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a b s t r a c t

In this work we perform a comparison of atomic diffusion multi-frequency models for h.c.p. lattices.
Specifically, in diluted h.c.p. aZr-Nb alloy, we calculate, the tracer self- and impurity diffusion coefficients,
with Ghate's eight frequencies model [1] and with the 13 frequencies model recently developed by
Allnatt et al. [2]. For the latter we investigate the tight-binding limit and the 5-frequency limit of the
model. Our exhaustive calculations have been performed using, for both models, classical molecular
static techniques (MS), as well as, quantum ab-initio calculations within both LDA and GGA approxi-
mations. Our ab-initio calculations show that a, so called, 5-frequency model, without pairs dissociation
nor anisotropy in the jump frequencies, that only needs three frequencies, is sufficient to obtain solvent
and solute anisotropic diffusion coefficients that are in agreement with experimental data.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

Diffusion plays an important role in the kinetics of many ma-
terials processes. Experimental measurements of diffusion co-
efficients are expensive, difficult and in some cases nearly
impossible. A complimentary approach is to determine diffusivities
in materials by atomistic computer simulations. In addition to
predicting diffusion coefficients, computer simulations can provide
insights into atomic mechanisms of diffusion processes, creating a
fundamental framework for materials design strategies.
entes, Gerencia Física, Labo-
artín, Argentina.
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Thanks to non equilibrium thermodynamics, the atomic trans-
port theory is able tomodel the diffusion process in terms of atomic
jump frequencies. In the linear response framework the diffusion
coefficients, as was early shown [3,4], can entirely be expressed in
terms of the commonly known Onsager coefficients Lij. The Lij are
the fundamental kinetic quantities. In the context of the commonly
known as multi-frequency model, originally developed by Le Claire
[5], the Onsager coefficients for vacancy mediated diffusion can in
turn be expressed in terms of frequency jumps rates of various
atom-vacancy exchanges relative to a solute atom. For the case of
isotropic alloys, the multi frequency models have been developed
by Serruys and Brevec [6] for b.c.c. and by Allnatt [7,8] for f.c.c.

From the theoretical and modeling points of view, ab-initio
methods are fundamental tools. Based on quantum mechanics,
they calculate relevant magnitudes with a high degree of confi-
dence. This allows not only to obtain specific numerical values but
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also to gain in the understanding of the atomic level involved
mechanisms. Furthermore, the molecular static technique known
as the Monomer method [9] was developed to study the migration
of defects in crystal systems. Knowing the energies and configu-
rations of activated states, it is possible to study the atomic diffu-
sion. Moreover, all these methods take advantage of parallel
computer architectures (as clusters of PCs).

Recently, attempts were made in order to describe the diffusion
process, in isotropic structures, by obtaining numerically the
needed jump frequencies. Ad-initio based DFT calculations of
diffusion coefficients where performed for b.c.c. alloys such as Ni-Cr
and Ni-Fe [10], and for aFe-Ni and aFe-Cr alloys [4] as well as forMg,
Si and Cu diluted in f.c.c. Al [11]. Also, in a recent work Huang et al.
[12], for Fe based diluted alloys, have performed DFT based calcu-
lations for the tracer diffusion coefficient with a larger number of
atoms (128 instead of 54 as in [4]) that are in better agreement with
the experimental data. On the other hand, one of us has recently
shown [3] that, tracer diffusion coefficients performed with clas-
sical Molecular Static (MS) based calculations in diluted Ni-Al and
Al-U f.c.c. alloys are in good agreement with available experimental
data for both systems. Also diffusion in both f.c.c. and b.c.c. Fe� Cr
have been recently studied with great accordance between calcu-
lations and experimental data with classical MS calculations [13].

Hexagonally close packed (h.c.p.) structures have tetragonal
symmetry and hence exhibit anisotropic diffusion properties. In
this case, there are two independent diffusion coefficients: (i)
diffusion coefficient, Dx, along a or b-axis direction i.e. along axes in
the basal plane (ii) diffusion coefficient, Dz, along c-axis. Hence, five
jump frequencies such as in the case of f.c.c. and b.c.c. are insuffi-
cient for describing diffusion in anisotropic structures such as h.c.p.
The different types of jumps needed in this case are: (i) when the
solute atom and the vacancy are within a basal plane (ii) when the
solute and vacancy are in different basal planes, respectively. Thus,
two sets of five, and two of the self-diffusion are needed to describe
impurity diffusion in h.c.p. system.

The first attempts to describe diffusion kinetics in the aniso-
tropic h.c.p. structure were performed by Ghate [1] and Batra [14]
who used a model containing a total of eight atom vacancy jump
frequencies to describe the solute correlation factor. Only recently
DFT calculations of diffusivities in h.c.p structures using Ghate's [1]
eight frequency model have been performed in Mg based alloys in
Refs. [15] and [16]. In this last work, systematic comparison with
experimental diffusion data show that the DFT based calculated
diffusion coefficient are not always in agreement with the experi-
mental data.

On the other hand, on the theoretical point of view, very
recently Allnatt, Belova and Murch [2] have obtained, for h.c.p
structures, expressions for the set of Onsager phenomenological
coefficients in terms of a set of 13-frequencies. The 13-frequency
model is a full description of the vacancy diffusion mechanism in
the anisotropic h.c.p. crystallographic structure. This model goes
beyond Ghate's eight frequencies one, but as was pointed in Ref. [2]
a comparison of both formulations is not straightforward. However,
results with both models need to be compare in order to under-
stand the diffusion process in h.c.p. structures, as well as, the lim-
itations of both models.

While the model by Allnatt et al. [2], in its most complete
version involves 13 frequencies, in its current stage of development,
there are only closed expressions for the tight-binding (TB) limit
where all vacancies and solute atoms are paired. In this case, the
model involves only 8 frequencies, although different from those
used in the Ghate's model. A further simplification of the tight-
binding limit of the 13 frequency model is applicable when the
lattice parameters are close to ideal c=a ¼ ffiffiffiffiffiffiffiffi

8=3
p

x1:63299. In this
case, axial or basal jump frequencies are consider equals, so that
diffusion coefficients depends on just five frequencies as in the f.c.c.
model.

In this work, we perform numerical calculations of the diffusion
coefficients for h.c.p. aZr � Nb diluted alloys using both the 8-
frequency model developed by Ghate [1] and the 13 frequency
model (in the TB limit) recently developed by Allnatt et al. [2]. In
order to exhaustively compare the diffusion coefficients obtained,
with both models, we have performed the numerical calculations
within a classical molecular static (MS) approximation, as well as,
with two kinds of ab-initio first principles approaches, namely DFT
with LDA and GGA approximations. Calculations with the Allnatt
et al. [2] model are here applied to a specific alloy for the first time
in the literature.

The choice of the aZr � Nb alloys is based on that the alloy
Zr � 2:5%Nb is used in the manufacture of pressure tubes of the
CANDU type nuclear power plants. Once on service, the pressure
tubes are subjected to temperature and radiation, which modifies
alloy's mechanical properties (yield stress) micro-structure, solu-
bility and the diffusion coefficient. In particular, hydrogen related
damage is related to the diffusion process. Hence diffusion prop-
erties in Zr � Nb alloys deserve to be studied in order to evaluate
their service lifetimes.

We have summarized the theoretical tools needed to express
the diffusion coefficients in terms of microscopic magnitudes such
as, the jump frequencies, the free vacancy formation energy and the
vacancy-solute binding energy. Thenwe start with non-equilibrium
thermodynamics in order to relate the diffusion coefficients with
the phenomenological Onsager L-coefficients. The microscopic ki-
netic theory, allows us to write the Onsager coefficients in term of
the jump frequency rates [7,8], which are evaluated from the
migration barriers and the phonon frequencies under the harmonic
approximation. The lattice vibrations are treated within the con-
ventional framework of Vineyard [17] that corresponds to the
classical limit.

In the present work, we employ DFT and classical molecular
statics technique, both of them coupled to the Monomer method
[9]. This much less computationally expensive method allows us to
compute at low cost a bunch of jump frequencies from which we
can perform averages in order to obtain more accurate effective
frequencies.

We found that, our results for the Nb solute diffusion with MS
calculations are not reliable, implying in the need for the devel-
opment of accurate pseudo potentials in order to deal with Nb in
the alloy. On the other hand, our calculations with LDA and GGA
show that, Nb solute diffusion is well described by both, the Ghate's
8-frequencies model [1], and the Allnatt et al. [2] model of 13-
frequencies in the tight-binding limit. Moreover, we show that
the results obtained with the 5-frequency limit are in agreement
with experimental data. Therefore, we can say that this simple
model that does not take into account either the dissociation of
pairs or anisotropy in the jump frequencies is sufficient to describe
the anisotropic diffusion process in this h.c.p. alloy.

The paper is organized as follows: In Section II we briefly
introduce a summary of the macroscopic equations of atomic
transport that are provided by non-equilibrium thermodynamics
[18e20]. In this way analytical expressions of the intrinsic diffusion
coefficients in binary alloys in terms of Onsager coefficients are
presented. Section III, is devoted to evaluate diffusion coefficients
for the particular case of h.c.p diluted alloys. For this, we describe
the expressions for the correlation factors and diffusion coefficients
in terms of the jumps frequencies in the context of the 8-frequency
model [1]. Then, we briefly describe the Allnatt et al. [2] 13 fre-
quency model in the tight binding approximation and the way it
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can be used to obtain correlation factors and the diffusion co-
efficients. In Section IV we describe the calculation details of the
numerical methods used in this work in order to obtain the lattice
parameters and energy jumps for the here studied Zr � Nb diluted
alloy. Our numerical results are presented in section V where we
use the theoretical procedure here summarized and we perform a
comparison of the results obtained with MS and DFT calculations
within both, the 8 frequencies and the 13 frequencies models in the
tight-binding and in the 5-frequency approximations. The last
section is devoted to discussion of the results and conclusions.
2. Theory summary: the flux equations

Isothermal atomic diffusion in binary A� S alloys can be

described through a linear expression between the fluxes J
!

k and
the driving forces related by the Onsager coefficients Lij as,

J
!

k ¼
XM
i

Lki X
!

i; (1)

whereM is the number of components in the system, J
!

k describes

the flux vector density of component k, while X
!

k is the driving
force acting on component k. The second range tensor Lij is sym-
metric (Lij ¼ Lji) and depends on pressure and temperature, but is

independent of the driving forces X
!

k. For each k component, the
driving forces may be expressed, in absence of external force, in
terms of the chemical potential mk, so that [18],

X
!

k ¼ �TV
�mk
T

�
: (2)

In (2) T is the absolute temperature, and the chemical potential
mk is the partial derivative of the Gibbs free energy with respect to
the number of atoms of specie k that is,

mk ¼
�
vG
vNk

�
T ;P;Njsk

¼ m+k ðT ; PÞ þ kBTlnðckgkÞ; (3)

where kB stands for the Boltzmann constant, gk, is the activity co-
efficients, which is defined in terms of the activity ak ¼ gkck and ck,
is the molar concentration of specie k.

For the particular case of a binary alloy with N available lattice
sites per unit volume, containing molar concentrations cA for host
atoms A, cS of solute atoms S (impurities), the fluxes in terms of the
Onsager coefficients are expressed as,

JA ¼ �kBT
N

�
LAA
cA

� LAS
cS

��
1þ vlngA

vlncA

�
VcA; (4)

JS ¼ �kBT
N

�
LSS
cS

� LAS
cA

��
1þ vlngS

vlncS

�
VcS; (5)

with

JV ¼ �JA � JS; (6)

for the flux of vacancies. From the flux Eqs. (4) and (5), the intrinsic
diffusion coefficients for solvent A and solute S, are respectively
defined as

DA ¼ kBT
N

�
LAA
cA

� LAS
cS

�
fA; (7)

and
DS ¼
kBT
N

�
LSS
cS

� LSA
cA

�
fS: (8)

In Eqs. (7) and (8), the quantities fA;fS are known as the ther-
modynamical factors,

fA ¼
�
1þ v ln gA

v ln cA

�
; fS ¼

�
1þ v ln gS

v ln cS

�
: (9)

In the dilute limit, the thermodynamics factor fA ¼ fS ¼ 1,
which simplifies the expression of the tracer diffusion coefficients
in terms of the phenomenological coefficients.

Also, when species i performs ni jumps of length a in time t, the
Lij coefficients can be expressed in terms of the so called collective
correlation factors fij through [21].

Lii ¼ fii
a2cini
6kBTt

; Lij ¼ f ðiÞij
a2cini
6kBTt

ði ¼ A; SÞ: (10)

That is,

fAA ¼ kBT
NcA

LAA

 
1
D0
A

!
; fSS ¼

kBT
NcS

LSS

 
1
D0
S

!
; (11)

and for the mixed terms,

f ðAÞAS ¼ kBT
NcA

LðAÞAS

 
1
D0
A

!
; f ðSÞAS ¼ kBT

NcS
LðSÞAS

 
1
D0
S

!
; (12)

where D0
i ¼ a2Gi=6 (i ¼ A; S) are the diffusion coefficients of atoms

of specie i in a complete random walk performing Gi ¼ ni
t jumps of

length a per unit time.
Murch and Qin [20] have shown that the standard intrinsic

diffusion coefficients can be expressed in terms of the tracer
diffusion coefficients D+

A , D
+
S which are measurable quantities, and

the collective correlation factor fij (i; j ¼ A; S) as:

DA ¼ D0
A

�
fAA � cA

cS
f ðAÞAS

�
fA ¼ D+

A

"
fAA
fA

�
�
cA
cS

�
f ðAÞAS
fA

#
fA; (13)

DS ¼ D0
S

�
fSS �

cS
cA
f ðSÞAS

�
fS ¼ D+

S

"
fSS
fS

�
�
cS
cA

�
f ðSÞAS
fS

#
fS: (14)

The intrinsic diffusion coefficients in (13) and (14) are known as
the modified Darken equations. Also, for isotropic crystals, they
express the tracer diffusion coefficients in terms of the tracer cor-
relation factors fA, fS that are defined through [22].

D+
i ¼ fiD

0
i ¼ 1

6
Gia

2fi; ði ¼ A; SÞ: (15)

To treat more general cases [22], in particular for anisotropic
crystals, diffusion in any arbitrary direction can always be described
in terms of diffusion coefficients only along the three principal axis.
Several types of jumps may contribute to the diffusion in a given x-
direction. A configuration of type a can perform jumps whose x
component is xa. Let Ga be its number of jumps in unit time. The
tracer diffusion coefficients is expressed as a sum involving each
jump type

D�
x ¼

1
2

X
a

Gax2af
a
x ; (16)

where f ax are the partial correlation factors for each types of jumps.
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Note the factor 1
6 in (15), instead of 1

2, that comes from the three
dimensions involved in (15). Also, we can write a total correlation
factor fx such that

D�
x ¼

1
2

 X
a

Gax2a

!
fx: (17)

In this way, the total correlation factor fx may be written in
terms of the partial correlation factors f ax as

fx ¼
P

aGax2af
a
xP

aGax2a
:

The number of jumps a in unit time is

Ga ¼ ZaCaua (18)

where Ca is the fraction of all configurations of type a, Za is the
number of different (near neighbor sites) ways a jump of type a can
occur and ua is the frequency for individual jump to occur in
configuration of type a. The concentration of configurations of type
a is [22].

Ca ¼ exp

 
� DGf

a

kBT

!
¼ exp

 
� DHf

a � TDSfa
kBT

!
;

where DGf
a is the Gibbs free energy for the formation of a type a

configuration, while DHf
a and DSfa stand for the formation enthalpy

and entropy respectively. For vacancy mediated diffusion, Ca is the
vacancy concentration near a jumping atom, hence

Ca ¼ Ceq
V exp

 
� Eba
kBT

!
;

where Eba is the binding energy between the pair formed by the
vacancy and the jumping atom in the a configuration. The vacancy
concentration at equilibrium is

Ceq
V ¼ exp

 
� EfV � TSfV

kBT

!
(19)

in terms of EfV and SfV the vacancy formation energy and entropy
respectively. Hence, the a pair concentration is,

Ca ¼ exp

 
� EfV � TSfV

kBT

!
exp

 
� Eba
kBT

!
: (20)

According to the transition-state theory, in a system of N atoms,
the exchange frequency between a vacancy and an atom is,

ua ¼ n0exp
�
� Gm

a

kBT

�
¼ n0exp

�
TSma � Hm

a

kBT

�
: (21)

In (21), Gm
a is the migration Gibbs free energy and the pre-

exponential term, the “attempt frequency” n0, is of the order of
the Debye frequency. The Gibbs free energy is given by
Gm
a ¼ Hm

a � TSma , where Sma is the migration entropy, while Hm
a is the

enthalpy. As the volume is kept constant, Hm
a ¼ Ema ;where Ema is the

internal migration energy. Hence, following Vineyard's formulation
[17], the migration frequency jumps are given by

ua ¼ n+0 exp
	� Ema



kBT

�
: (22)

In (22), Ema are the vacancy migration energies at T ¼ 0K , while
n+a ¼
 Y3N�3

i¼1

nIi

!
a

, Y3N�4

i¼1

nSi

!
a

¼ n0exp
�
Sma
kB

�
; (23)

with nIi and nSi the frequencies of the normal vibrational modes at
the initial and saddle points, respectively.
3. The impurity diffusion coefficients in h.c.p. lattices Dk and
D⊥

For the case of hexagonal closed packed (h.c.p.) structures, such
as Zr, the crystal anisotropy results in two independent diffusion
coefficients. Diffusion parallel to the c axis, (1D diffusion along
z�axis) called Dk, that occurs only by inter-basal (or axial) jumps,
while diffusion perpendicular to the c axis (2D diffusion in the
xy�plane) called D⊥, can occur either by basal jumps, or by a series
of inter-basal jumps (see Fig. 2). Basal jumps generate atomic dis-
placements of magnitude a on the basal plane, whereas inter-basal
jumps generate atomic displacements in c=2 parallel to the axial
direction, along with displacements in a=

ffiffiffi
3

p
perpendicular to such

direction, where a and c are the h.c.p. lattice parameters. Hence, for
the axial diffusion,

D�
k ¼

1
2
f z
Xaxial
a

Ga
c2

4
(24)

where the sum in (24) runs on the axial jumps. For on plane
diffusion

D�
⊥ ¼ 1

4

 
f xb
Xbasal
a

Gaa2 þ f xa
Xaxial
a

Ga
a2

3

!
(25)

where the first summation in (25) runs on the basal jumps and the
second on axial ones.

In this work, we perform a comparison between two formalism
in order to calculate the diffusion coefficients in h.c.p. structures. In
first place, the Ghate's 8-frequency model, gives expressions for the
partial correlation factors f xa ; f xb , and f z. While in 13-frequency
model developed by Allnatt, Belova and Murch [2], the diffusion
equations are expressed in terms of total correlation factors f z and
f x, that is,

D�
k ¼

1
2
f z
Xaxial
a

Ga
c2

4
(26)

where now the sum in (26) runs on the axial jumps involving the
13-frequencies. While the plane diffusion

D�
⊥ ¼ 1

4
f x
 Xbasal

a

Gaa2 þ
Xaxial
a

Ga
a2

3

!
(27)

is expressed in terms of the total correlation factor fz.
In diluted binary A� S alloys, a very small concentration of va-

cancies, V, transports the atoms by nearest-neighbor (NN) ex-
changes. A vacancy, V, and a solute atom, S, interact only when they
are nearest-neighbors, then a V � S pair is formed. Such a pair is
said to be bounded for attractive as well as for repulsion interaction
between V and S. In h.c.p. structures, we distinguish between type a
pairs, pa, in which the S and V are in adjacent hexagonal (basal)
planes and type b pairs, pb, in which they are in the same basal
plane. Similarly as for the 5-frequency f.c.c. model definitions of the
atom-vacancy exchange frequencies jump rates are: u2 for a
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vacancy-solute exchange, u1 a vacancy-host exchange which
merely reorients a bound pair, u3 for a vacancy-host exchange
which takes the vacancy from a bound to an unbound state, u4 for
the inverse of a u3 jump and u0 for a vacancy-host exchange in
which the vacancy passes between unbound sites. For the h.c.p.
model, Allnatt et al. [2], have retained the same subscript meanings
but a prime superscript is added for vacancy jumps between
adjacent hexagonal planes (out-of-plane jumps), while no prime is
added if the vacancy remains in the same hexagonal plane (in-
plane jumps). Also, as in Ref. [2], a subscript a or b is added that
indicates the type of pair concerned. Fig. 1, depicts the jump rates ui
and u0

i (i ¼ 1;2;3;4) considering only jumps between first neigh-
bors. There are also in-plane, u0, and out-of-plane, u0

0, jumps of the
vacancy between unbound sites.
3.1. The 8-frequency model of Ghate

Single vacancy diffusion in pure structures: For self-diffusion, all
vacancy jumps are equally probable, and so the correlation factor
has a constant value that depends only on the geometry of the
crystal lattice. Total jump frequency, G ¼ Zu, where Z is the number
of NN sites into which a vacancy can jump to and u is the frequency
for individual jumps. As wementioned earlier, an h.c.p. lattice has 6
in-plane and 6 out-of-plane NN sites, Za ¼ Zb ¼ 6. Also, the jumps
between a vacancy V and a solvent atom can be, in-plane with in-
dividual frequency u0, or out-of-plane, with individual frequency
Fig. 1. a) In plane vacancy jumps in the thirteen-frequency model [2] from the pa configuratio
the pa configuration (u0

2a , 2u
0
1a , 3u

0
3a). c) In plane vacancy jumps in the thirsteen-frequency

shown for z>0) jumps in the thirsteen-frequency model [2] from the pb configuration (2u
u0
0. Substituting for G in Eqs. (24) and (25) the self-diffusion co-

efficients for the pure structure are obtained as

D�
Ak ¼

3
4
c2f zACVu

0
0 ; (28)

and

D�
A⊥ ¼ 1

2
a2CV

	
fAbu

0
0 þ 3f xAu0

�
: (29)

In (28) and (29), u0 and u0
0 are respectively, the individual jump

frequencies in the axial and basal planes of the pure h.c.p. matrix,
calculated from (22) and (23). As in Ref. [23] the correlation factors
f zA ; f

x
A and fAb are presently set to the f.c.c. constant value f ¼ 0:78.

The vacancy concentration CV is obtained from (19). The presence
of a solute, however, can alter the vacancy motion by biasing
certain jumps. If the solute-vacancy exchange frequency is much
smaller (larger) than other vacancy exchanges, the values of f can be
increased (decreased) relative to that of self-diffusion. The degree
to which this effect hinders diffusion depends on the correlation of
vacancy positions between two consecutive solute-vacancy
exchanges.

For the solute diffusion, the solute correlation factors f zS , f
z
S and

fAb are inserted in Eqs. (24) and (25) such that,
n (2u1a , 4u3a). b) Out of plane vacancy jumps in the thirteen-frequency model [2] from
model [2] from the pb configuration (u2b , 2u1b , 3u3b). d) Out of plane vacancy (only

0
1b , 4u

0
3b).
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D�
Sk ¼

3
4
c2Caf zSu

0
2a; (30)

D�
S⊥ ¼ 3

2
a2Cbf

x
S u2b þ

1
2
a2CafAbu

0
2a: (31)

Again, a and c are the lattice parameters, u2b and u0
2a are the

solute-vacancy exchange jump frequencies within and out of the
basal plane. The concentrations Ca and Cb for the axial an basal pairs
are obtained from Eq. (20) with the corresponding axial and basal
binding energies respectively. The solute correlation factors,
f iS; fAb ði ¼ x; zÞ, in (30) and (31), can be quantitatively evaluated
using a multi-frequency models well known as the 8-frequency
model developed for the h.c.p. lattice by Ghate [1], which is anal-
ogous to the 5-frequency model of Le Claire for f.c.c. metals [5]. In
this case, the model is based on 8 of the above described fre-
quencies, which are (u0

2a,u
0
1a,u1a,u3a ) and (u2b,u0

1b,u1b, u3b ). The
solute correlation factors that depend on the 8 jump frequencies
illustrated in Fig. 1 are given by (see [1])

f zS ¼ 2u0
1a þ 5:152u3a

2u0
1a þ 5:152u3a þ 2u0

2a
; (32)

f xS ¼ 1þ 2SSx
lB

; (33)

fAb ¼ 1þ 2SAb
lAb

: (34)

The distances, lB ¼ a for a jump within the basal plane and
lAb ¼ a=

ffiffiffi
3

p
, the projection of the axial jump onto a basal plane are

depicted in Fig. 2, and the lengths SBx and SAb are determined by

SSy ¼ u0
1bSAb � u1bSSy

2u0
1b þ 2u1b þ 5:152u3b þ u2b

; (35)

SSx ¼
ffiffiffi
3

p
u0
1bSAb þ u1bSSx � u2bðlB þ SSxÞ

2u0
1b þ 2u1b þ 5:152u3b þ u2b

; (36)

SAb ¼
u0
1a

� ffiffiffi
3

p
SSx þ SSy

�
� u1aSAb � u0

2aðlAb þ SAbÞ
2u0

1a þ 2u1a þ 5:152u3a þ u0
2a

; (37)

After solving this system of linear equations simultaneously, one
can substitute the results into Eqs. (32e34) in order to obtain the
Fig. 2. h.c.p. jump distances used in the 8-frequency model [15].
correlation factors that are functions only of the various ratios of
jump frequencies and the ratio lB=lAb.
3.2. The 13-frequency model of Allnatt

Recently, a more complete model, involving 13 frequencies, has
been developed by Allnatt, Belova and Murch [2] for the diffusion
process for h.c.p. lattices. Then, the effect of different vacancy ex-
change mechanisms on diffusion, can be described with an effec-
tive 13 frequency model [2]. As we have already mentioned,
similarly as for the 5-frequency f.c.c. model definitions of the atom-
vacancy exchange frequencies jump rates are: u2 for a vacancy-
solute exchange, u1 a vacancy-host exchange which merely reor-
ients a bound pair, u3 for a vacancy-host exchange which takes the
vacancy from a bound to an unbound state, u4 for the inverse of a
u3 jump and u0 for a vacancy-host exchange in which the vacancy
passes between unbound sites. For the h.c.p. model, Allnatt et al.
[2], have retained the same subscript meanings but add a super-
script prime if the vacancy jumps between adjacent hexagonal
planes (out-of-plane jumps), but not if the vacancy remains in the
same hexagonal plane (in-plane jumps). They have also added a
subscript a or b in order to indicate the type of pair concerned. Fig.1,
depicts the jump rates ui and u0

i (i ¼ 1;2;3;4) considering only
jumps between first neighbors.

For pa type of pairs, there are six possible in-plane vacancy
jumps (2u1a, 4u3a) and six possible out-of-plane jumps (u0

2a, 2u
0
1a,

3u0
3a). Analogously, for pairs of type pb, there are six possible in-

plane vacancy jumps (u2b, 2u1b, 3u3b) and six possible out-of-
plane jumps (2u0

1b, 4u
0
3b). The full set of frequencies are depicted

in Fig. 1. Corresponding to the four kinds of dissociation jump (the
four exchange frequencies each with a subscript 3), there are four
kinds of association jump which are jumps in the reverse sense of
jumps 3 with a subscript 4. There are also in-plane, u0, and out-of-
plane, u0

0, jumps of the vacancy between unbound sites. The prin-
ciple of detailed balance shows that among the 16 jump frequencies
just defined, there are three independent relations:

u4X

u3X
¼ u0

4X
u0
3X

¼ exp
�
�bEbX

�
; X ¼ a;b (38)

u0
1a

u0
1b

¼
exp

�
�bEbb

�
exp

�
�bEba

� ¼
u0
4b

.
u0
3b

u0
4a



u0
3a

(39)

This leaves 13 independent frequencies.
3.2.1. Isotope-limit case: the tracer self-diffusion
Self diffusion can be studied in the isotope-limit, defined as the

case where the solute, S, is an isotope of the solvent, A, so that all
exchange frequencies are either u0 or u0

0, according to them being
in-plane or out-of-plane jumps. In this case, the correlation factor,
f x and f z, varies with the frequency ratio x ¼ u0=u

0
0 such that cor-

relation factor for the pure Zr in the z and x components are
respectively

f z ¼
�
1þ 8:77xþ 7:37x2 þ 0:65x3

�.�
1þ 9:90xþ 10:90x2

þ x3
�
;

(40)
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f x ¼
�
0:56þ 4:38xþ 3:67x2 þ 0:64x3

�.�
1þ 5:75xþ 4:11x2

þ x3
�
:

(41)
f xS ¼
3
h
Hu1a

�
Fu1b þ 2u0

1b

	
F þ u0

2au2b
��þ 2G1bu

0
1a

�
u0
1bu

0
2au2b þ u1b

	
F þ 3u0

2au2b
��i

F
h
3G12bHu1a þ 2

�
G12bHu0

2a þ 3u0
1a

�
u0
1bu2b þ u1bðG1b þ 2u2bÞ

��i (48)
In this limit, the matrix method gives that the cross collective

correlation factor f ðSÞiAS ¼ ð1� fiÞ, with i ¼ x; z. In the isotopic limit
the tracer self-correlation factors f z, f x are calculated from (40) and
(41). This expressions of the correlation factors are then inserted in
expressions (26) and (27) in order to obtain the tracer self-diffusion
coefficients

D�
k ¼

3
4
c2f zCVu

0
0; (42)

in the axial direction and

D�
⊥ ¼ 1

2
a2f xCV

	
u0
0 þ 3u0

�
; (43)

for the plane diffusion.
3.2.2. The tight-binding approximation: self- and impurity diffusion
coefficients

As we have already mentioned, in the current stage of devel-
opment of the 13-frequency model, Allnatt et al. have obtained
closed expressions for the correlation factors only in the tight-
binding (TB) limit where all vacancies and solute atoms are
paired. In this case, both �Eba and �Eba are so large that all the va-
cancies are always bound to the solute atoms (Tight-binding case),
it is also assumed that the concentration of vacancies is never
greater than the concentration of the solute atoms. Under this
assumption, the effect of sources and sinks can only be reflected in
the total vacancy concentration.

In this limit, the solvent and solute fluxes JA, and JS are not in-
dependent. The vacancy mechanism ensures JA þ JS þ JV ¼ 0, and
the tight binding condition implies in JS ¼ JV . It is then shown in
Ref. [2] that in the tight-binding limit, two collective correlation
functions are simply related to the solute correlation factor:

f ðSÞiAS ¼ �2f iS; (44)

f iAA ¼ 4
�
Lð0ÞiSS

.
Lð0ÞiAA

�
f iS; i ¼ x; z (45)

with Lð0Þ corresponds to the, so called, uncorrelated part of L-co-
efficients. For migration in the z-direction, the solute correlation
factor has been obtained in Ref. [2], to be:

f zS ¼ u0
1a

u0
1a þ u0

2a
(46)

and, the required ratio of the uncorrelated parts is:
Lð0ÞzSS

Lð0ÞzAA

¼ u0
2a

4u0
1a

(47)

Similarly, for the x-direction:
with

H ¼ 3u1b þ 2u0
1b ; (49)

F ¼ u0
1bu

0
2a þ 3u0

1au2b ; (50)

G1b ¼ u1b þ u0
1b ; (51)

G12b ¼ u1b þ 2u0
1b þ 2u2b : (52)

and

Lð0ÞxSS

Lð0ÞxAA

¼
�
3u0

1au2b þ u0
2au

0
1b

�
2
h
u0
1a

�
3u1b þ u0

1b

�
þ u0

1b

	
3u1a þ u0

1a

�i : (53)

The solute correlation factors f iS , for i ¼ z; x, are obtained with
the help of Eqs. (46) and (48) respectively. This expressions of the
solute correlation factors are then inserted in expressions (26) and
(27) in order to obtain the solute diffusion coefficient in the z
direction

D�
Sk ¼

3
4
c2f zS Cau

0
2a; (54)

and for the plane diffusion

D�
S⊥ ¼ 1

2
f xS a

2	3Cbu2b þ Cau0
2a
�
: (55)

The pair concentrations Ca and Cb for the axial and basal pairs
pa; pb (see Fig. 1) are obtained from Eq. (20) with the corresponding
axial and basal binding energies respectively.

Also, using relation (45) with the solute correlation factors f iS
from (46) and (48) together with the expressions (47) and (53), we
obtain the solvent correlation factors f iA for i ¼ z; x, respectively. In
this way, the solvent diffusion coefficients in the alloy are obtained
as

D+
Ak ¼

3
4
c2f zACau

0
0; (56)

D+
A⊥ ¼ 1

2
a2f xA

	
Cau0

0 þ Cb3u0
�
: (57)

Note that, in the tight-binding limit here described, only eight
frequencies are involved in order to obtain the diffusion co-
efficients, they are u1a, u0

1a, u1b, u0
1b, u

0
2a, u2a, as well as, u0 and u0

0.
Differently from the 8-frequency model by Ghate [1] the fre-
quencies u3a and u3b are not involved, as they correspond to



V.P. Ramunni, A.M.F. Rivas / Materials Chemistry and Physics 197 (2017) 163e180170
dissociative jumps.
For an ideal h.c.p. structure (c=a ¼ ffiffiffiffiffiffiffiffi

8=3
p

x1:63299) the two
nearest-neighbor jump distances are then equal. For this case, we
can put the two migration energies equal to obtain just 5-
frequencies as in the f.c.c. model. (i.e. put u1a, u0

1a, u1b, and u0
1b

all equal to u1 while u0
2a and u2b are set equal to u2). This is called

the 5-frequency model. Exploring the 5-frequency model of the
tight-binding approximation, the results for z-axis migration are, as
usual, the same as those for the 5-frequency f.c.c. model that is:

f 5f ;zS ¼ u1

u1 þ u2
(58)

and

f 5f ;zAA ¼ u2

u1 þ u2
; (59)

as in (44), f 5f ;zAS ¼ �2f 5f ;zS . But for the x-axis the solute correlation
factors differ, that for the h.c.p. case being:

f 5f ;xS ¼ 3u1ð38u1 þ 13u2Þ
2
	
57u2

1 þ 78u1u2 þ 20u2
2

�; (60)

also, f 5f ;xAS ¼ �2f 5f ;xS . Expression for the 5-frequency limit for the x-

axis f 5f ;xAA is:

f 5f ;xAA ¼ 3u2ð38u1 þ 13u2Þ
2
	
57u2

1 þ 78u1u2 þ 20u2
2

�: (61)

It is important to note that, in the 5-frequency model for the
tight-binding approximation here described, the diffusivities only
depend on 3 frequencies, which are (u0, u1, and u2).

In order to study the diffusion process in h.c.p diluted alloys, in
the next section we perform numerical calculations that provide
the different quantities needed to express the diffusion coefficients.
The numerical calculations provide, the vacancy formation energy
and entropy, from which the vacancy concentration CV is obtained
through (19), the binding energy between V � S pairs, from which
pair concentrations Ca and Cb are obtained from Eq. (20). While the
individual jump frequencies are calculated from (22) and (23) once
the vacancy migration energies and entropies are numerically ob-
tained. In the following sections we obtain, for Zr � Nb diluted al-
loys, the correlation factors and diffusion coefficients described in
the present section.
4. Calculation methods

Most of the DFT results in Zr reported here have been obtained
with the SIESTA code based on numerical, localized, atomic orbitals
and pseudopotentials [24]. The current calculations have been
performed within the generalized gradient approximation (GGA)
and the local density approximation (LDA) for exchange and cor-
relation with the inclusion of semicore states (4s24p6 for Zr). The
orbital basis used can be described as DZ with a polarized 5s state
for Zr. For Nb we use the pseudopotentials and basis sets from the
SIESTA home page. This method is very efficient at obtaining the
equilibrium positions of the atoms by relaxing the structure via the
conjugate gradients technique. The force convergence is chosen as
0.02 eV/Å. A spatial mesh cutoff of 450.0 Ry is used, with a smearing
temperature of 0.15 eV, within a Fermi-Dirac scheme. Reciprocal
space is partitioned in a 4� 4� 4Monkhorst-Pack grid. The current
super-cell of 48 Zr atoms, eventually including one Nb atom, rep-
resents a concentration of 2 at.% of Nb. Though apparently the Nb
atoms are already far enough in the periodical repetitions to make
their interaction negligible.

Complementary, DFT calculations with VASP, were used to
corroborate some structure energies in the projector augmented
wave (PAW) framework with a kinetic-energy cutoff of 460 eV in
the generalized gradient approximation (GGA) using PAW-PBE
functionals. The current super-cell of 144 Zr atoms, as with
SIESTA, eventually including one Nb atom. The Brillouin zone was
sampled with a 2� 2� 2 mesh k-points. The plane-wave cutoff
energy in the expansion of the wave functions was set to 460 eV.
Geometry optimizations were converged so that the largest forces
did not exceed 0.02 eV/Å. Note that, the energies can bemodified by
changing the number of atoms used in the simulation [3]. There-
fore, in order to verify the stability of the our results, calculations
with VASP employ a greater number of atoms.

In addition, classical calculations were also performed using
EAM potentials, developed by Pasianot and Monti [27,28], for the
pure elements Zr and Nb, as well as, for the cross Zr � Nb term. The
EAM interatomic potential, reproduces room temperature elastic
behavior for a-Zr. The simulation crystallite was formed by 7� 4�
4 unit cell containing 448 atoms. Impurity and defect relaxation, as
before, includes one substitutionalNb atom in Zr, as well as, a single
vacancy.

Several efficient methods have been developed in recent years
for finding activated states or, mathematically, saddle points [29];
here we employ the Monomer coupled to SIESTA and MS tech-
niques, developed previously in our laboratory [23]. Its coupling to
an ab initio code using SIESTA's facility to be interfaced as a sub-
routine (SIESTA as a subroutine feature). The Monomer computes
the least local curvature of the potential energy surface using only
the forces furnished by SIESTA.

The Monomer Method [9], is a static technique to search the
potential energy surface for saddle configurations, thus providing
detailed information on transition events. The Monomer computes
the least local curvature of the potential energy surface using only
forces. The force component along the corresponding eigenvector is
then reversed (pointing “up hill”), thus defining a pseudo force that
drives the system towards saddles. Both, local curvature and
configuration displacement stages are performed within indepen-
dent conjugate gradients loops. The method is akin to the Dimer
one from the literature [29], but roughly employs half the number
of force evaluations which is a great advantage in ab-initio
calculations.

Finally, our calculations are carried out at constant volume, and
therefore the enthalpic barrier DH ¼ DU þ pDV is equal to the in-
ternal energy barrier DU.
5. Results

As we have already mentioned, in a recent work Allnat et al. [2]
show that to fully consider the anisotropy of an h.c.p. lattice, 13
independent atom-vacancy exchange frequencies are needed in
contrast to the 8-frequency model developed by Ghate [1]. Here we
explore both models to study diffusion driven by vacancies in h.c.p.
Zr � Nb diluted alloy. In this section we display the results of our
numerical calculations for both multi-frequency models and per-
formed with classical MS, and with two quantum DFT approxima-
tions, namely LDA and GGA.

In Table 1 we display the results obtained for the h.c.p lattice
parameter a and for the ratio c=a that minimizes the crystal
structure energy together with their respective experimental
values.

Table 1 shows that results from DFT calculations with LDA, give
an ideal ratio c=a ¼ 1:63, while MS gives a more realistic c=a ¼ 1:59



Table 1
Lattice parameters of aZr in Å from MS and DFT calculations. Experimental values
exactly fitted in Ref. [27]. Ec the cohesive energy.

a (Å) c=a EcðeVÞ
Exp. 3.232 1.59 6.25
MS 3.232 1.59 6.25
DFT (LDA) 3.130 1.63
DFT (GGA) 3.217 1.62
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ratio for aZr. The GGA approximation gives an intermediate value of
c=a ¼ 1:62.

Dependencies of the lattice parameter a and structural relation
c=a for the h.c.p. Zr � Nb alloys versus Nb concentration were
calculated by Kharchenco and Kharchenco [30], using DFT calcu-
lations at zero temperature. The here performed calculations for a
and ratio c=a in aZr, are in agreement with results in Ref. [30].

Once the h.c.p. lattice has been constructed, in Table 2 we
summarizes the computed magnitudes for vacancy formation and
migration energies EðeVÞ and entropies S (Boltzmann's constant,
kB), together with the attempt mean jump frequency,
n+ ¼ n0expðSVm=kBÞ, for pure aZr. Present calculations also include
some configuration energies verified using VASP.

For MS, the vacancy formation energy (EVf ) in Table 2 for pure Zr

is calculated as EVf ¼ EðN � 1Þ þ Ec � EðNÞ, where EðNÞ is the energy
of a perfect lattice with N atoms, EðN � 1Þ is the energy of the
defective system, and Ec the cohesion energy. The vacancy migra-
tion barrier in perfect lattice, EVm, is calculated with the Monomer
method [9], and the activation energy, EQ , is then obtained as,

EQ ¼ EVf þ EVm. While, for DFT calculations EVf is calculated as,

EVf ¼ EðN � 1Þ � ðN � 1Þ�EðNÞ=N: (62)

Our calculations of the vacancy formation and migration en-
ergies in pure Zr are shown in Table 2, together with previous
calculations. With classical MS we obtain a formation energy of
2:01eV . The SIESTA code, within the LDA and GGA approximation,
gives respectively formation energies of 1:98eV and 2:1eV . This last
Table 2
Computed magnitudes for vacancy formation and migration: energies E (eV) and
entropies S (Boltzmann's constant, kB) in pure Zr with SIESTA þ Monomer. The
attempt mean jump frequency (n+ ¼ n0expðSVm=kBÞ). Columns labeled Vac, A-jump
and B-jump refer to the relaxed vacancy, non-basal (u0

0) and basal (u0) jumps,
respectively. Previous results in column five.

MS Vac A-jump B-jump Refs.

EðeVÞ 1.74 0.59 0.57 [27]
2.02 0.61 0.59 [28]
2.01 0.61 0.59 Current

SðkBÞ 1.15 6.36 5.93 Current [27],[27]
n+ðTHzÞ 19.2 16.1 [33]

DFT Vac A-jump B-jump Refs.

EðeVÞ 2.34 0.51 0.37 [23]
1.90 0.57 0.39 [31]
1.98 0.62 0.55 Current LDA
2.1 0.53 0.50 Current GGA
2.06 Current GGA (VASP)

SðkBÞ(LDA) 1.51 Current LDA
SðkBÞ(GGA) 2.0 Current GGA
n+ðTHzÞ(GGA) 18.56 14.77 [34]

MD Vac A-jump B-jump Refs.

EðeVÞ 0.53 0.51 [33]

EðeVÞ Exp. >1.58 [35]
value is quite in accordance with the formation energy of 2:06eV
obtained in the GGA approximation with VASP code. Note also, the
stability of the results with the change of the number of atoms.

The migration jump is anisotropic, as was shown previously in
Ref. [26]. In our calculations it requires 0.59, 0.55 or 0:50eV for the
basal direction, and 0.61, 0.62 or 0:53eV for the axial one, respec-
tively for MS and DFT with LDA or GGA calculations.

Therefore, the activation energies for Zr self-diffusion, for the
basal/axial direction, predicted by MS are 2:61=2:63ðeVÞ, and
2:53=2:60ðeVÞ or 2:60=2:63ðeVÞ respectively for LDA or GGA ap-
proximations. Previous results of the barriers with WIEN2k within
the LDA approximation, results in 2:37=2:43eV [23].

Energies in Table 2 are modified by the presence of impurities.
For the case of diluted alloys, we consider the presence of solute
vacancy complexes, Cn ¼ Sþ Vn, in which n ¼ 1st ;2nd;3rd;… in-
dicates that the vacancy is a n� nearest neighbors of the solute
atom S. Here, impurity diffusion in aZr is characterized by substi-
tutional diffusion atoms of Nb, driven by vacancies. The binding
energy, Eba, between the solute and the vacancy for the complex
Cn ¼ Sþ Vn in a matrix of N atomic sites is obtained as,

Eba ¼ fEðN � 2;CnÞ þ EðNÞg � fEðN � 1;VÞ þ EðN � 1; SÞg; (63)

where EðN � 1;VÞ and EðN � 1; SÞ are the energies of a crystallite
containing (N � 1) atoms of solvent A plus one vacancy V, and one
solute atom S respectively, while EðN � 2;CnÞ is the energy of the
crystallite containing (N � 2) atoms of A plus one solute vacancy
complex Cn ¼ Sþ Vn. With the sign convention used here Eb <0
means attractive solute-vacancy interaction, and Eb >0 indicates
repulsion. Table 3 displays for Zr � Nb, the binding energies Eba of
the different type of solute vacancy pairs pa or pb.

The calculated vacancy-solute binding energies, Eb, summarized
in Table 3 show that, with MS calculations, we have obtained a
strong repulsive interaction between vacancy and Nb atoms Eb >0.
While quantum results (with both LDA and GGA) give Eb <0. For
both LDA and GGA approximations Eb reveal a weak attractive
interaction between vacancy and solute in the case of Zr � Nb. Also,
the binding energies, for the GGA approximation, obtained with
SIESTA and with VASP codes are in good accordance.

In Ref. [36], the properties of simple point defect (i.e. vacancy,
self and foreign interstitial atoms) in the h.c.p. (a) and b.c.c. (b) Zr
with trace solute Nb have been studied by ab initio calculations
with VASP codes. The calculations indicate that the formation en-
ergies of vacancy and substitutional Nb atom are 1:94eV and 0:68eV
in aZr and 0:36eV and 0:07eV in bZr, respectively, while the binding
energies of the nearest neighbor vacancy-substitutional Nb pair
and the nearest neighbor substitutional Nb� Nb pair are 0:09eV
and 0:03eV in alpha aZr and 2:78eV and 0:72eV in bZr, respectively.

These results suggest that the Nb atoms are more likely to
agglomerate and form precipitates in bZr than in aZr. Thus, the a-
Zr-b-Zr-b-Nb transition mechanism through in situ a to b trans-
formation of Zr and the vacancy-assisted Nb diffusion for Nb
conglomeration in bZr under irradiation is proposed to explain the
existence of bNb and Zr precipitate mixtures observed in the
Table 3
Binding energies, Eba (in eV), for pa and pjb (j ¼ 1;10Þ.

n MS LDA GGA GGA

SIESTA VASP

pa 1 0.245 �0.051 �0.073 �0.067
pb 1 0.228 �0.044 �0.091 �0.094

10 0.423 �0.071 �0.093



Table 4
Migration energies Em (in eV) for vacancy jumps in Zr � Nb from classical and
quantum calculations coupled to the Monomer. In bold the barriers involved in the
8-frequency model by Ghate [1].

Zr � Nb

n uj MS LDA GGA

u0 0.59 0.55 0.50
u0
0 0.61 0.62 0.54

1 u1a 0.50 0.20 0.21
2 u0

1a 0.30 0.26 0.32
3 u3

3a
0.68 0.48 0.66

u3
4a

0.69 0.45 0.56

4 u0 4
3a

0.63 0.61 0.60

u0 4
4a

0.67 0.55 0.67

5 u0 5
3a

0.67 0.61 0.45

u0 5
4a

0.79 0.54 0.60

6 u6
3a

0.68 0.48 0.49

u6
4a

0.69 0.44 0.42

7 u0
2a 0.93 0.47 0.47

1 u1
1b

0.48 0.12 0.13

10 u10
1b

0.48 0.42 0.41

2 u0
1b 0.32 0.30 0.31

3 u0 3
3b

0.51 0.51 0.58

u0 3
4b

0.70 0.48 0.43

4 u4
3b

0.68 0.49 0.49

u4
4b

0.76 0.43 0.57

40 u40
3b

0.69 0.60 0.52

u40
4b

0.76 0.54 0.50

5 u5
3b

0.69 0.61 0.50

u5
4b

0.76 0.41 0.43

6 u0 6
3b

0.71 0.59 0.58

u0 6
4b

0.79 0.54 0.53

7 u2b 0.82 0.44 0.43

Table 5
More distant migration barriers in Zr-Nb from MS calculations.

n a) 3rd b) 4th

1 0.50 0.57
2 0.59 0.62
3 0.61 0.79
4 0.63
5 0.69
6 0.71
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experiments for the Zr-Nb alloy.
The values of the binding energies in Table 3 are used in order to

obtain the different pair concentrations. This is done with the help
of expression (20) together with the values of the vacancy forma-
tion energies and entropies displayed in Table 2.

As we have mentioned earlier the migration energies Em, are
obtained with the Monomer method [9]. Table 4, reports the
migration barriers calculated related to jumps in Fig. 1. For the
different possible jumps involved in the 13-frequency model of
Fig. 3. Mean jump frequencies for Nb a) 3rd, and b) 4th neighbor to the Vacancy (open square
related to index n in Table 5.
Allnatt et al. we obtained the activation energy for jump within the
basal plane and that between adjacent basal planes. Table 4 dis-
plays the migration energies obtained with classical MS, as well as,
with quantum DFT for LDA and GGA approximations. In some cases
the jump energies involved to obtain a given frequency (say for
example u0

3a) are not strictly equivalent. In that case the jump
frequencies are distinguished with a superscript number denoting
the final state of the vacancy (as described in Figs. 1 and 3).

Results of migration barriers, Em, in Table 4, for aZr � Nb alloy,
with MS and DFT calculations reveal that the influence of Nb is
relevant in Zr self-migration in comparison with results in pure aZr
(first two rows of Table 4). Comparing the values of u0

0 and u0 for
pure Zr migrationwith u0

2a and u2b for Nbmigration in the alloy we
can see that, according to MS results, the solute migrates in the
axial/basal plane faster than pure Zr. While results from DFT-LDA
and DFT-GGA show the opposite. This fact has important implica-
tions on the diffusion coefficient, as will be seen later.

In order to compute the mean jump frequencies ui and u0
i we

use expression (22) and (23) with the migration barriers, Ema
summarized in Table 4, together with the migration entropies Sma
for axial/basal planes displayed in Table 2. Note that, however Sma
are different for each frequency, we have adopted for our calcula-
tions the constant value of Sma obtained from the pure aZr case.

In Table 5 we display MS migrations barrier calculations for
more distant neighbors sites, this jumps are not involved in Ghate's
nor Allnat's models. We can observe from results in Table 5 that in
the alloy, classical calculations reveal an important deviation of the
mean jump frequencies, due to Nb impurities, in comparison with
the jump frequencies in pure aZr.

Once the jump frequencies needed for the multi-frequency
models have been computed, the diffusion parameters can be
calculated. Also, experimental results are available for the analysis
of the diffusion in the anisotropic structure of aZr.
). White circles correspond to the site reached by the vacancy after jump. Numbers are



Fig. 4. The tracer correlation factors in Ghate's 8-frequency model [1]. a) MS, b) LDA
and, c) GGA approximations.
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As we can observe in Table 4, in some cases the jump energies
involved to obtain a given frequency are not exactly equivalent.
Hence in that cases, we define effective frequencies determined by
an average weighted by the number of path-ways to each nearest-
neighbor distance as shown below,

4u+
3a ¼ 2uð3Þ

3a þ 2uð6Þ
3a ; (64)

3u+ 0
3a ¼ u

0 ð4Þ
3a þ 2u0 ð5Þ

3a ; (65)

2u+
1b ¼ u

ð1Þ
1b þ u

ð10Þ
1b ; (66)

3u+
3b ¼ u

ð4Þ
3b þ u

ð40Þ
3b þ u

ð5Þ
3b ; (67)

4u+ 0
3b ¼ 2u0 ð3Þ

3b þ 2u0 ð6Þ
3b : (68)

5.1. Results with Ghate's 8-frequency model

First, we summarize the here performed calculations of the full
set of the diffusion parameters, using Ghate's 8-frequency model
[1] for h.c.p. lattices. Namely we have determined correlation fac-
tors for Nb solute, as well as, the tracer self- and solute diffusion
coefficients both in the axial and basal plane.

In order to obtain the self diffusion coefficients in the axial and
basal plane we employ respectively Eqs. (28) and (29). As in
Ref. [23] we assume a constant value f ¼ 0:781 for the partial
correlation factors f zA ; f

x
A and fAb. For the study of Nb diffusion in Zr,

the tracer solute correlation factors involved in the diffusion
equations are calculated from Eqs. (32)e(34).

Fig. 4 displays the correlation factors f zS , f
x
S and fAb, (respectively

from Eqs. (32)e(34), as a function of temperature using MS, DFT-
LDA and DFT-GGA calculations. All these magnitudes were plotted
as functions of the inverse of the absolute temperature (103=T). The
jump rates needed to calculate the correlation and collective cor-
relation factors have been obtained from Table 4.

With the correlation factors, the solute diffusion coefficients in
axial and basal planes are then obtained from Eqs. (30) and (31)
respectively. Fig. 5, summarizes our results of the tracer self- and
solute diffusion coefficients using the Ghate's model with MS as
well as DFT-LDA and DFT-GGA calculations.

In order to check the validity of the theory and numerical cal-
culations, experimental results of self diffusion in pure aZr struc-
ture and of the Nb diffusion in the alloy, are also plotted in Fig. 5.

Horvath et al. [43] and Lubbehusen et al. [39] performed self
diffusion measurements in single crystal aZr. Their results differ
from more recent measurements by Hood et al. [42] for Fe free aZr.
The reason for this discrepancy has been devised in Ref. [37] were,
as much as, 50ppm of Fe impurities implies in differences of one
order of magnitude for self-diffusion coefficients. Also, the Nb
contain of the alloy implies in an enhancement of the self-diffusion
coefficient.

Hood et al. [42] have estimated that according with the Nb
concentration, CNb, the self-diffusion in the aZr � Nb alloy can be
described by,

DðZr;AÞ ¼ DðZr;0Þ þ 2CNbDðNbÞ; (69)

where DðZr;0Þ is the self diffusion coefficient in pure aZr and DðNbÞ
is the Nb diffusion coefficient in the alloy. They have obtained
experimentally in Ref. [42] that for pure Zr:
DðZr;0Þ ¼ 1:66� 10�4expð�3:20eV=kBTÞm2
.
s; (70)

and the Nb solute diffusion coefficient [40] is

DðNbÞ ¼ 1:88� 10�4expð�2:69eV=kBTÞm2
.
s: (71)

In Fig. 5 we have plotted, with black stars and open circles, the
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Fig. 6. Solid lines stand for axial and dashed lines for basal magnitudes. MS (in black), LDA (in orange) and GGA (in blue) calculations. Left panel: temperature dependence of axial/
basal frequency ratios. Right panel: temperature dependence of the tracer self-correlation factors from Eqs. (40) and (41). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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experimental data for Zr self diffusion coefficients from Refs. [43]
and [39], respectively. Also, the experimental data for self-
diffusion from Ref. [42] are plotted with red stars and full
squares. Meanwhile, self-diffusion coefficient for the alloy, calcu-
lated from equation (69) is shown with blue solid line, in Fig. 5.
Also, the experimental data for the Nb tracer diffusion [40] are
plotted, in Fig. 5, with orange crosses and triangles.

Fig. 5 shows that, although the three Zr self-diffusion co-
efficients (black lines), calculated from expressions (28) and (29)
with all correlation factors f ¼ 0:78, for MS, LDA and GGA, give
different results they all are in an interval of agreement with the
experimental data in Refs. [43] (black stars) and [39] (black circles).
Also, the mentioned calculated diffusion coefficients are close to
the blue line describing the tracer self-diffusion in the alloy.
However, calculations using constant correlation factors f ¼ 0:78
describe the self diffusion in pure aZr, not in the alloy, hence we
would have expect for them a better agreement with experimental
data from Ref. [42] (red symbols).

On the other hand, Fig. 5 shows that the solute trace diffusion
coefficient of Nb, obtained from MS calculations, is lower than that
of Zr for the whole range of temperature. This result is contrary to
the experimental data of Nb diffusion in a Zr in Ref. [40] (orange
symbols in Fig. 5). This fact is due to the higher values, obtained
with MS calculations, of u0

2a and u2b for Nbmigration in the alloy in
comparisonwith u0

0 and u0 for pure Zrmigration. Consistently with
a strong repulsive binding between solute and vacancy. We believe
that this issue, with our MS calculations, denotes a lack of reliability
of the pseudo potential used for the Nb. It would be then useful for
an update of the pseudo potential in order to better describe the Nb
interaction.

Instead, for the rest of the calculations, DFT-LDA and DFT-GGA,
the opposite behavior (D+

Nb >D+
Zr) is observed for diffusion in

both, parallel and perpendicular to the z axis. Also, the agreement
between results from DFT-LDA and DFT-GGA calculations in com-
parison with the experimental data of Ref. [40], orange symbols in
Fig. 5, is noticeable.
Fig. 5. Tracer self- and solute diffusion coefficients using the 8-frequency model. Solid an
calculations. Experimental data for Zr self diffusion: black stars [43], circles [39]; red stars
diffusion calculations. Orange crosses and triangles: experimental data for Nb diffusion [
interpretation of the references to colour in this figure legend, the reader is referred to the
Therefore, we must conclude that both, DFT-LDA and DFT-GGA
approximations, accurately describe the experimental data for Nb
solute diffusion in the alloy.
5.2. Results with the 13-frequency model by Allnatt et al [2]

5.2.1. Isotope limit case: self-diffusion in pure aZr
The isotope limit is defined as the case where the solute, S, is an

isotope of the solvent, A, so that all exchange frequencies are either
u0 or u0

0. In this case, the correlation factor, f, varies with the fre-
quency ratio x ¼ u0=u

0
0 as in Eqs. (40) and (41). Fig. 6 shows the

frequency ratio for the pure metal as a function of the temperature,
as well as, the correlation factors obtained through Eqs. (40) and
(41).

Our results in Fig. 6 (right panel) show that, the tracer correla-
tion factors deviate from a constant value of f ¼ 0:78 with the in-
verse of the temperature for both, axial and basal directions.

Self-diffusion data in aZr are shown in Fig. 7, the calculations
have been performed using Eqs. (42) and (43), together with the
correlation factors in (40) and (41), for diffusion in the axial and
basal plane, respectively. As before, we corroborate our calculations
with available experimental data of self-diffusion. From Fig. 7, we
can observe that, similarly to the results obtained with f ¼ 0:78,
depicted in Fig. 5, the isotopic limit of self diffusion coefficients,
calculated with MS, LDA or GGA, give results that are all in an in-
terval of agreement with the experimental data in Refs. [43] (black
stars) and [39] (black circles). Again, the calculations do not agree
with experimental data obtained by Hood et al. [42] (red symbols).

In the right panel of Fig. 7 we display the ratio between the self-
diffusion coefficients D+

k =D
+
⊥ that takes values between 0.92 and

0.85, 0.63e0.46 and 0.84e0.72 vs 1=T , respectively for MS, LDA and
GGA calculations. This shows the anisotropy of the diffusion
process.

The results here obtained for the isotopic limit of the formula-
tion of Allnatt [2], coincide with those for the self-diffusion using
expressions (28) and (29) with f ¼ 0:78, displayed in Fig. 4, in black
d dashed lines, for basal and axial diffusions respectively. Black lines: self-diffusion
and squares [42]. Blue line: self diffusion in the alloy from Eq. (69). Orange lines: Nb
40]. From top to bottom, results obtained with MS, LDA and GGA, calculations. (For
web version of this article.)



Fig. 7. Isotope limit case: MS (in black), LDA (in orange) and GGA (in blue) calculations. Right panel: self-diffusion coefficients, solid lines stand for axial and dashed lines for basal
magnitudes. Experimental data for Zr self diffusion in black stars [43], circles [39]; red stars and squares [42]. Left panel: anisotropy ratio D+

k =D+
⊥ . (For interpretation of the ref-

erences to colour in this figure legend, the reader is referred to the web version of this article.)
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solid and dashed lines, for the three approximations used here, i.e.,
MS, DFT-LDA and DFT-GGA.

In this section, we verify that the LDA approximation describes
quite well the experimental data, and shows that the diffusion
coefficients in the axial and basal planes verify the relation
D+
⊥x2D+

k (in agreement with results for pure aZr in Ref. [37]).

While for MS and DFT-GGA calculations, the anisotropy is bigger.
5.2.2. Tight-binding approximation: diffusion in diluted aZr � Nb
alloy

In the Allnatt's et al. model [2] the tracer self- and solute
diffusion coefficients in the Axial/Basal plane are calculated
respectively from Eqs. (54), (56) and (57)e(55). Introducing the
effective frequencies (64e68), the tracer solute correlation factors
involved in the axial and basal directions are calculated from Eqs.
Fig. 8. Correlation factors as functions of the inverse of the temperature for the case of vaca
for basal magnitudes. MS (in black), LDA (in orange) and GGA (in blue) calculations. (For inte
web version of this article.)
46 and 48. Then, the two collective correlation factors f iAA and f ðSÞiAS
(with i ¼ x; z), are respectively calculated from Eqs. (44), (45) and
(48). In Figs. 8 and 9, we plot the solute correlation factors, f iS
(with i ¼ x; z), as well as, the two collective correlation factors f iAA
and f ðSÞiAS (with i ¼ x; z). Note that we assume, as in Ref. [2], that f iSS ¼
f iS and f iA ¼ f iAA (with i ¼ z; x). All these magnitudes were plotted as

functions of the inverse of the absolute temperature (103=T).
Fig. 8 summarizes the solute correlation factor calculations, f iS. It

can be observed that f iS, has a larger variation range in the tem-
perature range of the h.c.p. phase, when the calculations are per-
formed with the DFT-GGA approach (solid and dashed lines in
blue).While classical calculations and quantum oneswith DFT-LDA,
show that f x;zS is much closer to one. Note that, has was seen in

equation (48), f iAS ¼ �2f iS, so that, f iASx2, for MS as well as for LDA
ncy-solute tight-binding (no free vacancies). Solid lines stand for axial and dashed lines
rpretation of the references to colour in this figure legend, the reader is referred to the



Fig. 9. Temperature dependence of the collective correlation factors f z;xZrZr . Solid lines stand for axial and dashed lines for basal magnitudes. MS (in black), LDA (in orange) and GGA
(in blue) calculations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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and GGA approximations.
Fig. 9 shows the remaining sets of collective correlation factors,

where both solvent correlation factors, f iAA (with i ¼ x; z), follow an
Arrhenius behavior.

Once the correlation factors have been obtained, the tracer so-
lute diffusion coefficients are evaluated from Eqs. (54) and (55),
respectively for axial and basal plane. Also, the self-diffusion co-
efficients in axial/basal directions are obtained using Eqs. (56) and
(57).

Fig. 10 shows the tracer self-diffusion and the tracer solute
diffusion coefficients, calculated with the three different ap-
proaches. Solid and dashed lines refer to diffusion in the axial and
basal plane, respectively. In Fig. 10, black and orange colors refer to
solvent and solute diffusivities respectively.

It must be noted that tight binding limit approximation, here
used for the 13 frequency model, is only valid for an attractive
solute-vacancy binding. As is seen in Table 3 this condition is not
reached with MS calculations, where the interaction between so-
lute and vacancy is strongly repulsive i.e. they have positives
binding energies. Indeed, in Fig. 10 we can appreciate the discrep-
ancy between diffusion coefficients calculated with MS and
experimental data. As we have already mentioned, this fact is an
issue of the empirical pseudo potential used by MS calculations.
The development of a more reliable pseudo potential for the Nb is
required in order to perform MS calculations accurately.

Also, we can observe that for the Nb solute diffusion, the results
obtained with the 13-frequencies model by Allnat et al. [2] in the
tight-binding limit, shown with orange lines in Fig. 10, are very
similar to the ones calculated with the Ghate's 8-frequencies model
[1], shown in Fig. 5. This similarity is valid for the three calculation
methods MS, LDA and GGA. Although, the results obtained with MS
calculations are not reliable, as we have already discuss.

On the other hand, the comparison of the self-diffusion behavior
shownwith black lines in Figs. 10 and 5 are different. In this respect,
for the case of solvent diffusion in the alloy, only the 13-frequency
model, by Allnatt et al. [2] takes into account the presence of Nb
atoms for the Zrmigration. As we have previouslymentioned, black
lines in Fig. 5 describe the self-diffusion in pure Zr and hence must
be compared with the isotopic limit case shown in Fig. 7. For the
case of Zr diffusion in the alloy, the results obtained with both LDA
and GGA, (black lines in Fig. 10) are in good agreement with
experimental data in Ref. [43] (black stars) and [39] (black circles).

Also, it is important to remark from Fig. 10 the agreement be-
tween Zr diffusion behavior obtained from GGA calculations with
the prediction in equation (69) for the diffusion in the alloy made
by Hood et al. [42] (blue line).

As mentioned above, our calculations with the 13-frequency
model were performed in tight-binding limit. This applies only if
the binding between solute and vacancy is strongly attractive so
that there are no vacancies or solute atoms unpaired. There is then
no possibility of dissociation of pairs, and diffusion expressions do
not depend on the frequencies u3 labeled frequencies. Thus, the
model only depends on 8-frequencies, which are different from
those employed by Ghate's model. Our calculations show that
despite the attractive interaction between solute and vacancy being
mild, the results obtained for the diffusion employing the tight-
binding model are in very good agreement with the experimental
data.

In addition, for the LDA and GGA cases, where the lattice ratio
c=a is close to the ideal (c=ax1:63), we have studied the 5-
frequencies limit for the correlation factors [2], described earlier.
In Fig. 11 we display the diffusion coefficients obtained by using the
5-frequencies correlation factors from Eqs. (58) and (59) for the z
axis inserted in expressions (54) and (56) respectively. While for
the x-axis correlation factors (60) and (61) are respectively inserted
in Eqs. (55) and (57). In that case the frequencies u1 and u2 used in
the model are obtained as average frequencies,

u1 ¼ 1
4
	
u1a þ u1b þ u0

1a þ u0
1b
�
;

and

u2 ¼ 1
2
	
u2b þ u0

2a
�



Fig. 10. Tracer self- and solute diffusion coefficients using the 13-frequency model.
Solid and dashed lines, for basal and axial diffusions respectively. Black lines: self-
diffusion calculations. Experimental data for Zr self diffusion: black stars [43], circles
[39]; red stars and squares [42]. Blue line: self diffusion in the alloy from Eq. (69).
Orange lines: Nb diffusion calculations. Orange crosses and triangles: experimental
data for Nb diffusion [40]. From top to bottom, results obtained fromMS, LDA and GGA,
calculations.
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It can be observed, comparing Fig.11 with Fig.10, that the results
obtained with the 5-frequency limit are very similar to those ob-
tained with 13-frequency model in the tight-binding limit. Hence,
the 5-frequency model in the tight-binding approximation is
enough in order to describe the diffusion process in diluted
aZr � Nb alloy. In this case, as mentioned earlier, the diffusion co-
efficients only depend on 3 frequencies, namely u0, u1 and u2.
6. Concluding remarks

In this paper, we have numerically studied diffusion for the
anisotropic three-dimensional h.c.p. structure of aZr including
substitutional Nb foreign atoms, as well as, a single vacancy.

Two models of atomic diffusion in h.c.p have been studied,
namely Ghate's model [1] involving eight frequencies and the 13
frequency model [2] recently developed by Allnatt, Belova and
Murch [2]. This last model is here applied for the first time to a
particular alloy.

We have reviewed both diffusion models and present the gen-
eral mechanism based on non-equilibrium thermodynamics and
the kinetic theory, to describe the diffusion behavior in h.c.p diluted
alloys. Non equilibrium thermodynamic, through the flux equa-
tions, relates the diffusion coefficients with the Onsager tensor,
while the Kinetic Theory relates the Onsager coefficients in terms of
microscopical magnitudes. In this way we are able to write ex-
pressions for the diffusion coefficients only in terms of microscopic
magnitudes, i.e. the jump frequencies.

In this respect, the jump frequencies have been calculated from
the migration barriers which are obtained with an economic static
molecular techniques namely the monomer method, that searches
saddle configurations efficiently in MS and, more even, in ab-initio
calculations, reducing at a half the force calculations.

We have exemplified our calculations for the particular cases of
diluted Zr-Nb h.c.p. binary alloy. Migration energies were obtained
with three different approaches. With potential semi empirical and
classical MS besides using ab-initio quantum calculations in two
different approximations for DFT, namely LDA and GGA.

Our results show that for self-diffusion of pure aZr, either with a
constant correlation factor f ¼ 0:78 or with the expressions of
Alnatt et al. [2] for the isotopic case, the results are very similar and
the calculations obtained with both three MS, LDA and GGA tech-
niques are consistent with experimental data. Although there
seems to be no clear consensus on the latter.

With respect to the solvent diffusion of Zr in the alloy, only the
13 frequencies model is applicable. In this case, both LDA and GGA
give very good results consistent with predictions based on
experimental data.

Regarding the diffusion of Nb in the alloy, the comparison of the
results of both models 8 and 13 frequencies are very similar for the
respective calculations. Note that the MS calculations are far away
from the experimental results (in both models). In fact the energies
of migration and binding give implausible results. We believe that
this issue, with our MS calculations, denotes a lack of reliability of
the pseudo potential used for Nb. It urges then for a new pseudo
potential in order to better describe theNb interaction. On the other
hand, the results with both DFT approximations, LDA as well as
GGA, show a very good agreement with the experimental results.

It is also noteworthy that the 5 frequencies limit approximation
and the 13 frequencies model in the tight binding approximation,
gives very similar results that are also in agreement with experi-
mental data. Thus if the lattice has a c=a ratio close to the ideal, the
use of the 5 frequencies approximation is enough to describe the
main features of the diffusion process. Therefore, we can say that
this simple model, that does not take into account either the
dissociation of pairs or anisotropy in the jump frequencies, is



Fig. 11. Tracer self- and solute diffusion coefficient, using the 5-frequency limit for the h.c.p. lattice. The colors and patterns, as in Fig. 10.
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sufficient to describe the anisotropic diffusion process in this h.c.p.
alloy. In this case, the diffusion coefficients only depend on 3
frequencies.

We are performing similar calculations for the treatment of
diluted aZr � Fe alloy, in which the attractive binding between
vacancy and solute Fe is strong.
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