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Abstract This article proposes a path-following controller
for robotic wheelchairs (RW) used to transport people suffer-
ing of severe muscular diseases, taking into account veloc-
ity bounds and dynamic effects. A parameterized dynamic
model, which considers the person on board the RW, is used.
The model parameters normally change, generating struc-
tured uncertainties. Moreover, the dynamic model is pro-
posed under some simplifications, introducing unstructured
uncertainties. Finally, time-varying dynamics, caused basi-
cally by user movements, are also considered. Hence, the
dynamic controller proposed is adaptive and robust. Experi-
mental and simulation results show the effectiveness and the
good performance of the proposed control system.
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1 Introduction

Mobile robotics have been widely adopted as augmenta-
tive systems in the last decade, allowing one to improve the
mobility of people suffering from severe muscular diseases.
Robotic wheelchairs (RWs) (Kim et al. 2004; Parikh et al.
2007) associated with human–machine interfaces based on
eye movement or brain signals for command selection have
been increasingly adopted. This is the case of the experimen-
tal platform used in this study, shown in Fig. 1.

RWs introduce important dynamic issues, because they
transport a person who represents a heavy and mobile load.
A parameterized dynamic model of a RW with a mobile load
was proposed in Cruz et al. (2011a) and used to adaptive
positioning and trajectory-tracking control. Results of exper-
iments with a RW prototype allow for a positive evaluation
of the proposed model.

From these results, one can notice that an adaptive con-
troller is useful because the dynamic parameters normally
change after a long-term because of load changes of the vehi-
cle, introducing structured uncertainties (Patre et al. 2008;
Aström and Wittenmark 2008). Moreover, model simplifica-
tions introduce unstructured uncertainties (Patre et al. 2008),
although some disturbance sources, such as sliding veloci-
ties and external forces, can be analytically foreseen as non-
identifiable but clearly bounded parameters. That is a fun-
damental issue for obtaining robust adaptive control systems
through well-known techniques such as feedback lineariza-
tion (Isidori 1989), fuzzy sliding mode (Bessa and BarrOto
2010) and backstepping procedure (Fierro and Lewis 1997;
Tanner and Kyriakopoulos 2003).

Time-varying dynamics [very common in underwater
vehicles (Jordan and Bustamante 2008), for instance] are
normally not taken into account when dealing with terres-
trial vehicles. In general, such dynamics changes are slow

123



398 J Control Autom Electr Syst (2013) 24:397–408

Fig. 1 Robotic wheelchair for people with severe muscular diseases

and/or small, so that the dynamic behavior can be consid-
ered approximately as time-invariant. However, this can be a
strong supposition for RW applications, where a significant
load (their users) can move itself along time. A scheme based
on neural networks for adaptive observation of uncertain non-
linear system with time-varying parameters and disturbances
is proposed by Vargas and Hemerly (2008).

Safety should be the first concern when designing a RW
control system (Fioretti et al. 2000), user comfort being the
second one (Ding and Cooper 2005). Therefore, some situ-
ations such as abrupt movements and reverse speeds should
be avoided. However, trajectory-tracking control strategies,
which do not prevent such behaviors by having a strong time
restriction, have been considered in recent studies (Cruz et
al. 2011a; Martins et al. 2008; Do et al. 2004). Abrupt move-
ments, for instance, are verified when a reference trajec-
tory changes suddenly (yielding high control errors), while
reverse speeds are sometimes necessary to reduce such con-
trol errors. On the other hand, time restriction is not impor-
tant in wheelchair applications, which means that trajectory-
tracking control is not essential in such cases.

Positioning and path-following controls (de Wit et al.
1997) are strategies with no time restriction. In addition,
path-following control (as well as trajectory-tracking) allows
to define reference routes in semi-structured known environ-
ments, thus minimizing the risk of a collision. So, the path-
following control strategy is the most appropriate one for
RW applications, being here addressed and highlighted as
one contribution of this article.

A classical approach of the path-following problem is
given in (de Wit et al. 1997), but it yields to a singular kine-
matic problem, which is overcome through a small modifica-
tion proposed in (Soetanto et al. 2003). Both studies propose
adaptive control laws based on very simple dynamic mod-
els for a wheeled vehicle, but no robustness analysis is per-
formed. A discrete approach is shown in Coelho and Nunes
(2005), where a more complete wheelchair dynamic model
(with unstructured uncertainties) is considered. The authors
apply input-output linearization for specific reference paths,

namely, straight lines and circular arcs. Some distinct lin-
ear control techniques are used to design robust controllers.
However, the great disadvantage of the method is the nonap-
plicability to complex paths.

Generally, the path-following control laws yet available
in the literature neither allow to bound the angular velocity
nor take into account the practical limitations of the linear
velocity of the mobile vehicles. That is a problem which is
solved in this study.

A new RW dynamic model with a mobile load (depicting
a person on board) is used in Cruz et al. (2011a), which is an
extension of the model obtained for unicycle mobile robots
in Martins et al. (2008). An adaptive trajectory-tracking con-
troller based on that model was developed. In Cruz et al.
(2011b), a navigation environment of RW structured with
metallic paths was proposed, providing greater robustness to
the trajectory-tracking system previously proposed. A new
approach in this study is done to also insure the robustness
of the system for autonomous navigation of RW. The robust-
ness is guaranteed by the path-following controller, so that
the path to be followed by RW can be virtually defined based
on an environment map previously stored in the system mem-
ory, rather than physically constructed such as in Cruz et al.
(2011b). Thereby also reduces the need to add a wide range
of sensors to the RW (in fact, in this proposal, the vehicle uses
only the odometry data to navigate). In addition, it is the first
time that such dynamic model is applied to path-following
control, allowing a deterministic description of a robust adap-
tive control system as proposed in the sequel. It should also
be stressed that very few studies dealing with robust adaptive
control show experimental results, to check the real applica-
bility of the proposed system. This is done here on a RW
(Fig. 1), which is thought to be an assistive system capable
to navigate autonomously, taking into account the user safety
and comfort.

This article is hereinafter organized as follows: the prob-
lem formulation is presented in Sect. 2, while Sect. 3 deals
with the path-following controller and Sect. 4 shows a pro-
posal for dynamic compensation. Simulation and experimen-
tal results are shown and discussed in Sect. 5, and some con-
clusions are highlighted in Sect. 6.

2 Problem Formulation

Let the motion kinematics be given by

ẋ = f [x (t) ,φ (t)] + ε (t) , ∀ t ≥ 0, (1)

where x is a state vector, φ is a control input vector, f is a
known bounded function and ε is an external bounded dis-
turbance vector, with x (t) ∈ �n and φ (t) ∈ �m , that is
f : �n × �m → �n .
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Fig. 2 Block diagram of
control structure

Thus, the kinematic control problem here addressed con-
sists in finding a control law υ = ϒ (x) that makes ‖x‖ → xc

as t →∞, with xc a positive scalar value, that is 0≤ xc<∞.
Mobile vehicle dynamic effects can be firstly neglected

such as in Martins et al. (2008), and Soetanto et al. (2003),
allowing to obtain a control law which stabilizes asymp-
totically a mobile vehicle during reference following, i.e.,
xc = 0. However, what happens when such effects cannot be
neglected? In Martins et al. (2008) it has been prove that when
the dynamic effects cannot be neglected and the disturbances
ε are bounded, then the system becomes ultimately bounded
(i.e., 0 < xc < ∞). Such a result allows to consider a cas-
caded control structure, as shown in Fig. 2. Thus, stability
of the kinematic and dynamic controls can be independently
verified, simplifying the respective analysis.

One can see in Fig. 2 that the kinematic control receives
input signals, xref , which describe a desired posture for
the mobile vehicle, besides the feedback signals, x, which
indicate the current posture of the mobile vehicle. Thus,
x̃ ≡ x − xref (Fig. 2), or x̃ = [x̃, ỹ, ψ̃], with ψ̃ ≡ ψ − ψd

(Fig. 3).
It can also be seen that only the angular velocity, ωc

ref ,
is generated by the path-following controller. So, the lin-
ear velocity, vc

ref , is directly generated (it can be a con-
stant value or conveniently adjusted). Such velocities, i.e.,

uc
ref = [

vc
ref ω

c
ref

]T
, are the reference signals applied to the

dynamic compensator, while the current velocities, u, of the
RW feedbacks such a dynamic controller, forming an inner
loop. Figure 2 also shows that the dynamic compensation
takes into account parameter uncertainties, by introducing a
parameter adjustment, and disturbances δ (or model uncer-
tainties). Hence, the RW control system is a robust adaptive
dynamic one.

3 The Path-Following Controller

The path-following problem formulation here adopted is the
same one considered in Soetanto et al. (2003), applicable to
any unicycle nonholonomic vehicle. Such a formulation is

Fig. 3 Path-following problem

illustrated in Fig. 3, where both the vehicle and the reference
path, �, are represented. There, the frame {B}, whose origin
is the point Q at the middle of the virtual axis connecting
the rear wheels of the vehicle, is associated to the mobile
vehicle. Linear, v, and angular, ω, velocities are referenced
to {B}. By its turn, P is an arbitrary point of the path � being
followed, which is the origin of the frame {T }, s denotes
the signed curvilinear abscissa of P along �, and x̃ and ỹ
are the coordinates in {T } of the distance error between Q
and P . Finally, ψ is the difference of orientation between
{B} and the inertial frame {U }, while ψd is the difference of
orientation between {T } and {U }.

From Fig. 3, one obtains the path-following model
Soetanto et al. (2003)

⎧
⎪⎨

⎪⎩

˙̃x = c (s) ỹṡ − ṡ + v cos ψ̃
˙̃y = −c (s) x̃ ṡ + vsinψ̃
˙̃
ψ = ω − c (s) ṡ

, (2)

where x̃ , ỹ and ψ̃ ≡ ψ − ψd are the state variables to be
controlled, and c (s) is the path curvature.

The control laws

⎧
⎨

⎩

ṡ = v cos ψ̃ + kx̃ x̃

˙̃
ψ = β̇ − γ ỹv

sinψ̃ − sinβ

ψ̃ − β
− kψ̃

(
ψ̃ − β

) , (3)
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with

β (ỹ, v) = −sign (v) kβ tanh (ỹ) , (4)

are proposed in Soetanto et al. (2003), where kx̃ ∈ �+, kψ̃ ∈
�+, γ ∈ �+ and kβ ∈ �+ are design constants. The choice
of the function β is instrumental in shaping the transient
maneuvers during the path approach phase (Soetanto et al.
2003). The asymptotic stability is proved in such study.

Some modifications in (3) are here proposed, so that
⎧
⎨

⎩

ṡ = vcosψ̃ + X̃maxtanh
(

kx̃

X̃max
x̃
)

˙̃
ψ = β̇ − γ ỹv sinψ̃−sinβ

ψ̃−β − kψ̃

(
ψ̃ − β

) , (5)

with a variable gain defined as

γ (ỹ) ≡ �max

1 + |ỹ| , (6)

are the path-following control laws now considered, where
X̃max and �max are positive saturation constants.

The difference between (3) and (5) is that the first one
generates nonbounded control signals, while in our proposal

both ṡ and ˙̃
ψ are bounded for high values of the control errors.

One can notice that the function tanh and the variable gain
given in (6) make such control signals to be bounded.

To prove the system stability when these new control laws
are adopted, it is proposed the Lyapunov function candidate

V = 1

2

(
x̃2 + ỹ2

)
+

(
ψ̃−β

)

∫

0

1

γ
αdα, (7)

where α is an independent variable. Then, taking ˙̃x and ˙̃y
from (2) to the first time derivative of (7), and simplifying
some terms, one gets

V̇ = x̃
(
−ṡ+vcosψ̃

)
+ ỹvsinψ̃− 1

γ

(
ψ̃ − β

) ( ˙̃
ψ − β̇

)
.

(8)

Reverse speeds are not recommended in RW applications,
because they are very uncomfortable for the user. Moreover,
such kind of movements makes it necessary to add expen-
sive back sensing subsystem to guarantee the system safety.
Hence, it is desirable that only positive linear velocities be
sent as references to RWs, allowing to rewrite (4) as

β (ỹ) = −kβ tanh (ỹ) , (9)

so that β̇ exists for all time.
Now, by replacing (5) into (8), one obtains

V̇ =−x̃ X̃maxtanh

(
kx̃

X̃max
x̃

)
+ ỹvsinβ − 1

γ

(
ψ̃−β

)2
.

(10)

From (9), one can verify that ỹvsinβ < 0, ∀ ỹ �= 0, so that
(10) is a negative function ∀ x̃ �= 0, ∀ ỹ �= 0 and ∀ ψ̃ �= 0.
So, the asymptotic stability is proven.

The input commands are the linear and angular reference
velocities given by
{
vc

ref = vc
ref (·)

ωc
ref = ˙̃

ψ + cṡ
, (11)

where vc
ref (·) is a positive function and ωc

ref is obtained by
replacing the control laws given in (5) into the last equation
of (2).

4 Dynamic Control

4.1 Robotic Wheelchair Dynamic Model and Its Properties

RWs are mobile vehicles with a special dynamic character-
istic due to the presence of a person on board, which rep-
resents a heavy and mobile load. RWs have nominal mass
equal approximately to 70 kg and their maximum payload is
130 kg. That is an extra mass nearly twice the vehicle nominal
mass which can change its position on the vehicle. Figure 4
depicts a loaded RW, for which B is the point in the middle
of the virtual axis linking the rear wheels and G is the center
of mass which can be displaced from B by the distances b1

and b2, not necessarily constant.
From such considerations, it was proposed in Cruz et al.

(2011a) a RW dynamic model, which also takes into account
external forces and torques, and the presence of low level
controllers. The model is given by

Mu̇ (t)+ Cu (t)+ δ (t) = uref (t) , (12)

where u = [
v ω

]T
and uref = [

vref ωref
]T

are the
response and reference velocity vectors, respectively, δ =
[−δv −δω

]T
is the disturbance vector,

Fig. 4 Displacement of center of mass on a RW
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M =
[
θ1 −θ7

−θ8 θ2

]
and C =

[
θ4 −θ3ω

θ5ω θ6

]
(13)

are dynamic parameter matrices, for which
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ1 = kDT
kPT

+ Rar
2kPTka

(
2Ia
r2 + m

)

θ2 = kDR
kPR

+ Rar
kPRkad

(
Iad2

2r2 + Iz + m
(
b2

1 + b2
2

))

θ3 = Rarmb1
2kPTka

θ4 = 1 + ka
kPTr + Ba Ra

kPTkar

θ5 = Rarb1m
dkPRka

θ6 = 1 + dkb
2rkPR

+ Ra Bed
2rkPRka

θ7 = b2m Rar
2kPTka

θ8 = b2m Rar
kPRdka

, (14)

m being the mass of both RW and passenger, kPT, kDT, kPR

and kDR being low level control gains, responsible for con-
trolling the angular velocity of the RW driven wheels dos
Santos Filgueira (2011). Ie and Be are the moment of inertia
and the viscous friction coefficient of the combined motor
rotor, gearbox and wheel, Iz is the moment of inertia at the
vertical axis located on G, kb is equal to the voltage con-
stant multiplied by the gear ratio, Ra is the motor electric
resistance, ka is the torque constant also multiplied by the
gear ratio, r is the radius of the traction wheels, and d is the
distance between the traction wheels.

Remark 1 Although the greater part of the physical parame-
ters, θ , is constant, it should be considered that some para-
meters, such as mass m and the displacement of the center
of mass G, given by b1 and b2, can suffer changes because
of being associated to the presence of a person on board.
Consequently, almost all parameters are subject to changes,
according to (14).

By rearranging the terms, one can express (12) as

Tθ(t)+ δ(t) = uref , (15)

where T =
[
v̇ 0 −ω2 v 0 0 −ω̇ 0
0 ω̇ 0 0 vω ω 0 −v̇

]
and θ(t) =

[θ1 θ2 . . . θ8]T . Moreover, (12) can be rewritten as

M(t)u̇ + η + δ = uref , (16)

with

η =
[

0 0 −ω2 v 0 0 0 0
0 0 0 0 vω ω 0 0

]
θ(t). (17)

Remark 2 In the sequel we will use the notation θ(t) = θ

and M(t) = M.

The parameters included in the vector θ are functions of
some physical parameters of the RW, which can be estimated
by neglecting the disturbance vector, δ, in (15), that is

Tθ̂ = uref , (18)

where θ̂ is the estimate parameters vector, T is the regression
matrix and uref is the output vector (Cruz and Carelli 2006;
Aström and Wittenmark 2008).

The following model properties will be used in the sequel.

1. θ1 > 0, θ2 > 0, θ4 > 0 and θ6 > 0;
2. sign (θ7) = sign (θ8);
3. sign

(
θ̇7

) = sign
(
θ̇8

)
;

4. θ1θ2 > θ7θ8;
5. M is a diagonalizable positive definite matrix;
6. Ṁ is a diagonalizable matrix;
7. Every column vector that compose T has only one vari-

able element and the remaining elements are zero.

Proof Except for b1 and b2 which can be positive, negative,
or null, all physical parameters are always positive. Thus,
Properties 1–3 are straightforwardly checked using (14).

Continuing the analysis of the above properties, one can
check that

det (M) = θ1θ2 − θ7θ8 =
(

kDT

kPT
+ Ra Ie

rkPTka

)

×
(

kDR

kPR
+ Rar

dkPRka

(
Ied2

2rr
+ Iz+mb2

1

))
>0 (19)

(because of all physical parameters involved being positive),
thus verifying Property 4. To check Property 5, one should
firstly calculate the eigenvalues of M, which are
⎧
⎨

⎩

λ1 = 1
2

(
θ1 + θ2 +

√
(θ1 − θ2)

2 + 4θ7θ8

)

λ2 = 1
2

(
θ1 + θ2 −

√
(θ1 − θ2)

2 + 4θ7θ8

) . (20)

Then, knowing that Properties 1, 2 and 4 are valid, one can
conclude that λ1 ∈ �+ and λ2 ∈ �+ (because the term
inside the square root is positive), and λ1 �= λ2. In addition,
M is symmetric (θ7 = θ8), since kPT

kPR
= d

2 . Thus, the low
level control gains are suitably adjusted to make the matrix
M symmetric, leading to the conclusion that M is a positive
definite matrix [see Strang (1988)], i.e., the Property 5 is also
verified.

From (13), it implies that

Ṁ =
[
θ̇1 −θ̇7

−θ̇8 θ̇2

]
,

eigenvalues of which Sare given by
⎧
⎪⎪⎨

⎪⎪⎩

λ3 = 1
2

(
θ̇1 + θ̇2 +

√(
θ̇1 − θ̇2

)2 + 4θ̇7θ̇8

)

λ4 = 1
2

(
θ̇1 + θ̇2 −

√(
θ̇1 − θ̇2

)2 + 4θ̇7θ̇8

) . (21)

Considering the Property 3, one can verify that λ3 ∈ � and
λ4 ∈ �. Moreover, such eigenvalues are visibly distinct.
Hence, Ṁ is a diagonalizable matrix (Strang 1988). Notice,
however, that property 6 is valid only when Ṁ �= 0.
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Finally, the definition of the matrix T in (15) reveals the
property 7.

4.2 Robust Adaptive Dynamic Control

From (16), it is used the dynamic control law

uref = Mσ + η + Krsign (ũ) , (22)

which is based on the dynamic control law for robot manip-
ulators proposed by Slotine and Li (1988). In Eq. (22),
Kr = diag (krv, krω) > 0 and

σ = u̇c
ref + Kũ, (23)

being K = diag (kv, kω) > 0 and ũ = uc
ref − u, where

the superscript c indicates that the signals are coming from a
kinematic controller, as shown in Fig. 2. However, u̇c

ref should
be derived from the output velocities of the path-following
controller.

Based on (15), Eq. (22) can also be written as

uref = T (σ ,u) θ + Krsign (ũ) , (24)

where

T (σ ,u) =
[
σv 0 −ω2 v 0 0 −σω 0
0 σω 0 0 vω ω 0 −σv

]
.

The last term in the right side of (22) and (24) is a robust-
ness term, to reduce the model uncertainty [given by δ in
(16)] due to disturbances and nonmodeled dynamic effects.

Supposing that there also exists some uncertainty in the
identifiable parameters, the dynamic control law

uref = Tθ̂ + Krsign (ũ) (25)

should be considered, instead of (22) or (24), where

θ̂ ≡ θ + θ̃ (26)

is the vector of estimated parameters and θ̃ ∈ �8 is the vector
of parameter errors.

Replacing (26) in (25) one gets

uref = Tθ + Tθ̃ + Krsign (ũ) (27)

or

uref = Mσ + η + Tθ̃ + Krsign (ũ) . (28)

From (16) and (28), it follows that

Mu̇ + η + δ = Mσ + η + Tθ̃ + Krsign (ũ) , (29)

which is equivalent to

M (σ − u̇) = δ − Tθ̃ − Krsign (ũ) . (30)

From (23), one gets σ − u̇ = ˙̃u + Kũ, which is used in (30),
resulting in the tracking error

˙̃u = M−1
(
δ − Tθ̃ − Krsign (ũ)

)
− Kũ. (31)

Since M > 0 (Property 5), then ∃ M−1. That is, the error
function given in (31) is a nonsingular one.

In the sequel, it is defined

P ≡
[

2kPT 0
0 dkPR

]
> 0 (32)

(formed by constant parameters of the RW), which makes
the product PM a positive definite symmetric matrix. Subse-
quently, Property 7 is considered to introduce the following
proposition:

Proposition 1 TP̄ = PT, with P̄ = diag ( p̄1, . . . , p̄8).

As a result of (32) and Proposition 1, one gets P̄ > 0.
Thus,

V = 1

2
ũT PMũ + 1

2
θ̃T P̄�θ̃ (33)

is a Lyapunov candidate function, where � ∈ �8×8 is a
positive definite diagonal matrix.

Assumption 1 The dynamic parameters are time-varying,
i.e., θ = θ (t) and M = M (t).

Then, the first time derivative of (33) is

V̇ = ũT PM ˙̃u + 1

2
ũT PṀũ + θ̃T P̄�

˙̃
θ . (34)

Considering (31), Eq. (34) becomes

V̇ = −ũT PMKũ − ũT PTθ̃ − ũT PKrsign (ũ)

+ũT Pδ + 1

2
ũT PṀũ + θ̃T P̄�

˙̃
θ , (35)

where PMK ∈ �2x2 is not necessarily symmetric. However,
such a matrix keeps the properties of the matrix M, i.e., it is
a diagonalizable positive definite one. Furthermore, PṀ is a
diagonalizable matrix (see proofs of Properties 5 and 6).

In the sequel, it is proposed the parameter updating law

˙̂
θ = �−1

(
TT ũ − �θ̂

)
, (36)

where � ∈ �8×8 is a positive definite diagonal matrix.
From (36), one can first observe that the parameter adjust-

ment depends on the tracking errors, which are clearly
affected by parameter errors θ̃ , as it can be seen in (31).
Moreover, the last term of (36) introduces a negative feedback
on the estimated parameters, to avoid parameter drift due to
measurement errors, noise, and/or disturbances (Aström and
Wittenmark 2008). Such a technique is known in the litera-
ture as σ -modification or leakage-term (Sastry and Bodson
1989).

Now, from (26) and considering Assumption 1, it follows
that
˙̃
θ = ˙̂

θ − θ̇ . (37)
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By substituting (36) into (37), and considering (26), it results
that

˙̃
θ = �−1

(
TT ũ − �θ̃ − �θ

)
− θ̇ , (38)

which, introduced in (35), leads to

V̇ = −ũT Hũ − θ̃T �̄θ̃ − ũT K̄rsign (ũ)+ ũT δ̄

−θ̃T �̄θ − θ̃T �̄θ̇ + 1

2
ũT ũ, (39)

where H = PMK,  = PṀ, �̄ = P̄�, K̄r = PKr, δ̄ = Pδ

and �̄ = P̄�.
Now, let the constants μHmin =

√
λmin

(
HT H

)
, μKrmin =

√
λmin

(
K̄T

r K̄r
)

and μ�min =
√
λmin

(
�̄T �̄

)
be the smallest

singular values of the matrices H, K̄r and �̄, and μ�max =√
λmax

(
�̄T �̄

)
, μ�max =

√
λmax

(
�̄T �̄

)
and μmax =

√
λmax

(
T 

)
be the largest singular values of the matri-

ces �̄, �̄ and , being λmin (·) and λmax (·) the smallest and
the largest eigenvalues of a matrix. Thus, from (39) one gets

V̇ ≤−
(
μHmin− 1

2
μmax

)
‖ũ‖2−μ�min

∥∥∥θ̃

∥∥∥
2−(μKrmin

−∥∥δ̄
∥∥) ‖ũ‖+μ�max

∥∥∥θ̃

∥∥∥ ‖θ‖+μ�max

∥∥∥θ̃

∥∥∥
∥∥θ̇

∥∥ . (40)

Considering the squared difference
(

1

ξ

∥∥∥θ̃

∥∥∥− ξ ‖θ‖
)2

= 1

ξ2

∥∥∥θ̃

∥∥∥
2 − 2

∥∥∥θ̃

∥∥∥ ‖θ‖+ξ2 ‖θ‖2 ,

(41)

with ξ ∈ �+, one can write

∥∥∥θ̃

∥∥∥ ‖θ‖ = 1

2ξ2

∥∥∥θ̃

∥∥∥
2 + ξ2

2
‖θ‖2− 1

2

(
1

ξ

∥∥∥θ̃

∥∥∥−ξ ‖θ‖
)2

.

(42)

By neglecting the negative term in (42), the inequality

∥∥∥θ̃

∥∥∥ ‖θ‖ ≤ 1

2ξ2

∥∥∥θ̃

∥∥∥
2 + ξ2

2
‖θ‖2 , (43)

is obtained. By applying a similar reasoning, one also gets

∥∥∥θ̃

∥∥∥
∥∥θ̇

∥∥ ≤ 1

2χ2

∥∥∥θ̃

∥∥∥
2 + χ2

2

∥∥θ̇
∥∥2
, (44)

with χ ∈ �+. Then, replacing (43) and (44) in (40), one gets

V̇ ≤ −
(
μHmin − 1

2
μmax

)
‖ũ‖2

−
(
μ�min − μ�max

2ξ2 − μ�max

2χ2

) ∥
∥∥θ̃

∥
∥∥

2

− (
μKrmin − ∥∥δ̄

∥∥) ‖ũ‖

+
(
μ�max

ξ2

2
‖θ‖2 + μ�max

χ2

2

∥∥θ̇
∥∥2

)
. (45)

Defining

α1 ≡ μHmin − 1

2
μmax, (46)

α2 ≡ μ�min − μ�max

2ξ2 − μ�max

2χ2 , (47)

α3 ≡ μKrmin − sign (ũ) ‖δ̄‖ (48)

and

ρ ≡ μ�max
ξ2

2
‖θ‖2 + μ�max

χ2

2

∥∥θ̇
∥∥2
, (49)

then

V̇ ≤ −α1 ‖ũ‖2 − α2

∥∥∥θ̃

∥∥∥
2 − α3 ‖ũ‖ + ρ. (50)

It can be observed in (46) that the constant α1 is positive,
as μHmin >

1
2μmax, thus establishing a minimum value for

the proporcional gains of the control signals, given in (23),
which act on the tracking errors. One observes in (47) that
the constant α2 is positive as μ�min − μ�max

2ξ2 >
μ�max

2χ2 (that
is possible for ξ and χ conveniently selected), establishing
minimum and maximum values for the parameter updating
law given in (36). Finally, it can be seen in (48) that the con-
stant α3 is positive as μKrmin > ‖δ̄‖. So, a minimum value
for the gains associated to the robustness term embedded in
the dynamic compensation law, given in (25), is also estab-
lished. Hence, it is necessary to assume that the amplified
disturbances, δ̄, are physically bounded, i.e., ‖δ̄‖ ≤ �, with
0 ≤ � < ∞.

Then, it is possible to guarantee that the three first terms
of (50) are strictly negative. On the other hand, the last term
of (50) is strictly positive, according to (49). But ρ depends
on the dynamic parameters of the system, θ (t), and their first
time derivative, θ̇ (t), which are physically bounded, making
ρ a bounded variable. That leads us to conclude, through
(50), that ũ and θ̃ are ultimately bounded errors since gains
and constants of the robust adaptive dynamic controller are
required to be carefully adjusted.

One can observe in (49) that ρ can be selected as small
as desired by choosing gains for � and � sufficiently small.
However, very small gains can cause robustness problems,
known as parameter drift (Aström and Wittenmark 2008).

The reader should also notice that the proposed controller
does not guarantee that θ̃ (t) → 0 as t → ∞. It only guar-
antees that the parameter error is bounded. Actually, it is not
required that θ̃ (t) → 0 to make ũ to converge to a bounded
value.

5 Results

The path-following controller proposed in Soetanto et al.
(2003), whose control laws are shown in (3), is first consid-
ered. The controller gains were conveniently adjusted when
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Fig. 5 Simulated case: unstable vehicle due to saturation effects

distance errors are small (lower than 2m), so that kx̃ = 1,
kψ̃ = 5, γ = 3 and kβ = π/4. Then, simulations with the
vehicle starting far from the reference path were carried out.
Figure 5a shows a bad result when the mobile vehicle starts
at a position approximately 5m distant from the reference
path. In this case, a high control effort followed by saturation
effect (Fig. 5b) were sufficiently strong to make the vehicle
unstable.

The same procedure was performed considering the mod-
ified controller presented in (5), i.e., simulations with the
mobile vehicle starting significantly distant from the refer-
ence path. Figure 6 shows a good behavior when the vehicle
starts at a position approximately 20 m distant from the ref-
erence path. The gain values were kept, allowing a perfor-
mance comparison between both controllers. The saturation
constants introduced into the last controller are Xmax = 1
and �max = 3.
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Fig. 6 Simulated case: without saturation effects

Experiments performed on a RW allowed to complete the
validation of the proposed controller. The same values of
gains and saturation constants were adopted for the simula-
tions and experiments hereinafter described. Figure 7 shows
that the mobile vehicle, initially positioned approximately
4 m away of the reference path, effectively reaches such path
and follows it.

Simulations using the dynamic model given in (12) were
carried out to emphasize the importance of a robust adaptive
dynamic control when the system has structured uncertain-
ties, unstructured uncertainties and time-varying parameters.
Figure 8 shows a RW carrying a heavy person (125 kg), for
which the values identified for the model parameters are θ1 =
0.3241, θ2 = 0.0120, θ3 = 0.0092, θ4 = 0.9969, θ5 =
0.0634, θ6 = 0.9898, θ7 = −0.0562 and θ8 = −0.0002.
Such parameter values were loaded into a RW simulator. On
the other hand, parameters corresponding to the wheelchair
without any user are considered as initial estimates for the
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Fig. 7 Experiment: the robot’s initial position is far from the reference
path

updating law in (36), that is θ̂1 = 0.4042, θ̂2 = 0.1877, θ̂3 =
−0.0069, θ̂4 = 1.0261, θ̂5 = 0.0405, θ̂6 = 0.9239, θ̂7 =
−0.0304 and θ̂8 = −0.1162, causing structured uncertainties
due to initial parameter errors. Unstructured uncertainties are
simulated by adding white noise to the response velocities.
Finally, variations up to 3.7 % of the nominal values of some
real dynamic parameters emulate their variance along time
[parameter identification and validation were performed in
Cruz et al. (2011a)].

The kinematic and dynamic control laws given in (5) and
(25), respectively, are cascaded, and the updating law (36)
completes the system control, as illustrated in Fig. 2. Figure 9
presents a simulation result when the input disturbances are
bounded to 1 cm/s and 0.02 rad/s. The dynamic controller
gains are kv = 2 and kω = 5, the gains of the robustness
term are krv = 0.1 and krω = 0.1, and the gain values asso-
ciated with the parameter-updating law are �i = 0.01 and
�i = 0.001, with i = 1 . . . 8. Moreover, the gains and satura-
tion constants of the kinematic controller are set to the same
values as in previous simulations, with vc

ref = 0.25 m/s.

Fig. 8 A robotic wheelchair carrying a heavy person
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Fig. 9 Simulated case: disturbances included

123



406 J Control Autom Electr Syst (2013) 24:397–408

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

X [m]

Y
 [m

]
Ref.
Robot

Start

Fig. 10 Simulated case: disturbances included in a nonrobust control
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ing

Figure 10 shows a simulation result when the robustness
term is withdrawn from the dynamic controller, that is krv =
0 and krω = 0. One can see that the disturbances are able
to degrade the system behavior when a robust control is not
considered.

Experiments taking the complete system into account
were performed with a RW carrying a heavy person (see
Fig. 8), with the parameters of the wheelchair without any
user taken as initial estimates. The voluntary was asked
to move in the course of the experiment to introduce dis-
turbances. Figure 11 shows the performance reached with
all uncertainties and disturbances deliberately embedded.
The corresponding excitation and response velocities are
shown in Fig. 12, where it can be noticed that the mea-
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Fig. 12 Experiment: excitation and response velocities of the RW car-
rying a heavy person during path following
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surement data (based only on the vehicle odometry) is very
noisy.

The success of the control system in the presence of
highly noisy measurement depends on a significant effort
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Fig. 15 Simulated case: evolution of the parameter estimates

during gain adjustment. A slow convergence of the esti-
mate parameters is necessary to maintain system’s stability,
so that such convergence is not evident in Fig. 13. Hence,
simulations for a long-term operation were performed.
Figure 14 shows the vehicle behavior at the first (left side)
and second (right side) half of the simulation time. It can be
noticed a better performance in the last one, where the esti-
mated parameters are close to their final values, as shown in
Fig. 15.

6 Conclusion

A robust adaptive path-following control of a RW is designed
here, and the closed-loop system stability is proved, when
such controller is adopted. Such a control system is split into
two parts, one taking care of the path-following kinematics
and the other compensating for the vehicle dynamics. The
first part assures that bounded command signals are sent to
the vehicle, so that it converges to a reference path and follows
it. The second one is responsible to reduce tracking errors due
to the dynamic effects, which present structured and unstruc-
tured uncertainties as well as time-varying dynamics caused
basically by the wheelchair user. Simulations and experi-
ments on a RW with time-varying model parameters and
different kinds of uncertainties embedded were performed,
allowing us to verify that the controller presents a good per-
formance.
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