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a b s t r a c t

This paper proposes a fuzzy controller for trajectory tracking with unicycle-like mobile robots. Such
controller uses two Takagi–Sugeno (TS) fuzzy blocks to generate its gains. The controller is able to limit
the velocity and control signals of the robot, and to reduce the errors arising from its dynamics as well.
The stability of the developed controller is proven, using the theory of Lyapunov. Experimental results
show that the use of the proposed controller is attractive in comparison with the use of a controller with
fixed saturation function.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

This work proposes a new approach to limit the control signals
during a trajectory tracking with unicycle-like mobile robots.
In the literature it is common to find works that use explicit
saturation functions such as the hyperbolic tangent to limit control
signals (Andaluz, Roberti, Toibero, & Carelli, 2012; Martins, Celeste,
Carelli, Sarcinelli-Filho, & Bastos-Filho, 2008). In this work, how-
ever, fuzzy rules are adopted to achieve such limitation while
keeping an efficient trajectory tracking controller operation.

The fuzzy control emerged in the 70s as a heuristic method
based on the knowledge of the designer about the process to be
controlled. Such method started being adopted after the publication
of the works of Zadeh (1973) and Mamdani (1974). This methodol-
ogy has the advantage of controlling a plant without an explicit
knowledge of its dynamics. However, to prove the stability of the
closed-loop control system using these controllers is a difficult task.
In the field of mobile robots control, for instance, several works
have used the heuristic methodology to design fuzzy controllers,
without studying the system stability (Antonelli, Chiaverini, &
Fusco, 2007; Deist & Fourie, 1993; Hung & Chung, 2006; Lakehal,
Amirat, & Pontnau, 1995; Susnea, Filipescu, Vasiliu, & Filipescu,
2008). This means that there is no theoretical guarantee that the
task being performed will be accomplished accordingly.
ll rights reserved.
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Due to the need of a formal proof of stability for the control
system, fuzzy controllers have obtained a new focus with the Takagi–
Sugeno (TS) fuzzy controllers (Takagi & Sugeno, 1985). Tanaka and
Sugeno (1992) showed that the TS fuzzy controllers can be designed
rigorously, following methodologies that can be reproduced consis-
tently, guaranteeing the system stability and using several perfor-
mance criteria. The technique most commonly adopted for the
design of controllers represented as a TS fuzzy model is the Parallel
Distributed Compensation (PDC) (Wang, Tanaka, & Griffin, 1996).
This technique has been used successfully to design controllers for
trajectory tracking with mobile robots (Guechi, Lauber, Dambrine,
Klancar, & Blazic, 2010; Guechi, Abellard, & Franceschi, 2012) and to
solve the backing control problem of a mobile robot with multiple
trailers (Tanaka, Kosaki, & Wang, 1998). Nevertheless, it is important
to emphasize that although the PDC technique is based on fuzzy
models, this design methodology does not use the knowledge of the
designer about the process.

The controller here proposed uses the control structure reported
in Resende, Espinosa, Bravo, Sarcinelli-Filho, and Bastos-Filho (2011),
combining the heuristic knowledge of the problem, the sector non-
linearity approach (Tanaka & Wang, 2001) and the inverse kinematic
of the mobile platform. The use of the sector nonlinearity allows
designing a fuzzy controller with a quite reduced number of rules
and a quite low complexity, making it suitable for implementation
in the low-profile processors generally available onboard mobile
platforms.

Through the application of the inverse kinematic of the mobile
platform, it was possible to design a TS fuzzy controller guarantee-
ing the stability of the closed loop system, but without using the
PDC technique. More than this, it was possible to use the heuristic
knowledge to reduce position errors caused by the difference
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between the desired values of linear and angular velocities
(system inputs) and the current velocity values assumed by the
mobile platform.

Three experiments run using a unicycle-like mobile robot are
reported here, which have shown that the proposed controller
performs better than the similar controller proposed by Martins
et al. (2008). It is worth mentioning that the proposed controller
can be adapted to other mobile platforms, demanding just the
knowledge of its inverse kinematic.

To develop and validate the proposed controller, the paper is
hereinafter organized in four sections. Section 2 presents the kine-
matic model of the unicycle-like mobile robot, while Section 3 details
the proposed nonlinear controller with variable gains and discusses
the system stability. In the sequel, Section 4 shows the experimental
results and performance comparisons between the two aforemen-
tioned controllers. Finally, Section 5 highlights some conclusions.
Fig. 1. The unicycle-like mobile robot and its kinematic parameters.
2. The kinematic model adopted

Traditionally, in the motion control of unicycle-like mobile
robots, the robot is considered as a point located at the middle
of the virtual axle. In this work, however, the point that should
follow a predetermined trajectory is located in front of the virtual
axle (point d of Fig. 1). Such point is hereinafter named as the point
of interest.

From Fig. 1, the velocity of the point of interest with respect to
the inertial frame {I} is given by

_x
_y

" #
¼

cos ψ −a sin ψ

sin ψ a cos ψ

" #
u

ω

� �
¼ C

u

ω

� �
; ð1Þ

where the linear velocity u and the angular velocity ω are the
control inputs of the robot, _x and _y are, respectively, the velocity of
the point of interest in the X and Y directions of the inertial frame,
a40 represents the distance between the point of interest and the
center of the virtual axle, and ψ is the orientation of the robot,
which is given by the solution of _ψ ¼ ω.

The appropriate values of u and ω to impose desired velocities _x
and _y to the point of interest are determined by the inverse
kinematics (Martins et al., 2008)

u
ω

� �
¼

cos ψ sin ψ

− 1
a sin ψ 1

a cos ψ

" #
_x
_y

" #
¼ C−1

_x
_y

" #
; ð2Þ

where C−1 is the inverse kinematics matrix. Unlike the middle
point of the virtual axle, the point of interest d does not have any
velocity restriction in the robot workspace (such point can move
in any direction).
3. The nonlinear trajectory tracking controller with fuzzy
gains

3.1. The control law

During the trajectory tracking, the point of interest of the robot
shall follow a programmed trajectory defined by an equation like
pðtÞ ¼ ðxDðtÞ; yDðtÞÞ, where ðxD; yDÞ is the point to be followed and
t≥0 is the time variable. To comply with this control objective, this
work proposes the control law

ur

ωr

" #
¼ C−1

_xD
_yD

" #
þ

νx

νy

" # !
; ð3Þ

where ur and ωr are the controller outputs which are, respectively,
the linear and angular reference velocities; _xD and _yD are,
respectively, the velocity of the programmed trajectory at the
point ðxD; yDÞ in the X and Y directions of the inertial frame; and νx
and νy are the outputs of two “fuzzy velocity compensators” (FVC).

According to Fig. 2, the idea of the proposed controller is that
once the point of interest d coincides with the desired point
ðxD; yDÞ at the trajectory, the reference velocities _xr and _yr are kept
equal to the velocities of the reference trajectory, that is _xr ¼ _xD,
_yr ¼ _yD, νx ¼ 0 and νy ¼ 0. Upon the occurrence of position errors ~x
and ~y, the fuzzy controller generates compensation terms for the
velocities (νx and νy), until the point of interest d coincides with
the desired point ðxD; yDÞ at the trajectory again. Notice that the
matrix C−1 is responsible for transforming _xr and _yr in ur and ωr .

The premise variables of the fuzzy velocity compensator X
(FVCX) are j _xDj and j ~xj, respectively the magnitude of the velocity
of the programmed trajectory and the magnitude of the position
error both in the X direction. In turn, the premise variables of the
fuzzy velocity compensator Y (FVCY ) are j _yDj and j ~yj, respectively
the magnitude of the velocity of the programmed trajectory and
the magnitude of the position error both in the Y direction.

The premise variables j ~xj and j ~yj are divided into three fuzzy
sets: small error (S), medium error (M) and large error (B). The
membership function of the small error fuzzy set is given by

f Sð ~e
�� ��Þ ¼

1; j ~ejoη1 ½m�;
η1

ðη1−η2Þ
−

η1 � η2
ðη1−η2Þj ~ej

; η1≤ j ~ejoη2 ½m�;

0; η2≤ j ~ejoη3 ½m�;

8>><
>>: ð4Þ

while the membership function of the medium error fuzzy set is
given by

f Mð ~e
�� ��Þ ¼

0; j ~ejoη1 ½m�;
η1 � η2

ðη1−η2Þj ~ej
−

η2
ðη1−η2Þ

; η1≤ j ~ejoη2 ½m�;
η2

ðη2−η3Þ
−

η2 � η3
ðη2−η3Þj ~ej

; η2≤ j ~ejoη3 ½m�;

8>>>><
>>>>:

ð5Þ

and the membership function of the large error fuzzy set is given
by

f Bð ~e
�� ��Þ ¼ 0; ~jejoη2 ½m�;

η2 � η3
ðη2−η3Þj~ej

−
η3

ðη2−η3Þ
; η2 ≤ ~jejoη3 ½m�;

8<
: ð6Þ

where j ~ej represents the magnitude of the position error (j ~xj or
j ~yj). Fig. 3 presents a sketch of such membership functions.

The premise variables j _xDj and j _yDj are divided into two fuzzy
sets: low velocity (L) and high velocity (H). According to Fig. 4,
the membership functions of such premise variables are defined



Fig. 3. Membership functions for the magnitude of the trajectory tracking errors.

Fig. 4. Membership functions for the magnitude of the velocity of the trajectory.

Fig. 2. Block diagram of the trajectory tracking controller with fuzzy gains.
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from zero to TVmax, where TVmax is the limit of velocity for the
programmed trajectory in the respective direction.

Table 1 presents the six rules and the six gains which compose
each fuzzy velocity compensator. In such table, TVmax is the limit of
velocity for the programmed trajectory in the X or Y direction, RVmax

is the maximum velocity allowed for the point of interest in the X or
Y direction during a trajectory tracking task and Vpos is the maximum
velocity allowed for the point of interest in the X or Y direction
during a positioning task. As examples, the first rule of the FVCX ,
given by “Rx1: IF j _xDj is low (L) and j ~xj is small (S), THEN νx ¼ a1 ~x” is
represented in Table 1 by “R1 : LS-a1” and the sixth rule of the FVCY ,
given by “Ry6: IF j _yDj is high (H) and j ~yj is large (B), THEN νy ¼ a6 ~y” is
represented in Table 1 by “R6 : HB-a6”.
Table 1
The six rules of the fuzzy velocity compensators.

R1 : LS-a1 ðit is chosenÞ
R4 : HS-a4 ¼

RVmax−TVmax

η1

R2 : LM-a2 ¼
Vpos

η2
R5 : HM-a5 ¼

RVmax−TVmax

η2

R3 : LB-a3 ¼
Vpos

η3
R6 : HB-a6 ¼

RVmax−TVmax

η3
For each set of input pairs ( _xD; ~x), the output νx is determined by

νx ¼
∑6

i ¼ 1f Mi
ðj _xDjÞ � f Ni

ðj ~xjÞai ~x
∑6

i ¼ 1f Mi
ðj _xDjÞ � f Ni

ðj ~xjÞ ; ð7Þ

where the term f Mi
ðj _xDjÞ is the grade of membership of j _xdj in each

velocity fuzzy set (low and high) and the term f Ni
ðj ~xjÞ is the grade of

membership of j ~xj in each error fuzzy set (small, medium and
large).

In the same way, for each set of input pairs ( _yD; ~y), the output νy
is determined by

νy ¼
∑6

i ¼ 1f Mi
ðj _yDjÞ � f Ni

ðj ~yjÞai ~y
∑6

i ¼ 1f Mi
ðj _yDjÞ � f Ni

ðj ~yjÞ ; ð8Þ

where the term f Mi
ðj _yDjÞ is the grade of membership of j _ydj in each

velocity fuzzy set (low and high), and the term f Ni
ðj ~yjÞ is the grade

of membership of j ~yj in each error fuzzy set (small, medium and
large).

Remark 1. The error η1 defines the error value from which the
designer considers that the robot reaches the trajectory.

Remark 2. The gain a4 should be high, that is, if the robot is
performing a trajectory tracking task, the gain of the controller
should be high to reduce the position errors. This practical
knowledge is evidenced in the analysis of the stability of the
closed-loop system.

Remark 3. The gain a1 should be small, that is, if the robot is
performing a positioning task, the gain of the controller should be
small to allow a smooth approximation to the target point.

Remark 4. The error η2 defines the error value from which the
designer considers that the robot should decelerate when
approaching low velocity trajectories. The deceleration is due to
the small gain a1.

Remark 5. The error η3 defines the maximum position error.

3.2. The design of the fuzzy velocity compensators

The fuzzy velocity compensators were specifically designed to
limit the control signals and to reduce position errors caused by the
difference between the desired values of linear and angular velo-
cities (system inputs) and the current values assumed by the robot.

The reduction of the position errors is achieved changing the
gains of the controller between high and small values, whereas the
limitation of the control signals is achieved by the gradual change
of the gains of the controller as a function of the position error, in
such a way that the robot meets the following values of maximum
velocity:
�
 velocity limits for the programmed trajectory:

j _xDj; j _yDj≤TVmax ½m=s�;
�
 velocity limits for the point of interest during a trajectory
tracking task:

j _xj; j _yj≤RVmax ½m=s�;
�
 velocity limits for the point of interest during a positioning
task:

j _xj; j _yj≤Vpos ½m=s�:

The membership functions for the error fuzzy sets are designed
using the sector nonlinearity approach. For this reason, such
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membership functions are built in a specific way: for j ~ej4η1 [m]
only two of the three membership functions can be different from
zero and

∑f Ni
ðj ~ejÞ ¼ f Sðj ~ejÞ þ f Mðj ~ejÞ þ f Bðj~ejÞ ¼ 1; ð9Þ

where ~e represents the position error ~x or ~y.
For the same reason, the membership functions for the velocity

fuzzy sets should be built such that

∑f Mi
ðj _vDjÞ ¼ f Lðj _vDjÞ þ f Hðj _vDjÞ ¼ 1; ð10Þ

where _vD represents the velocity _xD or _yD.
Respecting design requirements (9) and (10), for convenience

and simplicity the control law given by (3), (7), and (8) can be
rewritten as

ur

ωr

" #
¼ C−1

_xD
_yD

" #
þ

kð _xD; ~xÞ � ~x
kð _yD; ~yÞ � ~y

" # !
; ð11Þ

where kð _xD; ~xÞ and kð _yD; ~yÞ are variable gains given by

kð _vD; ~eÞ ¼ ∑
6

i ¼ 1
ai � f Mi

ðj _vDjÞ � f Ni
ðj ~ejÞ: ð12Þ

Introducing (11) into (1) one gets the behavior of the velocity of
the point of interest for the closed-loop system, that is given by

_x
_y

" #
¼

_xD þ kð _xD; ~xÞ � ~x
_yD þ kð _yD; ~yÞ � ~y

" #
: ð13Þ

The gains a4, a5 and a6, and the membership functions f Sðj ~ejÞ,
f Mðj ~ejÞ and f Bðj ~ejÞ are calculated to limit the velocity of the point of
interest of the robot during a trajectory tracking task up to
_x ¼ _y ¼ RVmax [m/s], when η1 ≤ j ~ej≤η3 [m]:
(i)
 Examining (13) and the velocity limits, one can conclude that

kð _vD; ~eÞ � ~e ¼ RVmax−TVmax: ð14Þ
(ii)
 For ~e ¼ η1 [m] and _vD ¼ TVmax [m/s], the correspondent values
of the membership functions are f Sðj ~ejÞ ¼ 1, f Mðj ~ejÞ ¼ 0,
f Bðj ~ejÞ ¼ 0, f Lðj _vDjÞ and f Hðj _vDjÞ ¼ 1. As a result, according to
(12), kð _vD; ~eÞ ¼ a4. Substituting this gain into (14), one gets
that a4 � η1 ¼ RVmax−TVmax, therefore, the gain a4 should be

a4 ¼
RVmax−TVmax

η1
: ð15Þ
(iii)
 By repeating the previous process for ~e ¼ η2 [m] and ~e ¼ η3
[m], the gains a5 and a6 should be

a5 ¼
RVmax−TVmax

η2
ð16Þ

and

a6 ¼
RVmax−TVmax

η3
: ð17Þ
(iv)
 For η1 ≤ ~e ≤η2 [m] and _vD ¼ TVmax [m/s] the correspondent
values of the membership functions are f Sðj ~ejÞ≠0, f Mðj~ejÞ≠0,
f Bðj ~ejÞ ¼ 0, f Lðj _vDjÞ ¼ 0 and f Hðj _vDjÞ ¼ 1. Substituting these
results into (9) and (12), respectively, one has

f Sðj ~ejÞ þ f Mðj ~ejÞ ¼ 1 ð18Þ
and

kð _vD; ~eÞ ¼ a4 � f Sðj ~ejÞ þ a5 � f Mðj ~ejÞ: ð19Þ
Substituting (15) and (16) into (19), one gets

kð _vD; ~eÞ ¼
RVmax−TVmax

η1
� f Sðj ~ejÞ þ

RVmax−TVmax

η2
� f Mð ~e Þ:

���� ð20Þ

Solving the equation system formed by (14), (18), and (20),
one gets the membership functions f Sðj ~ejÞ and f Mðj ~ejÞ for
η1 ≤ j ~ej≤η2 [m], namely

f Sð ~e
�� ��Þ ¼ η1

ðη1−η2Þ
−

η1 � η2
ðη1−η2Þj ~ej

ð21Þ

and

f Mð ~e
�� ��Þ ¼ η1 � η2

ðη1−η2Þj ~ej
−

η2
ðη1−η2Þ

: ð22Þ
(v)
 By repeating the previous process, one gets the membership
functions f Mðj ~ejÞ and f Bðj ~ejÞ for η2 ≤ j ~ej≤η3 [m], namely

f Mð ~e
�� ��Þ ¼ η2

ðη2−η3Þ
−

η2 � η3
ðη2−η3Þj ~ej

ð23Þ

and

f Bð ~e
�� ��Þ ¼ η2 � η3

ðη2−η3Þj ~ej
−

η3
ðη2−η3Þ

: ð24Þ
The gains a2 and a3 are calculated to limit the velocity of the
point of interest of the robot up to _x ¼ _y ¼ Vpos [m/s] when
η2 ≤ j ~ej≤η3 [m], during a positioning task ( _xD ¼ _yD ¼ 0 [m/s]). By
repeating a similar process, the gains a2 and a3 should be

a2 ¼
Vpos

η2
ð25Þ

and

a3 ¼
Vpos

η3
: ð26Þ

3.3. Stability analysis

Taking into account the dynamic of the robot, the stability of
the system is analyzed under the assumption of imperfect velocity
tracking, that is u≠ur and ω≠ωr . Considering the velocity tracking
errors, it can be written that

u

ω

� �
¼

ur

ωr

" #
−

εu

εω

" #
; ð27Þ

where εu and εω are, respectively, the differences between the
kinematic commands and the effective linear and angular velo-
cities developed by the robot. Introducing (27) into (1), the closed-
loop system equation becomes

_~x
_~y

" #
¼−

kxð _xD; ~xÞ � ~x
kyð _yD; ~yÞ � ~y

" #
þ C

εu

εω

" #
: ð28Þ

Proposing the Lyapunov candidate function

V ¼ 1
2

~x
~y

" #T ~x
~y

" #
40;

a sufficient condition for the stability of the equilibrium of the
closed-loop system is that

_V ¼ ~x � _~x þ ~y � _~yo0: ð29Þ
Introducing (28) into (29), one gets

_V ¼− ~x2 � kxð _xD; ~xÞ− ~y2 � kyð _yD; ~yÞ
þ ~x½εu cos ðψÞ−aεω sin ðψÞ� þ ~y½εu sin ðψ Þ þ aεω cos ðψÞ�: ð30Þ



Fig. 5. The robot used into the experimental environment.
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Choosing only positive gains ai, kxð _xD; ~xÞ40 and kyð _yD; ~yÞ40.
Therefore, a sufficient condition for (30) to become negative is

~x2 minfkxð _xD; ~xÞg4 j ~x½εu cos ðψÞ−aεω sin ðψÞ�j ð31Þ
and

~y2 minfkyð _yD; ~yÞg4 j ~y½εu sin ðψÞ þ aεω cos ðψÞ�j: ð32Þ
Thus, since ai∈Rþ, the system stability is guaranteed with control
errors ultimately bounded by

~x
�� ��o jεu cos ðψÞ−aεω sin ðψÞj

minfkxð _xD; ~xÞg
ð33Þ

and

~y
�� ��o jεu sin ðψ Þ þ aεω cos ðψÞj

minfkyð _yD; ~yÞg
: ð34Þ

Notice that (33) and (34) evidence that high gains reduce the
position errors.

Remark 6. In the case of a perfect velocity tracking, that is, with
εu ¼ 0 and εω ¼ 0, the ultimate bounds of Eqs. (33) and (34) are
zero, then

~x-0 and ~x-0; ð35Þ
and the closed-loop system is asymptotically stable.
Now, considering that a fixed target point is chosen to position

the robot, that is, with

_xD ¼ 0 and _yD ¼ 0; ð36Þ
and substituting (35) and (36) into (11), one gets asymptotically
that

ur

ωr

" #
¼ 0

0

� �
: ð37Þ

This means that when the robot reaches the target point both
control signals become zero, and the robot stays in that position.
Therefore, the proposed controller can also be used to position the
robot without orientation control.

4. Experimental results

In this section, three experiments are reported to demonstrate
the operation of the proposed controller. Furthermore, the perfor-
mance of the proposed controller is compared with the perfor-
mance of the controller proposed in Martins et al. (2008) where a
fixed saturation function is used to limit the control actions.
Fig. 6. First experiment: (a) path followed by the robot using the controller with fixed
To comply with the objective of the trajectory tracking, Martins
et al. (2008) propose the control law

ur

ωr

" #
¼ C−1

_xD
_yD

" #
þ

lx tanhð kxlx ~xÞ
ly tanhð kyly ~yÞ

2
4

3
5

0
@

1
A; ð38Þ

where ur and ωr are the controller outputs; _xD and _yD are,
respectively, the projection of the velocity of the desired trajectory
in the X and Y directions of the fixed frame; lx40 and ly40 are
saturation constants; and kx40 and ky40 are the gains of the
controller. In this control law, the saturation of the control signals
is guaranteed using the hyperbolic tangent. The suitable values of
the saturation constants shall be lx ¼ ly ¼ RVmax−TVmax.

The controllers were implemented on a Pioneer 3-DX mobile
robot using the development software supplied by the manufac-
turer. A sampling period of 0.1 s was used in the experiments.
Fig. 5 shows the robot used and a view of the experimental indoor
environment.

Taking into consideration the workspace of the robot the
following velocity limits were established for running the experi-
ments: TVmax ¼ 0:3 m=s, RVmax ¼ 0:4 m=s and Vpos ¼ 0:3 m=s.

To design the controller with velocity limitation via fuzzy gains
it was chosen as η1 ¼ 0:025 m, η2 ¼ 0:3 m, η3 ¼ 20 m and a1 ¼ 2.
Consequently, according to the velocity limits established and the
design criteria given in Section 3, the other parameters of the
saturation function; (b) path followed by the robot using the proposed controller.
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controller shall be a2 ¼ 1, a3 ¼ 3=200, a4 ¼ 4, a5 ¼ 1=3 and
a6 ¼ 1=200.

As for the trajectory tracking controller with velocity limitation
via hyperbolic tangent, it was chosen as kx ¼ ky ¼ 2 (such gains
were chosen after running several experiments) and the saturation
constants shall be lx ¼ ly ¼ 0:1 due to velocity limits established.
4.1. First experiment

In the first experiment, corresponding to a positioning task, the
robot should reach the point x¼2 m, y¼3 m, starting from the
initial pose x¼0 m, y¼0 m with ψ ¼ 01.

Fig. 6 shows the path navigated by the robot to reach the target
point, using the controller with limitation via hyperbolic tangent
and with fuzzy gains. One can notice that the robot follows a
smoother path using the proposed controller than using the
controller with limitation via hyperbolic tangent, despite the
velocity of the robot being higher using the controller
proposed here.

Fig. 7 shows the evolution of the magnitude of the velocity of
the point of interest, using the two controllers. For the controller
with limitation via hyperbolic tangent, one can notice that the
velocity of the point of interest is limited to 0.142 m/s. This
limitation occurs because it is necessary to impose lx ¼ ly ¼ 0:1 as
saturation constants for such controller to ensure that the velocity
bound will be respected. In turn, using the controller with
limitation via fuzzy gains, one can notice that the velocity of the
point of interest is limited to 0.426 m/s, even respecting the same
velocity limits.
Fig. 7. Evolution of the magnitude of the velocity of the point of interest during the
first experiment.

Fig. 8. Evolution of the magnitude of the tracking error during the first experiment.
Fig. 8 shows the evolution of the magnitude of the tracking
error using the two controllers, which is used to calculate the
performance metrics for this experiment. One can notice that the
proposed task is accomplished in less time by the controller
proposed here.

Fig. 9 presents the curve correspondent to the velocity of the
point of interest in the X direction versus position error in the X
direction. Notice, firstly, that the velocity of the point of interest in
the X direction is limited to Vpos ¼ 0:3 m=s, as expected. Secondly,
notice that the robot travels 0.2 m in the X direction to reach
cruising velocity due to its dynamics and, thirdly, notice that the
dynamics of the robot is respected by the controller proposed here
which decreases the velocity of the robot in the X direction from
the error η2 ¼ 0:3 m to get a suitable arrival of the robot at the
target point.
4.2. Second experiment

In the second experiment, correspondent to a trajectory track-
ing task, the robot should follow the trajectory defined by

p2ðtÞ ¼ ðxDðtÞð ¼ 0:2 � t; yDðtÞð ¼ 1Þ;

starting from the initial pose x¼0 m, y¼0 m with ψ ¼ 01.
Fig. 10 presents the reference and real trajectories for the

experiment, using the two controllers. Fig. 11 shows the evolution
of the magnitude of the tracking error using both controllers,
which is used to calculate the performance metrics for the
experiment. One can notice that the robot reaches the trajectory
in less time when using the proposed controller.
4.3. Third experiment

In the third experiment, also correspondent to a trajectory
tracking task, the robot should follow the eight-shaped trajectory
defined by

p3ðtÞ ¼ ðxDðtÞ ¼ 1 � sin ð0:3 � tÞ; yDðtÞ ¼ 1 � cos ð0:15 � tÞ−1Þ;

starting from the initial pose x¼0 m, y¼0 m with ψ ¼ 01.
Fig. 12 presents the reference trajectory and the trajectory

performed by the robot for the experiment, using the two con-
trollers. Fig. 13(a) shows the evolution of the magnitude of the
tracking error using both controllers and Fig. 13(b) shows a detail of
such evolution. One can notice in Fig. 13(b) that the magnitude of
the tracking error is smaller when using the proposed controller.
4.4. Analysis of the experiments and performance comparison

The performance of the controllers was evaluated based on two
consolidated criteria, the IAE (Integral of Absolute Error) and the
ITAE (Integral of Time Multiplied by Absolute Error), which are
Fig. 9. Curve velocity of the point of interest in the X direction versus error in the X
direction.



Fig. 10. Second experiment: (a) reference and real trajectories using the controller with fixed saturation function; (b) reference and real trajectories using the proposed
controller.

Fig. 11. Evolution of the magnitude of the tracking error during the second
experiment.

C.Z. Resende et al. / Control Engineering Practice 21 (2013) 1302–13091308
calculated as

IAE¼
Z T2

T1

jEðtÞj � dt; EðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2 þ ~y2

q
ð39Þ

and

ITAE¼
Z T2

T1

t � jEðtÞj � dt; EðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2 þ ~y2

q
; ð40Þ

where E(t) is the instantaneous value of the trajectory tracking
error, t is the time, and T1 and T2 define the time interval for the
calculation of the two metrics.
Fig. 12. Third experiment: (a) reference trajectory and the trajectory performed by the ro
the trajectory performed by the robot using the proposed controller.
Table 2 presents the values of IAE and ITAE obtained for each
experiment. Analyzing such values, one can conclude that the
nonlinear trajectory tracking controller with velocity limitation via
fuzzy gains has superior performance, compared to the nonlinear
trajectory tracking controller with velocity limitation via hyperbolic
tangent, mainly in the execution of the positioning tasks (first
experiment) and trajectory tracking tasks, requiring the approxima-
tion of the robot to the desired trajectory (second experiment). The
trajectory tracking controller with fuzzy gains is also slightly more
efficient when performing tasks of trajectory tracking with sudden
changes of velocity and direction (third experiment).
5. Conclusions

This paper proposes and validates a new nonlinear trajectory
tracking controller for unicycle-like robots. The proposed control-
ler uses fuzzy rules to determine the gains of the nonlinear
controller, according to the values of the velocities of the reference
trajectory and the values of the tracking errors. Such fuzzy rules
were designed aiming at limiting the control signals, as well as
reducing the errors arising from the robot dynamics.

The proposed controller was implemented in a commercial robot
Pioneer 3-DX, and experimental results were presented, showing
that the robot is capable of tracking a desired trajectory with a small
distance error. The proposed controller was also compared to a
controller with fixed saturation function, which uses the hyperbolic
tangent to limit the control signals, and experimental results showed
that it has superior performance.

The proposed controller is easy to implement, making it suitable
for implementation in low-profile processors, and its control inputs
bot using the controller with fixed saturation function; (b) reference trajectory and



Table 2
The obtained values of IAE and ITAE for the experiments.

Experiment IAE ITAE

Fixed saturation Fuzzy gains Fixed saturation Fuzzy gains

First 51.4 19.0 499.9 64.6
Second 5.3 2.4 18.5 3.5
Third 1.07 1.01 28.83 24.79

Fig. 13. Third experiment: (a) evolution of the magnitude of the tracking error; (b) detail of the evolution of the magnitude of the tracking error.
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are the linear and angular velocities, common to most commercial
robots. It provides an appropriate value for robot velocity com-
mands, avoiding saturation values of control signals, while keeping a
good performance of the control system. Finally, the stability of the
closed-loop system is analyzed and confirmed using the Lyapunov
theory, ensuring that the task being performed will be accomplished
accordingly.
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