and U
(
Vg,σ

)
⊆ Vgz,σ for all (g, σ) ∈ G × S

op
3 .

The formula for the transposition s of HD on V is the one obtained in Section 6.1.1 (where we take
Vσ :=

⊕
g∈G Vg,σ for each σ ∈ S3), while the HD-coaction ν is given by

ν(v) = v ⊗ (gi1 , gi2 , gi3) + U(v) ⊗ (gi1+1, gi2+1, gi3+1)x,

for v ∈
⊕

σ∈S3
Vg,σ with g = (gi1 , gi2 , gi3).

Next given a decomposition as in item (a), we give a proceeding to construct an automorphism
ϕ : V → V and a map U : V → V satisfying the conditions required in items (b) and (c): First we
decompose each space Vg,σ as a direct sum

Vg,σ = V0
g,σ ⊕ V1

g,σ ,

in such a way that dimC(V1
g,σ ) ≤ dimC(V0

gz,σ ), and we �x an injective morphisms

Ug,σ : V
1
g,σ −→ V0

gz,σ ,

for each (g, σ) ∈ G × S
op
3 . Then we de�ne U on Vg,σ , by

U(v) =




Ug,σ (v) if v ∈ V1

g,σ ,

0 if v ∈ V0
g,σ .

It remains to construct ϕ. Let (g, σ) ∈ G× S
op
3 arbitrary. SinceU ◦ϕ = ϕ ◦U, ϕ(Vg,σ ) ⊆ Vg,σ andUg,σ

is injective, there exist morphisms

ϕ0
g,σ : V

0
g,σ −→ V0

g,σ , ϕ1
g,σ : V

1
g,σ −→ V1

g,σ and ϕ10
g,σ : V

1
g,σ −→ V0

g,σ ,

such that

ϕ(v0, v1) =
(
ϕ0
g,σ (v0) + ϕ10

g,σ (v1),ϕ
1
g,σ (v1)

)
for all (v0, v1) ∈ V0

g,σ ⊕ V1
g,σ .

Moreover, since ϕ is an automorphism, the maps ϕ0
g,σ and ϕ1

g,σ are also automorphisms. All these maps

can be constructed as follows: For each (g, σ) ∈ G × S
op
3 we take an arbitrary automorphism ϕ1

g,σ of

V1
g,σ . Then, for each (g, σ) ∈ G × S

op
3 , we choose ϕ0

g,σ as an automorphism of V0
g,σ such that

ϕ0
g,σ

(
Ugz,σ (v)

)
= Ug,σ

(
ϕ1
gz,σ (v)

)
for all v ∈ V1

gz,σ

(which is forced by the condition U ◦ ϕ = ϕ ◦ U). Finally, we take ϕ10
g,σ as an arbitrary automorphism.

Remark 6.1. By Corollary 4.9 we know that VcoHD = V1G ∩ ker(U), where V1G =
⊕

σ∈S3
V1G,σ .

Remark 6.2. We are in the classical case (i.e. s is the �ip) i� Vg,σ = 0 for σ �= id and ϕ is the identity
map. So, in this case the decomposition in item a) above has at most eight nonzero summands, item b)
becomes trivial and the �rst condition in item c) also becomes trivial.
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6.1.3. Transpositions ofHD on an algebra

By Proposition 4.10, for eachC-algebra B, to have a transposition s : HD ⊗B −→ B⊗HD is equivalent
to have an algebra gradation

B =
⊕

σ∈S
op
3

Bσ

and an automorphism of algebras ϕ : B → B such that ϕ(Bσ ) = Bσ for all σ ∈ S3. The structure map
s : HD ⊗ B −→ B ⊗ HD , constructed from these data, is the same as in Section 6.1.1.

6.1.4. RightHD-comodule algebras

By the discussion above De�nition 4.11 we know that the group S
op
3 acts on G via

σ · (gi1 , gi2 , gi3) := (giσ(1) , giσ(2) , giσ(3) ).

Consider the semidirect productG(χ , z) := G�S
op
3 .We are going to workwithG(χ , z)op. Its underlying

set is C2 × C2 × C2 × S3 and its product is given by

(gi1 , gi2 , gi3 , σ)(gj1 , gj2 , gj3 , τ) = (gj1+iτ (1) , gj2+iτ (2) , gj3+iτ (3) , σ ◦ τ).

Let B be a C-algebra. By Theorem 4.12 to have a rightHD-comodule algebra (B, s) is equivalent to have
(a) a G(χ , z)op-gradation

B =
⊕

(g,σ)∈G(χ ,z)op

Bg,σ

of B as an algebra,
(b) an automorphism of algebras ϕ : B → B such that

ϕ
(
Bg,σ

)
⊆ Bg,σ for all (g, σ) ∈ G(χ , z)op,

(c) a map U : B → B such that
– U ◦ ϕ = ϕ ◦ U,
– U2 = 0,
– U

(
Bg,σ

)
⊆ Bgz,σ for all (g, σ) ∈ G(χ , z)op,

– the equality

U(bc) = bU(c) + (−1)i1+i2+i3U(b)ϕ(c)

holds for all b ∈ B and c ∈ B(gi1 ,gi2 ,gi3 ) :=
⊕

σ∈S3
B(gi1 ,gi2 ,gi3 ),σ .

Remark 6.3. Weare in the classical case (i.e. s is the �ip) i�Bg,σ = 0 for σ �= id andϕ is the identitymap.
So, in this case the gradation in item (a) is a G-gradation, item (b) is trivial, and item (c) is considerably
simpli�ed.

6.1.5. RightHD-cleft extensions

Let C := BcoHD . By Corollary 4.9 we know that

C = B1G ∩ ker(U) =
⊕

σ∈S3

B1G,σ ∩ ker(U).

By Theorem 5.1 and the comment below that result, the extension (C ↪→ B, s) is cle� i� there exist
bx ∈ B and a family (bg)g∈G of elements of B×, such that
(a) b1G = 1,
(b) bg ∈ Bg,id ∩ ker(U) for all g ∈ G,
(c) bx ∈ B(g,g,g),id ∩ U−1(1),
(d) ϕ(bx) = bx,
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(e) ϕ(bg) = bg for all g ∈ G.
By Theorem 5.3 we know that
(1) B is a free le� C-module with basis {bgb

i
x : g ∈ G and 0 ≤ i ≤ 1}.

(2) By Theorem 5.3(3), the weak action of HD on C associated with γ according to item (5) of
Theorem 2.36 is given by

(gi1 , gi2 , gi3) ⇀ c = b(gi1 ,gi2 ,gi3 )cb
−1

(g
iσ(1) ,g

iσ(2) g
iσ(3) )

and

(gi1 , gi2 , gi3)x ⇀ c = b(gi1 ,gi2 ,gi3 )

(
bxc − ϕ(c)bx

)
b−1

(g
iσ(1)+1

,g
iσ(2)+1

,g
iσ(3)+1

)

for c ∈ B1G,σ ∩ ker(U).
(3) By Theorem 5.3(3), the two cocycle σ : HD ⊗ HD → C, associated with γ according to item (5) of

Theorem 2.36 is given by

σ(g ⊗ h) = bgbhb
−1
gh ,

σ(gx ⊗ h) = −χ(h)bgbhbxb
−1
gh(g,g,g) + bgbxbhb

−1
gh(g,g,g),

σ(g ⊗ hx) = 0

and

σ(gx ⊗ hx) = χ(h)bgbhb
2
xb

−1
gh ,

for g, h ∈ G.

Remark 6.4. It is clear that once chosen b
(1)
g := b(g,1,1), b

(2)
g := b(1,g,1) and b

(3)
g := b(1,1,g), one can take

b(g,g,1) := b
(1)
g b

(2)
g , b(g,1,g) := b

(1)
g b

(3)
g , b(1,g,g) := b

(2)
g b

(3)
g and b(g,g,g) := b

(1)
g b

(2)
g b

(3)
g .

6.2. Second example

Consider the datumD = (C6,χ , z, λ, q), where:
– C6 = {1, g, g2, g3, g4, g5} is the multiplicative cyclic group of order 6,
– χ : C6 −→ C is the character given by χ(gi) := ξ i, where ξ is a root of order 3 of 1,
– z := g,
– q = ξ and λ = 1.
In this case p := χ(z) = ξ , n = 3 and the Hopf braided C-algebra HD of Corollary 3.8 is the C-algebra
generated by the group C6 and an element x subject to the relations

x3 = g3 − 1 = −2 and xg = ξgx,

endowed with the braidedHopf algebra structure with comultiplicationmap�, counit ε, antipode S and
braid cξ , given by

�(gi) := gi ⊗ gi, �(x) := 1 ⊗ x + x ⊗ g,

ε(gi) := 1, ε(x) := 0

S(gixj) := (−1)jξ j(j−1)xjg−j−i,

cξ (g
ixj ⊗ gkxl) = ξ jlgkxl ⊗ gixj.

It is clear that Autχ ,z(C6) = {id}.

6.2.1. HD-spaces

Let V be a C-vector space. By Proposition 4.5 we know that to have an HD-space structure with
underlying vector space V is equivalent to have an automorphism ϕ : V → V such that ϕ3 = id. The
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structure map s : HD ⊗ V −→ V ⊗ HD construct from these data is given by

s
(
gixj ⊗ v

)
:= ϕj(v) ⊗ gixj.

6.2.2. HD-comodules

Let V be a C-vector space. By Corollary 4.7 the right HD-comodule structures (V , s) with underlying
vector space V are univocally determined by the following data:
(a) a decomposition

V =
⊕

gi∈C6

Vgi = V1 ⊕ Vg ⊕ Vg2 ⊕ Vg3 ⊕ Vg4 ⊕ Vg5 ,

(b) an automorphism ϕ : V → V that satis�es ϕ3 = id and ϕ
(
Vgi

)
= Vgi for all i,

(c) a map U : V → V such that

U ◦ ϕ = ξϕ ◦ U, U3 = 0 and U
(
Vgi

)
⊆ Vgi−1 for all i.

The formula for the transposition s of HD on V is the one obtained in Section 6.2.1, while the HD-
coaction ν is given by

ν(v) = v ⊗ gi + U(v) ⊗ gi−1x − ξU2(v) ⊗ gi−2x2 for all v ∈ Vgi .

6.2.3. Transpositions ofHD on an algebra

By Proposition 4.10, for eachC-algebra B, to have a transposition s : HD ⊗B −→ B⊗HD is equivalent
to have an automorphism of algebras ϕ : B → B such that ϕ3 = id. The structure map s : HD ⊗ B −→

B ⊗ HD , constructed from these data, is the same as in Section 6.2.1.

6.2.4. RightHD-comodule algebras

Let B be a C-algebra. By Theorem 4.12 to have a rightHD-comodule algebra (B, s) is equivalent to have
(a) a C6-gradation

B = B1 ⊕ Bg ⊕ Bg2 ⊕ Bg3 ⊕ Bg4 ⊕ Bg5 ,

of B as a vector space such that 1B ∈ B1 and BgiBgj ⊆ Bgi+j ⊕ Bgi+j−3 for all i, j.
(b) an automorphism of algebras ϕ : B → B such that

ϕ3 = id and ϕ
(
Bgi

)
⊆ Bgi for all i,

(c) a map U : B → B such that
– U ◦ ϕ = ξϕ ◦ U,
– U3 = 0,
– U

(
Bgi

)
⊆ Bgi−1 for all i,

– the equality

U(bc) = bU(c) + ξ iU(b)ϕ(c)

holds for all b ∈ B and c ∈ Bgi ,
– For b ∈ Bgi and c ∈ Bgj , the component (bc)gi+j−3 ∈ Bgi+j−3 of bc is given by

(bc)gi+j−3 = ξ jU(b)ϕ(U2(c)) + ξ 2jU2(b)ϕ2(U(c)).

6.2.5. RightHD-cleft extensions

Let C := BcoHD . By Corollary 4.9 we know that

C = B1 ∩ ker(U).
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By Theorem 5.1 and the comment below that result, the extension (C ↪→ B, s) is cle� i� there exist
bx ∈ B and a family (bgi)gi∈C6

of elements of B×, such that
(a) b1 = 1,
(b) bgi ∈ Bgi ∩ ker(U) for all gi ∈ C6,

(c) bx ∈ Bg ∩ U−1(1),
(d) ϕ(bx) = ξbx,
(e) ϕ(bgi) = bgi for all g

i ∈ C6.
By Theorem 5.3 we know that

(1) B is a free le� C-module with basis {bgib
j
x : g

i ∈ C6 and 0 ≤ j ≤ 2}.
(2) The weak action of HD on C associated with γ according to item (5) of Theorem 2.36, is given by

gi ⇀ c = bgi cb
−1
gi

,

gix ⇀ c = bgi
(
bxc − ϕ(c)bx

)
b−1
gi+1

and

gix2 ⇀ c = bgi
(
b2xc + ξbxϕ(c)bx + ϕ2(c)b2x

)
b−1
gi+2 ,

for c ∈ C.
(3) The two cocycle σ : HD ⊗ HD → C, associated with γ according to item (5) of Theorem 2.36, is

given by

σ(gi ⊗ gj) = bgibgjb
−1
gi+j ,

σ(gix ⊗ gj) = −ξ jbgibgjbxb
−1
gi+j+1 + bgibxbgjb

−1
gi+j+1 ,

σ(gix2 ⊗ gj) = ξ 2j+2bgibgjb
2
xb

−1
gi+j+2 + ξ j+1bgibxbgjbxb

−1
gi+j+2 + bgib

2
xbgjb

−1
gi+j+2 ,

σ(gi ⊗ gjx) = 0,

σ(gix ⊗ gjx) = 0,

σ(gix2 ⊗ gjx) = −ξ 2jbgibgjb
−1
gi+j+3 − ξ 2jbgibgjb

−1
gi+j + ξ 2jbgibgjb

3
xb

−1
gi+j+3 ,

σ(gi ⊗ gjx2) = 0,

σ(gix ⊗ gjx2) = −ξ jbgibgjb
−1
gi+j+3 − ξ jbgibgjb

−1
gi+j + ξ jbgibgjb

3
xb

−1
gi+j+3

and

σ(gix2 ⊗ gjx2) = −ξ 2j+1bgibgjbxb
−1
gi+j+4 − ξ 2j+1bgibgjbxb

−1
gi+j+1 + ξ j+1bgibxbgjb

−1
gi+j+4

+ ξ j+1bgibxbgjb
−1
gi+j+1 + ξ 2j+1bgibgjb

4
xb

−1
gi+j+4 − ξ j+1bgibxbgjb

3
xb

−1
gi+j+4 .
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