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Abstract
Following the nonequilibrium Green’s function formalism we study

the thermal transport in a composite chain subject to a time-dependent
perturbation. The system is formed by two finite linear asymmetric
harmonic chains subject to an on-site potential connected together by
a time-modulated coupling. The ends of the chains are coupled to two
phononic reservoirs at different temperatures. We present the relevant
equations used to calculate the heat current along each segment. We
find that the system presents different transport regimes according
the driving frequency and temperature gradients. One of the regimes
corresponds to a heat pump against thermal gradient, thus a charac-
terization of the cooling performance of the device is presented.

1 Introduction

Nowadays, the technological implementations in the meso and nanoscale re-
quire the management of substantial energies that can be generated, becom-
ing harmful for a device. So significant improvements are needed in the
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direction of controlling energy, and thus heat, to avoid structural damages.
However, many studies show that the management of heat can also display
intriguing features which allow the design of devices with novel operating
regimes [1, 2].

Spontaneously heat flows from objects at high temperatures to objects at
lower temperatures. However heat pumps enables heat to flow against tem-
perature gradient by means of an applied external work. At the meso and
nanoscale several interesting applications have been developed in molecular
electronics, thermometry and thermal machinary [3, 4, 5]. Many models of
heat pumps have been proposed based on different mechanisms such as heat
ratchets that periodically adjusts two baths’ temperatures while the aver-
age remains equal, brownian heat motors to shuttle heat across the system
[6], heat pumps which directs heat against thermal bias in nanomechanical
systems [7]. At molecular levels phonon pumps can also be induced by an
external force or by mechanical switch on-off of the coupling between differ-
ent parts of the system [8, 9, 10, 11, 12, 13, 14]. Experimentally the last can
be done in molecular junctions or in molecular systems, for example, varying
the distance among them or applying stretchings and compressions.

Cooling is another relevant feature because of applications in the quantum
realm. Experimental implementations of quantum refrigerators have been
developed based on electronic devices in the presence of ac driving fields [15,
16, 17, 18], absortion of phonons (heat) with electrons using nanomechanical
devices or active feedback for cooling nanomechanical cantilevered beams [19,
20, 21, 22]. In turn models based on pumping phenomena have been proposed
as moving barriers in a cavity to pump phonons from a cold reservoir to
a hotter one, or driven two level systems or molecular junctions in contact
with phononic baths [23, 24]. In the present work, the mechanism underlying
cooling is mainly the phonon manipulation that can work both in insulators
and electrical conductors, unlike the electronic cooling where charge, spin
and coherence are important.

We present a microscopic model of a phonon pump based on a time de-
pendent modulation of the contact between two one dimensional components.
We show that this system can work not only as a heat engine, but it can also
operate as a phononic refrigerator.

The paper is organized as follows. In section 2 we present the microscopic
model. In section 3 we describe the theoretical framework and methodology
used to solve numerically the problem. In section 4 we present the different
regimes for heat transport, discussing the role of external frequency and the
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size of system. In section 5 we analyze the cooling regime comparing with
the optimal case. The last section is devoted to summarize the results.

2 The model

We propose a microscopic model for energy transport assisted by acoustic
phonons. We consider a one dimensional array of atoms, harmonically and
bidirectionally coupled, sketched in Fig.1. The chain is divided in two seg-
ments I (left) and II (right) with different coupling intensities KI and KII

between identical atoms or molecules (referred as ”masses”) and coupled to-
gether also harmonically with a coupling constant Kint(t). The system is
subject to a local harmonic pinning potential and connected to L (left end)
and R (right end) semi-infinite chains of masses mL and mR respectively,
coupled harmonically by spring constants KL and KR . This chains play the
role of phonon reservoirs with temperatures TL and TR. We assume that the
system can only vibrate longitudinally that is, we are modelling a heat pump
assisted only by longitudinal acoustic modes.

Figure 1: Sketch of the microscopic model. The system is composed by
two one-dimensional chains of particles coupled by a modulated interaction
in time. The semi-infinite left chain is kept at a temperature TL and the
semi-infinite right one at TR.

The Hamiltonian of the system can be written as: H = HL + HR +
Hcentral + Hint(t) + Hcontact where HL,R are the Hamiltonians of the left
(L)/right (R) reservoirs respectively, Hcentral describes the two central chains
(I and II), Hint represents the interaction between them and Hcontact repre-
sents the contact between the two central chains and the reservoirs.

Hcentral =
∑
α=I,II

Nα−1∑
i=1

p2
i,α

2mi,α

+
1

2
Kα(xi+1,α − xi,α)2 +

1

2
K0x

2
i,α (1)

with Nα the total number of particles.
The two segments α = I, II of the central chain have equal length Nα =

N/2. Kα are the elastics constants in each segment and K0 is the spring
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constant of the local pinning potential. They are harmonically coupled with
a time dependent strength Kint(t) = K0

int+K1
int(t) = K0(1+cos(ω0t)). Thus

the interaction Hamiltonian can be written as:

Hint =
1

2
Kint(t)(xN1,I − xN1,II)

2 (2)

with mi,α the mass of the ith atom in the chain α, xi,α = qi,α− ia denotes
the displacement from the equilibrium position ia, where a is the equilibrium
distance between particles and pi,α is the momentum. The index i = 1 labels
the atom of a segement that is in contact with a reservoir

The reservoir Hamiltonians corresponding to the semi-infinity chains are

Hβ =

Nβ∑
i=1

p2
i,β

2mi,β

+
1

2
Kβ(xi,β − xi+1,β)2 (3)

with Nβ →∞ (β = L,R) number of particles.
It is convenient to express this Hamiltonian in terms of normal modes for

open boundary conditions

Hβ =

Nβ∑
n=0

p2
n,β

2mn,β

+
1

2
Kβ[1− cos(un,β)]x2

n,β (4)

The corresponding transformations are:

xi,β =
2

Nβ + 1

Nβ∑
n=0

sin(un,βi)xn,β (5)

and

pi,β =
2

Nβ + 1

Nβ∑
n=0

sin(un,βi)pn,β (6)

with

un,β =
nπ

Nβ + 1
, n = 0, ......, Nβ (7)

The contact is described by the Hamiltonian
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Hcontact =
1

2
KLc(x1,L − x1,I)

2 +
1

2
KRc(x1,R − x1,II)

2 (8)

where elements (1, I) and (1, II) are the sites of the central chain in
contact with the L/R bath.

In order to study the energy current that flows between the system and
the reservoirs, we focus on the energy balance. Conservation of energy implies
that the total power invested by all the external fields or mechanical agents
must be dissipated into the reservoirs at a rate given by:

P̄total = J̄L + J̄R (9)

where J̄L and J̄R are the rates of heat absorbed by reservoir L and R
respectively (defined positive when heat flows into the reservoir). In the case
of periodic fields or drivings ”.̄..” means time average over one period.

The energy current that flows to and out a given elementary volume
should cancel each other when the system reaches the steady state and in
the case there is not local power injection, since there are not temporal vari-
ations of the mean local density of energy. As our Hamiltonians involve only
nearest-neighbors terms, the minimum volume that we consider is one that
encloses nearest-neighbors sites. From the continuity equation and energy
conservation, the local time-dependent heat current for the incoming energy
current from connecting site 1, β of the central chain towards each reservoir
β gives:

Jβ(t) =

Nβ∑
n

kn,β 〈xβ,nẋ1,β〉 (10)

with knβ = Kβ

√
2

Nβ
2

+1
sin(uβn).

We define the net heat current in each segment J̄β averaging over an
integer number of periods after a transient time as:

J̄β =
1

τ

∫ τ

0

Jβ(t)dt (11)

In the steady state the value of the current is independent of the site i in
each segment α of the central part, therefore Ji,I = JL and Ji,II = JR.
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3 Theoretical framework: Non-equilibrium Green’s

function method and Dyson equation.

Following the procedure define in [25], we define the greater, lesser, advanced
and retarded Green’s functions

G>
k,k′(t, t

′) = i 〈xk(t)xk′(t′)〉 (12)

G<
k,k′(t, t

′) = i 〈xk′(t′)xk(t)〉 (13)

GR
k,k′(t, t

′) = −iΘ(t− t′) 〈[xk(t)xk′(t′)]〉 (14)

= Θ(t− t′)[G<
k,k′(t, t

′)−G>
k,k′(t, t

′)] (15)

GA
k,k′(t, t

′) = −iΘ(t− t′) 〈[xk(t)xk′(t′)]〉 (16)

= Θ(t′ − t)[G<
k,k′(t, t

′)−G>
k,k′(t, t

′)] (17)

The Dyson equation for the retarded function corresponding to the central
chains (without the contacts) is:

−
[
∂2
t′ + Fk,k′(t)

]
GR
k,k′(t, t

′) + Fk,k′+1(t)GR
k,k′+1(t, t′)Fk,k′−1(t)GR

k,k′−1(t, t′) =

=
1

n
δk,k′δ(t− t′) (18)

In turn, when writing the Dyson equation for the retarded Green’s func-
tion along the contacts, it is possible to integrate the degrees of freedom of
the reservoirs, then:

−
[
∂2
t′G

R(t, t′) +GR(t, t′) F(t’)
]
−
∫
dsΣR(t, s)GR(s, t′) =

1

m
δk,k′δ(t− t′)

(19)
The force matrix includes the interparticle interactions, the pinning in-

teraction and the system-reservoir interaction and is defined as : F(t) =
F0(t) + Fo0(t) + F1(t), where the matrix elements are:
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F0
k,k′(t) =



KI
m

(2δk,k′ − δk′,k±1) 1 < k < N/2

KII
m

(2δk,k′ − δk′,k±1) N/2 + 1 < k < N

KI+KLC
m

δk,k′ − KI
m
δk′,k±1 k = 1

KII+KRC
m

δk,k′ − KII
m
δk′,k±1 k = N

KI+K0
int

m
δk,k′ − KI+K0

int

m
δk′,k±1 k = N/2

KII+K0
int

m
δk,k′ − KII+K0

int

m
δk′,k±1 k = N/2 + 1

(20)

Fo0
k,k′(t) = −K0δk,k′ (21)

F1
k,k′(t) =


KI+K1

int

2
δk,k′ − KI+K1

int

2
δk′,k±1 k = N/2

KII+K1
int

2
δk,k′ − KII+K1

int

2
δk′,k±1 k = N/2 + 1

(22)

On the other hand, in Eq.(19) ΣR
k,k′(t, t

′) corresponds to the the self en-
ergy:

ΣR
k,k′(t, t

′) =
∑
β=L,R

δk,k′δk′,kβ

∫ ∞
−∞

dω

2π
e−iω(t−t′) ×

∫ ∞
−∞

dω

2π

Γβ(ω′)

ω − ω′ + iη
(23)

with η a positive infinitesimal and Γβ(ω) the spectral density of the reser-
voir β :

Γβ(ω) = lim
Nβ→∞

2π
(
Kβ
mβ

)2

Nβ + 1

Nβ∑
n=0

sin2
(
uβn
) 1

Eβ,n
[δ (ω − Eβ,n) + δ (ω + Eβ,n)] =

sgn (ω)

(
Kβ

uβ

)2

Θ

[
1−

(
Kβ − uβω2

Kβ

)2
]√

1−
(
Kβ − ωβω2

Kβ

)2

(24)
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where Eβ,n =

√
Kβ
uβ

(
1− cos

(
uβn
))

.

When Langreth’s rules are applied recursively, we can obtain the Dyson’s
equation for the lesser Green’s function corresponding to coordinates along
the central chain:

G<
k,k′ (t, t′) =

∑
β

∫
dS1

∫
dS2G

R
k,1β (t, S1)

∑<
β (S1 − S2)GA

1β,k′ (S2, t
′) (25)

and to one coordinate on the chain and the other on the reservoir.

G<

k,uβn
(t, t′) = −Kβ

uβ

∫
dS1[GR

k,1β (t, S1) g<
uβn

(S1 − t′) +

+G<
k,1β (t, S1) gA

uβn
(S1 − t′)] (26)

The corresponding lesser Green’s function of the uncoupled reservoirs is:

g<
uβn

(ω) =
iπnβ(ω)

Eβ,n
[δ(ω − Eβ,n) + δ(ω + Eβ,n)] (27)

with a Fourier transform:

Σ<
β (ω) = inβ(ω)Γβ(ω) (28)

with nβ(ω) being the Bose-Eistein distribution, dependent on temperature
Tβ of reservoir β.

The main goal is to obtain the exact function DR, solving Eq.(19).
Following the strategy described in [24], we first perform the Fourier

transform with respect the ”delayed time” (t’) in GR(t, t′).

GR(t, ω) =

∫ ∞
−∞

dt′ei(ω+i0+)(t−t′)GR(t, t′) (29)

Then, considering the Fourier expansion of the time dependent Hamiltonian,
we substitute in the Dyson’s equation (Eq. (19)):

GR(t, ω) = G(0)(ω) +
1∑

k 6=0
−1

e−ikΩotGR (t, ω + kΩ0)M(1)
K G(0)(ω) (30)
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where

G(0)(ω) =
[
ω2I −M(0) −

∑R
(ω)
]−1

(31)

is the stationary component of the retarded Green’s function of the central
chains connected to reservoirs, when there is no time-dependent perturbation.
Due to the temporal periodicity of H(t) we can expand Eq.(30) in terms of
the Floquet components:

GR(t, ω) =
∑
k

e−ikΩotĜ(k, ω) (32)

Generally, to obtain an exact solution of Eq.(32) it must be solved numer-
ically. However under some approximations or conditions it can be solved
more easily, as it is our case. As we are considering amplitudes of Hint(t)
smaller than the energies of the time independent part of H and a time-
dependent perturbation that contains only one harmonic (k = ±1), we can
evaluate the Green’s function up to first under as:

Ĝ(0, ω) = G0(ω) (33)

Ĝ(±k, ω) = G0(ω ± kΩo)Ĥ
1
±kG

0(ω) (34)

Now we can we calculate and express the dc component of the heat current
in terms of the obtained Green’s functions. Starting from Eq.(10), the time
dependent heat current is:

Jβ(t) = −
∑
n

Kβ

mβ

√
2

Nβ + 1
sin
(
uβn
)

lim
t→t′

Re

[
i
∂

∂t′
G<

1β,uβn
(t, t′)

]
(35)

Using the function obtained in Eq.(26) and the expansion given in Eq.(32)
we obtain the dc heat current flowing in or out of the reservoir β:

J̄β =
∑

β′=L,R

1∑
k=1

∫ ∞
−∞

dω

2π
(ω+kΩo) [nβ′(ω)− nβω + kΩo)] Γβ(ω+kΩo)Γβ′(ω)

∣∣∣Ĝ1β,1β′(k, ω)
∣∣∣2

(36)
It is interesting to observe that the heat current may not be zero even in

the absence of a temperature gradient, just mediated by the energy contri-
bution due to the power injected into the system.
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4 Results

In the linear chain, the energy flowing in/out of a lead can be calculated from
Eq.(36). In a first step, we work with a modulated coupling with a strength
smaller than the other coupling constants. Under this approximation the
use of perturbative calculations would be sufficiently. However as we explore
broad parameter ranges where these calculations are not expected to produce
accurate results, we calculate currents exactly by numerically solving the
Dyson equations.

We use the following dimensionless parameters: spring constants Ki in
units of KR, moments in units [a(mkR)1/2)], frequencies in units [(KR/m)1/2]
and temperatures in [a2KR/kB]. For a typical atom and a typical situation
these units corresponds to frequencies ∼ 1013s−1 and temperatures ∼ 103K.
Thus the nondimensional temperatures 0.1 to 1.0 correspond to temperatures
of the order 100 to 1000K.

We explore several situations of operation for our device. First, we sketch
the case when strength of interaction between segments takes a constant
value. Transport is induced by the constant thermal bias between reservoirs,
that in the absence of time-dependent perturbations the dc heat current is
given by the well-known Landauer-Büttiker formula for phononic systems
[24, 26]:

Jα =

∫ ∞
k=−∞

dω

2π
ω
∑
β=L,R

Tαβ[nβ(ω)− nα(ω)] (37)

with

Tα,β(ω) =
∣∣∣ĜR

lα,lβ
(0, ω)

∣∣∣2 Γα(ω)Γβ(ω) (38)

the transmission function between reservoirs α and β.
In order to show how the presence of the on-site potential and the coupling

constant affects the transmission we plot in Fig.2, Tα(ω) for a weak and strong
coupling with and without pinning potential.

As our model only consider harmonic interactions, the on-site pinning
potential plays a crucial role in establishing a steady-state current that can
be estimated from Eq.(36). The dc heat current corresponds to the quasi-
steady state current established after a transient that is established earlier
as long the on-site pinning potential is stronger [27].
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Figure 2: The transmission function T (ω) defined in Eq.(38) for two segments
coupled without and with an on-site potential. Red and black curves (green
and blue) correspond to the case without (with) on-site potential with a
strength Kint = 0.05, 0.5 respectively.

On the other hand the heat transmission is mainly mediated by low fre-
quency modes, the main responsible for heat conduction. The on-site poten-
tial produce a shift in the minimum cutoff frequency of the phonon bands
from zero to Kpot, so the transmission function takes appreciable values if√
Kpot < ω <

√
Kpot + 4Ki [28]. When the strength of the pinning potential

is increased, the device has a behavior closer to a thermal insulator. For
higher values of the potential, large current oscillations can be suppressed,
even for high temperatures. In Fig.2 it is exemplified how the transmission
function depends on the pinning potential. The transmission for ω → 0
is independent of the value of the local coupling between segments, as it
is expected for non localized modes. The system becomes a good thermal
conductor. The effect of Kint is to increase the contribution of the localized
modes to the transmission along the interface. That is the contact acts as
a scatter point for high frequency phonons but not for low frequency ones.
These soft phonon modes (including zero-mode) play a fundamental role in
the heat conduction.

In a similar way we can define from Eq.(36) the k− th component of the
transmission function for the perturbed system

T±k (ω, ω0) = Γβ(ω ± kω0)Γβ′(ω)
∣∣∣Ĝ1,β;1,β′(k, ω)

∣∣∣2 (39)
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In Fig.3 we compare the normalized T±k (ω,Ω0) for two different frequen-
cies. Changing the frequency of modulation ω0 the phonon spectra of the k
channel can be narrowed or widen, thus more o less higher frequency phonons
(localized) can be activated affecting the heat conduction.

Figure 3: T+
1 (ω, ω0) defined in Eq.(39) for ω0 = 0.8, 0.5.

For time dependent coupling but in the limit of adiabatic driving or for
very fast modulation Kint(t) ∝ const so the system reduces to a static case.
When ω0 is very low (adiabatic driving limit), the system reduces to two
coupled segments with a coupling constant Kint/2. In the very fast oscillating
limit (ω0 →∞) the coupling convers to a time average constant value Kint.
Our interested is focus in the regime in between these two limits.

The transmission function shows that the system presents a multireso-
nant energy transport [8]. Therefore with a suitable modulation, the allowed
phonon band can be changed or shifted and so the phonons involved in the
transport. Consequently heat transfer along the device can be enhanced or
restrict controlling and tuning dynamically the phononic thermal channels.
And in turn the contact acts as a scatter point or interface where phonons
can gain or lose a phonon of frequency ω0.

From now on and without loss of generality, we take TR the reference
temperature, being TL the variable one. We define ∆T = TR − TL and
calculate JR and JL from Eq. 36, where the sign for rectified currents is
positive when heat flows from the system to the reservoir. In Fig.4 we show
JL,R versus ∆T for a resonant frequency.

We find four heat transport regimes:
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Figure 4: Central panel: Phase diagram JL,R versus ∆T/TR for ω0 = 0.8
(∆T = TR − TL). Lateral panels sketch the flow direction in each regime: a)
Regime I, b) Regime II, c) Regime III, d) Regime IV. Parameters: KL = 1 =
2KR, Kint = 0.05.

Regime I: TL > TR, JR > 0 and JL < 0 This is a regime mainly ruled by
the temperature gradient, with heat flowing from the hot to the cold reservoir.
The difference JR − JL correspond to the mean power injected according to
Eq. 9. Although the currents have different absolute values, the power
injected is low enough so the direction of the heat current is determined by
∆T . The system works as a heat conductor.

Regime II: TL > TR, JR,L > 0 This is a regime mainly governed by
the injected power that is dissipated into both reservoirs. The onset of this
regime is given by a current reversal in one of the segments. When JR or
JL are equal to zero the device can operate as a local insulator, thus heat is
inhibited to flow in one part of the system.

Regime III: TL > TR, JR < 0 and JL > 0 The system acts as a refrigera-
tor pumping energy against temperature gradient. Heat flows from the cold
reservoir to the hot one.

Regime IV : TL < TR, JR < 0 and JL > 0 Heat flows from hot to cold
but in the reverse direction than Regime I. Transport is again mainly ruled
by the temperature gradient.
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Depending on the driving frequency the system may display all or some
of these regimes. Thus, adjusting temperature gradients and ac-frequencies
it is possible to tune changeovers between them.

The transmission function of the system is strongly dependent on the
structural parameters such as Kint, who plays an important role on the po-
tential regimes and transitions between them. In Fig.5 we show the contour
phase diagram versus ∆T/TR and Kint for ω0 = 0.8 and 0.4. In both cases
the weak coupling condition is fulfilled and T±k takes non zero values. Nev-
ertheless we find that the system cannot pump energy against temperature
bias in both cases. For ω0 = 0.8 the refrigeration regime extends over a con-
siderable region of the parameter space. However for ω0 = 0.4 this regime
is absent. As it was mentioned above, one possible reason is related to the
differences between the transmission functions. In fig.3 we compare Tk=1 for
both cases finding that high frequency channels associated to localized modes
are not available for ω0 = 0.8.

Figure 5: Left: ω0 = 0.8. Right: ω0 = 0.4. Region III corresponds to
cooling phenomena. Parameters: same that in Fig.4.

We also find another interesting feature that is related to the struc-
ture. For a reference value TR, there is a temperature TLmin for which cool-
ing regime is achived with a temperature difference between reservoirs is
∆Tcooling = TR − TLmin . The last is strongly dependent on the size of the
system, as it is shown in Fig.6. When N is changed the spectral density
also does, then the possible driving frequencies that will enable cooling in
resonant condition in the parameter space. From an experimental point of
view it can be crucial to decide the way to increase the temperature intervals
for which cooling phenomena occurs. One possibility is related to structural
features or ”phononic engineering”, varying the size of the system as in our
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work or adjusting characteristic parameters associated to interactions be-
tween atoms (or in other words the adequate selection of materials). Other
possibility is related to operational features of a device, for example tuning
the strength or frequencies of the time-dependent perturbations or adjusting
the differences of temperature along the device. Figs. 4, 5 and 6 reveal the
different possibilities.

Figure 6: ∆Tcooling versus N for ω0 = 0.8 (left) and ω0 = 0.4 (right). Zero
values means that no cooling effect is possible.

5 Performance of the phonon refrigerator

The microscopic realization of a phonon refrigeration mechanism we are
proposing is based on a dynamical cycle given by the periodic modulation
of Kint that produce the activation (or deactivation) of phonon modes or
thermal channels.

Since the structure of the leads is asymmetric they produce different
phonon speed in each segment. Additionally as they are finite, the system
has only limited time before the reflected or transmitted phonons from the
reservoirs begin to arrive and interfere with other phonons moving through
the contact or propagate along it. Therefore for certain driving frequencies
and ∆T intervals, the system can block the usual heat flowing in the direction
of the temperature gradient, enabling the pumping of phonons against it.

Unlike other works based on a time-dependent on-site potential [7], our
mechanism is based on an periodical contact interaction. Therefore our model
can describe composite systems on substrates that can be realized by linear
lattices with static pinning potentials. Examples of such systems are poly-
meric polar chains where the opening or locking of phonon channels can be
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adjusted under the action of electric fields and composed short alkane chains
o molecular junctions that can be stretched or pulled under some defined
protocol[29, 30, 31].

As the underlying mechanism is the shift and changes in the width of the
phonon bands, the system size N is one of the structural parameters that
plays a relevant role affecting the number of available phonon modes, and
therefore the cooling ability of the device. We calculate the ratio of cooling
to energy consumption or Cooling Coefficient of Performance CP as:

CP =
Qcold

Qhot −Qcold

(40)

where Qcold is the heat extracted from the cold reservoir and Qhot is the
heat injected on the hot one. The energy consumption or power injected is
thus given by Qhot −Qcold.

In Fig.7 we show the performance of the device plotting CP as a func-
tion of the heat pumped from the cooler reservoir. In our system ω0 is an
operational control parameter for the efficiency when the device is subject
to a temperature difference. The curves show the expected behaviour: as
long the heat extracted is bigger so the efficiency of the device. However, the
efficiency presents an upper and lower bound for the heat that can be ex-
tracted. The maximun and minimun heat extracted for an ω0 correspond to
a ∆Tcooling going from zero to the maximun value respectively obtained from
the phase diagram. In addition, the CP presents a monotonic behaviour,
decreasing faster as long the heat is lower.

The multiresonant feature of the transport is also reflected in the cooling
performance of the system as it is shown in Fig.8 where CP is plotted versus
the size of the system. Therefor a similar non monotonic response can be also
obtained by tuning adequately other structural features related to material
properties (interaction constants) or operational factors.

6 Conclusions

We analyzed the heat current in a microscopic system consisting in a one-
dimensional finite composed chain of atoms. It is built from two segments
interacting with a substrate. They interact periodically by one of their ends,
meanwhile the others are connected to phononic reservoirs. Therefore, our
model considered heat transfer assisted by ’longitudinal’ vibrational modes.
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Figure 7: Plot of the cooling efficiency versus the heat pumped from the
colder reservoir for driving frequencies ω0 = 0.8 and 0.4 with N = 150.

Figure 8: CP vs N for ω0 = 0.8.
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We have calculated the current using a nonequilibrium Green’s function ap-
proach, treatment capable of handling time-dependent perturbations and
temperature gradients at the same time.

We found that the system displays different heat transfer regimes accord-
ing to the temperature gradients, structural and operational factors. In one
of them the device can act as a refrigerator, pumping energy against tempera-
ture gradient assisted by the power injected into the system. The underlying
mechanism is based in the periodic modulation of the contact between differ-
ent structures of the composite that opens or closes local phonon channels,
enabling or suppressing the propagation of phonons along the interface. We
showed two ways to increase or reduce the performance a system to operate
as a heat pump under a temperature difference. One possibility is to design a
device from a given material with the adequate size when the external action
is fixed. Other possibility is to exert a controlled external action in order to
tune the available thermal channels.

Nowadays, the energies involved in the micro and nanolevel applications
as molecular electronics or nanomechanical devices can be important even
producing damages or reduction of the operation performance of the object.
We explore and proposed a physical mechanism for temperature reduction
and control of the local heat flow along a device, topic of increasing and
actual technological relevance.
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