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1. Introduction

Let H be a Hilbert space with inner product 〈 , 〉 and L(H) the algebra of bounded lin-
ear operators on H. If A ∈ L(H) is positive (semi-definite) and 〈 , 〉A is the semi-inner
product on H defined by 〈ξ, η〉A = 〈Aξ, η〉 for all ξ, η ∈ H then (H, 〈 , 〉A) is called 
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a semi-Hilbertian space. In the literature there are many papers that study operators 
defined on semi-Hilbertian spaces. The first work on this subject is due to Krein [15]. 
There, the author deals with operators which are A-selfadjoint, i.e., which are selfadjoint 
respect to the semi-inner product 〈 , 〉A. In [10,11] the existence of A-selfadjoint idem-
potents with a fixed closed range is studied. Later, in [3] operators which are isometric, 
unitary and partially isometric under the structure induced by 〈 , 〉A are described. One 
of the main characteristics of the operators defined in (H, 〈 , 〉A) is that the existence 
of an adjoint operator for 〈 , 〉A is not guaranteed. Therefore, the extension of certain 
properties of operators in L(H) to bounded linear operators defined on a semi-Hilbertian 
space is not trivial.

In this article we continue with the study of partial isometries in the context of 
semi-Hilbertian spaces that began in [3] and followed in [2]. Recall that T ∈ L(H) is a 
partial isometry if ‖Tξ‖ = ‖ξ‖ for all ξ ∈ N(T )⊥, where N(T ) denotes the nullspace 
of T . The following equivalent conditions are well-known for T ∈ L(H):

1. T is a partial isometry;
2. T ∗T is an idempotent operator;
3. TT ∗ is an idempotent operator;
4. TT ∗T = T ;
5. T ∗TT ∗ = T ∗;
6. T ∗ = T †;
7. T ∗η is the unique least square solution with minimal norm of the equation Tξ = η

for all ξ ∈ H;

where T ∗ and T † denote the adjoint operator of T and the Moore–Penrose inverse of T , 
respectively.

Given a positive operator A ∈ L(H), an operator T ∈ L(H) is an A-partial isometry 
if ‖Tξ‖A = ‖ξ‖A for all ξ ∈ N(AT )⊥A ; where ‖ξ‖A = 〈ξ, ξ〉1/2A is the seminorm on H
induced by A and N(AT )⊥A denotes the orthogonal complement of N(AT ) with respect 
to 〈 , 〉A. However this definition does not allow to ensure that an A-partial isometry 
admits an A-adjoint operator. Therefore, it is not trivial how to extend the equivalences 
1 to 7 above to A-partial isometries.

One of the main goals of this article is to analyze whether the equivalences stated 
above for partial isometries are still valid in the context of semi-Hilbertian spaces. For 
this purpose we deal with A-partial isometries that admit A-adjoint and we fix a dis-
tinguished one. There is a preliminary study in this direction. In [3] an equivalence like 
1 ↔ 2 above is shown in the context of semi-Hilbertian spaces under different hypotheses, 
for example the existence of an A-selfadjoint idempotent with a fixed closed range; or the 
closedness of the range of A. Later, in [2] the relationship between A-partial isometries 
and generalized inverses is investigated. In particular, the connection between A-partial 
isometries and A-generalized inverses is described. Here, the A-generalized inverses will 
play the roll of the Moore–Penrose inverses in the semi-Hilbertian space (H, 〈 , 〉A). This 
study is related to equivalences 1 ↔ 4 ↔ 6 above. In Proposition 3.4 we study equiva-
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lences 1 ↔ 2 ↔ 3 ↔ 5 for A-partial isometries. Equivalence 1 ↔ 4 is not valid in this 
context, but we establish necessary and sufficient conditions for an A-partial isometry to 
satisfy 4 considering the particular A-adjoint. The results obtained are included in Theo-
rem 4.1. Moreover, in order to analyze equivalences 1 ↔ 6 ↔ 7 we study the relationship 
between A-partial isometries and a kind of weighted inverses. The generalization of these 
equivalent conditions is included in Theorem 4.5.

Another goal of this article is to describe the class of A-partial isometries called 
A-normal A-partial isometries and the class called A-generalized projections, which ex-
tend to semi-Hilbertian spaces the concepts of normal partial isometries and generalized 
projections, respectively. Groß and Trenkler [13] defined the generalized projections, 
which are a subset of partial isometries, as a generalization of the notion of orthogo-
nal projection where the idempotency condition is not required. Generalized projections 
were widely studied in [7,5,6,1,17]. Finally, we apply the results obtained along this work 
to describe a class of A-selfadjoint A-partial isometries called A-projections which are 
defined in [8].

The article is organized as follows:
Section 2 is devoted to give notation, terminology and preliminary results that will 

be used along this work.
In Section 3 we continue the study of A-partial isometries that has began in [3]. We give 

some necessary and sufficient conditions for an operator T to be an A-partial isometry 
by means of a distinguished A-adjoint of T . The choice of this particular A-adjoint is 
also justified in this section.

In Section 4 we study the relationship between A-partial isometries, generalized in-
verses and weighted inverses. Theorem 4.1 and its corollary deal with the connection 
between A-partial isometries and generalized inverses. Both results contribute to [2, The-
orem 2.5] where this link is analyzed. In Theorem 4.5 we relate A-partial isometries to a 
class of weighted inverses. This result also generalizes the fact that an operator is a partial 
isometry if and only if its adjoint operator coincides with its Moore–Penrose inverse.

Section 5 is devoted to the study of A-normal A-partial isometries. There we analyze 
some properties of normal partial isometries in the context of semi-Hilbertian spaces. 
We generalize the fact that a given partial isometry is normal if and only if the range 
and the nullspace of its adjoint decomposes H.

In Section 6 we define the A-generalized projections and we present some character-
izations for these operators. In addition we remark certain differences and similarities 
with the generalized projections. For example, every generalized projection is a normal 
partial isometry and it decomposes H as the orthogonal sum of its range and its ker-
nel or as the orthogonal sum of the range and the nullspace of its adjoint. We show 
that these facts are not valid for an A-generalized projection, in general. However, given 
an A-generalized projection these facts are true for a distinguished A-adjoint of the 
A-generalized projection.

Finally, in Section 7 we apply some results obtained in the previous sections to describe 
the set of A-projections into a closed subspace. This concept was introduced by Mitra and 



G. Fongi, M.C. Gonzalez / Linear Algebra and its Applications 495 (2016) 324–343 327
Rao [16] for matrices and then it was extended to bounded linear operators by Corach 
et al. [8]. An A-projection into a closed subspace S is an operator which acts as an 
orthogonal projection on S when the seminorm induced by 〈 , 〉A is considered in H. In 
particular, if an operator is an A-projection into the closure of its range then it is called 
an A-projection. In this section we give a parametrization of the set of A-projections 
into S by means of an A-partial isometry with range S (Proposition 7.4) and also we 
describe the A-projections by means of generalized projections (Proposition 7.5).

2. Preliminaries

In this paper H is a complex Hilbert space with inner product 〈 , 〉. By L(H) we 
denote the algebra of bounded linear operators from H to H and by L(H)+ the cone of 
positive (semi-definite) operators of L(H). Given T ∈ L(H), the range and the nullspace 
of T are respectively denoted by R(T ) and N(T ). In addition, T ∗ denotes the adjoint 
operator of T . By T † we denote the Moore–Penrose inverse of T , i.e., T † is the operator 
T † : R(T ) ⊕ R(T )⊥ → N(T )⊥, defined by T †|R(T ) = T−1|R(T ) and N(T †) = R(T )⊥. It 
holds that T † ∈ L(H) if and only if T has closed range.

Given S and W two closed subspaces of H then S+̇W and S⊕W denote the direct sum 
and the orthogonal sum between S and W, respectively. Moreover, S	W = S∩(S∩W)⊥. 
If S+̇W = H, then QS//W denotes the idempotent operator in L(H) with range S
and nullspace W. In particular, PS = QS//S⊥ is the orthogonal projection onto S. If 
T ∈ L(H), the matrix decomposition of T in terms of the decomposition H = S ⊕S⊥ is 
given by

T =
(
x y

z w

)
,

where x = PSTPS |S ∈ L(S), y = PSTPS⊥ |S⊥ ∈ L(S⊥, S), z = PS⊥TPS |S ∈ L(S, S⊥)
and w = PS⊥TPS⊥ |S⊥ ∈ L(S⊥).

Every A ∈ L(H)+ defines a semi-inner product on H given by 〈 , 〉A : H × H → C
where 〈ξ, η〉A = 〈Aξ, η〉 for every ξ, η ∈ H. The pair (H, 〈, 〉A) is called a semi-Hilbertian 
space. Given T ∈ L(H), an operator D ∈ L(H) is an A-adjoint of T if 〈Tξ, η〉A =
〈ξ,Dη〉A for every ξ, η ∈ H; or equivalently, if AD = T ∗A. Moreover, T is A-selfadjoint 
if AT = T ∗A. Note that the existence of an A-adjoint of T is equivalent to the existence 
of a solution of the equation AX = T ∗A. This kind of equation can be studied applying 
the following range inclusion theorem due to Douglas [12]:

Theorem 2.1. Given B, C ∈ L(H) the following conditions are equivalent:

1. the equation BX = C has solution in L(H);
2. R(C) ⊆ R(B);
3. there exists λ > 0 such that CC∗ ≤ λBB∗.
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If one of the above conditions holds then there exists a unique D ∈ L(H) such that 
BD = C and R(D) ⊆ N(B)⊥; namely D = B†C. Moreover, ‖D‖2 = inf {λ > 0 : CC∗ ≤
λBB∗}.

By Douglas’ theorem it holds that the set of all operators of L(H) which admit an 
A-adjoint operator is the set

LA(H) = {T ∈ L(H) : R(T ∗A) ⊆ R(A)}.

If T ∈ LA(H) then it can admit only one A-adjoint operator or infinite A-adjoint oper-
ators. In any case, there exists a distinguished A-adjoint of T provided by Douglas’ theo-
rem; namely, T � = A†T ∗A. Therefore, it holds that R(T �) ⊆ R(A) and N(T �) = N(T ∗A).

Given A ∈ L(H)+ and a subspace S of H, S⊥A = (AS)⊥ denotes the A-orthogonal 
subspace of S. In addition, for subspaces S, W ⊆ H we denote S ⊕A W the direct 
and A-orthogonal sum between S and W. If S is a closed subspace and there exists a 
bounded A-selfadjoint idempotent operator Q with R(Q) = S then the pair (A, S) is 
called compatible. The theory of compatibility was developed by Corach et al. in [10,11]. 
In the next result we collect some facts about compatibility that will be useful in the 
sequel. For its proofs see [10] and [11].

Proposition 2.2. Let A ∈ L(H)+ and S ⊆ H a closed subspace. Then the following 
assertions are equivalent:

1. the pair (A, S) is compatible;
2. there exists an idempotent operator Q with R(Q) = S and N(Q) ⊆ S⊥A ;
3. S + S⊥A = H.

If one of the above conditions holds then the following statements are satisfied:

1. S + N(A) is closed;
2. there exists an A-selfadjoint projection PA,S such that R(PA,S) = S and N(PA,S) =

S⊥A 	N , where N = S ∩N(A);
3. if Q is an A-selfadjoint projection onto S then ‖(I − PA,S)ξ‖ ≤ ‖(I − Q)ξ‖ for all 

ξ ∈ H.

For a given T ∈ LA(H), in the next lemma we add some other properties of the 
operator T � to those given in [3,4]. From now on, given A ∈ L(H)+, PA denotes the 
orthogonal projection onto R(A).

Lemma 2.3. Let T ∈ LA(H). Then the following assertions hold:

1. TT � and T �T are A-selfadjoint operators;
2. R(T )⊥A = R(TT �)⊥A = N(T �) = N(TT �);
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3. R(T �)⊥A = R(T �T )⊥A = N(AT ) = N(T �T );
4. if TT � is an idempotent operator then TT � = QR(TT �)//N(T∗A);
5. if T �T is an idempotent operator then T �T = QR(T �)//N(AT ).

Proof. 1. It is straightforward.
2. Note that R(T )⊥A = R(AT )⊥ = N(T ∗A) = N(T �) and R(TT �)⊥A = R(ATT �)⊥ =

R((T �)∗AT �)⊥ = N(AT �) = N(T �). Finally, observe that N(T �) ⊆ N(TT �) ⊆
R(TT �)⊥A = N(T �) where the second inclusion holds because TT � is A-selfadjoint.

3. It is easy to see that R(T �)⊥A = R(T �T )⊥A = N(AT ). Furthermore, N(AT ) ⊆
N(T �T ) ⊆ R(T �T )⊥A = N(AT ) where the second inclusion holds because T �T is 
A-selfadjoint. Then N(AT ) = N(T �T ) and the assertion follows.

4. It follows from item 3.
5. Since T �T is an A-selfadjoint projection then it holds that H = R(T �T ) ⊕A

N(T �T ) = R(T �T ) ⊕AN(AT ) ⊆ R(T �) ⊕AN(AT ). Therefore, R(T �T ) = R(T �) and the 
assertion follows. �
3. A-partial isometries

Partial isometries in semi-Hilbertian spaces were introduced in [3] as follows.

Definition 3.1. Consider A ∈ L(H)+. An operator T ∈ L(H) is called an A-partial 
isometry if ‖Tξ‖A = ‖ξ‖A for all ξ ∈ N(AT )⊥A .

Remarks 3.2.

1. An A-partial isometry does not necessarily admit an A-adjoint operator. In fact, 
let S be a closed subspace of H and b ∈ L(S⊥, S) with non closed range. Consider 

A =
(

1 0
0 b∗b

)
and T =

(
0 b

0 0

)
under the decomposition H = S ⊕ S⊥. Observe 

that AT = T and N(AT )⊥A = (A(S ⊕N(b)))⊥ = (AS)⊥ = S⊥. Therefore, consider 
ξ ∈ S⊥ then ‖ξ‖A = ‖(b∗b)1/2ξ‖ = ‖bξ‖ = ‖Tξ‖A, so that T is an A-partial isometry. 
Finally, it holds that T /∈ LA(H). Indeed, R(b∗) � R(b∗b) because R(b) is not closed. 
Now, since R(A) = S ⊕R(b∗b) and R(T ∗A) = R(b∗), then R(T ∗A) � R(A). Hence, 
T /∈ LA(H).

2. If R(A) is closed and T is an A-partial isometry then T admits an A-adjoint operator. 
In fact, since T is an A-partial isometry, it is not difficult to see that N(A) ⊆ N(AT ). 
Then R(T ∗A) ⊆ R(T ∗A) ⊆ R(A) because R(A) is closed. Therefore, T ∈ LA(H).

Along this work we deal with A-partial isometries in LA(H).

Proposition 3.3. An operator T ∈ LA(H) is an A-partial isometry if and only if ‖Tξ‖A =
‖ξ‖A for all ξ ∈ R(T �T ).
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Proof. See [3, Proposition 4.4]. �
In [3], the authors gave some characterizations of an A-partial isometry T ∈ LA(H)

under the hypothesis of compatibility between A and the closed subspace R(T �T ) and 
also under the hypothesis of the closedness of R(A). Here we present some characteriza-
tions of an A-partial isometry T assuming only that T ∈ LA(H).

Proposition 3.4. Let T ∈ LA(H). Then the following assertions are equivalent:

1. T is an A-partial isometry;
2. T �T is an idempotent operator;
3. T � is an A-partial isometry;
4. T �TT � = T �;
5. ATT �T = AT ;
6. TT � is an idempotent operator.

Proof. 1 → 2. Since T is an A-partial isometry then, by Proposition 3.3, ‖Tξ‖A = ‖ξ‖A
for all ξ ∈ R(T �T ), so that, T ∗AT = A in R(T �T ). In particular, A(T �T )2 = T ∗ATT �T =
AT �T , so that A((T �T )2−T �T ) = 0. Therefore, (T �T )2 = T �T because R(T �T ) ⊆ R(A). 
Then T �T is idempotent.

2 → 3. It holds that R((T �)�T �) = R(PATT
�) because (T �)� = PAT . There-

fore, ‖T �(PATT
�ξ)‖2

A = ‖T �TT �ξ‖2
A = ‖T �ξ‖2

A =
〈
AT �ξ, T �ξ

〉
=

〈
AT �TT �ξ, T �ξ

〉
=〈

ATT �ξ, TT �ξ
〉

= ‖PATT
�ξ‖2

A, where the second and the fourth equality follow because 
T �T is an idempotent operator on R(T �) (see Lemma 2.3). Then T � is an A-partial 
isometry.

3 → 4. Since T � is an A-partial isometry, by implication 1 → 2, it holds that (T �)�T �

is idempotent. Then (T �)�T � = PATT
� is an idempotent operator with R(PATT

�) =
R(PAT ), see Lemma 2.3. Then, (T �T )2 = T �TT �T = T �PATT

�PAT = T �PAT = T �T . 
Then, by Lemma 2.3, R(T �T ) = R(T �) so that T �TT � = T �.

4 → 5. Note that ATT �T = (TT �)∗AT = (TT �)∗(T �)∗A = (T �TT �)∗A = (T �)∗A =
AT , where the first equality follows because TT � is A-selfadjoint and the fourth equality 
follows from the fact that T �TT � = T �.

5 → 6. Note that AT �TT � = (T �T )∗AT � = (T �T )∗T ∗A = (TT �T )∗A = T ∗A = AT �, 
where the first equality follows because TT � is A-selfadjoint and the fourth equality 
follows from the fact that ATT �T = AT . Therefore, by left multiplication by A† we get 
that T �TT � = PAT

�TT � = PAT
� = T �. In consequence, (TT �)2 = TT �.

6 → 1. Observe that (PATT
�)2 = PATT

�PATT
� = PA(TT �)2 = PATT

�. Since 
PATT

� = (T �)�T � is idempotent then R(PATT
�) = R(PAT ) (see Lemma 2.3). There-

fore, it holds that ‖T (T �Tξ)‖2
A =

〈
ATT �Tξ, TT �Tξ

〉
=

〈
APATT

�PATξ, TT
�Tξ

〉
=〈

ATξ, TT �Tξ
〉

=
〈
AT �Tξ, T �Tξ

〉
= ‖T �Tξ‖2

A, so that T is an A-partial isome-
try. �
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Remarks 3.5.

1. The above proposition is not valid for any A-adjoint of T . In fact, let A =⎛
⎜⎝ 2 0 0

0 0 0
0 0 0

⎞
⎟⎠ ∈ L(C3)+ and T =

⎛
⎜⎝ 1 0 0

0 1 0
1 1 0

⎞
⎟⎠ ∈ L(C3). Since T ∗A = A then 

T ∈ LA(C3) and T � =

⎛
⎜⎝ 1 0 0

0 0 0
0 0 0

⎞
⎟⎠. Observe that T �T is an idempotent operator. 

However, observe that W =

⎛
⎜⎝ 1 0 0

0 2 0
2 0 4

⎞
⎟⎠ is an A-adjoint of T and WT is not an 

idempotent operator.
2. Every A-selfadjoint projection Q is an A-partial isometry. In fact, note that Q�Q =

A†Q∗AQ = A†AQ2 = PAQ and (Q�Q)2 = PAQPAQ = PAQ
2 = PAQ = Q�Q. Then, 

by Proposition 3.4, Q is an A-partial isometry.
3. The range of an A-partial isometry is not necessarily closed. In fact, consider A ∈

L(H)+ and T = PA + dPN(A) ∈ L(H), where d ∈ L(N(A))+ has dense non-closed 
range. Then the range of T is not closed and T is an A-partial isometry because 
T �T = PA.

4. If T is an A-partial isometry then T � has closed range. It holds because T �T is 
idempotent and R(T �) = R(T �T ), see Lemma 2.3 and the above proposition.

4. A-partial isometries and pseudoinverses

In this section we deal with the relationship between partial isometries and generalized 
inverses in semi-Hilbertian spaces. If T ∈ L(H), the following well-known equivalent 
conditions relate partial isometries and pseudoinverses:

i. T is a partial isometry,
ii. T ∗ is a generalized inverse of T ,
iii. T ∗ = T †.

Recall that a linear operator T ′ ∈ L(H) is a generalized inverse of T ∈ L(H) if T ′

satisfies the equation:

TXT = T. (1)

Observe that a necessary condition for equation (1) to admit a solution is that the 
operator T has closed range. In fact, R(T ) = R(TX) and TX is a bounded idempotent.

Equivalence i ↔ ii does not hold in the context of semi-Hilbertian spaces. In [2] it is 
proved that if T ∈ LA(H) and TT �T = T then T is an A-partial isometry. But the con-
verse is false, in general. Moreover, [2, Theorem 2.5] characterizes when the equivalence 
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holds. In the next theorem we also study the A-partial isometries for which T � satisfies 
equation (1). Equivalence 1 ↔ 3 of the following result is contained in [2, Theorem 2.5].

Theorem 4.1. Let T ∈ LA(H) be an A-partial isometry. Then the following statements 
are equivalent:

1. TT �T = T ;
2. H = R(T )+̇N(T �);
3. H = R(T �)+̇N(T );
4. R(T ) ∩N(A) = {0} and R(T ) is closed.

In addition, if one of the above conditions holds then T �T = QR(T �)//N(T ) and TT � =
QR(T )//N(T �).

Proof. 1 → 2. Since T is an A-partial isometry then TT � is idempotent. Then, H =
R(TT �)+̇N(TT �) ⊆ R(T ) + N(T �), because N(TT �) = N(T �) (see Lemma 2.3). Now, 
consider ξ ∈ R(T ) ∩N(T �). Then ξ = Tη for some η ∈ H and 0 = T �ξ = T �Tη. Therefore 
0 = TT �Tη = Tη, or equivalently η ∈ N(T ), so that ξ = 0.

2 → 3. Observe that R(T ) ∩ N(A) ⊆ R(T ) ∩ N(T �) = {0}, then N(AT ) = N(T ). 
Since T is an A-partial isometry then H = R(T �T ) ⊕AR(T �T )⊥A = R(T �) ⊕AN(AT ) =
R(T �) ⊕A N(T ), where the first and the second equality hold by Lemma 2.3. Then the 
assertion follows.

3 → 4. Consider ξ ∈ R(T ) ∩ N(A), then ξ = Tη for some η ∈ H. Since H =
R(T �)+̇N(T ), then η = T �η1 + η2, with η2 ∈ N(T ). Therefore, 0 = Aξ = ATη =
AT (T �η1 + η2) = ATT �η1 = (T �)∗AT �η1, so that η1 ∈ N((T �)∗AT �) = N(AT �) =
N(T �). Hence η = η2 ∈ N(T ) and ξ = Tη2 = 0. It is left to prove that T has closed range. 
Let {ξn} ⊆ H be such that Tξn

n→∞
−−−−→ ω. Consider ξn = T �θn + ρn, where ρn ∈ N(T ), 

then Tξn = TT �θn
n→∞
−−−−→ ω. Therefore, since TT � is idempotent, ω ∈ R(TT �) ⊆ R(T ), 

so that R(T ) is closed.
4 → 1. Since T is an A-partial isometry such that R(T ) ∩ N(A) = {0} then H =

R(TT �)+̇R(TT �)⊥A . By Lemma 2.3, it holds that R(TT �)⊥A = R(T )⊥A . Therefore, H =
R(TT �)+̇R(T )⊥A ⊆ R(T )+̇R(T )⊥A , where the sum is direct because R(T ) ∩N(A) = {0}. 
Since R(T ) is closed, then R(TT �) = R(T ), so that the assertion follows because TT � is 
an idempotent operator with R(TT �) = R(T ).

Moreover, suppose T is an A-partial isometry such that TT �T = T , or equivalently, 
R(T ) ∩ N(A) = {0} and R(T ) is closed. Then, by Lemma 2.3, T �T = QR(T �)//N(AT ). 
Since R(T ) ∩ N(A) = {0} then N(AT ) = N(T ), so that T �T = QR(T �)//N(T ). On the 
other hand, observe that, by Lemma 2.3, TT � = QR(TT �)//N(T �). By the proof of 4 → 1, 
it holds that R(TT �) = R(T ). Therefore, TT � = QR(T )//N(T �). �

The following result shows that every A-partial isometry is the sum of two operators, 
where one of them is an A-partial isometry for which its distinguished A-adjoint satisfies 
equation (1).
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Corollary 4.2. Let T ∈ LA(H) be an A-partial isometry. Then T = W + PN(A)T where 
W is an A-partial isometry such that WW �W = W .

Proof. Consider W = (T �)� = PAT , then T = W + PN(A)T and, by Proposition 3.4, 
W is an A-partial isometry. By item 4 of Remarks 3.5 and Theorem 4.1, we get that 
WW �W = W . �

In order to analyze equivalence i ↔ iii at the begining of this section it is necessary 
to consider extensions of the notion of the Moore–Penrose inverse to semi-Hilbertian 
spaces. It is well known that if T ∈ L(H) has closed range, T † is the Moore–Penrose 
inverse of T if and only if one of the next conditions holds:

(a) T † satisfies the following equations TXT = T , XTX = X, TX = (TX)∗, XT =
(XT )∗;

(b) T †η is the unique least squares solution with minimal norm of the equation Tξ = η

for all ξ ∈ H.

The reader is referred to [14] for the proof of the above equivalences. Different ex-
tensions of the concept of the Moore–Penrose inverse to semi-Hilbertian spaces can be 
considered. In [9] this notion was extended generalizing condition (a). More precisely, 
given A1, A2 ∈ L(H)+ and T, T ′ ∈ L(H) it is said that T ′ is an A1, A2-generalized inverse 
of T if T ′ satisfies the following four equations:

TXT = T, XTX = X, A1(TX) = (TX)∗A1, A2(XT ) = (XT )∗A2. (2)

Observe that the existence of A1, A2-generalized inverses is related to the existence 
of A1-selfadjoint and A2-selfadjoint projections. Not every operator in L(H) admits 
an A1, A2-generalized inverse. Given T ∈ L(H) with closed range, there exists an 
A1, A2-generalized inverse of T if and only if the pairs (A1, R(T )) and (A2, N(T )) are 
compatible, see [9, Theorem 3.1]. If A1 = A2 = A and T ′ satisfies equations (2) then T ′ is 
called an A-generalized inverse of T . In [2, Proposition 2.2] it is proved that if T ∈ LA(H)
has closed range, then TT �T = T if and only if T � is an A-generalized inverse of T . This 
fact generalizes the equivalence ii ↔ iii.

In what follows, we deal with an extension of the concept of the Moore–Penrose 
inverse to semi-Hilbertian spaces taking into account condition (b) stated above. The 
next definition was given in [8].

Definition 4.3. Consider T ∈ L(H) with closed range and A1, A2 ∈ L(H)+.

1. An operator G ∈ L(H) is an A1-inverse of T if for each η ∈ H, Gη is an A1-least 
square solution (A1-LSS) of Tξ = η, for every ξ ∈ H, i.e.,

‖η − TGη‖A1 ≤ ‖η − Tξ‖A1 , for every ξ ∈ H.
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2. An operator G ∈ L(H) is an A1, A2-inverse of T if G is an A1-inverse of T and, for 
each η ∈ H, Gη has minimum A2-seminorm among the A1-LSS of Tξ = η.

The next result provides a characterization of A1-inverses and A1, A2-inverses. For its 
proof see [8, Proposition 5.9] and [8, Proposition 5.17].

Proposition 4.4. Consider T ∈ L(H) and A1, A2 ∈ L(H)+. Then

1. G ∈ L(H) is an A1-inverse of T if and only if T ∗A1TG = T ∗A1.
2. G ∈ L(H) is an A1, A2-inverse of T if and only if T ∗A1TG = T ∗A1 and R(A2G) ⊆

N(A1T )⊥

Theorem 4.5. Consider T ∈ LA(H) with closed range. The following statements are 
equivalent:

1. T is an A-partial isometry;
2. T � is an A-inverse of T ;
3. T is an A-inverse of T �;
4. PN(T �)⊥T is an A, I-inverse of T �;
5. PN(AT )⊥T

� is an A, I-inverse of T .

Proof. 1 → 2. Since T is an A-partial isometry then, by Proposition 3.4, T �TT � = T �. 
Then, by left multiplication by A, T ∗ATT � = T ∗A and the assertion follows by Propo-
sition 4.4.

2 → 3. Since TT � is A-selfadjoint it holds that (T �)∗AT �T = ATT �T = (T ∗ATT �)∗ =
(T ∗A)∗ = AT = (T �)∗A. Then the assertion follows by Proposition 4.4.

3 → 4. Observe that (T �)∗AT �PN(T �)⊥T = (T �)∗AT �T = (T �)∗A, then PN(T �)⊥T is 
an A-inverse of T �. Also, note that R(PN(T �)⊥T ) ⊆ N(T �)⊥ = N(AT �)⊥. Then, again 
by Proposition 4.4, it follows that PN(T �)⊥T is an A, I-inverse of T �.

4 → 5. Since PN(T �)⊥T is an A, I-inverse of T � then, by Proposition 4.4, it holds 
that (T �)∗AT �PN(T �)⊥T = (T �)∗A, or equivalently, (T �)∗AT �T = (T �)∗A. Therefore, 
note that T ∗ATPN(AT )⊥T

� = T ∗ATT � = T ∗(T �)∗AT � = ((T �)∗AT �T )∗ = ((T �)∗A)∗ =
AT � = T ∗A. Hence PN(AT )⊥T

� is an A-inverse of T . Then, by Proposition 4.4, it follows 
that PN(AT )⊥T

� is an A, I-inverse of T , because R(PN(AT )⊥T
�) ⊆ N(AT )⊥.

5 → 1. Since PN(AT )⊥T
� is an A, I-inverse of T , then T ∗ATPN(AT )⊥T

� = T ∗A. 
Observe that AT �TT � = T ∗ATT � = T ∗ATPN(AT )⊥T

� = T ∗A = AT �. Then, by Propo-
sition 3.4, T is an A-partial isometry. �

Observe that equivalence 1 ↔ 5 of the above proposition generalizes equivalence i ↔ iii
given in the introduction of this section.

Consider a closed range A-partial isometry T . The following result gives a parametriza-
tion of the set of A-inverses of T and the set of A-inverses of T �.
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Proposition 4.6. Consider T ∈ LA(H) an A-partial isometry with closed range. Then

1. PN(AT )⊥T
� + L(H, N(AT )) is the set of A-inverses of T ;

2. PN(T �)⊥T + L(H, N(T �)) is the set of A-inverses of T �.

Proof. 1. By [8, Corollary 5.10], the set of A-inverses of T is given by ((T )∗AT )†T ∗A +
L(H, N(AT )). Since T is an A-partial isometry then it follows that T �TT � = T �. 
Therefore, ((T )∗AT )†T ∗A = (AT �T )†AT � = (AT �T )†AT �TT �T = PN(AT )⊥T . Then 
the assertion follows.

2. The proof is similar to the proof of item 1. �
Remark 4.7. The equivalence 1 ↔ 3 of Theorem 4.5 and item 2 of Proposition 4.6 are 
still valid even if R(T ) is not closed.

5. A-normal A-partial isometries

Definition 5.1. An operator T ∈ LA(H) is called A-normal if T �T = TT �.

Remark 5.2. Consider T ∈ LA(H) an A-normal operator, then R(TT �) ⊆ R(A). If T is 
also an A-partial isometry then TT � = T �T = QR(T �)//N(T �), see Lemma 2.3.

Given a partial isometry T , it is well known that T is normal if and only if 
R(T ∗) ⊕ N(T ∗) = H or equivalently R(T ) ⊕ N(T ) = H. In what follows we analyze 
these equivalences for A-partial isometries.

Proposition 5.3. Let T ∈ LA(H) be an A-partial isometry. Then, T is A-normal if and 
only if R(T �) ⊕A N(T �) = H and R(T �) ⊆ R(TT �).

Proof. Since T is an A-partial isometry then T �T and TT � are idempotent operators. 
Suppose that T is A-normal. Then H = R(T �T ) ⊕AR(T �T )⊥A = R(T �T ) ⊕AR(TT �)⊥A . 
By Lemma 2.3, R(TT �)⊥A = N(T �) and R(T �) = R(T �T ), so that the first implication 
follows because T �T = TT �. Conversely, let ξ = T �η + θ ∈ H, where θ ∈ N(T �). Then 
T �Tξ = T �T (T �η + θ) = T �η. In fact, by Lemma 2.3 and by the fact that R(T �) ⊆
R(TT �), then N(T �) = R(TT �)⊥A ⊆ R(T �)⊥A = N(T �T ). Furthermore, since R(T �) ⊆
R(TT �) and TT � is idempotent, then TT �ξ = TT �(T �η + θ) = T �η. Therefore T is 
A-normal. �
Remarks 5.4. The following facts establish certain differences between partial isometries, 
A-partial isometries and A-normal partial isometries:

1. The Hilbert space decomposition given in the above proposition does not hold for 
A-partial isometries, in general. In fact, consider H = �2 and S = span{e2n−1 :
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n ∈ N}. Define T ∈ L(H) such that T (e2n−1) = e2n and T (S⊥) = {0}. Then T is a 
partial isometry, R(T ) + N(T ) = S⊥ and R(T ∗) + N(T ∗) = S.

2. Observe that even if T is an A-normal A-partial isometry then the decomposition 
R(T ) + N(T ) = H does not hold, in general. In fact, consider A ∈ L(H)+ and 
T = PA + dPN(A) ∈ L(H), where d ∈ L(N(A))+ has dense non-closed range. Then 
T �T = PA = TT �, so that T is an A-normal A-partial isometry and R(T ) +N(T ) =
R(A) ⊕R(d) � H.

Observe that if T is an A-normal A-partial isometry T � does not necessary satisfy 

condition (1). In fact, consider A =

⎛
⎜⎝ 1 0 0

0 2 0
0 0 0

⎞
⎟⎠ ∈ C3×3 and T =

⎛
⎜⎝ 1 0 0

0 0 0
0 0 1

⎞
⎟⎠ ∈ C3×3. 

It is easy to check that T ∈ LA(C3×3) and TT � = T �T is an idempotent operator, 
so that T is an A-normal A-partial isometry. However, R(T ) ∩N(T �) = {0}. Then, by 
Theorem 4.1, TT �T = T . We finish this section by characterizing when T � is a generalized 
inverse of an A-normal A-partial isometry T .

Proposition 5.5. Let T ∈ LA(H) be an A-normal A-partial isometry. Then TT �T = T if 
and only if R(T ) = R(T �).

Proof. Since T ∈ LA(H) is an A-normal A-partial isometry then TT � = T �T is 
idempotent and R(T �) = R(T �T ) = R(TT �), where the first equality follows from 
Lemma 2.3. Therefore, if TT �T = T then R(T ) = R(TT �) = R(T �). Conversely, if 
R(T ) = R(T �) then TT � = T �T is an idempotent operator with R(TT �) = R(T ). Hence, 
TT �T = T . �
6. A-generalized projections

Generalized projections were defined in 1997 by Groß and Trenkler [13] for matri-
ces. This concept was extended for operators in L(H) in [17]. Given T ∈ L(H) it is 
said that T is a generalized projection if T 2 = T ∗. While generalized projections are a 
weakened version of the concept of orthogonal projections, they preserve many proper-
ties that the orthogonal projections have. For example, if T is a generalized projection 
then T has closed range, R(T ) ⊕ N(T ) = R(T ∗) ⊕ N(T ∗) = H and T is a normal 
partial isometry. The reader is referred to [13,17,1] for these and other properties of 
generalized projections. In this section we extend the concept of generalized projections 
to operators on semi-Hilbertian spaces and we analyze the differences between the two 
concepts.

Definition 6.1. Consider A ∈ L(H)+. An operator T ∈ L(H) is called an A-generalized 
projection if AT 2 = T ∗A.
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Remarks 6.2. The next facts follow from the definition of an A-generalized projection:

1. T is an A-generalized projection if and only if T 2 is an A-adjoint of T .
2. If T is an A-generalized projection then T � = PAT

2.

Proposition 6.3. Consider T ∈ L(H) an A-generalized projection. Then the following 
assertions hold:

1. T is an A-partial isometry.
2. N(AT ) = N(ATn) for all n ∈ N.
3. T �T = QR(T �)//N(T �).

Proof. 1. If T is an A-generalized projection then ‖Tξ‖A = ‖Tnξ‖A for all ξ ∈ H. In 
fact, since AT 3 = T ∗AT ∈ L(H)+ we get that ‖Tξ‖2

A = 〈ATξ, Tξ〉 = 〈T ∗ATξ, ξ〉 =〈
AT 3ξ, ξ

〉
=

〈
(T 3)∗Aξ, ξ

〉
=

〈
T ∗Aξ, T 2ξ

〉
=

〈
AT 2ξ, T 2ξ

〉
= ‖T 2ξ‖2

A. If n ∈ N, n > 2, 
then ‖Tnξ‖A = ‖T 2(Tn−2ξ)‖A = ‖T (Tn−2)ξ‖A = ‖Tn−1ξ‖A. Therefore, ‖Tnξ‖A =
‖Tξ‖A for all n ∈ N. Now, let ξ = PAT

3η ∈ R(T �T ). Then ‖Tξ‖A = ‖T (PAT
3η)‖A =

‖T 4η‖A = ‖T 3η‖A = ‖PAT
3η‖A = ‖ξ‖A, so that T is an A-partial isometry.

2. If T is an A-generalized projection then, by the proof of item 1, ‖Tξ‖A = ‖Tnξ‖A
for every ξ ∈ H. In consequence, T ∗AT = (Tn)∗ATn for all n ∈ N. Therefore, N(AT ) =
N(ATn).

3. Since T is an A-generalized projection then T �T is an idempotent operator such 
that R(T �T ) = R(T �) and N(T �T ) = R(T �T )⊥A . Now, by item 2. and by the fact 
that AT 2 = T ∗A we get that R(T �T )⊥A = N(AT ) = N(AT 2) = N(T ∗A) = N(T �). 
Therefore the assertion follows. �
Remarks 6.4. The next facts provide some differences between generalized projections 
and A-generalized projections:

1. If T is an A-generalized projection then R(T ) is not necessarily closed. In fact, the 
operator T considered in item 2 of Remarks 3.5 is an A-generalized projection with 
non-closed range.

2. If T is an A-generalized projection then T � is an A-generalized projection with closed 
range.

3. If T is an A-generalized projection then R(T ) + N(T ) � H in general. In fact, if A
and T are the operators given in item 2 of Remarks 3.5 then T is an A-generalized 
projection such that R(T ) + N(T ) � H.

4. Every A-generalized projection T provides the decomposition R(T �) ⊕AN(T �) = H.

The following result gives necessary and sufficient conditions for an operator in LA(H)
to be an A-generalized projection.
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Proposition 6.5. Consider T ∈ LA(H). The following statements are equivalent:

1. T is an A-generalized projection;
2. T � is an A-generalized projection;
3. any A-adjoint of T is an A-generalized projection;
4. T � is an A-normal A-partial isometry and (T �)4 = T �;
5. T �T is an idempotent operator, AT �T = AT 3 and N(T �) = N(AT 2).

Proof. 1 ↔ 2. Observe that A(T �)2 = (T ∗)2A and (T �)∗A = AT . Therefore, T is an 
A-generalized projection if and only if T � is an A-generalized projection.

2 ↔ 3. If W is an A-adjoint of T then W = T � + PN(A)Z, where Z ∈ L(H). Then 
AW 2 = A(T � + PN(A)Z)W = AT �W = A(T �)2 because N(A) ⊆ N(T �). In addition, 
W ∗A = ((T �)∗ + Z∗PN(A))A = (T �)∗A. Therefore, W is an A-generalized projection if 
and only if T � is an A-generalized projection.

3 → 4. Suppose that any A-adjoint of T is an A-generalized projection. By 1 ↔ 3, 
it holds that T is an A-generalized projection, i.e., AT 2 = T ∗A. By Proposition 6.3, 
T is an A-partial isometry. Moreover, observe that (T �)�T � = PATT

� = PATA
†T ∗A =

PATPAT
2 = PAT

3 = A†AT 2T = A†T ∗AT = T �T = T �PAT = T �(T �)�. Therefore, T �

is A-normal. On the other hand, (T �)2 = A†T ∗PAT
∗A = A†(T ∗)2A = A†AT = PAT , so 

that (T �)4 = PATPAT = PAT
2 = T �.

4 → 5. Since T � is an A-normal A-partial isometry then PATT
� = T �T is idempotent. 

Since (T �)4 = T �, then T ∗A = AT � = A(T �)4 = (T ∗)4A, or equivalently AT = AT 4. 
Therefore, AT �T = AT �PAT = AT �PAT

4 = AT �TPAT
3 = AT 3, where the last equality 

follows because T �T = PATT
� is idempotent with R(T �T ) = R(PATT

�) = R((T �)�) =
R(T �) = R(PAT ) (see Lemma 2.3) and R(PAT

3) ⊆ R(PAT ). It is left to prove that 
N(T �) = N(AT 2). First note that N(AT ) = N(T �T ) = N(PATT

�) = N((T �)�T �) =
N(AT �) = N(T �) = N(T ∗A), where the second equality holds because T � is A-normal 
and the fourth equality follows by Lemma 2.3. Then, it holds that ξ ∈ N(AT 2) if and 
only if Tξ ∈ N(AT ) = N(T ∗A), equivalently ξ ∈ N(T ∗AT ) = N(AT ) = N(T ∗A). 
Therefore, N(T �) = N(T ∗A) = N(AT 2).

5 → 1. Since T �T is idempotent then, by Lemma 2.3, R(T �T ) = R(T �). Therefore, by 
Proposition 3.4, TT � is also idempotent. Then H = R(TT �) + R(TT �)⊥A = R(TT �) +
N(T �). Take ξ = TT �η + θ, where θ ∈ N(T �) = N(AT 2). Therefore it follows that 
AT 2ξ = AT 2(TT �η + θ) = AT 3T �η = AT �TT �η = T ∗A(TT �η + θ) = T ∗Aξ. Hence, T is 
an A-generalized projection. �

Consider A =
(

1 0
0 0

)
∈ C2×2 and T =

(
1 0
1 1

)
∈ C2×2. It is not difficult to see 

that T is an A-generalized projection such that TT �T = T . Next we study when T �

satisfies equation (1) for an A-generalized projection T .
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Theorem 6.6. Let T ∈ L(H) be an A-generalized projection. Then the following assertions 
are equivalent:

1. TT �T = T ;
2. N(T �) ⊆ N(T );
3. R(T )+̇N(T ) = H and R(T ) ∩N(A) = {0}.

In addition, if one of the above conditions holds then TT � = QR(T )//N(T ).

Proof. Since T is an A-generalized projection then by Proposition 6.3, it follows that 
T �T = QR(T �)//N(T �) and N(T �) = N(AT ).

1 ↔ 2. Suppose TT �T = T . Then N(T �) = N(T �T ) ⊆ N(TT �T ) = N(T ) and 
so, the assertion follows. Conversely, if N(T �) ⊆ N(T ) then T = TQR(T �)//N(T �) +
TQN(T �)//R(T �) = TQR(T �)//N(T �) = TT �T .

1 ↔ 3. If TT �T then, by Theorem 4.1, it holds that R(T )+̇N(T �) = H and R(T ) ∩
N(A) = {0}. Therefore, as N(T �) = N(AT ) (see Lemma 2.3 and Proposition 6.3) and 
R(T ) ∩ N(A) = {0} then N(T �) = N(T ) and so R(T )+̇N(T ) = H. The converse is 
similar, noticing that in this case R(T ) is closed.

Moreover, suppose T is an A-generalized projection then TT � is an idempotent oper-
ator with N(TT �) = N(T �). Since TT �T = T then R(TT �) = R(T ) and N(T �) = N(T ), 
so that the assertion follows. �
Corollary 6.7. Let T be an A-generalized projection. Then T = W + PN(A)T , where W
is an A-generalized projection such that WW �W = W .

Proof. The proof is similar to the proof of Corollary 4.2. �
An A-generalized projection is not A-normal, in general. In fact, consider A =(
1 0
0 0

)
∈ C2×2 and T =

(
1 0
1 1

)
∈ C2×2. Then it is easy to check that T is 

an A-generalized projection which is not A-normal. The following result describes the 
A-generalized projections which are A-normal.

Proposition 6.8. Let T be an A-generalized projection. Then, T is A-normal if and only 
if R(TT �) ⊆ R(A).

Proof. If T is A-normal then, by Remark 5.2, R(TT �) ⊆ R(A). Conversely, if T is an 
A-generalized projection such that R(TT �) ⊆ R(A) then TT � = PATT

� = PATPAT
2 =

PAT
3 = T �T . Then T is an A-normal operator. �

Proposition 6.9. Let T be an A-normal A-generalized projection. Then, TT �T = T if and 
only if R(T ) ⊆ R(A).
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Proof. Since T is an A-generalized projection then T � = PAT
2 and PAT

4 = PAT . 
Suppose that R(T ) ⊆ R(A). Then, since T is A-normal we get that TT �T = T �TT =
PAT

4 = PAT = T . Conversely, if TT �T = T then R(T ) = R(TT �) = R(T �T ) = R(T �) ⊆
R(A). �

We finish this section with a characterization of the A-normal A-partial isometries 
which are A-generalized projections.

Proposition 6.10. Let T be an A-normal A-partial isometry. Then the following state-
ments are equivalent:

1. T is an A-generalized projection;
2. (T �)4 = T �;
3. (T �)3 = TT �.

Proof. First note that T � is A-normal because T is A-normal. Then 1 ↔ 2 follows by 
Proposition 6.5.

2 ↔ 3. If (T �)3 = TT �, then (T �)4 = T �TT � = T �. Conversely, since T is an A-normal 
A-partial isometry, by Remark 5.2, it holds that TT � = T �T = QR(T �)/N(T �). Then 
(T �)3 = QR(T �)/N(T �)(T �)3 = TT �(T �)3 = T (T �)4 = TT �. �
7. Applications to weighted projections

In 1974, Mitra and Rao [16] introduced the notion of A-projections into subspaces of 
finite dimensional spaces. In [8], this concept was studied for infinite dimensional spaces. 
In this section we apply the results obtained along this work to relate the A-projections 
into closed subspaces with the A-partial isometries and A-generalized projections.

An operator T ∈ L(H) is called an A-projection into S if R(T ) ⊆ S and

‖y − Ty‖A ≤ ‖y − s‖A, for all y ∈ H, for all s ∈ S.

Moreover, T is called an A-projection if T is an A-projection into R(T ). See [8] for the 
proof of the following characterizations of A-projections.

Proposition 7.1. Let T ∈ L(H). Then the following assertions hold:

1. T is an A-projection if and only if AT = T ∗A = AT 2, i.e., T is an A-selfadjoint 
A-generalized projection.

2. T is an A-projection into S if and only if T is an A-projection and ATPS = APS .

Define

Π(A,S) = {T ∈ L(H) : T is an A-projection into S}.
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Next we show that the set Π(A, S) can be described by means of an A-partial isometry 
with range S. Before that we study the relationship between the compatibility of a pair 
(A, S) and the existence of A-partial isometries with range S.

Proposition 7.2. Consider A ∈ L(H)+ and S a closed subspace of H. The pair (A, S) is 
compatible if and only if there exists an A-partial isometry with range S.

Proof. First observe that if T is an A-partial isometry then H = R(T ) + R(T )⊥A . 
In fact, since T is an A-partial isometry then TT � is idempotent and, by Lemma 2.3, 
N(TT �) = R(T )⊥A . Hence, H = R(TT �)+̇N(TT �) ⊆ R(T ) +R(T )⊥A , as claimed. Now, 
suppose T is an A-partial isometry with range S. Then the pair (A, S) is compatible 
because of the above assertion. Conversely, suppose that the pair (A, S) is compatible 
and consider Q and A-selfadjoint projection with range S. By item 1 of Remarks 3.5 it 
holds that Q is an A-partial isometry with range S. �
Corollary 7.3. Consider A ∈ L(H)+ and T ∈ L(H) an A-partial isometry with R(T ) = S. 
Then TT � = PA,S−F , where F ∈ L(H) is an idempotent operator with R(F ) = S∩N(A).

Proof. Let N = S ∩N(A). By Proposition 7.2, the pair (A, S) is compatible. Moreover, 
it holds that PS�NTT � = PA,S�N . In fact, it is not difficult to see that PS�NTT � is 
an A-selfadjoint idempotent operator. In order to prove that R(PS�NTT �) = S 	 N , 
consider T0 = PS�NT . Note that R(T0) = S 	 N . Observe that T �

0 = A†T ∗PS�NA =
A†T ∗A = T � and T �

0T0 = T �PS�NT = T �(PS�N +PN )T = T �T . Since T is an A-partial 
isometry then T �

0T0 = T �T is idempotent, so that T0 is an A-partial isometry. Therefore, 
by Theorem 4.1 it holds that T0T

�
0T0 = T0. Then, R(T0T

�
0) = R(T0) = S 	 N . Since 

PS�NTT � = T0T
�
0 then R(PS�NTT �) = S 	 N . Hence, PS�NTT � is an A-selfadjoint 

idempotent operator with range S	N , so that by Proposition 2.2, PS�NTT � = PA,S�N , 
as claimed.

Then, TT � = PA,S�N +PNTT � = PA,S�N +PN +PNTT �−PN = PA,S+PN (TT �−I). 
Observe that I − TT � is an idempotent operator because T is an A-partial isometry. 
Moreover, R(I − TT �) = N(TT �) = R(T )⊥A = (AS)⊥, where the second equality holds 
by Lemma 2.3. Finally, consider F = PN (I − TT �). Since N ⊆ (AS)⊥ = R(I − TT �), 
then F is idempotent and R(F ) = N . �
Proposition 7.4. If (A, S) is compatible then

Π(A,S) = TT � + L(H,S ∩N(A)),

where T is an A-partial isometry with R(T ) = S.

Proof. Let N = S ∩ N(A). Since the pair (A, S) is compatible then, by [8, Proposi-
tion 4.14], Π(A, S) is not empty. By Corollary 7.3, there exists an A-partial isometry T
with R(T ) = S and TT � = PA,S−F , where F is an idempotent operator with R(F ) = N . 
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Finally, observe that, by [8, Proposition 4.17], E ∈ Π(A, S) if and only if E = PA,S +Z, 
where Z ∈ L(H, N ). Equivalently, E = PA,S − F + (Z + F ) = TT � + Z + F , with 
R(Z + F ) ⊆ N . �

We finish this article by showing that every A-projection can be obtained from an 
A-generalized projection.

Proposition 7.5. Consider E ∈ LA(H). Then the following statements are equivalent:

1. E is an A-projection;
2. AE = AT �T , with T an A-generalized projection;
3. E� = T �T , with T an A-generalized projection;
4. E = T �T + Z, T an A-generalized projection and Z ∈ L(H, N(A)).

Proof. 1 → 2. Suppose that E is an A-projection. In particular, E is an A-generalized 
projection. Therefore AE�E = AA†E∗AE = AA†AE2 = AA†AE = AE.

2 → 3. Note that E� = A†E∗A = A†(T �T )∗A = A†AT �T = PAT
�T = T �T .

3 → 4. Observe that, PAE = (E�)� = A†(T �T )∗A = PAT
�T = T �T , where the third 

equality follows because T �T is A-selfadjoint. Then E = PAE + (I − PA)E = T �T + Z, 
where T is an A-generalized projection and Z = I − PA ∈ L(H, N(A)).

4 → 1. Suppose E = T �T + Z, with T an A-generalized projection and Z ∈
L(H, N(A)). Then AE = AT �T = E∗A. Also, observe that AE2 = E∗AE = E∗AT �T =
A(T �T )2 = AT �T = AE, where the forth equality holds because T �T is idempotent (see 
Proposition 6.5). Therefore, AE2 = AE = E∗A, so that E is an A-projection. �

Observe that the above result generalizes the fact that E ∈ L(H) is an orthogonal 
projection if and only if E = T ∗T for some generalized projection T .
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