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1. Introduction

The minus order was introduced by Hartwig [24] and independently by Namboori-
pad [30], in both cases on semigroups, with the idea of generalizing some classical partial 
orders. It was extended to operators in infinite dimensional spaces independently by 
Antezana, Corach and Stojanoff [2] and by Šemrl [36]. There is now an extensive liter-
ature devoted to this order and other related partial orders on matrices, operators and 
elements of various algebraic structures. See for example, [8,28,29].

The main goal of this work is to obtain a new characterization of the minus order for 
operators acting on Hilbert spaces in terms of the so called range additivity property. 
Given two linear bounded operators A and B acting on a Hilbert space H , we say that 
A and B have the range additivity property if R(A + B) = R(A) + R(B), where R(T )
stands for the range of an operator T . Operators with this property have been studied 
in [4] and [5] (see also [10]). Recall that if A and B are two bounded linear Hilbert space 
operators then A 

−≤ B (where the symbol “−≤” stands for the minus order of operators) 
if and only if there are bounded (oblique) projections, i.e. idempotents, P and Q such 
that A = PB and A∗ = QB∗. In this paper, we prove that this is equivalent to the 
range of B being the direct sum of ranges of A and B−A and the range of B∗ being the 
direct sum of ranges of A∗ and B∗ −A∗. Thus the minus order is intrinsically algebraic 
in nature. This plays an equivalent role to a known characterization when A and B are 
matrices [24,29]; that A 

−≤ B if and only if the rank of B−A is the difference of the rank 
of B and the rank of A.

As a consequence, diverse concepts that have been developed for matrices and op-
erators are in fact manifestations of the minus order. These include, for example, the 
notions of weakly bicomplementary matrices defined due to Werner [37], and quasidirect 
addition of operators defined by Lešnjak and Šemrl [26]. Although in these papers the 
minus order does not appear explicitly, these notions when applied to operators A and 
B are equivalent to saying that A 

−≤ A +B. The minus order also lurks in the papers of 
Baksalary and Trenkler [9], Baksalary, Šemrl and Styan [7], Mitra [27] and Arias, Corach 
and Maestripieri [5].

The minus order can be weakened to what we call left and right minus orders. As 
with the minus order, these orders are easily derived from a range additivity condition. 
It happens that they truly differ from the minus order only in the infinite dimensional 
setting. When A 

−≤ B, we give some applications to formulas for generalized inverses 
of sums A + B in terms of generalized inverses of A and B, and we show that certain 
optimization problems involving the operator A + B can be decoupled into a system of 
similar problems for A and B.

The paper is organized as follows. In Section 2 we collect some useful known results 
about range additivity, while in Section 3, the minus order is defined and the connection 
with range additivity is made. Motivated by the concepts of the left and the right star 
orders, we define left and the right minus orders on L(H ). For matrices, these are 
equivalent to the minus order, with differences only emerge in the infinite dimensional 
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context. Proposition 3.13 characterizes the left minus order in terms of densely defined, 
though not necessarily bounded, projections. Additionally, the left minus, the right minus 
and the minus orders are characterized in terms of (densely defined) inner generalized 
inverses, generalizing a matricial result (see [28]).

Finally, Section 4 is devoted to applications. We begin by relating the minus partial 
order to some formulas for reflexive inner inverses of the sum of two operators. In partic-
ular, we give an alternative proof for the Fill–Fishkind formula for the Moore–Penrose 
inverse of a sum, as found in [19] for matrices and extended to L(H ) by Arias et al. [5]. 
We also apply the new characterization of the minus order to systems of equations and 
least squares problems. We include a final remark about a possible generalization of the 
minus order involving densely defined projections with closed range.

2. Preliminaries

Throughout, (H , 〈·, ·〉) denotes a complex Hilbert space and L(H ) the algebra of 
linear bounded operators on H , Q is the subset of L(H ) of (oblique) projections or 
idempotents, i.e., Q = {Q ∈ L(H ) : Q2 = Q} and P the subset of Q of orthogonal 
projections, i.e., P = {P ∈ L(H ) : P 2 = P = P ∗}.

Given M and N two subspaces of H , write M +̇ N for the direct sum of M
and N , M ⊕ N for the orthogonal sum; if M and N are closed denote M � N =
M ∩ (M ∩ N )⊥.

Given M and N two subspaces such that M ∩ N = {0}, PM//N stands for the 
projection onto M with nullspace N , defined as PM//N : M +̇N → H , PM//N is 
the identity on M and zero on N . The domain of PM//N is D(PM//N ) = M +̇N ;
PM//N is densely defined if M +̇N = H and it is bounded, i.e. PM//N ∈ Q, if and 
only if M and N are closed and M +̇N = H . See the paper by Ôta [32] for many 
results on (unbounded) projections.

If M is a closed subspace, PM = PM//M⊥ is the orthogonal projection onto M .
For A ∈ L(H ), R(A) stands for the range of A, N(A) for its nullspace and PA for 

PR(A). The Moore–Penrose inverse of A is the (densely defined) operator A† : R(A) ⊕
R(A)⊥ → H , defined by A†|R(A) = (A|N(A)⊥)−1 and N(A†) = R(A)⊥. It holds that 
A† ∈ L(H ) if and only if A has a closed range.

Given M and N two closed subspaces of H , the minimal angle between M and N
is α0(M , N ) ∈ [0, π/2], the cosine of which is

c0(M ,N ) = sup {|〈ξ, η〉| : ξ ∈ M , ‖ξ‖ ≤ 1, η ∈ N , ‖η‖ ≤ 1} ∈ [0, 1].

When the minimal angle between M and N is strictly less that 1, then the sum 
M + N is closed and direct, moreover, we have the following.

Proposition 2.1. Let M and N be two closed subspaces of H . The following statements 
are equivalent:
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(1 ) c0(M , N ) < 1;
(2 ) M +̇ N is closed;
(3 ) H = M⊥ + N ⊥.

For a proof, see Lemma 2.11 and Theorem 2.12 in [13].
For A, B ∈ L(H ), it always holds that R(A + B) ⊆ R(A) + R(B). We say that A

and B have the range additivity property if R(A + B) = R(A) + R(B). In this case, 
R(A) ⊆ R(A +B). Conversely, if R(A) ⊆ R(A +B) then, for x ∈ H , Bx = (A +B)x −
Ax ∈ R(A + B). We have proved the following.

Lemma 2.2 ([5, Proposition 2.4]). For A, B ∈ L(H ), R(A + B) = R(A) + R(B) if and 
only if R(A) ⊆ R(A + B).

Operators having the range additivity property were characterized in [5, Theo-
rem 2.10]. Closely related is the following result for operators A, B ∈ L(H ) satisfying 
the condition R(A) ∩R(B) = {0}.

Proposition 2.3 ([5, Theorem 2.10]). Consider A, B ∈ L(H ) such that R(A) ∩ R(B) =
{0} then R(A + B) = R(A) +̇ R(B) if and only if H = N(A) + N(B).

The next result will be useful in characterizing the minus order in Section 3 (see [5, 
Proposition 2.2]).

Proposition 2.4. For A, B ∈ L(H ) consider the following statements:

(1 ) R(A∗) +̇ R(B∗) is closed;
(2 ) there exists Q ∈ Q such that A∗ = Q(A∗ + B∗);
(3 ) N(A) + N(B) = H ;
(4 ) R(A + B) = R(A) + R(B).

Then (1) ⇔ (2) ⇔ (3) ⇒ (4). The implication (4) ⇒ (3) holds if R(A) ∩R(B) = {0}.

For a proof of (1) ⇔ (2) see [2, Proposition 4.13]. (1) ⇔ (3) was stated in Propo-
sition 2.1. The implication (3) ⇒ (4) follows from the proof of [3, Proposition 2.8]. 
(4) ⇒ (3) follows from Proposition 2.3 since R(A) ∩R(B) = {0}.

3. The minus order

Different definitions have been given for the minus (partial) order. For operators we 
offer one which equivalent to those appearing in [2] and [36].

Definition 3.1. For A, B ∈ L(H ), A 
−≤ B if there exist P, Q ∈ Q such that A = PB and 

A∗ = QB∗.
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Proofs that −≤ is a partial order on L(H ) can be found in [2, Corollary 4.14] and [36, 
Corollary 3]. It is easy to see that the ranges of P and Q can be fixed so that R(P ) = R(A)
and R(Q) = R(A∗). For details, see [2, Proposition 4.13] and the definition of minus order 
in [36].

In the next proposition we collect some characterizations of the minus order in terms 
of angle conditions and sum of closed subspaces.

Proposition 3.2. Consider A, B ∈ L(H ). The following statements are equivalent:

(1 ) A 
−≤ B;

(2 ) c0(R(A), R(B −A)) < 1 and c0(R(A∗), R(B∗ −A∗)) < 1;
(3 ) R(B) = R(A) +̇ R(B −A) and R(B∗) = R(A∗) +̇ R(B∗ −A∗);
(4 ) N(A) + N(B −A) = N(A∗) + N(B∗ −A∗) = H ;
(5 ) there exists P ∈ Q such that A = PB and R(A) ⊆ R(B).

Proof. The equivalences (1) ⇔ (2) ⇔ (4) follow applying the definition of the minus 
order and Proposition 2.1 to the operators A, B − A, A∗ and B∗ − A∗, see also [2, 
Proposition 4.13].

For (2) ⇔ (3), suppose that c0(R(A), R(B −A)) < 1 and c0(R(A∗), R(B∗ −A∗)) < 1. 
Then R(A) +̇ R(B −A) and R(A∗) +̇ R(B∗ −A∗) are closed. In this case, R(B) ⊆
R(A) +̇ R(B −A). On the other hand, applying Proposition 2.4, there exists Q ∈ Q

such that A∗ = QB∗. Then N(B∗) ⊆ N(A∗) and N(B∗) ⊆ N(B∗ −A∗), or equivalently 
R(A) ⊆ R(B) and R(B −A) ⊆ R(B). Then R(B) = R(A) +̇ R(B −A). Similarly, 
R(B∗) = R(A∗) +̇ R(B∗ −A∗). See also [36, Theorem 2]. Conversely, if item 3 holds, 
then R(A) +̇ R(B −A) and R(A∗) +̇ R(B∗ −A∗) are closed or equivalently, by Propo-
sition 2.1, item 2 holds.

Next consider (1) ⇔ (5). If A 
−≤ B then A = PB = BQ∗ with P, Q ∈ Q, so that 

A = PB and R(A) ⊆ R(B). Conversely, suppose R(A) ⊆ R(B) and there exists P ∈ Q

such that A = PB. Then by Lemma 2.2 it holds that R(B) = R(A) + R(B − A). 
Moreover R(A) ∩R(B−A) = {0} because R(A) ⊆ R(P ) and R(B−A) ⊆ N(P ), so that 
R(B) = R(A) +̇ R(B − A). In this case, (4) ⇒ (2) of Proposition 2.4 can be applied so 
that there exists Q ∈ Q such that A∗ = QB∗. Therefore A 

−≤ B. �
The following is a key result that will be useful on many occasions throughout the 

paper. It gives a new characterization of the minus partial order in terms of the range 
additivity property, showing that the minus order has an algebraic nature.

Theorem 3.3. Consider A, B ∈ L(H ). Then the following assertions are equivalent:

(1 ) A 
−≤ B;

(2 ) R(B) = R(A) +̇ R(B −A) and R(B∗) = R(A∗) +̇ R(B∗ −A∗).
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Proof. Suppose that A 
−≤ B. By Proposition 3.2, it follows that R(A) +̇ R(B −A) and 

R(A∗) +̇ R((B −A)∗) are closed. In particular, R(A) ∩R(B−A) = R(A∗) ∩R(B∗−A∗) =
{0}. Also, it follows from Proposition 2.4 that R(B∗) = R(A∗) + R(B∗ − A∗) and 
R(B) = R(A) +R(B−A). Therefore, R(B) = R(A) +̇ R(B−A) and R(B∗) = R(A∗) +̇
R(B∗ −A∗).

Conversely, suppose that R(B) = R(A) +̇ R(B − A) and R(B∗) = R(A∗) +̇
R(B∗ − A∗). Applying (4) ⇒ (1) in Proposition 2.4, it follows that R(A) +̇ R(B −A)
and R(A∗) +̇ R(B∗ −A∗) are closed. Hence, by Proposition 3.2 and Proposition 2.1, 
A 

−≤ B. �
Let Ai ∈ L(H ) for 1 ≤ i ≤ k. Lešnjak and Šemrl gave the following definition in [26]: 

the operator A =
k∑

i=1
Ai is the quasidirect sum of the Ais if the range of A is the direct 

sum of the ranges of the Ais and the closure of the range of A is the direct sum of the 
closures of the ranges of the Ais. The next result may be restated as saying that B is 
the quasidirect sum of A and B −A if and only if A 

−≤ B.

Corollary 3.4. If A, B ∈ L(H ), the following conditions are equivalent:

(1 ) A 
−≤ B;

(2 ) R(B) = R(A) +̇ R(B −A) and R(B) = R(A) +̇ R(B −A).

Proof. (1) ⇒ (2) follows from Proposition 3.2 and Theorem 3.3.
For the converse, since R(A) +̇ R(B −A) is closed, from Proposition 2.4 we have that 

R(B∗) = R(A∗) + R(B∗ − A∗). To see that this sum is direct, applying Proposition 2.4
again and using the fact that R(B) = R(A) +̇ R(B−A) we get that R(A∗) ∩R(B∗−A∗) =
{0}. Thus R(B∗) = R(A∗) +̇ R(B∗ −A∗), and so by Theorem 3.3, A 

−≤ B. �
The next result shows the behavior of the minus order when the operators have closed 

ranges.

Corollary 3.5. Consider A, B ∈ L(H ) such that A 
−≤ B. Then R(B) is closed if and only 

if R(A) and R(B −A) are closed.

Proof. If A 
−≤ B, then by Corollary 3.4, R(B) = R(A) +̇ R(B −A) and R(B) =

R(A) +̇ R(B −A). If R(B) is closed then R(A) +̇ R(B −A) = R(A) +̇ R(B −A). Hence 
R(A) = R(A) and R(B −A) = R(B − A). In fact, given x ∈ R(A), then x ∈ R(A) +̇
R(B−A), so that there exist x1 ∈ R(A) and x2 ∈ R(B−A) such that x = x1 + x2. But 
x − x1 = x2 ∈ R(A) ∩ R(B −A) = {0}, and so x = x1 ∈ R(A); that is, R(A) = R(A). 
Similarly, R(B −A) = R(B −A). The converse follows by Corollary 3.4. �
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3.1. The left and right minus orders

In this section we define the left and right minus orders and show that they are a 
generalization of the left and right star orders. As we will see, these orders are really 
only interesting on infinite dimensional spaces. For matrices, they coincide with the 
minus order.

We begin analyzing the properties of the left and right star orders. Originally, 
Drazin [18] introduced the star order on semigroups equipped with a proper involu-
tion, Baksalary and Mitra [6] defined the left and right star orders for complex matrices, 
and later, Antezana, Cano, Mosconi and Stojanoff [1] extended the star order to the al-
gebra of bounded operators on a Hilbert space. See also Dolinar and Marovt [16], Deng 
and Wang [12] and Djikić [14].

Given A, B ∈ L(H ), the star order, left star order and right star order are respectively 
defined by

• A 
∗≤ B if and only if A∗A = A∗B and AA∗ = BA∗,

• A ∗≤ B if and only if A∗A = A∗B and R(A) ⊆ R(B), and
• A ≤∗ B if and only if AA∗ = BA∗ and R(A∗) ⊆ R(B∗).

If A, B ∈ L(H ), then A 
∗≤ B if and only if there exist P, Q ∈ P such that A = PB

and A∗ = QB∗ (see [1, Proposition 2.3] or [16, Theorem 5]). We can always take P = PA

and Q = PA∗ .
The next result is a straightforward consequence of [12, Theorem 2.1]. We include a 

simple proof. See also [17].

Proposition 3.6. Let A, B ∈ L(H ). If A ∗≤ B then A 
−≤ B.

Proof. If A ∗≤ B, then A∗A = A∗B, or equivalently A∗(A − B) = 0. Hence PA(A −
B) = 0, or A = PAB. Conversely, if A = PAB, then A∗A = A∗B. So A ∗≤ B is equivalent 
to A = PAB and R(A) ⊆ R(B). By Proposition 3.2(5), this gives A 

−≤ B. �
The following results characterize the left and right star orders in terms of an orthog-

onal range additivity property.

Proposition 3.7. For A, B ∈ L(H ), A ∗≤ B if and only if R(B) = R(A) ⊕ R(B −A).

Proof. From the proof of Proposition 3.6, A ∗≤ B if and only if A = PAB and R(A) ⊆
R(B). Thus R(B) = R(A) ⊕ R(B −A) since R(B −A) ⊆ N(PA) = R(A)⊥.

Conversely, if R(B) = R(A) ⊕ R(B−A), then R(A) ⊆ R(B) and R(B−A) ⊆ R(A)⊥, 
so that A = PAB. Hence A ∗≤ B. �
Corollary 3.8. For A, B ∈ L(H ), A ≤∗ B if and only if R(B∗) = R(A∗) ⊕ R(B∗ −A∗).
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The next characterization of the star order follows from the previous results (or al-
ternatively, from Theorem 3.3).

Corollary 3.9. Given A, B ∈ L(H ), the following statements are equivalent:

(1 ) A 
∗≤ B;

(2 ) A ∗≤ B and A ≤∗ B;
(3 ) R(B) = R(A) ⊕ R(B −A) and R(B∗) = R(A∗) ⊕ R(B∗ −A∗).

Proof. Obviously, A ∗≤ B and A ≤∗ B implies that A 
∗≤ B. On the other hand, if 

A 
∗≤ B, then by the proof of Proposition 3.6, A = PAB and A∗ = PA∗B∗. Hence 

R(A∗) ⊆ R(B∗) and R(A) ⊆ R(B). Thus (1) ⇔ (2). The equivalence of these to (3)
follows from Proposition 3.7 and Corollary 3.8. �

As a generalization of the left and right star orders, we now define the left and right 
minus orders.

Definition 3.10. For A, B ∈ L(H ),

• A −≤ B if and only if R(B) = R(A) +̇ R(B −A), and
• A ≤− B if and only if R(B∗) = R(A∗) +̇ R(B∗ −A∗).

Proposition 3.11. The relations −≤ and ≤− define partial orders.

Proof. We only give the proof for −≤, since the proof for ≤− is identical.
First of all, −≤ is clearly reflexive. So consider A, B ∈ L(H ) such that A −≤ B and 

B −≤ A. Then R(B) = R(A) +̇ R(B − A) and R(A) = R(B) +̇ R(B − A). From the 
last equality R(B −A) ⊆ R(A). But R(B −A) ∩R(A) = {0}, so that R(B −A) = {0}. 
Therefore A = B thus −≤ is antisymmetric.

To prove −≤ is transitive, consider A, B, C ∈ L(H ) such that A −≤ B and B −≤ C. 
Then R(B) = R(A) +̇ R(B − A) and R(C) = R(B) +̇ R(C − B). Since R(A) ⊆
R(B) ⊆ R(C), by Lemma 2.2, R(C) = R(A) + R(C − A). It remains to show that 
R(A) ∩R(C −A) = {0}. Since R(A) ∩R(C −A) ⊆ R(A) ∩ (R(C −B) + R(B −A)) we 
can write x ∈ R(A) ∩R(C−A) as x = x1 +x2, x1 ∈ R(C−B) and x2 ∈ R(B−A). Then 
x −x2 = x1 ∈ R(B) ∩R(C−B) = {0}, and so x = x2. Hence x ∈ R(A) ∩R(B−A) = {0}; 
that is x = 0 and R(A) ∩R(C −A) = {0}. This implies that R(C) = R(A) +̇ R(C −A), 
or equivalently, A −≤ C, and so −≤ is transitive. �

The next corollary is a consequence of Theorem 3.3.

Corollary 3.12. For A, B ∈ L(H ), A −≤ B and A ≤− B if and only if A 
−≤ B.
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It follows from Proposition 2.4 that A −≤ B if and only if A∗ = QB∗ for Q ∈ Q and 
R(A) ∩R(B−A) = {0}. There is also a characterization of the left minus order similar to 
that of the left star order as found in the proof of Proposition 3.6. We leave the obvious 
version for the right minus order unstated.

Proposition 3.13. For A, B ∈ L(H ), A −≤ B if and only if there exists a densely defined 
projection P such that A = PB and R(A) ⊆ R(B).

Proof. If A −≤ B then R(B) = R(A) +̇ R(B − A) so that R(A) ⊆ R(B). Define 
P = PR(A)//R(B−A)⊕N(B∗). Then P is a densely defined projection and it is easy to 

check that A = PB. In fact, D(P ) = R(A)+̇R(B−A)+̇N(B∗) = R(B) +R(B)⊥. Hence, 
D(P ) = R(B) ⊕R(B)⊥ = R(B) ⊕ R(B)⊥ = H . To see that A = PB, first observe 
that R(B) ⊆ D(P ) so that we can compute PB: PBx = P (Ax + (B −A)x) = PAx for 
any x ∈ H , because (B − A)x ∈ N(P ). Conversely, if A = PB for a densely defined 
projection and R(A) ⊆ R(B) then R(B) = R(A) + R(B − A) by Lemma 2.2, and the 
sum is direct since R(A) ⊆ R(P ) and R(B −A) ⊆ N(P ). �
Remark 3.14. The minus order can be seen as a star order after applying suitable weights 
to the Hilbert spaces involved. Recall that, if A, B ∈ L(H , K ) are such that A 

−≤ B

then there exist projections P ∈ L(K ) and Q ∈ L(H ) such that A = PB = BQ. The 
operators W1 = Q∗Q +(I−Q∗)(I−Q) ∈ L(H ) and W2 = P ∗P+(I−P ∗)(I−P ) ∈ L(K )
are positive and invertible. Hence the inner products in H and K respectively,

〈x, y〉W1
= 〈W1x, y〉, for x, y ∈ H and 〈z, w〉W2

= 〈W2z, w〉, for z, w ∈ K

give rise to equivalent norms, because the weights W1 and W2 are positive and invertible 
operators in L(H ) and any inner product 〈·, ·〉W with W ∈ L(H ) positive and invertible 
is equivalent to the original inner product 〈·, ·〉 of H . With these new inner products, the 
projections P and Q are orthogonal in KW2 = (K , 〈·, ·〉W2

) and HW1 = (H , 〈·, ·〉W1
), 

respectively, and so A 
∗≤ B as operators in L(HW1 , KW2).

On the other hand, A −≤ B if and only if there exists a densely defined projection 
P such that A = PB and R(A) ⊆ R(B). In this case, it is possible to find a positive 
and invertible weight W2 on K such that P is symmetric with respect to 〈·, ·〉W2

(or 
equivalently A ∗≤ B in L(H , KW2)) if and only if P admits a bounded extension P̃ ∈ Q

(or equivalently A 
−≤ B).

Here is a proof of the last statement: suppose that there exists a weight W2 on K
positive and invertible such that P is symmetric with respect to 〈·, ·〉W2

. Since P is 
a (densely defined) idempotent then D(P ) = R(P ) +̇ N(P ), where D(P ) is the do-
main of P . Moreover, given x ∈ R(P ) and y ∈ N(P ) we have 〈x, y〉W2

= 〈Px, y〉W2
=

〈x, Py〉W2
= 0 because P is symmetric with respect to 〈·, ·〉W2

and y ∈ N(P ). Hence 

D(P ) = R(P ) ⊕W2 N(P ), and consequently H = R(P ) ⊕W2 N(P ), where the closures 
are taken with respect to 〈·, ·〉W . Then P = P is a bounded extension of P .
2 R(P )//N(P )
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Conversely, suppose that there exists P̃ ∈ Q such that P̃ is a bounded extension 
of P , or, following the standard notation for unbounded operators, P ⊆ P̃ , see [35]. Let 
W2 = P̃ ∗P̃ +(I−P̃ )∗(I−P̃ ), which is positive and invertible and satisfies W2P̃ = P̃ ∗W2. 
Finally, P is symmetric with respect to 〈·, ·〉W2

. In fact, if x, y ∈ D(P ) then 〈Px, y〉W2
=〈

P̃ x, y
〉
W2

=
〈
W2P̃ x, y

〉
=

〈
x,W2P̃ y

〉
=

〈
W2x, P̃ y

〉
=

〈
x, P̃ y

〉
W2

= 〈x, Py〉W2
.

Corollary 3.15. Let A, B ∈ L(H ) be such that A −≤ B. Then R(B∗) = R(A∗) +̇
R(B∗ −A∗).

Proof. From Proposition 3.13(3), if A −≤ B, then A = PB and N(B) ⊆ N(A) or 
R(A∗) ⊆ R(B∗) and in the same way, R(B∗ −A∗) ⊆ R(B∗). Then by Proposition 2.4(1), 
R(A∗) +̇ R(B∗ −A∗) ⊆ R(B∗). On the other hand, R(B∗) ⊆ R(A∗) + R(B∗ − A∗) ⊆
R(A∗) +̇ R(B∗ −A∗). Hence

R(B∗) ⊆ R(A∗) +̇ R(B∗ −A∗) ⊆ R(B∗).

But R(A∗) +̇ R(B∗ −A∗) is closed by Proposition 2.4. Therefore, R(B∗) = R(A∗) +̇
R(B∗ −A∗). �
Corollary 3.16. Let A, B ∈ L(H ) such that A −≤ B. If R(B) is closed then R(A) and 
R(B −A) are closed and A 

−≤ B.

Proof. Since A −≤ B, by Corollary 3.15, R(B∗) = R(A∗) +̇ R(B∗ −A∗). If R(B) is 
closed, then R(B∗) is closed and

R(A∗) +̇ R(B∗ −A∗) = R(B∗) = R(B∗) ⊆ R(A∗) +̇ R(B∗ −A∗).

Therefore R(A∗) +̇ R(B∗ −A∗) = R(A∗) +̇ R(B∗ − A∗). This implies that R(A∗) =
R(A∗) and R(B∗ −A∗) = R(B∗ −A∗) and A 

−≤ B. �
The above corollary shows that, unlike the left (right) star order, the left (right) minus 

order coincides with the minus order when applied to matrices. However for operators 
these orders are not the same.

Example 3.17 (See also [7]). Let A ∈ L(H ) be an operator such that R(A) �= R(A)
and that there exists x ∈ R(A) \ R(A) which is not orthogonal to N(A). For example, 
consider H = l2(N) the space of all square-summable sequences, operator A defined 
as A : (xn)n∈N �→ ((1/n)xn+1)n∈N, and take x to be x = (1/n)n∈N. Define operator 
B as B = A + Px, where Px is the orthogonal projection onto the one-dimensional 
subspace spanned by {x}. Since N(A) � N(Px), and N(Px) is of co-dimension one, we 
have H = N(A) +N(Px), which according to Proposition 2.4 shows that A and Px are 
range-additive; that is, R(A) +R(B−A) = R(B). We also have R(A) ∩R(B−A) = {0}
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showing that A −≤ B. On the other hand, R(A) ∩ R(B −A) �= {0} so A 
−≤ B does not 

hold.

Applying Theorem 3.3 it is possible to define the minus order in terms of the inner 
generalized inverses of the operators involved. By an inner inverse of an operator A ∈
L(H , K ) we mean a densely defined operator A− : D(A−) ⊆ K → H satisfying 
R(A) ⊆ D(A−) and AA−A = A.

Proposition 3.18. For A, B ∈ L(H ), the following conditions are equivalent:

(1 ) A −≤ B;
(2 ) there exists an inner inverse A− of A such that A−A = A−B and AA−x = BA−x

for every x ∈ D(A−).

Proof. Suppose that A −≤ B. If N is a complement of R(B), then H =
R(A) +̇ R(B −A) +̇ N . From Proposition 2.4 we know that N(A) + N(B − A) = H ; 
so if M = N(B − A) � N(A), then H = N(A) +̇ M . Let A1 be the restriction of A
to M , and define A− as A−1

1 on R(A), and as the null operator on R(B − A) +̇ N . 
Then A− is densely defined and the domain of A− is D(A−) = R(B) +̇ N . In this case, 
(A −B)A−x = 0 for every x ∈ D(A−), because R(A−) ⊆ N(A −B). On the other hand, 
since R(A −B) ⊆ D(A−), we find that A−(A −B) = 0 since R(A −B) ⊆ N(A−).

For the converse, suppose that there exists an inner inverse A− of A such that A−A =
A−B and AA−x = BA−x for every x ∈ D(A−). In particular, if z ∈ H then Az ∈
R(A) ⊆ D(A−), so that Az = AA−Az = BA−Az. Hence R(A) ⊆ R(B), showing that 
R(B) = R(A) + R(B − A). From A−A = A−B we have R(A − B) ⊆ N(A−), while 
N(A−) ∩R(A) = {0}, and so R(B) = R(A) +̇ R(B −A). Therefore, A −≤ B. �
Corollary 3.19. For A, B ∈ L(H ), the following conditions are equivalent:

(1 ) A 
−≤ B;

(2 ) there exist inner inverses A− of A and (A∗)− of A∗ such that
(i) A−A = A−B and AA−x = BA−x for every x ∈ D(A−),

(ii) (A∗)−A∗ = (A∗)−B∗ and A∗(A∗)−x = B∗(A∗)−x for every x ∈ D((A∗)−).

4. Applications

4.1. Generalized inverses of A + B

In this section we state the formulas for arbitrary reflexive inverses of A +B in terms 
of the inverses of A and B, when A −≤ A + B. For the sake of simplicity, we begin by 
giving the formula for the Moore–Penrose inverse. Theorem 4.7 states the result in the 
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most general form, and from this theorem many existing results in the subject can be 
recovered.

If A 
−≤ A + B then A = P (A + B) for some P ∈ Q. Using the projection P we can 

construct a projection E ∈ Q onto R(A + B) that will be useful in stating the formula 
for the Moore–Penrose inverse of A + B.

Lemma 4.1. Let A, B ∈ L(H ) be such that A 
−≤ A + B, and P ∈ Q be such that 

A = P (A + B). Set

E = PAP + PB(I − P ).

Then E ∈ Q and R(E) = R(A + B). Moreover, E is selfadjoint if and only if P =
PM//N where M = R(A) ⊕ M1, N = R(B) ⊕ N1 with M1 and N1 closed subspaces 
such that M1, N1 ⊆ N(A∗) ∩N(B∗).

Proof. If A = P (A + B) then R(A) ⊆ R(P ) and R(B) ⊆ N(P ). Therefore PAP and 
PB(I−P ) are projections, with R(PAP ) = R(A) and R(PB(I−P )) = R(B). Moreover,

PAPPB(I − P ) = PB(I − P )PAP = 0.

Therefore E = PAP + PB(I − P ) is a projection. Also, R(A) = R(PAP ) = R(EP ) ⊆
R(E). Applying Lemma 2.2, R(E) = R(A) + R(B) = R(A + B) because A 

−≤ A + B.
Finally, if P = PM//N then there exist closed subspaces M1, N1 such that M =

R(A) ⊕ M1 and N = R(B) ⊕ N1. Hence PAP = P R(A)//R(B)+̇N1+̇M1
, PB(I − P ) =

P R(B)//R(A)+̇M1+̇N1
and E = P R(A+B)//M1+̇N1

. Since A 
−≤ A + B, it follows that 

E∗ = E if and only if M1 +̇ N1 = (R(A + B))⊥ = (R(A) +̇ R(B))⊥ = N(A∗) ∩N(B∗), 
or equivalently, M1 and N1 are included in N(A∗) ∩N(B∗). �
Definition 4.2. Let A, B ∈ L(H ) such that A 

−≤ A +B. Consider P, Q ∈ Q such that A =
P (A +B) = (A +B)Q. Then P will be called optimal for A and B if E = PAP+PB(I−P )
is selfadjoint. In a symmetric way, since A∗ = Q∗(A∗ +B∗), Q will be called optimal for 
A and B if Q∗ is optimal for A∗ and B∗, i.e., F = PA∗Q∗ + PB∗(I −Q∗) is selfadjoint.

Define OL = {P ∈ Q : A = P (A + B) and PAP + PB(I − P ) ∈ P}. It follows from 
the above lemma that if A 

−≤ A + B, then the set OL is not empty; moreover

OL =
{
P ∈ Q : P = P R(A)⊕M1//R(B)⊕N1

with M1 +̇ N1 = N(A∗) ∩N(B∗)
}
. (4.1)

Applying Lemma 4.1 we derive the Fill and Fishkind [19] formula for the Moore–
Penrose inverse of the sum of two operators in an easy way. This formula first appeared 
in their work for square matrices, while Groß [23] extended it to arbitrary rectangular 
matrices and Arias et al. [5] proved it for operators on a Hilbert space. The version we 
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give here requires simpler hypotheses, and the formula is given in a more general form. 
We include a short proof.

Corollary 4.3. Let A, B ∈ L(H ) be such that R(A +B) is closed and A −≤ A +B. Then

(A + B)† = QA†P + (I −Q)B†(I − P ), (4.2)

where A = P (A + B) = (A + B)Q, with P, Q optimal projections for A and B.

Proof. From Corollary 3.16 we see that A and B are operators with closed range and 
A 

−≤ A +B. Then the operators A† and B† are bounded and T = QA†P+(I−Q)B†(I−P )
is well defined.

Using that (A + B)Q = A and (A + B)(I −Q) = B we have that

(A + B)T = AA†P + BB†(I − P ) = PAP + PB(I − P ) = PR(A+B),

by Lemma 4.1, because P is optimal. Using that P (A + B) = A, (I − P )(A + B) = B

we see that

T (A + B) = QA†A + (I −Q)B†B = QPA∗ + (I −Q)PB∗ = PR(A∗+B∗) = PN(A+B)⊥ .

Therefore T = (A + B)†. �
Remark 4.4. In [5, Theorem 5.2] the Fill–Fishkind formula is stated as follows: let A, B ∈
L(H ) be such that R(A), R(B) are closed, R(A +B) = R(A) +̇ R(B) and R(A∗+B∗) =
R(A∗) +̇ R(B∗), then

(A + B)† = (I − S)A†(I − T ) + SB†T,

where S = (PN(B)⊥PN(A))† and T = (PN(A∗)PN(B∗)⊥)†. It holds that S, T ∈ Q (see [33, 
Lemma 2.3] and [21, Theorem 1] for matrices and [11, Theorem 4.1] for operators in 
Hilbert spaces). If we denote Q = I − S and P = I − T , we in fact have (see [5, 
Theorem 5.1]) Q = P ∗

R(A∗)⊕(N(A)∩N(B))//R(B∗) and P = PR(A)⊕(N(A∗)∩N(B∗))//R(B), 
which are optimal with respect to A 

−≤ A + B.

Recall that if A ∈ L (H , K ) is a closed range operator, then any operator X ∈
L (K , H ) satisfying AXA = A and XAX = X is called a reflexive inverse of A. 
A reflexive inverse of A is also called (1, 2)-inverse of A or algebraic generalized inverse
of A. The operator X has closed range, AX = PR(A)//N(X) and XA = PR(X)//N(A). If 
M and N are arbitrary closed subspaces of H and K satisfying R(A) +̇ M = K and 
N +̇ N(A) = H , then there is only one reflexive inverse of A with the range N and 
the null-space M , see [31]. This reflexive inverse is denoted by A(1,2)

N ,M and verifies that

AA
(1,2)
N ,M = PR(A)//M , A

(1,2)
N ,MA = PN //N(A). (4.3)
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In what follows we generalize Lemma 4.1 in order to prove a formula similar to (4.2)
in Corollary 4.3 for an arbitrary reflexive inner inverse of the sum of two operators.

Lemma 4.5. Let A, B ∈ L(H ) be such that A 
−≤ A +B. Let P ∈ Q such that A = P (A +B)

and consider

E = P R(A)//N1
P + P R(B)//N2

(I − P ),

where N1 and N2 are arbitrary. Then E ∈ Q and R(E) = R(A + B). Moreover, for every 
closed subspace M such that R(A + B) +̇ M = H there exist P ∈ Q and subspaces 
N1 and N2, such that A = P (A + B) and E = P R(A)//N1

P + P R(B)//N2
(I − P ) =

P R(A+B)//M .

Proof. In the same way as in the proof of Lemma 4.1, it can be proved that E ∈ Q and 
R(E) = R(A + B).

To prove the last assertion, take

N1 = R(B) +̇ M , N2 = R(A) +̇ M , (4.4)

and P = P R(A)//R(B)+̇M . Then N1 and N2 are closed. To see that N1 is closed, observe 

that N1 = R(B)+̇M ⊆ R(A + B)+̇M because A 
−≤ A + B implies that R(B) ⊆

R(A + B) (see Proposition 3.2). Then c0(R(B), M ) ≤ c0(R(A + B), M ) < 1 because by 
hypothesis R(A + B)+̇M is closed. Applying Proposition 2.1, it follows that R(B)+̇M

is closed, or equivalently, N1 is closed. In a similar way, it can be proven that N2 is 
closed. Moreover, the projections P R(A)//N1

= P and P R(B)//N2
are well defined and 

E = P R(A)//N1
P + P R(B)//N2

(I − P ) = P + P R(B)//N2
(I − P ) = P R(A+B)//M . �

Definition 4.6. Let A, B ∈ L(H ) be such that A 
−≤ A + B and P ∈ Q such that 

A = P (A +B). Given M an arbitrary closed subspace such that R(A + B) +̇ M = H , 
we say that P agrees with M if there exist subspaces N1, N2 so that

P R(A)//N1
P + P R(B)//N2

(I − P ) = P R(A+B)//M . (4.5)

In a symmetric way, if A = (A + B)Q, for Q ∈ Q and N +̇ N(A + B) = H , we 
say that Q agrees with N if Q∗ agrees with N ⊥. In this case A∗ = Q∗(A∗ + B∗) and 
R(A∗ + B∗) +̇ N ⊥ = H , and there exist closed subspaces N ∗

1 , N ∗
2 such that

P R(A∗)//(N ∗
1 )⊥Q

∗ + P R(B∗)//(N ∗
2 )⊥(I −Q∗) = P R(A∗+B∗)//N ⊥ , (4.6)

or

QPN ∗
1 //N(A) + (I −Q)PN ∗

2 //N(B) = PN //N(A+B). (4.7)
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For example, P = P R(A)//R(B)+̇M agrees with M , as we saw in the proof of 
Lemma 4.5, and Q = (P R(A∗)//R(B∗)+̇N ⊥)∗ = PN(B)∩N //N(A) agrees with N . The 

projection P is optimal if P agrees with R(A + B)⊥.

Theorem 4.7. Let A, B ∈ L(H ) be such that R(A +B) is closed and A −≤ A +B. Let M
and N be two closed subspaces such that R(A +B) +̇ M = H and N +̇ N(A +B) = H . 
If P, Q ∈ Q satisfy A = P (A + B) = (A + B)Q and agree with M and N respectively, 
then

(A + B)(1,2)N ,M = QA
(1,2)
N ∗

1 ,N1
P + (I −Q)B(1,2)

N ∗
2 ,N2

(I − P ), (4.8)

where the subspaces N1, N2, N ∗
1 and N ∗

2 are arbitrary closed subspaces satisfying (4.5)
and (4.7).

Proof. From Corollary 3.16 we see that A and B are operators with closed range and 
A 

−≤ A +B. Let T = QA
(1,2)
N ∗

1 ,N1
P +(I−Q)B(1,2)

N ∗
2 ,N2

(I−P ) and choose E = PR(A)//N1P +
PR(B)//N2(I −P ) as in Lemma 4.5. Using that (A +B)Q = A and (A +B)(I −Q) = B, 
the definition of reflexive inverse, equation (4.3) and Lemma 4.5,

(A + B)T = AA
(1,2)
N ∗

1 ,N1
P + BB

(1,2)
N ∗

2 ,N2
(I − P )

= PR(A)//N1P + PR(B)//N2(I − P ) = E = PR(A+B)//M ,

because P agrees with M (see Definition 4.6 and (4.5)). In a similar way, since P (A +
B) = A and (I − P )(A + B) = B,

T (A + B) = QPN ∗
1 //N(A) + (I −Q)PN ∗

2 //N(B) = PN //N(A+B),

because Q agrees with N . Moreover, a direct computation shows that (A +B)T (A +B) =
A +B, and having in mind that AQ = A, PA = A, QB = 0 and PB = 0, we also directly 
obtain T (A + B)T = T . Hence, R(T ) = N and N(T ) = M (see (4.3)). �

In fact, the terms on the right hand side of (4.8) do not depend on the choices of the 
subspaces N1, N ∗

1 , N2 and N ∗
2 .

Proposition 4.8. Under the hypotheses of Theorem 4.7 it holds

QA
(1,2)
N ∗

1 ,N1
P = A

(1,2)
N(B)∩N ,R(B)+̇M

and

(I −Q)B(1,2)
N ∗

2 ,N2
(I − P ) = B

(1,2)
N(A)∩N ,R(A)+̇M

(4.9)

regardless of the choice of P , Q, N1, N2, N ∗
1 and N ∗

2 . Consequently

(A + B)(1,2)N ,M = A
(1,2)
N(B)∩N ,R(B)+̇M

+ B
(1,2)
N(A)∩N ,R(A)+̇M

. (4.10)



M.S. Djikić et al. / Linear Algebra and its Applications 531 (2017) 234–256 249
Proof. Let T = QA
(1,2)
N ∗

1 ,N1
P . Since A = P (A + B) = (A + B)Q, we get A = PA = AQ. 

Thus ATA = A and TAT = T , so T is a reflexive inverse of A, and moreover N(T ) =
N(AT ) and R(T ) = R(TA). Let us prove that N(AT ) = R(B)+̇M and R(TA) =
N(B) ∩ N . We have AT = PR(A)//N1P and so N(AT ) = N(P )+̇(R(P ) ∩ N1). Given 
that R(A) ⊆ R(P ), R(B) ⊆ N(P ), R(A)+̇N1 = H and R(B)+̇N2 = H , if we denote by 
M1 = R(P ) ∩N1 and M2 = N(P ) ∩N2 then R(P ) = R(A)+̇M1 and N(P ) = R(B)+̇M2. 
From (4.5) it follows

PR(A+B)//M = PR(A)//N1P + PR(B)//N2(I − P )

= PR(A)//R(B)+̇M1+̇M2 + PR(B)//R(A)+̇M1+̇M2 .

Hence M1+̇M2 = M . Thus N(AT ) = N(P )+̇(R(P ) ∩ N1) = R(B)+̇M2+̇M1 =
R(B)+̇M . On the other hand, R(TA)=R(QPN ∗

1 //N(A))=N(PR(A∗)//(N ∗
1 )⊥Q

∗)⊥. By an 
identical argument with A∗ and B∗ in place of A and B we have N(PR(A∗)//(N ∗

1 )⊥Q
∗) =

R(B∗) +̇ N ⊥. Hence R(TA) = N(B) ∩ N . This shows that T = A
(1,2)
N(B)∩N ,R(B)+̇M

. 
The proof for B follows along similar lines. �
Remark 4.9. Formula (4.10) was given for matrices by Werner in [37]. There the author 
considers pairs of matrices A and B having the property R(A) ∩R(B) = R(A∗) ∩R(B∗) =
{0}, and calls such matrices weakly bicomplementary. Recall that in the finite-dimensional 
setting, conditions R(A) +̇ R(B) = R(A + B), R(A∗) +̇ R(B∗) = R(A∗ + B∗) and 
R(A) ∩ R(B) = {0} = R(A∗) ∩ R(B∗) are all equivalent. Also matrices A and B are 
weakly bicomplementary if and only if A 

−≤ A +B. Under this assumption, many of the 
results from [37] are seen to hold in arbitrary Hilbert spaces.

Recall that if for A ∈ L(H ) the relation H = R(A) +̇ N(A) holds, then R(A) is 
closed, see [15, Proposition 3.7] or [20, Theorem 2.3]. In this case, A is called group-
invertible and A� = A

(1,2)
R(A),N(A) ∈ L(H ) is called the group inverse of A.

If A is group invertible, the operator A � = A
(1,2)
R(A),N(A∗) ∈ L(H ) is called the core 

inverse of A and it was introduced by Baksalary and Trenkler [8], see also [25] and [34].
If we denote by L1(H ) the set of all group invertible operators, then the sharp partial 

order and the core partial order on L1(H ) are defined as: A 
�≤ B if AA� = BA� and 

A�A = A�B; A 
�

≤ B if AA � = BA � and A � A = A �B. It is straightforward to see that 
for A, B ∈ L1(H ) we have

A
�≤ B ⇔ A2 = BA = AB, (4.11)

and

A ≤ � B ⇔ A∗A = A∗B and A2 = BA. (4.12)

We recover results from Jose and Sivakumar [25] in the following corollary.
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Corollary 4.10. Let A, B ∈ L(H ) such that R(A + B) is closed.

(1 ) If A 
∗≤ A + B, then (A + B)† = A† + B†;

(2 ) If A, A + B ∈ L1(H ) and A 
�≤ A + B, then B ∈ L1(H ) and (A + B)� = A� + B�;

(3 ) If A, A +B ∈ L1(H ) and A 
�

≤ A +B, then B ∈ L1(H ). If moreover A∗ �

≤ A∗ +B∗, 
then (A + B) � = A � + B � .

Proof. All three partial orders stated here induce the minus partial order, so R(A) and 
R(B) are closed, according to Corollary 3.5.

Item (1) follows from Proposition 4.8. In fact, from Corollary 3.9, it holds that 
A 

∗≤ A +B if and only if R(A +B) = R(A) ⊕R(B) and R(A∗+B∗) = R(A∗) ⊕R(B∗). Since 
R(A +B) is closed it follows that R(A), R(B), R(A∗) and R(B∗) are closed. The Moore–
Penrose inverse of A +B corresponds to the choice M = R(A +B)⊥ = N(A∗) ∩N(B∗) and 
N = N(A +B)⊥ = R(A∗+B∗) = R(A∗) ⊕R(B∗). Then, we get that N(B) ∩N = R(A∗)
because R(A∗) ⊆ R(B∗)⊥ = N(B). Also, R(B)+̇M = R(B)+̇N(A∗) ∩N(B∗) = R(A)⊥: 
in fact, R(B) ⊆ R(A)⊥ and M ⊂ R(A)⊥ so that R(B)+̇M ⊆ R(A)⊥. To see the 
other inclusion, R(A)⊥ = R(B) ⊕ S , where S ⊆ R(A)⊥ ∩ R(B)⊥ = M . Therefore, 
A

(1,2)
N(B)∩N ,R(B)+̇M

= A
(1,2)
R(A∗),R(A)⊥ = A†. In the same way, B(1,2)

N(A)∩N ,R(A)+̇M
= B† and 

applying (4.10) the formula follows.
(2): By [25, Corollary 3.5] we see that B ∈ L1(H ) and B

�≤ A + B. Recall that 
N(A + B) = N(A) ∩N(B), because A 

−≤ A + B, which together with A + B ∈ L1(H )
gives: H = R(A)+̇R(B)+̇(N(A) ∩N(B)). From A 

�≤ A +B we obtain A�A = A�(A +B), 
i.e. A�B = 0, implying R(B) ⊆ N(A�) = N(A). Hence N(A) = R(B)+̇(N(A) ∩N(B)), 
and similarly N(B) = R(A)+̇(N(A) ∩ N(B)). If we apply Proposition 4.8 with N =
R(A + B) = R(A)+̇R(B) and M = N(A + B) = N(A) ∩N(B) we obtain directly the 
desired result.

(3): From [25, Theorem 4.5] we have that B ∈ L1(H ) and moreover, from (4.11)
and (4.12) we see that A 

∗≤ A +B and A 
�≤ A +B. If M = N(A∗+B∗) = N(A∗) ∩N(B∗), 

then as in (1) we have R(B)+̇M = N(A∗) and R(A)+̇M = N(B∗). If N = R(A +
B) = R(A)+̇R(B) = R(A) ⊕ R(B), then as in (2) we have N(B) ∩ N = R(A) and 
N(A) ∩ N = R(B). If we invoke Proposition 4.8 with such M and N , we obtain 
(A + B) � = A

(1,2)
R(A),N(A∗) + B

(1,2)
R(B),N(B∗) = A � + B � . �

4.2. Systems of equations and least squares problems

Consider A, B ∈ L(H ). In what follows we characterize the left minus order in terms 
of the solutions of the equation (A + B)x = c, for c ∈ R(A + B).

The following theorem appears in [37] in the matrix case. We give the proof for 
operator equations.

Proposition 4.11. If A, B ∈ L(H ) the following statements are equivalent:
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(1 ) A −≤ A + B;
(2 ) Given a ∈ R(A) and b ∈ R(B), the equation

(A + B)x = a + b, (4.13)

has a solution x0 ∈ H . Moreover, x0 is a solution of the system

{
Ax = a

Bx = b.
(4.14)

Proof. Suppose that A −≤ A +B and a ∈ R(A) and b ∈ R(B). Since A −≤ A +B, then 
R(A + B) = R(A) +̇ R(B). Therefore, a + b ∈ R(A + B), so that there exists x0 ∈ H

satisfying (A +B)x0 = a +b. Moreover, Ax0−a = b −Bx0 = 0 since R(A) ∩R(B) = {0}. 
Hence x0 is a solution of the system (4.14).

For the converse, let a ∈ R(A). By hypothesis, there exists x0 ∈ H such that (A +
B)x0 = a. Hence R(A) ⊆ R(A + B), so that R(A + B) = R(A) + R(B). Now, let 
c ∈ R(A) ∩ R(B). Consider x0 ∈ H such that (A + B)x0 = c. Since c ∈ R(A) ∩ R(B)
then, also by hypothesis,

{
Ax0 = c

Bx0 = 0
and

{
Ax0 = 0
Bx0 = c.

Therefore c = 0, and so R(A + B) = R(A) +̇ R(B), or equivalently, A −≤ A + B. �
More generally, in what follows we relate the least squares solutions of the equation 

Cx = y to a weighted least squares solution of the system Ax = y and (C − A)x = y

when A −≤ C. We introduce the seminorm given by a positive weight. If W ∈ L(H ) is 
a positive (semidefinite), consider the seminorm ‖.‖W on H defined by

‖x‖W = 〈Wx, x〉1/2, x ∈ H .

Given C ∈ L(H ) and y ∈ H , an element x0 ∈ H is said a W -least squares solution
(W -LSS) of the equation Cx = y if

‖Cx0 − y‖W = min
x∈H

‖Cx− y‖W .

The vector x0 ∈ H is a W -LSS of the equation Cx = y if and only if x0 is a solution of 
the associated normal equation,

C∗W (Cx− y) = 0,

see [22].
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If A −≤ A +B and R(A +B) is closed then, by Corollary 3.16, it holds that A 
−≤ A +B. 

In this case, it follows from the proof of Lemma 4.1 that the set OL = {P ∈ Q : A =
P (A + B) and PAP + PB(I − P ) ∈ P} is not empty. Moreover,

OL =
{
P ∈ Q : P = PR(A)⊕M1//R(B)⊕N1 with M1 +̇ N1 = N(A∗) ∩N(B∗)

}
,

see (4.1). Using the (oblique) projections in the set OL, it is possible to “decouple” a least 
squares problem into a system of weighted least squares problems.

Proposition 4.12. Let A, B ∈ L(H ) be such that R(A + B) is closed and A −≤ A + B

and c ∈ H . For P ∈ OL, let W = P ∗P +(I−P ∗)(I−P ). Then the following statements 
are equivalent:

(1 ) x0 is a solution of

argmin
x∈H

‖(A + B)x− c‖; (4.15)

(2 ) x0 is a solution of the system of least squares problems,
⎧⎨
⎩

argmin
x∈H

‖Ax− c‖W
argmin
x∈H

‖Bx− c‖W .
(4.16)

Proof. Assume (1) holds. Applying Corollary 3.16, if A −≤ A +B and R(A +B) is closed 
then R(A) and R(B) are closed and A 

−≤ A +B. Suppose that x0 is a solution of (4.15). 
Then x0 is a solution of the associated normal equation

(A + B)∗((A + B)x− c) = 0.

Then (A + B)x0 − c ∈ N(A∗ + B∗) = N(A∗) ∩N(B∗) so that

E((A + B)x0 − c) = 0,

where E = PAP + PB(I − P ) is the orthogonal projection onto R(A + B) because P is 
optimal. Therefore,

Ax0 − PAPc = −(Bx0 − PB(I − P )c),

and because R(A) ∩R(B) = {0}, we have Ax0 −PAPc = Bx0 −PB(I −P )c = 0. Hence, 
using that PAA = A and PBB = B, PA(Ax0 − Pc) = 0 and PB(Bx0 − (I − P )c) = 0, 
or equivalently, multiplying on the left by A∗ and B∗ and using that A∗PA = A∗, 
B∗PB = B∗,

A∗(Ax0 − Pc) = 0 and B∗(Bx0 − (I − P )c) = 0.

Thus A∗P (Ax0 − c) = 0 and B∗(I − P )(Bx0 − c) = 0.
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Finally, observe that A∗P = A∗P ∗P = A∗W , where W = P ∗P + (I − P ∗)(I − P ). 
Then x0 is a solution of the normal equation

A∗W (Ax− c) = 0.

Equivalently, x0 is a solution of

argmin
x∈H

‖Ax− c‖W .

In the same way, the equation B∗(I−P )(Bx − c) = 0 is equivalent to B∗W (Bx − c) = 0
which is the normal equation of the minimizing problem

argmin
x∈H

‖Bx− c‖W .

Next consider the converse. As we noted above, x0 is a solution of the system (4.16)
if and only if x0 is a solution of

{
A∗(Ax− Pc) = 0
B∗(Bx− (I − P )c) = 0.

We show in this case, that A∗(Bx0− (I−P )c) = 0. In fact, from the second equation we 
have that Bx0−(I−P )c ∈ R(B)⊥, since applying PR(B)⊥ to Bx0−(I−P )c, we get that 
Bx0−(I−P )c = −PR(B)⊥(I−P )c. If P is optimal, then P = PR(A)⊕M1//R(B)⊕N1 where 
M1 +̇ N1 = N(A∗) ∩ N(B∗). Thus, Bx0 − (I − P )c ∈ PR(B)⊥(N(P )) = N1 ⊆ N(A∗). 
Therefore A∗(Bx0 − (I − P )c) = 0. In the same way, B∗(Ax0 − Pc) = 0. The sum of 
A∗(Ax0−Pc) = 0 and A∗(Bx0−(I−P )c) = 0 gives A∗((A +B)x0−c) = 0. Analogously, 
B∗((A + B)x0 − c) = 0. Then (A∗ + B∗)((A + B)x0 − c) = 0, and so x0 is a solution of 
the problem argmin

x∈H
‖(A + B)x − c‖. �

Corollary 4.13. Let A, B ∈ L(H ) be such that R(A + B) is closed and A ∗≤ A + B and 
c ∈ H . Then the following statements are equivalent:

(1 ) x0 is a solution of

argmin
x∈H

‖(A + B)x− c‖;

(2 ) x0 is a solution of the following system of least squares problems:
⎧⎪⎨
⎪⎩

argmin
x∈H

‖Ax− c‖

argmin
x∈H

‖Bx− c‖.
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Proof. This follows from Proposition 4.12 and the fact that we can take P = PA as 
an optimal projection such that A = P (A + B) (see Proposition 3.6). In this case, 
W = P ∗P + (I − P ∗)(I − P ) = I. �
Final remark 4.14. It is possible to define a weak version of the minus order in the 
following way: Consider A, B ∈ L(H ), we write A 

−≤w B if there exist two densely 
defined idempotent operators P, Q with closed ranges such that A = PB, R(P ) = R(A), 
A∗ = QB∗ and R(Q) = R(A∗). The relation 

−≤w is a partial order on L(H ). In fact, it 
is not difficult to see that the relation is reflexive and antisymmetric.

For transitivity, consider A, B, C ∈ L(H ) such that A 
−≤w B and B

−≤w C. By 
definition there exist P1, P2, Q1, Q2 densely defined idempotent operators such that A =
P1B, R(P1) = R(A), A∗ = Q1B

∗, R(Q1) = R(A∗), B = P2C and R(P2) = R(B), 
B∗ = Q2A

∗, and R(Q2) = R(B∗). Observe that A = P1P2C. Without loss of generality, 
suppose that P1 = P R(A)//R(B−A)⊕M1

and P2 = P R(B)//R(C−B)⊕M2
, with M1 =

R(B)⊥ and M2 = R(C)⊥. Let D = R(A) +̇ R(B − A) +̇ R(C − B) ⊕ M2. Note that 
D is dense and R(C) ⊆ D ⊆ D(P1P2), where the second inclusion follows because 
P2x = 0 for all x ∈ R(C − B) ⊕ M2 and P2x = x for all x ∈ R(A) +̇ R(B −
A) ⊆ R(B) ⊆ D(P1). Consider P = P1P2|D , then PC = P1P2|DC = P1P2C = A. 
If x ∈ R(A), then Px = P1P2|Dx = P1x = x, because R(A) ⊆ R(B). Therefore, 
R(A) ⊆ R(P ) ⊆ R(P1) = R(A) so that R(P ) = R(A). Since R(P ) = R(A) ⊆ D(P ) and 
P 2 = P1P2P1P2|D = P1P1P2|D = P , the operator P is idempotent. Therefore, P is a 
densely defined projection with closed range such that A = PC. Similarly, it follows that 
there exists a densely defined projection Q with closed range such A∗ = QC∗. Hence 
A 

−≤w C, and so 
−≤w is a partial order.

Moreover, if A, B ∈ L(H ) it can be proved that the following statements are equiva-
lent:

(1) A 
−≤w B;

(2) R(A) ∩R(B −A) = R(A∗) ∩R(B∗ −A∗) = {0};
(3) R(B) = R(A) +̇ R(B −A) and R(B∗) = R(A∗) +̇ R(B∗ −A∗).

In fact: (1) ⇒ (2): Suppose that A 
−≤w B, then there exist two densely defined idempotent 

operators P, Q such that A = PB, R(P ) = R(A), A∗ = QB∗ and R(Q) = R(A∗). 
Therefore B−A = (I−P )B, so that R(B−A) ⊆ R(I−P ) = N(P ). Since R(A) = R(P ), 
then R(A) ∩R(B −A) = {0}. Similarly, R(A∗) ∩R(B∗ −A∗) = {0}.

(2) ⇒ (3): Suppose that R(A) ∩ R(B −A) = R(A∗) ∩ R(B∗ −A∗) = {0}. Observe 

that B = A + (B − A) so that R(B) ⊆ R(A)+̇R(B −A). To prove the other inclusion, 
consider M1, M2 two closed subspaces such that H = R(A)+̇R(B −A)⊕M1 and H =
R(A∗)+̇R(B∗ −A∗)⊕M2. Let P = PR(A)//R(B−A)⊕M1

and Q = PR(A∗)//R(B∗−A∗)⊕M2
. 

Observe that P, Q are two densely defined idempotent operators such that R(P ) = R(A)
and R(Q) = R(A∗). Moreover, since R(B) ⊆ R(A) + R(B − A), then R(B) ⊆ D(P )
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and PB = P (B − A) + PA = PA = A. Similarly, A∗ = QB∗. Therefore A∗ = QB∗

and B∗ − A∗ = (I − Q)B∗, so that N(B∗) ⊆ N(A∗) and N(B∗) ⊆ N(B∗ − A∗). 
Then R(A) ⊆ R(B) and R(B −A) ⊆ R(B) so that R(A)+̇R(B −A) ⊆ R(B). Hence 

R(B) = R(A)+̇R(B −A). Similarly, it follows that R(B∗) = R(A∗)+̇R(B∗ −A∗).
(3) ⇒ (1): Suppose that R(B) = R(A) +̇ R(B −A) and R(B∗) =

R(A∗) +̇ R(B∗ −A∗). Then R(A) ∩ R(B −A) = R(A∗) ∩ R(B∗ −A∗) = {0}. There-
fore there exist two densely defined idempotent operators P, Q such that A = PB, 
R(P ) = R(A), A∗ = QB∗ and R(Q) = R(A∗), see the proof of (2) → (3). Hence 
A 

−≤w B.
Finally, note that −≤w is weaker than the minus order. In fact, consider P, Q ∈ P

such that R(P ) ∩R(Q) = 0 and c0(R(P ), R(Q)) = 1. Then by the equivalence (1) ⇔ (2)
above, P −≤w P + Q. However, by Proposition 3.2, it is not the case that P −≤ P + Q.
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[28] S.K. Mitra, The minus partial order and the shorted matrix, Linear Algebra Appl. 83 (1986) 1–27.
[29] S.K. Mitra, Matrix partial order through generalized inverses: unified theory, Linear Algebra Appl. 

148 (1991) 237–263.
[30] K.S.S. Nambooripad, The natural partial order on a regular semigroup, Proc. Edinb. Math. Soc. 

(2) 23 (3) (1980) 249–260.
[31] M.Z. Nashed (Ed.), Generalized Inverses and Applications, Proc. Sem., Math. Res. Center, Univ. 

Wisconsin, Madison, Madison, October 8–10, 1973, Academic Press, New York/London, 1976.
[32] S. Ôta, Unbounded nilpotents and idempotents, J. Math. Anal. Appl. 132 (1) (1988) 300–308.
[33] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955) 406–413.
[34] D.S. Rakić, N.Č. Dinčić, D.S. Djordjević, Core inverse and core partial order of Hilbert space 

operators, Appl. Math. Comput. 244 (2014) 283–302.
[35] W. Rudin, Functional Analysis, Int. Ser. Pure Appl. Math., McGraw–Hill, Inc., New York, 1991.
[36] P. Šemrl, Automorphism of B(H) with respect to minus partial order, J. Math. Anal. Appl. 369 (1) 

(2010) 205–213.
[37] H.-J. Werner, Generalized inversion and weak bi-complementarity, Linear Multilinear Algebra 19 (4) 

(1986) 357–372.

http://refhub.elsevier.com/S0024-3795(17)30345-2/bib46696C57696C3731s1
http://refhub.elsevier.com/S0024-3795(17)30345-2/bib4772653734s1
http://refhub.elsevier.com/S0024-3795(17)30345-2/bib4772653734s1
http://refhub.elsevier.com/S0024-3795(17)30345-2/bib47726F3830s1
http://refhub.elsevier.com/S0024-3795(17)30345-2/bib47726F3939s1
http://refhub.elsevier.com/S0024-3795(17)30345-2/bib47726F3939s1
http://refhub.elsevier.com/S0024-3795(17)30345-2/bib4861723830s1
http://refhub.elsevier.com/S0024-3795(17)30345-2/bib4A6F735369763135s1
http://refhub.elsevier.com/S0024-3795(17)30345-2/bib4A6F735369763135s1
http://refhub.elsevier.com/S0024-3795(17)30345-2/bib4C657353656D3936s1
http://refhub.elsevier.com/S0024-3795(17)30345-2/bib4C657353656D3936s1
http://refhub.elsevier.com/S0024-3795(17)30345-2/bib4D69743732s1
http://refhub.elsevier.com/S0024-3795(17)30345-2/bib4D69743836s1
http://refhub.elsevier.com/S0024-3795(17)30345-2/bib4D69743931s1
http://refhub.elsevier.com/S0024-3795(17)30345-2/bib4D69743931s1
http://refhub.elsevier.com/S0024-3795(17)30345-2/bib4E616D3830s1
http://refhub.elsevier.com/S0024-3795(17)30345-2/bib4E616D3830s1
http://refhub.elsevier.com/S0024-3795(17)30345-2/bib4E61733733s1
http://refhub.elsevier.com/S0024-3795(17)30345-2/bib4E61733733s1
http://refhub.elsevier.com/S0024-3795(17)30345-2/bib4F74613838s1
http://refhub.elsevier.com/S0024-3795(17)30345-2/bib50656E3535s1
http://refhub.elsevier.com/S0024-3795(17)30345-2/bib52616B44696E446A6F3134s1
http://refhub.elsevier.com/S0024-3795(17)30345-2/bib52616B44696E446A6F3134s1
http://refhub.elsevier.com/S0024-3795(17)30345-2/bib5275643931s1
http://refhub.elsevier.com/S0024-3795(17)30345-2/bib53656D3130s1
http://refhub.elsevier.com/S0024-3795(17)30345-2/bib53656D3130s1
http://refhub.elsevier.com/S0024-3795(17)30345-2/bib5765723836s1
http://refhub.elsevier.com/S0024-3795(17)30345-2/bib5765723836s1

	The minus order and range additivity
	1 Introduction
	2 Preliminaries
	3 The minus order
	3.1 The left and right minus orders

	4 Applications
	4.1 Generalized inverses of A+B
	4.2 Systems of equations and least squares problems

	References


