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a b s t r a c t

In the area of pattern recognition, clustering algorithms are a family of unsupervised classifiers designed
with the aim to discover unrevealed structures in the data. While this is a never ending research topic,
many methods have been developed with good theoretical and practical properties. One of such
methods is based on self organizing maps (SOM), which have been successfully used for data clustering,
using a two levels clustering approach. Newer on the field, clustering systems based on fuzzy logic
improve the performance of traditional approaches. In this paper we combine both approaches. Most of
the previous works on fuzzy clustering are based on fuzzy inference systems, but we propose the design
of a new clustering system in which we use predicate fuzzy logic to perform the clustering task, being
automatically designed based on data. Given a datum, degrees of truth of fuzzy predicates associated
with each cluster are computed using continuous membership functions defined over data features. The
predicate with the maximum degree of truth determines the cluster to be assigned. Knowledge is
discovered from data, obtained using the SOM generalization aptitude and taking advantage of the well-
known SOM abilities to discover natural data grouping when compared with direct clustering. In
addition, the proposed approach adds linguistic interpretability when membership functions are
analyzed by a field expert. We also present how this approach can be used to deal with partitioned
data. Results show that clustering accuracy obtained is high and it outperforms other methods in the
majority of datasets tested.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Clustering aims to discover unrevealed structures in data and is
a never-ending research topic. It is a major task in exploratory data
mining and new approaches are constantly proposed, because the
usage and interpretation of clustering depend on each particular
application [1]. Clustering is currently applied in many fields, such
as web and text mining, business and marketing, machine learn-
ing, pattern recognition, image analysis and segmentation, infor-
mation retrieval, and bioinformatics (see e.g. [2–4]). In many
complex problems, general clustering techniques are not able to
adequately discover groups when directly applied on the data [5].

The self-organizing maps (SOM), introduced by Kohonen in
1982 [6], are widely used, unsupervised and nonparametric neural

network, with remarkable abilities to remove noise, outliers, and
deal with missing values. The SOM training process generates
simultaneous clustering and projection of high-dimensional data.
SOM have been successfully used in data clustering via two-level
clustering approaches. The first level consists in training a SOM
with a dataset. In the second level various techniques have been
used, such as a second SOM [7], crisp-clustering methods [5,8,9] or
fuzzy clustering techniques [10–12]. The second level links cells of
the first-level SOM to form clusters. Then each datum is typically
associated to the cluster assigned to its Best Matching Unit (BMU).
Vectors of the codebook can be interpreted as “protoclusters,”
which are combined to form the actual clusters.

In the two-level clustering approach, the SOM in the first level
generates a projection of the original data which makes a general
clustering technique suitable in the second level. One advantage of
SOM in the two-level approach is the reduction in the computa-
tional cost [5]. Even considering a small data package, some
clustering algorithms become intractable. Grouping prototypes
instead of grouping data directly is a solution for this problem.
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Another additional benefit is the reduction in data noise effects,
since prototypes are local averages of the data and, therefore, they
are less sensitive to random variations than the original data [5].

Clustering systems based on Fuzzy Logic (FL) [13–15] have been
used in a wide range of clustering problems, improving the
performance of traditional approaches. Based on the fuzzy set
theory, FL was proposed by Zadeh [16], who stated that a complex
system will be better represented by descriptive variables of
linguistic types [17]. Most of the previous works are based on
Fuzzy Inference Systems (FIS). The main advantages of these
models are (a) they use simple IF–THEN rules to determine the
conditions a datum must satisfy to belong to each cluster and (b)
FIS allow modeling the data imprecision by way of membership
functions. However, in FIS, aggregation and defuzzification opera-
tions must be defined, so these models do not constitute a Boolean
Logic generalization. Given that defuzzification is a pragmatic
combination of operators, it lacks an axiomatic link that justifies
the “logic” denomination [18].

Unlike previous works, in this paper we propose the design of a
new clustering system in which (a) we use predicate fuzzy logic
[19] to perform the clustering task, which is a natural extension
of predicate Boolean Logic and (b) the system is automatically
designed (unsupervised) [20] using a two-level clustering appro-
ach that combines SOM and Fuzzy C-Means (FCM) as a second
level clustering method. First, SOM are trained from the original
data, considering a SOM with a number of cells much larger than
the expected number of clusters. Then the SOM codebook (the set
of protoclusters) is clustered. Next, the codebook clustering is
analyzed and membership functions and predicates are defined.
Thus we obtain a ranked clustering criteria represented as self-
discovered fuzzy predicates using data information [20] which
consider the behavior of the variables into the different clusters.
Hereafter we will name the proposed method SOM-based Fuzzy
Predicate Clustering (SFPC).

Given a datum, degrees of truth of fuzzy predicates associated
to each cluster are computed using continuous membership
functions defined over data features. Finally, the predicate with
the maximum degree of truth determines the cluster to be
assigned (the first of the ranking). From a linguistic point of view
we obtain a ranking for each datum, computing the degree of truth
of “The datum D belongs to cluster k”, being k¼1, 2, …, K, and K the
amount of clusters. This ranking could also be used to determine
the group to which new similar input data (not contained in the
training dataset) belongs. Besides, this system allows comparing
the degree of membership to the clusters and also assessing the
contribution of individual features to the final decision. If required,
it allows assessing how far the datum was from being assigned to
other cluster (the next one in the ranking).

The proposed approach adds value to previous knowledge-
based fuzzy clustering methods [21]. In this case knowledge is
discovered from data, obtained using the SOM generalization
aptitude and taking advantage of the well-known SOM abilities
to discover natural data groupings when compared with direct
clustering [5,7,22]. Also SOM provides useful information about
the features in each cluster, an interesting property that was used
for different applications [23]. In addition, the proposed approach
adds linguistic interpretability when the clustering obtained and
the knowledge discovered from the membership functions are
analyzed by a field expert. This approach can also be used to deal
with partitioned data as we present later in the paper, where we
explain how the predicate system can join the results obtained
from different partitions.

The paper is structured as follows. Section 2 discusses the main
works related to SOM-clustering and fuzzy systems. Some impor-
tant concepts concerning this work on SOM and fuzzy predicates
systems are presented in Section 3. Section 4 details with the

proposed methodology to design the fuzzy clustering system by
way of a SOM–FCM scheme and the method for assessing the
clustering quality is explained. In Section 5 we show the accuracy
of the results on several datasets, and then we develop two
examples of interpretability of membership functions and pre-
dicates. Finally we conclude by discussing the results, limitations
and future research directions in Sections 6 and 7.

2. Related works

Before presenting the SFPC method proposed in this paper, in
this section we discuss relevant works related to SOM-clustering
and fuzzy systems applications in clustering.

2.1. SOM-clustering

In the literature, several approaches were developed in the
attempt to achieve clusters of data from a trained SOM. The
general approach uses a two-level process. In the first level, a
SOM is trained. The second level can involve another SOM, making
a hierarchical SOM [7] or some crisp-clustering method [5,8,9]
which allows linking codebook cells of the first-level SOM in
bigger clusters. In other works the SOM fuzzification problem was
specifically studied using a FCM algorithm [11] or other fuzzy
methods [10,12] as second level clustering.

Lampinen and Oja [7] proposed a clustering method using a
multilayer SOM (HSOM) to achieve complex data groupings. They
argue that when the abstraction level of the classification task
increases, the shapes of the regions associated together become
complex, requiring very large amounts of training data to form the
class boundaries. In these cases, using unsupervised learning
techniques can reduce the required training. They state that as
the goal of SOM-learning is not only to find the most representa-
tive code vectors for the input space in mean square sense, but at
the same time to realize a topological mapping from the input
space to the grid of neurons; updating the internal weights of the
network tends to preserve the input topographic space. Therefore,
neighboring cells are related to nearby data in the original space
and a grouping of data can be achieved through the SOM, where
topographically nearby cells are associated with the same cluster.
In particular, the HSOM algorithm is able to achieve clustering of
complex data structures.

Vesanto and Alhoniemi [5] developed a two-level SOM-cluster-
ing approach that uses agglomerative clustering in the second
level. A large set of prototypes, interpreted as “protoclusters,”
larger than the number of clusters, is achieved by the SOM in the
first level. The protoclusters are combined together to form the
actual clusters in the second level. Each data vector of the original
dataset belongs to the same cluster as its nearest prototype. While
extra abstraction levels yield higher distortion, they also effec-
tively reduce the complexity of the reconstruction task. They
indicate some advantages of using SOM in the first level that we
cited in the previous section.

On the way to finding the best emergent clustering, Murtagh
[8] presented a convenient framework for clustering, applying
the contiguity-constrained clustering method in the second-
level clustering. A SOM is trained and the prototype vectors are
interpreted as clusters defined by a minimum distance criterion,
with the cluster centers located on the discretized plane in such a
way that proximity reflects similarity. The algorithm searches for
the minimum distance between prototype vectors belonging to
two different clusters and integrates them into a single group.
This recursive algorithm ends when a stop condition defined by
the user is reached. This condition may be the number of defined
clusters.

G.J. Meschino et al. / Neurocomputing 147 (2015) 47–5948



Cottrell and Letrémy [9] stated that SOM are appropriate when
the available observations have missing values. They say it can be
the only possible method when data are extremely sparse.
Examples are given, where this method estimates missing values
with good accuracy. Then, completed data can be processed using
any classical treatment.

Other authors focus on the SOM-codebook fuzzification. Sarlin
and Euklund [11] applied a two-level SOM–FCM model, where
FCM [24] performs clustering on the units of the SOM grid. The
FCM algorithm allows each unit to have a partial membership to
all identified overlapping clusters. Authors indicate that this
second level fuzzy clustering on the SOM codebook enables the
analysis of the membership degree in self-discovering clusters,
which is not always easy to judge. In particular, fuzzy clustering
enables sensible representation of the real world filled with
uncertainty and imprecision. In [12], Sarlin and Eklund used a
fuzzified SOM. They showed another approach computing Ward's
hierarchical clustering onto a SOM data projection. A fuzzy
membership degree of each node to each cluster is computed
using Euclidean distances between data points and the centroids
of the crisp clusters. The clustering is fuzzified by computing a
function of the inverse distance between each reference vector in
the codebook and each cluster center.

Another approach is presented by Sarlin [10], employing a
semi-supervised version of the SOM by using class and indicator
vectors to map data onto the SOM. After training a SOM, only the
indicator vector is used for locating the BMU for data. Then, the
class values of their BMU are used as estimates of the current state.
The fuzzification is implemented on second-level state centers
instead of directly on the nodes. The SOM is fuzzified by comput-
ing the inverse distance between reference vectors and each state
center. An indication of financial imbalances is assessed using
distances between each data vector and its BMU.

The methodology we propose in this paper (SFPC), detailed
later in Section 4, to obtain fuzzy predicates for clustering systems,
exploit all the abilities discussed above for the two-level clustering
approach when SOM is used as first level clustering. In particular,
we applied a SOM–FCM scheme, with crisp-clustering, directly on
the dataset and on partitioned data. Unlike the approach used in
[11], crisp-clustering is used to design the membership functions
of the fuzzy predicates system. So in this work, the SOM–FCM
approach is used as a tool to characterize and generalize the input
space, extracting the necessary knowledge to design the clustering
systems based on fuzzy predicates.

2.2. Fuzzy systems

Fuzzy systems and their applications to data clustering are highly
analyzed research topics. Most current applications are based on
fuzzy inference system (FIS) approaches using IF–THEN rules in both
Mandami or Takagi-Sugeno-Kang systems (see e.g. [25–30]). Mem-
bership functions and rules are generated using experts' knowledge
or obtaining information from data. In recent years, various algo-
rithms have been proposed for the design of fuzzy systems from data.
For example, we have applied successfully fuzzy systems based on
fuzzy predicates and expert knowledge in medical-image segmenta-
tion [15]. Due to the large amount of existing literature, we only
discuss some of the most recent applications and design methods for
fuzzy systems that are relevant to this paper.

Mansoori [27] stated that although fuzzy clustering is superior
to crisp clustering when the boundaries among the clusters are
vague and ambiguous, the main limitation of both fuzzy and crisp
clustering algorithms is their sensitivity to the number of potential
clusters and/or their initial positions. Also the author points out
that discovered knowledge is not understandable for human users.
A fuzzy rule-based clustering algorithm is proposed that employs a

combination between supervised and unsupervised techniques.
The algorithm automatically explores the potential clusters in the
data and tries to identify them with interpretable fuzzy rules.
Experimental results show that clusters specified by fuzzy rules
are reasonably interpretable.

In an attempt to solve the possible weak generalization for
classical fuzzy system modeling methods when available data are
insufficient, Deng et al. [28] presented a fuzzy system which not
only makes full use of the data in the learning procedure but can
effectively make leverage on the existing knowledge from the
data. The method combines Mandami–Larsen models to the fuzzy
systems and a reduced set density estimation technique. For
validation, the authors apply this method to synthetic and real-
world datasets.

Celikyilmaz and Turksen [26] showed that although traditional
fuzzy models have proven to have a high capacity for approximat-
ing real-world systems they have some challenges, such as
computational complexity, optimization problems and subjectiv-
ity. To solve these problems, they develop a fuzzy systemmodeling
approach based on fuzzy functions to model systems with an
improved fuzzy clustering algorithm, a new structured identifica-
tion algorithm, and a nonparametric inference engine. Empirical
comparisons indicate that the proposed approach yields compar-
able or better accuracy than fuzzy or neuro-fuzzy models based on
fuzzy rule bases, as well as other soft computing methods.

Juang et al. [25] proposed a self-organizing Takagi–Sugeno-type
fuzzy network with support vector learning. The antecedents of
IF–THEN rules are generated via fuzzy clustering of input data, and
then the support vector machine algorithm is used to tune the
consequent parameters. The proposed methodology is applied to
several problems, especially the skin color classification problem.
For comparison, support vector machines and other fuzzy systems
are applied to the same problems. The authors argue that one
advantage of the method is that number of resulting rules is
smaller than other existing approaches based on support vector
machine.

Meschino et al. [15] presented a fuzzy system based on fuzzy
predicates. Magnetic resonance brain images (MRI) are analyzed
pixel-wise by fuzzy logical predicates, reproducing in a computa-
tional way the considerations that medical experts employ when
they interpret these images, in order to identify the tissues that
the pixels represent. Membership functions and predicates are
defined preliminary by this expert knowledge and then optimized
by a genetic algorithm. Compensatory Fuzzy Logic operators are
used to implement the logical connectives. The aim is to deter-
mine which tissue corresponds to each pixel. The mathematical
operations involved are simple and therefore processing time is
short.

Fuzzy systems developed with the design method proposed
in this paper (SFPC) make the most of the advantages of fuzzy
predicates described in [15], but no prior experts' knowledge is
required. Membership functions and fuzzy predicates are defined by
using SOM–FCM schemes. The amount of predicates that “explains”
the clusters is small and depends on the amount of data partitions.
Besides, unlike the systems based on IF–THEN rules explained above,
in the predicate scheme the degrees of truth of the predicates
determine the assignation of a cluster. Due to these characteristics,
the clustering obtained is linguistically interpretable and adaptable to
the field from which the data comes.

3. Methods

In this section we summarize some basic concepts of SOM and
fuzzy predicates that will be required in Section 4 where we detail
the method proposed in this work.
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3.1. Self-organizing maps

The SOM can be interpreted as a topology preserving mapping
from input space onto a grid of map units [6]. As the SOM
algorithm is well-known, here we only present the basic concepts
required in this work.

The SOM consists of a regular grid of map cells (in this work we
used a 2-D grid). Each cell is represented by a prototype vector
whose dimensions equal the input vector dimensions. The set
formed by all prototype vectors defines the codebook. The cell
units are related to adjacent ones by a neighborhood relation. The
accuracy and generalization capability of the SOM are determined
by the number of map units, which typically varies from a few
dozen up to several thousand. During the training phase, the SOM
builds a net that folds onto the input data distribution. Data points
lying near each other in the input space are mapped onto nearby
map units. The codebook is changed according to the information
contained in the training data. The codebook must be initialized
by applying some method. There are two main approaches for
this stage [31]: random initialization and data analysis based
initialization.

In the remainder of this section, SOM main basics that are
relevant to this work will be defined. Hereafter, data will be
considered as a subset of d-uples in ½�1;1�d.

Definition #3.1.1. Given a datum x, the cell whose prototype
vector is the nearest, according to a distance criterion, is called
Best Matching Unit (BMU) of datum x [6].

By extension of Definition 3.1.1, the cell whose prototype vector
is k-th nearest to an input datum is called k-th BMU for that
datum, noted by bkx , and its prototype vector is indicated as wbkx

.

Definition #3.1.2. Given a cell j in a SOM with N cells, the cell
nearest to jin the map space (grid space) is called adjacent to j [32].

By extension of Definition 3.1.2, the k-adjacent cell to j is the
cell k-th nearest in the map space and this is symbolized as adkj .

In order to evaluate the quality of the trained map, three kinds
of error are considered in this paper: the quantization error, the
topographic error and the topographic product. These errors are
defined below [32,33]:

Definition #3.1.3. Quantization error EQ is helpful to assess
whether the prototype vectors of a trained SOM are really good
prototypes for the training data and is computed as

EQ ¼ 1
L

∑
L

i ¼ 1
jjxi�wb1xi

jj;

where xi; i¼ 1;2; ::; L are the training data, wb1xi
is the prototype

vector of the BMU corresponding to datum xi, and L is the number
of train data.

Definition #3.1.4. Topographic error ET is helpful to assess
whether the data topology was preserved after training and is
computed as

ET ¼ 1
L∑

L
i ¼ 1uðxiÞ,

where uðxiÞ ¼ 1 if the BMU for datum xi is not adjacent to the
second BMU and uðxiÞ ¼ 0 if it is adjacent.

Definition #3.1.5. Topographic product PT is helpful to assess
whether neighborhood relations in a SOM are preserved, analyz-
ing distances between the codebook and the data. It can be used to

determine the best size map for a given data set [33]. It is defined
as follows [32]:

PT ¼
1

NðN�1Þ ∑
N

j ¼ 1
∑

N�1

k ¼ 1
log ðPðj; kÞÞ;

where Pðj; kÞ is Pðj; kÞ ¼ ∏k
l ¼ 1Q1ðj; lÞQ2ðj; lÞ

� �1=2k
and Q1ðj; lÞ and

Q2ðj; lÞ are defined respectively as

Q1ðj; lÞ ¼
f ðwj;wblwj

Þ
f ðwj;wadlj

Þ;

Q2ðj; lÞ ¼
gðj; blwj

Þ
gðj; adljÞ

;

where f : ℝd � ℝd-ℝ is a distance function in the space of data
and g : ℝ� ℝ-ℝ is a distance function in the space of map.
Deviations of PT from zero mean that the SOM size is unsuitable
for the training dataset [32]. If map vectors perform an organized
projection of the training pattern according to a similarity criter-
ion, then the errors defined in 3.1.3–3.1.5 tend to be minimized.

In a well-trained SOM, the codebook is a reduced dataset which
is representative of the training dataset, with similar probabilistic
density function. By running a clustering algorithm on the SOM
codebook (second level clustering), we can obtain groups of
prototype vectors (and hence cells), expecting that cells from the
same cluster are topographically near [5,11]. This feature is used in
this paper to design fuzzy systems.

In order to have in the codebook a good representation of the
training dataset, parameters can be adjusted to jointly minimize
SOM quantization and topographic errors and SOM's topographic
product which assure conservation of data topology and mapping
quality that is performed by codebook vectors on the training data
[32,33]. In this paper, we propose the automatic selection and
setting of the parameters of each SOM in two steps. First, for each
case SOM with different combinations of quantity of cells, topol-
ogy, neighborhood function and training type are constructed.
Map sizes correspond to 1, 2, 3 and 4 times the quantity of cells
obtained with the heuristic formula [34]: #cells¼ 5

ffiffiffi
L

p
where L

represents the quantity of training data. Then we select the SOM
that jointly minimize error measures EQ , ET and PT . We use a
multi-objective minimization of these measures, performing an
exhaustive search and varying the map size.

3.2. Fuzzy systems

In the traditional approach, a predicate is understood to be a
Boolean-valued function P : X-ftrue; falseg, called the predicate
on X. However, predicates have many different interpretations in
mathematics and logic, and their precise definition varies from
theory to theory. In this work we consider predicates as synon-
ymous of propositions. In traditional logic and philosophy the
term “proposition” refers to the content of a meaningful declara-
tive sentence. This includes possessing the property of being either
true or false.

Predicates can be considered to have a degree of truth asso-
ciated, which can take the values 0 (“false”) or 1 (“true”). This
approach allows generalizing this definition to consider fuzzy
predicates, as they are presented in this section, where some basic
definitions regarding fuzzy predicates logic are given, in order to
unify the notation.

Definition #3.2.1. A fuzzy predicate p is a linguistic expression
(a proposition) with degree of truth νðpÞ in a ½0;1� interval. It
applies the “principle of gradualism” which states that a proposi-
tion may be both true and false, possessing some degree of truth
(or falsehood) assigned [16].
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Definition #3.2.2. A simple fuzzy predicate sp is a fuzzy predicate
whose degree of truth νðspÞ can be obtained by some of the next
alternatives:

� The application of a membership function associated with a
fuzzy term, to a quantitative variable. For example, let us
consider the variable “intensity” varying in the range ½0;255�
and the fuzzy term “low”. The degree of truth of the predi-
cate “Intensity is low” can be quantified by means of the
membership function given in Fig. 1, considering the value of
the variable “intensity”.

� The association is of discrete values in the ½0;1� interval to
language labels (generally adjectives) of a variable. For example,
let us consider the predicate “The customer is satisfied”. Its degree
of truth could be quantized choosing “Totally”, “Quite satisfied”,
“Somewhat satisfied” or “Unsatisfied”, related to the degree of
truths 1.0, 0.7, 0.3, and 0.0 respectively.

� The determination of real values in the ½0;1� interval is directly by
an individual (or an expert). It is applied in cases where no
variable can be used for quantization. For example: “The general
aspect is good”, “The material is soft”, “The service is good”, etc.

Definition #3.2.3. A compound predicate cp is a fuzzy predicate
obtained by combination of simple fuzzy predicates or other
compound fuzzy predicates, joined by logical connectives and
operators (and, or, not, implication, double-implication).

For example, the compound predicate c: “The pressure is high
and the intensity is intermediate or low” can be expressed as
c� p4 ðq3rÞ where p: “The pressure is high”; q: “The intensity is
intermediate” and r: “The intensity is low”.

Definition #3.2.4. Compound predicates can be represented as a
tree structure, with its nodes associated by logical connectives and
the successive branches related to lower hierarchical level pre-
dicates (simple or compound).

The degree of truth of a compound predicate can be computed by
considering the degrees of truth of the simple predicates involved.
For this purpose it is necessary to define logic systems where the
operations of conjunction, disjunction, order and negation are func-
tions defined over a set of degrees of truth for predicates, into the real
interval [0,1], such that when the degrees of truth are restricted to
f0;1g, these operations become classic Boolean predicates.

In the present work, based on previous successful results, we
choose compensatory logic operations: Geometric Mean Based

Compensatory Logic (GMCL) and Arithmetic Mean Based Com-
pensatory Logic (AMCL) [35]. We also compare the results with the
standard triangular norms (Max–Min) [19]. In the remainder of
this section, GMCL and AMCL operators, and standard triangular
norms (Max–Min) will be defined.

Definition #3.2.5. The conjunction and the disjunction of the
GMCL, respectively noted by C : ½0;1�n-½0;1� and D : ½0;1�n-½0;1�,
are defined as [35]

Cðμ1; μ2;…; μnÞ ¼ ðμ1μ2…μnÞ1=n;

Dðμ1; μ2;…; μnÞ ¼ 1�½ð1�μ1Þð1�μ2Þ…ð1�μnÞ�1=n:

Definition #3.2.6. The conjunction and the disjunction of the
AMCL, respectively noted by C : ½0;1�n-½0;1� and D : ½0;1�n-½0;1�,
are defined as [35]

Cðμ1; μ2;…; μnÞ ¼ minðμ1; μ2;…; μnÞ
1
n

∑
n

i ¼ 1
μi

" #1=2

;

Dðμ1; μ2;…; μnÞ ¼ 1� minð1�μ1;1�μ2;…;1�μnÞ
1
n

∑
n

i ¼ 1
ð1�μiÞ

" #1=2

:

Definition #3.2.7. The standard triangular norms are formed by a
fuzzy conjunction and a fuzzy disjunction, respectively noted by
C : ½0;1�n-½0;1� and D : ½0;1�n-½0;1�, that are defined as [19]
Cðμ1; μ2;…; μnÞ ¼ minðμ1; μ2;…; μnÞ;

Dðμ1; μ2;…; μnÞ ¼ maxðμ1; μ2;…; μnÞ:
The fuzzy complement operation is a function of N : ½0;1�-½0;1�,
which in all these logics computed as NðμÞ ¼ 1�μ where μ is the
degree of truth of a fuzzy predicate.

Compensatory operators (GMCL and AMCL) are sensitive to the
whole set of operands. This is evident since they are based on
geometric and arithmetic means. In contrast, in the widely used
operations Max–Min only one of the operands dominates the
result, ignoring the values of the remaining operands.

Considering compensatory operators, the value of the conjunc-
tion and disjunction can be influenced by, and therefore “compen-
sated” for, the value of any of the degrees of truth considered in
the operation. An increase or decrease in the degree of truth of the
conjunction or disjunction as a result of changes in the degree of
truth of one component can be compensated by an increase or
decrease, respectively, of the degree of truth of other component.
This feature makes compensatory logic especially suited for selec-
tion problems; yet it is also convenient for ranking, appraising, and
classificatory purposes [36].

4. Proposed method

In this section we present in detail the SOM-based Fuzzy
Predicate Clustering (SFPC) method and we propose different
options for its configuration and setting parameters. Also we
comment on the procedure used for the assessment of the
performance of the clustering obtained.

As introduced in Section 1, we propose a SOM-based method to
design fuzzy predicate clustering systems. These clustering sys-
tems allow:

� To assign a cluster for every datum included into the dataset.
� To give a linguistic interpretation of the clustering obtained.

Each cluster can be explained by one or more fuzzy predicates,
so that an expert user is able to give linguistic meaning to
membership functions that were discovered automatically.

Fig. 1. Example of a membership function for quantifying the degree of truth of the
fuzzy predicate “Intensity is low”. For low values of the intensity, the degree of truth
of the predicate takes high values. As the intensity value increases, the degree of
truth of the predicate decreases.
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� To assign a new datum not included in the original dataset to
one of the clusters discovered, knowing what the fuzzy
predicate was that caused the assignment.

Each cluster is described by a fuzzy predicate (or more than
one, as it will be detailed in Section 4.2) as “The datum belongs to
cluster i”, whose degree of truth will be computed by simple
predicates based on the features of the dataset.

Let us explore this proposal first considering only one SOM, and
then we will be able to present some different options to extract
more information from the dataset by taking data subsets or
considering partitioned data.

4.1. General method: one SOM, K predicates

In this section we detail the basics for using SOM as a tool for
automatically building the membership functions that will be used
to quantify the degree of truth of the simple predicates. In this
case we obtain as many predicates as clusters we want. Given one
datum, by computing the degree of truth of each predicate we will
be able to find the one with the maximum, and in consequence
assign the datum to the cluster defined by this predicate.

The general steps are the following:

Step 1: Train a SOM with different combinations of numbers of
cells, topology, and neighborhood functions and select the SOM
that jointly minimizes the error measures EQ , ET andPT (as
described at the end of Section 3.1).
Step 2: Find K cluster centers (centroids) fCigi ¼ 1;2;…;K over the
SOM codebook by some classical simple clustering algorithm.
In this work we applied FCM with crisp clustering [24],
operating with Euclidian distances, but other algorithms and
distances could be used.
Step 3: Create membership functions for the simple predicates
from the clusters obtained in the previous stage.
We propose Gaussian functions. However, other shapes could also
be considered, but this case is not covered in the current work.
Centers of the Gaussian functions for each feature are the cluster
centers (also called centroids) found after codebook clustering,
and the widths of these Gaussian functions are computed as the
standard deviations of prototype vectors in each cluster.
So, in this stage we define Gaussian membership functions for
each feature i and for each cluster k. Centers of these Gaussian
functions are the cluster centers obtained in the previous step,
namely fcikg i¼ 1;2;…; d

k¼ 1;2;…;K

.

Then we compute standard deviations of prototype vectors of
the codebook contained in each cluster, for each feature
fsikg i¼ 1;2;…;d

k¼ 1;2;…;K

. Considering that MF created indicate the corre-

spondence between feature values and clusters, the standard
deviation controls the width (sigma) of the Gaussian functions.
The standard deviation acts as a parameter controlling how the
degree of truth of the MF decreases when values of a feature for a
specific datum move away from the cluster center. We show
a typical membership function in Fig. 2, for a generic cluster and a
generic feature.
Given a dataset where each datum is a feature vector,
a d-uple ðf 1; f 2;…; f dÞ, we will have K Gaussian membership
functions for each feature f i; i¼ 1;2;…; d. Let us call them
mf ik

� �
i¼ 1;2;…; d

k¼ 1;2;…;K

.

Step 4: Now we can create one fuzzy predicate for each cluster
(K compound predicates) by logically operating with the
degrees of truth:

pkðDÞ �mf 1kðDÞ4mf 2kðDÞ4…; 4 mf dkðDÞ; k¼ 1;2;…;K ;

where pkðDÞ can be linguistically read as “The datum D belongs to
cluster k” and mf ikðDÞ can be linguistically interpreted as “Feature i
of the datum D is near the prototypes belonging to cluster k”. The
nearer the value of feature i of the datum D to the center of the
Gaussian function cik, the higher the degree of truth of mf ikðDÞ.
As mf ikðDÞ are higher, pkðDÞ should also be higher, reflecting the
fact that if the datum D is near the cluster center k, then the datum
D belongs to cluster k.

A datum D will be assigned to the cluster whose predicate has
the highest degree of truth. In addition, if no predicates have
degree of truth higher than a determined threshold, D could be
labeled as an “outlier”.

4.2. Dataset partitioning

In addition, in this section we propose an extension of the
method to be able to deal with partitions of the dataset. Essen-
tially, it consists of a two-stage design, wherein the basic stage
performs steps 1–3, as mentioned in Section 4.1, while in the
upper stage only step 4 is implemented, but in this case we have
different options to form the predicates.

This scheme would allow its application in geographically
distributed computer processors; hence it enables the process-
ing of large volumes of data asynchronously with low band-
width needs for the transmission of intermediate results, only
fcikg i¼ 1;2;…;d

k¼ 1;2;…;K

and fsikg i¼ 1;2;…; d
k¼ 1;2;…;K

must be transmitted to the upper

stage. Even a parallel implementation, none distributed geogra-
phically, based on dataset partitioning would aim to reduce the
overall process time.

To explore the design performance, M different nodes at the
basic stage are proposed. Therefore M is defined by the specifica-
tions of the system: the amount of geographically sparse nodes or
the minimum amount of data in each partition that enables an
adequate performance of the SOM. To simulate its behavior we
propose a random dataset partition into M disjoint subsets, in
order to train M different SOM. Despite this partition being

Fig. 2. Example of a Gaussian membership function for a generic cluster, and a
generic feature i. The center of the Gaussian is the centroid of the cluster obtained
from the SOM codebook and the deviation of the Gaussian is the standard deviation
of the data that were assigned to this cluster.
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random, it would be desirable that each partition is balanced;
i.e. there is approximately the same number of data for each
cluster. Since in a real problem we cannot know what the cluster
of each datum is, at least we should be able to assume that data
represent the original population; i.e. there are data corresponding
to different cases or situations that we want to represent with
clustering.

At the upper stage, for each k, a unique cluster must be defined
using the M centroids. To that end, considering a centroid, the
M�1 nearest centroids are added (by considering Euclidian
distances among them) as belonging to the same cluster. As a
result, M clusters belonging to the same final cluster on data will
have the same cluster index fcikg i¼ 1;2;…; d

k¼ 1;2;…;K :

Next, we propose, three different options to create fuzzy
predicates to represent the clusters, described as follows.

4.2.1. Option 1: clustering ensemble (K predicates from each SOM,
one decision by SOM)

In this option we consider each SOM and its predicate set as an
independent clustering system, i.e. we apply to each subset what
was presented in the previous section. We obtain K predicates for
each SOM (labeled fpijg i¼ 1;2:::;M

j¼ 1;2:::;K

). Given a datum, the degrees of

truth of the K predicates for each SOM are obtained, and a cluster
assignment is conducted. The final assigned cluster will be chosen
by voting, as is typical in a clustering ensemble approach [37].

4.2.2. Option 2: M independent fuzzy predicates for each cluster
In this case we take all predicates generated in the same way as

the previous option. As before, we obtain M predicates for each
cluster. But in this option, given a datum, degrees of truth of K by
M predicates are obtained. Cluster assignment is done simply by
taking the one represented for the predicate whose degree of truth
is maximum, no matter which partition provided the predicate.

4.2.3. Option 3: a unique compound fuzzy predicate for each cluster
In this option we explore exhaustively the advantages of using

predicate logic. We define a unique predicate for each cluster using
the “or” connective to consider simple predicates (obtained from
partitions) for each feature. We obtain K predicates with the
following general expression:

pkðDÞ � ½mf 1k1ðDÞ3mf 1k2ðDÞ3…3mf 1kMðDÞ�
4 ½mf 2k1ðDÞ3mf 2k2ðDÞ3…3mf 2kMðDÞ�4…
4 ½mf dk1ðDÞ3mf dk2ðDÞ3…3mf dkMðDÞ�; k¼ 1;2;…;K :

Given a datum, the degrees of truth of the K compound predicates
are obtained. Like previous cases, cluster assignment is done by
taking the cluster represented for the predicate whose degree of
truth is the maximum. This option gives the highest interpretability
for the predicates, though they could be really complex when dealing
with high-dimensional data (big quantity of features).

4.3. Algorithm configuration: parameters

Results may be different depending on the way the predicates
are defined, and, of course, the option chosen to arrange and
evaluate the predicate set as given in the previous section. In
addition, there are some other parameters that should be chosen
for each particular problem:

� Number of clusters K: defined by the problem to be solved.
� Cluster algorithm used to make the second-level clustering:

should be a simple and low computational cost method, like
FCM or K-means.

� Type of distances used in the second-level clustering algorithm
and during SOM training: typically Euclidian distance is used,
but other distance definitions could be considered.

� Number of data partitions M: it should be chosen according to
the number of data, taking into account that each SOM should
be able to capture the characteristics of data, so each partition
should not contain only a few training data. In the case of
sparse data nodes it would be determined by the number of
nodes, as presented in the previous section.

� Type of logical system for computing logical operations: com-
pensatory fuzzy logics (GMCL or AMCL) or Max–Min logic are
compared in this work, but other logical systems could be used
(for further information on others fuzzy operators [38] can be
consulted).

4.4. Method validation: assessing the clustering quality

In order to assess the quality of the clustering obtained, several
measures could be considered. The general quality can be assessed
by considering the so called “internal measures” like Inter-cluster
Density, and Intra-cluster Variance. These indexes seek compact
and separated clusters. This type of measures is needed in cases
we do not have any previous labeled data, as it is often the case,
and these measures play a fundamental role to set the parameters
of the algorithm (summarized in Section 4.3).

Other measures need data previously labeled as the gold
standard, known as “external measures”. Gold standards are
ideally produced by human experts or based on previous experi-
mentation, normally labeling data at the same moment they are
obtained [39].

For this work we chose the assessment of the Accuracy measure,
which is an external measure. It requires labeled data, and an
analysis of majority labels in each discovered cluster is needed as
well. Once each real class is assigned to one and only one cluster, this
measure is simply computed as the ratio between the quantity of
data assigned correctly to the quantity of available data (it can also be
computed as the ratio between the sum of the main diagonal of the
confusion matrix to the sum of its elements) [40].

To be independent of the algorithm initialization (mainly the
random data partitions), each configuration is run 10 times and
values reported are Accuracy averages.

5. Results

In this section we analyze the numerical results for Accuracy
from the proposed method. We make a detailed analysis and
comparisons against other methods, including a modification of
the proposed method which does not use a two-level clustering
scheme, by replacing the SOM–FCM scheme with a simple basic
clustering algorithm over the original data. We also present graphs
to help these comparisons. We show that the proposed method
outperforms or at least achieves the results of the others.

Moreover, we show an example of how an expert can give a
linguistic interpretation to the automatically discovered member-
ship, and how the predicates can be read.

5.1. Accuracy of the proposed method

We tested the method using the following datasets:

� Iris data (3 classes, 4 features, 150 data) [20].
� Wine data (3 classes, 13 features, 198 data) [41].
� MRI data, 12,000 pixels randomly selected from simulated

magnetic resonance images (4 classes, 3 features, 12,000 data)
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[42]. These data were taken without any noise or distortion,
and they come from computer simulations.

� MRI data, 200 pixels randomly selected from the previous
dataset (4 classes, 3 features, 200 data) [42].

� Wisconsin breast cancer data (32 features – 3 selected, 2 classes,
569 data) [43].

� Pima Indians diabetes data (8 features – 3 selected, 2 classes,
768 data) [43].

� Moon data (2 features, 2 classes, 1000 data). This is a synthetic
dataset whose characteristics will be presented in the next section.

For the Wisconsin breast cancer and Pima Indians diabetes
datasets, we took the features chosen in [43] in order to facilitate
results comparison.

We compared clustering accuracy values obtained by means
of the proposed clustering algorithm and the following ones
(an acronym is defined for each one):

� SFPC: SOM-based Fuzzy Predicate Clustering (the proposed
method) is applied to the dataset. SOM sizes are determined
automatically according to the quantity of training data and
their dimension (as described in Section 4.1 and discussed in
Section 3.1). The number of partitions (M, if M41) is deter-
mined taking into account the quantity of data available in each
particular dataset (therefore M is different for each dataset).
The larger the quantity of data, the larger could be M.

� Data-based Fuzzy Predicate Clustering (DFPC): here the two-
level SOM–FCM based scheme is replaced by a single clustering
algorithm (we used FCM, but it could be another one) which is
applied directly on the partitions of the dataset (or to the whole
dataset if M¼1). In this case, information for membership
parameters is taken directly from data clustering instead of
from the SOM–FCM clustering. These results were included in
order to add further comparisons and discussions.

� SOM–FCM: a SOM is trained with the dataset and FCM with
crisp clustering is applied to the codebook (configuring a basic
two-level clustering scheme).

� K-means: the K-means algorithm is applied to the dataset,
considering random initial centroids (K data are randomly
chosen as initial cluster centers). K centroids are obtained and
data are assigned to the cluster when the Euclidian distance to
its centroid is the minimum.

� Expectation-Maximization (EM) [44]: it is a method used to fit a
Gaussian mixture model to a dataset. Probability density func-
tions characterizing the dataset are obtained. Then probability of
belonging to each cluster is determined, assigning the most likely.

� FCM [24]: FCM algorithm is applied to the dataset considering
random initial centroids. So K centroids are obtained and data
are assigned to the cluster with the largest membership value.

Clustering accuracies obtained are shown in Fig. 3, where the
accuracy is represented by vertical bars. We show different graphs
for each dataset. The height of bars indicates the accuracy as shown
in the vertical axis. Three main groups of bars are shown. From left to
right, the first main group corresponds to the DFPC method, the
second group corresponds to the proposed method (SFPC) and the
last one includes other traditional clustering algorithms.

In Fig. 3, for DFPC and SFPC methods:

� accuracy for M¼1 case is presented, when no partition of data
is done;

� accuracies for other values of M are also included, values
chosen according to the number of data in each dataset;

� once M is set, results for the different configuration options for
the fuzzy predicates (Option 1, Option 2 and Option 3) are also
included; and

Fig. 3. Clustering accuracy for test datasets: bars indicate the different logic
operator systems (black: Max–Min; gray: AMCL; white: GMCL). All SOM sizes are
automatically set and the number of data partitions (M) is indicated for each bar
group. The algorithm option is indicated as Option 1, Option 2, and Option 3 as
presented in Section 4.2. Horizontal dotted line indicates the best accuracy value
obtained for SFPC: (a) Iris, (b) Wine, (c) MRI1, (d) MRI2, (e) Wisconsin breast cancer,
(f) Pima Indians diabetes, and (g) Moon.
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� results are represented in each case in groups of three bars
corresponding to different logic systems (black: Max–Min;
gray: AMCL; white: GMCL).

For the last main group, the results for known methods are
shown: two-level SOM-clustering (SOM–FCM), Expectation-
Maximization (EM), K-means and Fuzzy C-Means (FCM). In these
cases, only one bar is needed. Finally, a horizontal dotted line is
included in Fig. 3, which indicates the best accuracy value
obtained for SFPC.

In the following paragraphs, a detailed result analysis is done.
When comparing two different results in terms of accuracy, we
refer to a percentage difference of the accuracies, i.e. difference
between acc1 and acc2 is given as

dif f erence%¼ acc1�acc2
acc2

� 100%:

Results for Iris dataset (Fig. 3a) suggest that SFPC outperforms the
other clustering methods. It improves 3.2% of the SOM-Clustering
accuracy (the best for simple clustering methods in this dataset) when
GMCL logic system is applied. In this case SFPC was better than DFPC,
particularly for M¼1 (no data partition). So for this dataset the best
results are obtained for SFPC taking M¼1 and GMCL.

Considering the Wine dataset (Fig. 3b), SFPC again outperforms
the other clustering methods, improving 4.5% the SOM-Clustering
accuracy (also the best one in this dataset) when the GMCL logic
system is applied. SFPC is better than DFPC for M¼1 (no data
partition) and slightly better for M¼2 (Options 2 or 3). For this
dataset the best results are obtained for SFPC taking M¼1,
and GMCL.

Let us consider the MRI dataset. Since it was published for
research purposes many methods have been presented, using it as
test data. We used these data in this work by taking a large
number of samples (12,000, MRI1 dataset) and only a few samples
(200, MRI2 dataset). Using less data, the accuracy decreases as
expected, but the proposed method still shows a better perfor-
mance than the simple clustering methods, as can be seen in
Fig. 3d, which evidences the method's good robustness and
generalization abilities.

For the MRI1 dataset (Fig. 3c), we observe that DFPC obtains the
best results, surprisingly for a Max–Min logic system. In this case,
we choose M¼10 because this dataset contains a large quantity of
data. The predicates approach remains being the best one, but in
this particular case SFPC could not achieve the performance of
DFPC or SOM-Clustering.

For the MRI2 dataset (Fig. 3d), the best performance is again
achieved for DFPC, in this case for the GMCL logic system. The fact
it possesses less information (less quantity of data) demonstrates
the generalization abilities of the proposed approach. In this case,
we choose M¼3 because the dataset contains a lot less data than
MRI1. Again the predicates approach is the best one, but again
SFPC could not achieve the performance of DFPC, but anyway it
outperforms the SOM-Clustering performance by 7.4%.

Considering the Wisconsin breast cancer dataset (Fig. 3e), the best
performance is obtained by SFPC using the GMCL logic system, M¼3,
Options 2 or 3. It outperforms DFPC only by 0.9% and SOM-Clustering
by 0.8%. The Wisconsin breast cancer dataset was included in previous
relevant works [43], obtaining an accuracy of 0.977 using supervised
methods, in particular the K-Nearest Neighbors (KNN) which consid-
ered 15 data from each class as training samples. Using the pro-
posed method we obtained an accuracy of 0.962, highly satisfactory
considering that our method does not require any previous label
information.

Considering the Pima Indians diabetes dataset (Fig. 3f), the best
performance is obtained by SFPC using the AMCL logic system,
M¼4, Option 3. It outperforms all settings of DFPC by more than

3.1% and SOM-Clustering by 3.0%. For the Pima Indians diabetes
dataset, in the same work mentioned for the previously consid-
ered dataset [43], the authors reported an accuracy of 0.777 using
the ANFIS supervised method. We obtained an accuracy of 0.720
by applying the unsupervised proposed method.

Considering the Moon dataset (Fig. 3g), the best performance
is obtained by SFPC using the Max–Min logic system. This is a
synthetic dataset. It always outperforms all settings of DFPC, and
improves SOM-Clustering by 8.5%.

Observing Fig. 3, we note that in the cases tested the clustering of
the SOM codebook (SOM–FCM scheme) gives high accuracy mea-
sures. This is a hint to consider that SOM captures the clustering
information in the data and it is able to generalize the feature space,
even when the quantity of data is not very large. This is observed in
the SOM–FCM bars in the graphs. It even outperforms the other
methods in the MRI1 dataset. This dataset has a large quantity of
data. In addition it is a relatively simple problem, since data are from
simulations without any noise or distortion.

In most cases, the compensatory logic systems (AMCL and GMCL)
gave better results than Max–Mix, except for the MRI1, MRI2 and
Moon datasets. These datasets come from computer simulations.

Accuracy for DFPC for M¼1 (no data partition) was always
worse than SFPC. It allows us to conclude that partitioning
datasets gives better results and at the same time, and that
using SOM for obtaining the membership parameters is a good
approach. When changing from M¼1 (taking only one SOM, the
whole dataset) to M41 (partitioning the dataset) we can see
improvements in the MRI1, Wisconsin breast cancer and Pima
Indians diabetes datasets. So it seems better to make partitions
than to take the whole dataset.

Applying clustering in a two-level approach (SOM–FCM) is
much more robust along the iterations compared to clustering
applied directly to the dataset, which is evidenced when a
variance analysis over the different options in the proposed
method (SFPC) is conducted. Variances are not shown to make
figures clearer.

Choosing Option 3 gives slightly better results in several cases,
but there are minor differences between the options in these
datasets. However the approach using only one composed pre-
dicate explaining each cluster (Option 3) is a good choice for
simple linguistic interpretation. In all datasets analyzed SFPC
works well, outperforming simpler methods. In cases where it
was not the best case, the predicates approach still was the best
method (DFPC). Combining the results for different datasets, the
reliable preliminary choice for clustering a new dataset could be
using SFPC with M41 and GMCL, Option 3.

5.2. Interpretability of membership functions

The proposed method allows a deeper analysis of the predi-
cates in order to make them linguistically interpretable. Taking the
general predicate: pkðDÞ �mf 1kðDÞ4mf 2kðDÞ4…; 4mf dkðDÞ; k¼
1;2;…;K , a linguistic expression can be built: “The datum D belongs
to cluster k” is equivalent of saying “Feature 1 is mf 1kand Feature
2 is mf 2kand … and Feature D is mf dk”.

An expert can make further interpretations to give mf ik mean-
ings applicable to the field from which the dataset comes.

5.2.1. Example 1: moon dataset
As an application example we considered the Moon dataset,

which is visualized in Fig. 4. It is a synthetic dataset helpful to
show the methodology for analysis of the membership functions
obtained. It was chosen in order to give a simple case for linguistic
interpretation, but at the same time it is a case where simple
clustering techniques present lower clustering accuracy.
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After applying the method proposed in this paper (M¼3),
we obtained the membership functions seen in Fig. 5 for feature
1 (a) and feature 2 (b).

By analyzing Fig. 5a we can see two well-defined groups of
membership functions, one of them centered at �0.3 and another
centered on þ0.3. We can associate the first group of membership
functions with the name “Negative near �0.3” and the second one
with the name “Positive near þ0.3.”

We can carry out the same analysis for Fig. 5b, and since the
membership functions drop in negative and positive values,
we can repeat the same denominations: “Negative near �0.6”
and “Positive near þ0.6.”

Then the predicates for class decision are

� For Class 1: “The datum D belongs to Class 1” is equivalent to
saying “Feature 1 is Negative near �0.3 and Feature 2 is Positive
near þ0.6”.

� For Class 2: “The datum D belongs to Class 2” is equivalent to saying
“Feature 1 is Positive near þ0.3 and Feature 2 is Negative near �0.6”.

In real cases, the predicates would look linguistically interpretable
and they could give some useful information for dataset analysis.

5.2.2. Example 2: MRI2 dataset
We also include the following analysis for the MRI2 dataset,

which is nearer to a real case because its features and classes can
be named as they are in real Magnetic Resonance Imaging (MRI)
data. By processing this dataset we try to identify 4 classes; it wasFig. 4. The double moon dataset (here called “Moon”), 2 features, 2 classes.

Fig. 5. Membership functions obtained after processing the Moon dataset. Different traces indicate different classes: solid line: Class 1; dotted line: Class 2. (a) Membership
functions for feature 1. (b) Membership functions for feature 2.
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presented and analyzed using other methods [15]. As it comes
from brain MRI data, each datum represents a pixel in the image
and the classes represent different types of brain tissue or areas
in the images: gray matter, white matter, cerebrospinal fluid and
background. In the same way, features represent different types of
images obtained, named “T1 Intensity,” “T2 Intensity,” and “PD
Intensity.” Considering the background as an easy-to-find class we
only will analyze the other classes. We show the membership
functions obtained by the SFPC method (M¼3) in Fig. 6.

We note in Fig. 6a that there are several Gaussian curves
grouped together on the left, identified for cerebrospinal fluid
(each one corresponding to different partitions of the dataset
and therefore different SOM analyses, shown with a solid line).
All of them are placed near the lowest “T1 intensities” (�1 to �0.6
in the normalized scale), so they could be associated to low
intensities in the pixels with these intensities values, which could
be interpreted and named as “Dark”. By observing Fig. 6b in the
same way, we can see the curves for the same class (again the solid

Fig. 6. Membership functions obtained by processing MRI2 dataset. Different traces indicate different brain tissues (classes): white matter, cerebrospinal fluid and gray
matter. (a) Membership functions for feature “T1 Intensity”. (b) Membership functions for feature “T2 Intensity”. (c) Membership functions for feature “PD Intensity”.
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line) are at the right of the graph, leading us to the opposite
concept which could be “Bright”, as they represent the highest
intensities, from 0.4 to 1 in the normalized scale. Finally we can
note in Fig. 6c that the corresponding curves are in the middle of
the axis, which could be translated as “Gray” (mean intensities).

The previous predicate can now be linguistically read, using
these interpretations: “The pixel D belongs to cerebrospinal fluid” is
equivalent to saying “T1 intensity is Dark and T2 intensity is Bright
and PD intensity is Gray”.

Following similar steps, we can also add the following expres-
sions: “The pixel D belongs to gray matter” is equivalent to saying
“T1 intensity is Dark-Gray and T2 intensity is Medium-Gray and PD
intensity is Light-Gray”, and finally: “The pixel D belongs to white
matter” is equivalent to saying “T1 intensity is Very-Bright and T2
intensity is Dark and PD intensity is Very-Bright”.

The linguistic predicates are built by replacing the generic “Feature
i” denominations by the feature names and replacing the generic
expression mf ik; i¼ 1;2;…; d; k¼ 1;2;…;K by interpretation of the
curves in the data field. The logic structure is preserved. In this way,
any of the options given for the presented method are likely to be
translated to more or less complex linguistic expressions.

6. Discussion

In the steps 1 and 2 of the proposed method, the necessary
knowledge to define the fuzzy predicates is extracted. The SOM
codebook is not a replica of training data but it is a generalized
representation of them, which makes it a good representation of
the information contained in the data. We not only consider the
quantification error but a combination of several quality measures.
This is relevant at this stage, because it avoids overtraining and it
assures the codebook is a generalization of the training data. We
can see SOM as statistical seekers of the data space, considering
different partial populations (one for each partition).

After training SOM, the codebook, and hence the cells, are
partitioned by some simple clustering method (in a two-level
clustering scheme). This allows the analysis of fuzzy ranges that
features take in each cluster and how they relate to each other,
which is conducted by defining membership functions and the
predicate basis. As a result, we obtain structured knowledge from
data besides the clustering partition.

The main advantage of this clustering methodology is the reduc-
tion of the computational cost within the stage of the identification of
clusters; given that it is carried out onto the reduced data dimension
of SOM projection. An interesting advantage of second-level clustering
is the ability to reduce noise. The SOM codebooks act like a low pass
filter, smoothing the data's high frequency variations.

Another point to note is the ability to discover clusters not
linearly separable using the emergent concept applied to the
U-Matrix on SOM with many neurons. Several clustering algo-
rithms exploit the emergent properties of such SOM that outper-
form other popular clustering algorithms when the clustering of
complex datasets is addressed.

The inclusion of the fuzzy logic approach allows taking advantage
of the benefits seen in previous works, typically the robustness
against data noise and the interpretability of the results. Additionally,
using predicates instead of rules makes the system a natural
extension of the Boolean logic, and in contrast to what occurs in
FIS, no inference, aggregation, and defuzzification stages are required.

SOM used in SOM–FCM are obtained in the same way as those
for SFPC. In particular, the accuracy for SFPC with M¼1 is always
higher than SOM–FCM. This highlights the contribution of the
fuzzy predicates to the system's performance. Besides, the search
criterion for the SOM is shown when the SOM–FCM accuracy is
compared to that of K-means, EM, and FCM.

The proposed fuzzy predicate system can be configured in
several ways, by changing the way predicates are built, the
number of partitions of data, among other configurations options.
So given a dataset, various different instances of the method can
be tested in order to obtain appropriate results to discover
knowledge for the field of the data.

Results are encouraging in terms of clustering accuracy when
compared to other techniques. It is important to note that the
accuracy is higher than that achieved with two-level SOM-cluster-
ing alone, which allows concluding that fuzzy predicates are the
fundamental component of the system. Also, the clustering inter-
pretation via fuzzy predicates constitutes an important contribu-
tion of this work.

7. Conclusion

We proposed a system using fuzzy predicates, created by way
of two-level clustering approach using SOM to tackle ranked
clustering problems. SOM are applied in order to preliminarily
process the data, which allow constructing membership functions
reinterpreted as simple fuzzy predicates involving data features.
This feature enables its use in a sparse network, where SOM are
performed at the node stage and fuzzy predicates are computed
at the upper one. Then we offered several alternatives to arrange
these simple predicates to obtain compound predicates, which are
used to determine a belonging ranking for the discovered clusters.

Even when there are parameters and options that must be set
before running the process, the proposed system is self-designed
and it possesses the advantages of other fuzzy systems based on
expert knowledge.

After the clustering process, interpretation of the results is an
optative and later process, though it constitutes an important and
relevant output of the system. Knowledge is extracted from data,
the system itself acting like an expert who discovers information
contained in the dataset.

Results show that clustering accuracy obtained is high and it
outperforms other methods in the majority of the datasets tested.
The linguistic interpretability of the predicates allows explaining
the characteristics of the clusters discovered, and it constitutes a
significant contribution of this paper.

The approach using only one compound predicate explaining
each cluster is the best choice for linguistic interpretation. That is
why we are proceeding in this way, searching for other integration
schemes. Instead of the use of the “or” operation to aggregate the
“opinion” of different SOM, this approach will be extended for the
use of Type-2 Fuzzy Logic, which is proposed as immediate future
work. By reinterpreting the membership obtained, it is expected
that Type-2 membership functions will give a novel, compact and
simpler interpretation for the fuzzy predicates.
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