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We characterize the atomic mobility behavior driven by vacancies, in bcc and fcc Fe—Cr diluted alloys,
using a multi-frequency model. We calculate the full set of the Onsager coefficients and the tracer self
and solute diffusion coefficients in terms of the mean jump frequencies. The involved jump frequencies
are calculated using a classical molecular static (CMS) technique. For the bcc case, we also perform
quantum calculations based on the density functional theory (DFT). There, we show that, in accordance
with Bohr's correspondence principle, as the size of the atomic cell (total number of atoms) is increased,
quantum results with DFT recover the classical ones obtained with CMS calculations. This last ones, are in
perfect agreement with available experimental data for both, solute and solvent diffusion coefficients.
For high temperatures, in the fcc phase where no experimental data are yet available, our CMS calcu-
lations predict the expected solute and solvent diffusion coefficients.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

times lower and a diffusion coefficient 200 times lower than in pure
annealed iron. Also, based on the numerical resolution of Fick's

Recently, Hurtado et al. [1] have studied the hydrogen (H) equations in presence of trapping sites in comparison with elec-
diffusion effect on 9Cr steels, revealing a permeation coefficient 10 trochemical H detection curves, Castano et al. [2] provided quan-

titative information about the binding energy between H and
trapping sites during the H diffusion process [1]. Ferritic or
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generation supercritical water cooled nuclear reactors.

Furthermore, it is imperative to explore the modeling of H
trapping sites and possible migration paths that can explain the
experimental observations. However, before dealing with modeling
H traps, it is important to carefully study the initial microscopic
processes that can delay the H atoms during diffusion. With that
purpose in mind, as the 9Cr martensitic steel of BCT structure is a
complex system to be simulated, we must firstly understand the
diffusion process for simpler structures. Hence, in this work we
study numerically the static and dynamical properties of vacancies
in both, a bcc (or ferritic) and fcc Fe—Cr matrix.

In the linear response framework the diffusion coefficients, as
was early shown [3,5], can be entirely expressed in terms of the
commonly known Onsager coefficients Lj. The L; are the funda-
mental kinetic quantities. In the context of the commonly known as
multi-frequency model, originally developed by Le Claire [6], the
Onsager coefficients for vacancy mediated diffusion can in turn be
expressed in terms of frequency jumps rates of various atom-
vacancy exchanges relative to a solute atom.

Recently, attends were made in order to describe the diffusion
process by obtaining numerically the needed jump frequencies.
However, disagreement between the experimental and ad-initio
based DFT calculated, diffusion coefficients where observed in [8]
for Ni—Cr and Ni—Fe bcc alloys. Similarly, but for fcc structures,
DFT calculations performed by Mantina et al. [9] for Mg, Si and Cu
diluted in Al, obtained again numerical results that do not correctly
describe the experimental data.

For the particular case of Fe based diluted alloys, in a recent
work, Choudhury et al. [5] have performed an ab-initio based
calculation of the self-diffusion and solute diffusion coefficients for
diluted aFe—Ni and aFe—Cr alloys, using the Vienna ab-initio
Simulation Package (VASP). It is shown in [5], that the slope of
the ab-initio based diffusion coefficients as a function of inverse
temperature (i.e. the activation barrier) matches well with experi-
mental measurements, for both the para- and ferro-magnetic or-
ders considered. However, the absolute value of the DFT calculated
diffusion coefficients differs in four orders of magnitudes from
experimental measurements.

Also, Martinez et al. [4], have calculated the tracer diffusion
coefficient in Fe—Cr diluted alloys, using classical atomistic kinetic
Monte Carlo pair interactions, and taking into account entropic
contributions to the vacancy formation and migration energies.
Then, the obtained results accurately reproduces the experimental
data.

On the other hand, employing classical molecular statics (CMS)
technique, in order to obtain the needed frequency jumps, one of us
has presented studies of impurity diffusion behavior in Nickel-
Aluminium and Aluminium-Uranium fcc diluted alloys [3]. It is
then shown that all the diffusion coefficients obtained with CMS
are in good agreement with experimental data for both alloys.
Hence, CMS is appropriate in order to describe the impurity diffu-
sion behavior mediated by a vacancy mechanism.

In the present work, we characterize the diffusion behavior in
Fe—Cr diluted alloys in an important temperature range that in-
cludes both para and ferro magnetic orders as well as bcc and fcc
lattice structures. For the multi frequency models, we have used the
model of Serruys and Brevec [7] for bcc Fe and the model of Allnatt
[10,11] for fcc Fe.

For the bcc phase, we have performed our calculations using
both, CMS as well DFT calculations. We have compared the obtained
diffusion coefficients including and excluding several factors. In
particular, the explicit calculation of phonon spectrum, or equiva-
lently migration entropic effects, in order to compute the mean
jump frequencies, as well as, magnetic corrections for the ferro-
magnetic phase. DFT calculations have been performed with 54 and

128 atoms. All this calculations have been compared with experi-
mental data when available.

We show here that, CMS calculations of the diffusion co-
efficients are in perfect agreement with experimental data, when
we include both the explicit calculation of phonon spectrum and
magnetic corrections. Meanwhile for DFT calculations we find that,
in accordance with Bohr's correspondence principle, as the size of
the atomic cell (total number of atoms) is increased the quantum
results with DFT, recover the classical ones obtained with CMS.

At this respect, we must not expect to observe quantum effects
for such macroscopic systems even more for the high temperatures
here described. In that case, the interaction of the system with the
thermal environment implies in decoherence effects, where the
classical limit is expected to be recovered. It must be also noted that
CMS simulations are much less computationally expensive method
than DFT. For which computational time largely increases with the
number of atoms of the quantum sample to be simulated.

For the higher temperature fcc phase of Fe—Cr, we have per-
formed CMS calculations of the diffusion coefficients. In that case
there is no experimental data available yet. Diffusion plays an
important role in the kinetics of many materials processes. Exper-
imental measurements of diffusion coefficients are expensive,
difficult and in some cases nearly impossible. A complimentary
approach is to determine diffusivities in materials by atomistic
computer simulations. For the Fe—Cr fcc phase, our CMS calcula-
tions predicts the diffusion behavior.

In addition to predicting diffusion coefficients, computer sim-
ulations can provide insights into atomic mechanisms of diffusion
processes, creating a fundamental framework for materials design
strategies. At this respect, we show here that, in accordance with
Choudhury et al. [5] for the bcc Fe case, a vacancy drag mechanism
is unlikely to occur in bcc as well as in fcc Fe—Cr.

We have summarized the theoretical tools needed to express
the diffusion coefficients in terms of microscopic magnitudes such
as, the jump frequencies, the free vacancy formation energy and the
vacancy-solute binding energy. We start with non-equilibrium
thermodynamics in order to relate the diffusion coefficients with
the phenomenological Onsager L-coefficients in both, bcc and fcc
structures. Then, the microscopic kinetic theory, allows us to write
the Onsager coefficients in term of the jump frequency rates
[7,10,11], which are evaluated from the migration barriers and the
phonon frequencies under the harmonic approximation. The
attempt jump frequencies are obtained from the migrations bar-
riers within the conventional framework by Vineyard [12] that
corresponds to the classical limit. In order to compute the saddle
points configurations, from which we obtain the jumps frequencies
defined in the multi-frequency model, we employ the economic
Monomer method [13] (previously used in Refs. [3,14—16]). Note
that, the Monomer method coupled to CMS simulations is a much
less computationally expensive method, that allows us to compute
at low cost a bunch of jump frequencies from which we can perform
averages in order to obtain more accurate effective frequencies.

The paper is organized as follows. In Section 2 we briefly
introduce a summary of the macroscopic equations of atomic
transport that are provided by non-equilibrium thermodynamics
[17,18]. In this way analytical expressions of the tracer diffusion
coefficients in binary alloys, in terms of Onsager coefficients, are
presented. In Section 3, for diffusion mediated by a vacancy
mechanism, we briefly introduce the full set of the Onsager co-
efficients calculated by Allnatt and Serryus and Brevec [7,10,11], in
terms of jumps frequencies, in the second-nearest neighbor bind-
ing model for fcc/bcc lattices respectively. In Section 4, we present
the way to evaluate the tracer diffusion coefficients in diluted bi-
nary alloys in terms of the Onsager coefficients. This procedure
allows to express the diffusion coefficients in terms of the
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frequency jumps. Section 5, is devoted to present our numerical
results using the theoretical procedure previously summarized and
making a comparison with available experimental data. The last
section briefly presents some conclusions.

2. The flux equations

Isothermal atomic diffusion can be described through a linear
expression between the fluxes, Ji, and the driving forces, Xy, related
by the Onsager coefficients L; as,

N
= ZLkixi’ (1)

where N is the number of components in the system, Ji describes
the flux vector density of component k, while X is the driving force
acting on component k. The second range tensor L;; is symmetric
(Lj = L) and depends on pressure and temperature, but is inde-
pendent of the driving forces Xi. On the other hand, for each k
component, the driving forces may be expressed, in absence of
external force, in terms of the chemical potential g, so that,

X = TV (5. (2)

In (2) Tis the absolute temperature, and the chemical potential,
(g, is the partial derivative of the Gibbs free energy with respect to
the number of atoms of specie k,

oG .
we= () =BT P+ KT InGi), 3)
k/ TP Nj¢k

where vy is the activity coefficient, which is defined in terms of the
activity ax = vxCy and the molar concentration of specie k, Cy.

For the particular case of a binary alloy with N available lattice
sites per unit volume, containing molar concentrations C4 for host
atoms A, Cs of solute atoms S (impurities), the fluxes in terms of the
Onsager coefficients are expressed as,

_ kBT LAA LAS oln YA
= () (14 S ) v, (a)
_ kBT LSS LAS oln Ys
= (E-2) (1+ e ves (5)
with
v=-Ja-IJs (6)

for the flux of vacancies. From (4) and (5), the intrinsic diffusion
coefficients for solvent A and solute S, are respectively defined as

kBT LAA LAS
Dy = N (C_A__)d)A’ (7)
and

kgT (Lss  Lsa
Ds =— (Cs CA)¢5~ (8)

In Eqgs. (7) and (8), the quantities ¢4, ¢s are known as the ther-
modynamical factors,

- oln YA\ -
- (22 -

In the dilute limit, the thermodynamics factor ¢4 = ¢s = 1, which

oln Ys

simplifies the expression of the tracer diffusion coefficients in
terms of the phenomenological coefficients.

The standard intrinsic diffusion coefficients in Egs. (7) and (8)
can be expressed in terms of the tracer solute diffusion co-
efficients DY and D¥ which are measurable quantities, and the
collective correlation factor fj; (i, j = A, S) [18,19] as

DA:DS[f s ]¢A7DA Eﬁ‘: (CS) f’}s}m, (10)
Ds=02[fss—§—jf,§?]¢s=Ds [’}; ( )f}f}p (1)

The intrinsic diffusion coefficients in (10) and (11) are known as
the modified Darken equations, where D2 = s2T;/6 is the diffusion
coefficients of atoms of the tracer S in a complete random walk
performing I'; jumps of length s per unit time. The collective cor-
relation factors fj; are related to the L coefficients through,

k T k T 1
fan = B Laa ( > fss = B <D0> (12)
and for the mixed terms,

kBT kBT 1
fs = Neg AS( ) fis = Nes L (D0> (13)

The tracer correlation factors f3, fs are defined as the ratios f4 =
Dx /Dg and fs = D¥ /Dg respectively. The term in square brackets in
the second term of equations (10) and (11), is the vacancy wind
factor G [20].

In the next sections, we present the Onsager coefficients in
terms of the atomic jump frequencies taken from Refs. [7,10,11].

3. The phenomenological Onsager coefficients for bcc and fcc
lattices

Present calculations are focused on the transport phenomena of
binary alloys, specifically on the corresponding transport co-
efficients and how these are related to microscopical magnitudes.
In this way, Serryus and Brevec [7], for bcc lattices, and Allnatt
[10,11], for fcc ones, gave compact expressions for the L— co-
efficients by treating the contribution of the vacancy-impurity ex-
changes in terms of the atomic jump frequencies. Hence we treat
here the case of binary alloys with a host specie A with a concen-
tration C4 and solute S with a concentration Cs. In the model here
described the migration is mediated by a vacancy mechanism. The
concentration of vacancies is Cy and in particular there is a con-
centration C, of vacancies that are at first neighbor with a solute
atom.

3.1. The Onsager equations for bcc lattices

We adopt an effective multi-frequency model a la Le Claire [6],
assuming that the perturbation of the solute movement by a va-
cancy V, is limited to its immediate vicinity. Fig. 1 defines the jump
rates w; (i = 0, 1, 2, 3, 4, 5, 6) considering only jumps between
neighbors.

For them, w; implies in the exchange between the vacancy and
the solute. The frequency of jumps such that the vacancy goes to
sites that are second neighbor of the solute is denoted by ws. The
model includes the jump rate w4 for the inverse of ws. Jumps toward
sites that are third and forth neighbor of the solute are all denoted



662 V.P. Ramunni, A.M.E. Rivas / Materials Chemistry and Physics 162 (2015) 659—670

Fig. 1. The frequencies involved in the second binding model for bcc lattices. In black/
orange circles, respectively are represented the solvent and solute atoms. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

with o} and (u; respectively while «) and co; are used for their
respective inverse frequency jumps. Jumps from the second
neighbor of the solute are denoted by ws, while wg is used for the
respective reverse jumps. The jump rate wq is used for vacancy
jumps among sites more distant than the fifth neighbor site.

As was shown in Refs. [7], the full set of the Onsager coefficients
can be written as [5],

a?woN exp( - E}’/kﬂ)
Lan = kgT

(1 +bAC5)., (14)

sun o 67) ) oo

Lps =Lsa = kT s

(15)
Y [(Su e fiﬁi - 1)31}7 (16)
Lgs = a’r epr(<B—TE}/ /keT) exp( ~ by /ksT) (17)
X% {(8u+731i2(1:ﬁ§l1§z“)31} ()

where E}’ and EY, denotes the vacancy formation and migration
energies respectively and a is the bcc solvent lattice parameter. The
remaining coefficients are expressed as

By = 8u® + 77u + 155, (19)

B, = 32u® + 324u? + 810u + 475, (20)
~ (2v+8u+7)Bg — 32u(u + 1)Bs

By = 4u(u+1) (21)

Bs = 8u® + 77u + 155 (22)

Bg = 32u> + 324u? + 810u + 475 (23)

 (2v+8u +7)Bg — 32u(u + 1)Bs
B du(u+1)

B, (24)

8wy 4
v=1+ (50+¥>exp<Ef /kBT), (25)

in terms of the ratios u = w} /wg, v=wy/w¥ with the effective
frequencies w¥ and w} defined from Fig. 1 and Ref. [5] as,

To¥ = 3w3 + 30) + ws, (26)
and
Twf =3wg + 3w + ‘“:l- (27)

The term by in (14) is usually called as the solvent enhancement
factor,

bA:—58+%{45+12u+

Finally, from Lg in (18), we can define the solute correlation
factor,

6u+2v(u—1)—7
u

(28)

TwXF
_ 3 29
fs 209 + 7w;‘F’ (29)
where the F factor in (29) is calculated from,
3 2
7F:3u +6qu + U+ £&3 (30)

W3 +Equ? +Esu+ g

and the constants &, in (30), are summarized in Table 1.

3.2. The Onsager equations for fcc lattices

The description of the jumps in Fig. 2 is similar to that in Fig. 1.
Now, we include w4, when the exchange between the vacancy and
the solvent atom lets the vacancy as a first neighbor to the solute.

As was shown in Refs. [10,11], the Onsager coefficient for the
solute specie in terms of the mean jump frequencies in Fig. 2, can be
written as

2wy

Lss = L) {1 - 22} = Lion)f (31)

were fs is called the tracer correlation factor for the solute and the
function L(wj) is,

a2
L(w;) = ﬁNﬁpri. (32)

In (32) a is the lattice parameter for fcc solvent A, and C, denotes
the site fraction of solute atoms with a vacancy among their z
nearest-neighbor sites. Q in (31) is given by

Table 1
Numerical constants &, for the second-nearest-neighbor binding model taken from
Ref. [7].

P .
€4 és 133

oy

£ 3

53 S
Ref. [7] 41.37 140.94 103.91 10.13 2531 14.84
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w Impurity

Solvent (A)

O Solute (S)

Fig. 2. The multi-frequency model for fcc lattices.

Q =2(w1 + w) + 7w¥F. (33)

Inserting the expression (33) for Q in (31), we get for the tracer
correlation factor for the solute,

20+ TF
- 2(wq +wp) + Tw¥F

fs (34)
The quantity Fin (34) is a function of the ratio u = w} /wo which
is expressed as,

U(Equ3 + £ou? + £3U + E4)

A== Esud + Egu3 + E7U2 + EgUu+ &g

(35)

The &; coefficients in (35) are shown in Table 2, they were
calculated by Koiwa [21] using perturbative methods. In the fcc
case, we express effectives mean jump frequencies as in Ref. [5],

7w; =2w3 + 4uh + w;, (36)
and
Twf = 2w4 + 4oy + w:l. (37)

Also according with [10,11], the mixed coefficient Lgs is,

Las = Lsa

Lk
= 2L(w3) x {3w3* —2w1 + 703 (1 -F) (M) }
w

4

S

(38)
While for the solvent,
Table 2

Coefficients in the expression for F for the five frequency model calculated by Koiwa
[21].

vy

. P
&3 £a £

)
oy
)
vy
~
N
)
uvx
©

£
1 s2

Ref. [21] 10 180 924 1338 2 40 253 596 435

Lo = L) + L) (39)
with

LY) = L(4w; + 140¥) + 2NBs%wo (Cy — Gp) [1 - 7(Cs — Gp)].

(40)
and
*
Lyt =—2L (303 —2w1) {(3‘0§—2w1)+7w§(1—F) (wou}%) %
2L(30¥ -2 * wo—ef) |1
2L (3wt — w])x[7w3(l—F)< o > "

u)o—wz‘

gt (2

Wy

2
) x [7(1—F)(2w2+2w1+7w;)$].

(41)

In order to evaluate the L-coefficients (31), (38) and (39), two
parameters are needed, namely, the fraction of unbounded va-
cancies C;,=Cy—Cp and the unbound solute atoms C;=Cs—Cp.
They are related with the frequency jumps through the mass action
equation [6],

o _ ; exp(—E, /ksT) wi (42)
T = —Ep/KBl) = —5,
GG 21
where Ej, is the binding energy of the solute atom with a vacancy at
its nearest neighbor sites and z = 12 is the coordination number for
fcc lattices. Then, if the pairs and free vacancies are in local equi-
librium and the fraction of solute Cs is much greater than both Cy
and G, we can define the equilibrium constant K as,

CP
-G

= 2Cs exp( — Ej, /kgT)=KCs, (43)

and equivalently

KCs
G =Cv (1 + I<c5)‘ (44)

3.3. From migration energies to frequency jumps

In order to compute the jump frequencies w;, we use the con-
ventional treatment formulated by Vineyard [12], corresponding to
the classical limit. In the classical description the vibrational pre-
factors of the mean jump frequencies do not depend on tempera-
ture, and has been conventionally used for evaluating the mean
jump frequency as,

w; = v¥ exp( - E;'n/kBT). (45)

with, the “attempt frequency”

F e M——— (f{_f;) (46)

where El, are the migration barriers calculated at T= 0 K. »} and »}
are the frequencies of the normal vibrational modes at the initial
and saddle points, respectively. In (46), the numerator refers to the
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vibrational frequencies for the X-V pair (X = Fe,r) nearest
neighbors in Fe matrix and the denominator to the saddle config-
uration for the Fe/Cr-vacancy exchange. For this last one, the
product does not include the unstable mode. Note that, Eq (46) is
based on calculation of the frequencies of the normal vibrational
modes. This normal modes can involve only one atom or being
collective modes. Alternatively, in the last expression, the “attempt
frequency” can be expressed in terms of the Debye frequency »p
and the migration entropy S,.

Once the jump frequencies in the multi-frequency model have
been computed, the diffusion coefficients are calculated using
analytical expressions in terms of the temperature. It is important
to note that in Ref. [22] it has been shown that there is discrepancy
between the classical and the quantum calculations of v} . Although
these discrepancies are large in the low-temperature range the
quantum value gradually converges to the classical one at tem-
peratures higher than room temperature [22]. Hence, here we
employ a classical description.

4. The tracer diffusion coefficients for diluted alloys

Here, we focus on the self-diffusion and solute coefficients in a
binary A-S alloy in the diluted limit. In this limit, Cs — 0, the
thermodynamics factor ¢4 = ¢)s = 1 and the intrinsic diffusion co-
efficient Ds in (8), is identical to the tracer diffusion coefficient D¥,

kBT

Ds = D¥(0) = N—CSLSS.

(47)
Introducing Lgss from (18) and (31) in (47), respectively for bcc

and fcc lattices and assuming that Cy > Cp and Cy > C,, in (42), we
obtain an expression for the tracer solute diffusion coefficient as,

* 2 ")Z
DS =da w2f5CV = | (48)
@3

where fs, the solute correlation, is expressed for bcc lattices as

Tw¥F
={—3 49
fs {sz + 7cu§"'l:}7 (49)

while for fcc lattices as

(50)

fi— 2wy + 70¥F
ST 2(w1 + w)) +7(u3*F ’

where the function F is given by expression (30) or (35), respec-
tively for bcc or fcc structures.

At thermodynamic equilibrium the vacancy concentration Cy is
given by,

CV:exp(—E}//kBT). (51)

where E}/ is the vacancy formation energy in pure A.
As in Ref. [8], the self-diffusion coefficient D} (0) for pure A, can
be obtained from the expression (48) for D¥ , by replacing all the

jump frequencies w; by wg. Hence, the self-diffusion coefficient can
be written as:

D} (0) = a*woCyfy, (52)

where fp, the correlation factor for pure bcc or fcc metals, can be
obtained directly from fs, respectively in (49) or (50), by replacing

all the jump frequencies w; by wg. Note that if we introduce the
coefficients &; in Tables 1 and 2 in respective equations of F, then we
obtain 7F = 5.33 and 7F = 5.15, respectively for bcc and fcc lattices.
Introducing 7F = 5.33 in (49) and 7F = 5.15 in (50), we get
fo=0.7272/fs = 0.7814, which correspond to the correlation factor
in pure bcc and fcc metals respectively.

On the other hand, based on Le Claire's model [6], the tracer self-
diffusion coefficient D} (Cs) with a diluted concentration Cs of so-
lute atoms S, can be expressed in terms of the self diffusion coef-
ficient DX (0), of the pure A matrix and the so called solvent
enhancement factor b} as,

D} (Cs) = DX (0)(1 + bas Cs). (53)

For bcc solvents bax is given by (28) while for fcc we adopt the
expression in Ref. [24].

An important quantity that can be calculated from the
phenomenological coefficients is the vacancy wind coefficient G,
which provides essential information about the flux of S atoms
induced by the vacancy flow. G is defined in terms of the Onsager
coefficients as

Lys = —(Lss + Lsp) = —Lss(G + 1). (54)

Taking into account that Lss = Las, we get the expression

G —Las (55)
Lgs

G in (55) accounts for the coupling between the flux J4 and Js,
through the vacancy flux, Jy [23]. It can be seen from (55) that If Lys
is negative (G > —1), solute and vacancy are moving in opposite
directions, while, if Lys positive (G < —1), a drag mechanism is
dominant implying that vacancies and solutes are moving in the
same direction [3,5,8]. The parameter G for fcc structures is calcu-
lated from the L-coefficients expressions, (16)—(18) and (31)—(38),
for bcc and fcc lattices respectively.

5. Results

We present our numerical results to study the diffusion
behavior in bcc and fcc Fe—Cr diluted alloys. Above the melting
temperature Tyy = 1183 K, Fe—Cr alloys develop a paramagnetic fcc
phase, while for lower temperature the structure is bcc. In this bcc
phase, a magnetic transitions occurs from ferromagnetic, below the
Curie temperature Tc = 1043 K, to paramagnetic states. In order to
calculate the needed frequency jumps we used both CMS and DFT
techniques coupled to the Monomer method [13].

As is usual, the vacancy formation energy (E}/) in pure Fe is
calculated as,

Ef =E(N—1)+Ec — E(N), (56)

where, E(N) stands for the energy of the perfect lattice of N atoms,
E. is the cohesion energy and E(N — 1) is the energy of the defective
system. For diluted alloys, we may consider the presence of the
solute-vacancy complex G, = S + V}, in which, n = 1st, 2nd, 3rd, ...
(see Figs. 1 and 2) indicates that the vacancy is a n— nearest
neighbors of the solute atom S. The binding energy between the
solute and the vacancy for the complex C, = S + V}, is obtained as,

Eb —{E(N-2,GC,
=Cr+Vn) +E(N)} — {E(N—1,V) + E(N — 1,Cr)}. (57)

In (57), EIN — 1, V) and E(N — 1, Cr) are the energies of a crys-
tallite containing (N — 1) atoms of solvent Fe plus one vacancy V,
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and one solute atom Cr respectively, while E(N — 2,C, = Cr + Vp)) is
the energy of the crystallite containing (N — 2) atoms of Fe plus one
solute vacancy complex C, = Cr + V,. With the sign convention
used here E? <0 means an attractive solute-vacancy interaction,
and Eb > 0 indicates repulsion.

The binding, formation and migration (EY) energies were
calculated with the Monomer method [13], a static technique to
search the potential energy surface for saddle configurations. The
Monomer computes the least local curvature of the potential en-
ergy surface using only forces. It must be mentioned that CMS
simulations are much less computationally expensive method than
DFT. When the Monomer is coupled to DFT calculations, the
method is akin to the Dimer one from the literature [30], but
roughly employs half the number of force evaluations which is a
great advantage in ab-initio calculations.

The relaxation of impurities and defects, includes one substi-
tutional Cr atom in Fe, as well as, a single vacancy. Current calcu-
lations have been performed at T = 0 K. In this case, the entropic
barrier is ignored. Our calculations are carried out at constant
volume, and therefore the enthalpic barrier AH = AU + pAV is equal
to the internal energy barrier AU.

Classical calculations in bcc Fe—Cr were performed using the
EAM potentials developed by Mendelev and Mishin [25]. For the fcc
phase we use the EAM-13 potential developed by Bonny et al. [27].
Both EAM potentials reproduces well DFT results. We obtain the
equilibrium positions of the atoms by relaxing the structure via the
conjugate gradients technique. The lattice parameters that mini-
mize the crystal structure energy are 2.8665 A for bcc and 3.562 A
for fcc Fe—Cr. For all calculations we use a christallyte of 8 x 8 x 8
containing 1024 (bcc) and 2048 (fcc) atoms, with periodic bound-
ary conditions.

Quantum calculations were performed for the bcc phase using
the open access SIESTA code [28]. Here, we assume spin polariza-
tion, a Mesh-CutOff parameter of 460 Ry, a smearing temperature
of 0.15 eV (within a Fermi-Dirac scheme). The structure is relaxed
when the forces are below 0.02 eV/A. The basis sets for both ele-
ments consist in two and three localized functions for the 4s and 4p
states, respectively, and five for the 3d states. The maximum cutoff
radius is 5.1 A. calculations were carried out with 54- and 128-atom
supercells, using respectively a Brillouin zone sampling of 7 x 7 x 7
and 4 x 4 x 4 Monkhorst-Pack grid, and the Methfessel-Paxton
broadening scheme with a 0.3 eV width. With this setup, we
obtain a T = 0 K lattice parameter for bcc Fe of 2.885 A. All calcu-
lations were performed using the GGA approximation for Fe and Cr
[29.4].

In Table 3 we present our results for the formation and migra-
tion energies in pure bcc/fcc Fe from CMS and DFT calculations.

Binding and migration energies barriers, from CMS and DFT
calculations, are shown in Tables 4 and 5 for both, bcc and fcc Fe—Cr
alloys. Results reveal a weak repulsive/attractive energy interaction
between the vacancy and solute for all calculations.

In order to obtain the frequency jumps from the calculated
migration energies, we must first evaluate the pre-factor v in (45)
which is calculated from (46). For this purpose, we calculate
phonon frequencies under the harmonic approximation. As we
already mentioned, the classical limit was employed for this
calculation. Table 6 reports the calculated values of »¥. Note that in

Table 6 we report for the fcc Fe—Cr alloy, the same value of v} as
that for bcc Fe—Cr one.

From the values of Ep,, in Tables 4 and 5, we calculate w; using
equations (45) and (46) with 1/3‘ as reported in Table 6.

Once the jump frequencies in the multi-frequency model have
been computed, the transport coefficients are calculated using
analytical expressions in terms of the temperature.

Table 3

Energies and lattice parameters for pure bcc/fcc Fe from CMS and DFT calculations.
The first column reports the employed method and some references. Second column
specifies the simulation crystal, vacancy formation energy EfV (eV) is shown in the
third column. The forth column displays the migration energies E};, calculated from
the Monomer method [13]. In the fifth column we show the lattice parameter a. The
last column displays the activation energy Eq (eV) = E}’ +EV.

Reference Fe, E}’(eV) EV(eV) a(A) Eq(eV)
bcc-Fe
Present work (CMS) Feip24 1.72 0.68 2.8665 2.40
Chamati et al. [31] Fe4so0 1.86 0.48 2.8665 2.34
Present work (DFT) Fesy 2.18 0.67 2.885 2.85
Present work (DFT) Fei2s  2.05 0.68 2.885 273
SIESTA + drag method (DFT) [32] Fej; 218  0.69 2.885 287
Choudhury [5] Fes, 223 067 2.860 2.90

fcc-Fe

Feipa 187 064 3562 251
Feipsa 187 064 3562 251

Present work (CMS)
AKMC + NEB (DFT) [27]

We calculate the solute correlation factors for bcc and fcc Fe—Cr,
from (49) and (50). Results of fcr in terms of the inverse of the

Table 4

Binding and migration energies in bcc/fcc Fe—Cr with N = 1024/N = 2048 atoms
calculated with CMS + Monomer [13]. The first column denotes the Fe—Cr structure.
Binding energies EJ are shown in the second column. The third column describes the
jump frequencies in Fig. 1. Migration energies E,, for direct and reversed jumps are
written in the forth column. The last two columns show previous results for fcc
Fe—Cr from DFT calculations [27] using the classical atomistic kinetic Monte Carlo
(AKMC) method.

Lattice Eb(eV) wi Em(eV) Eb(eV) Em(eV)
bec - wo 0.68/0.68
0.04 Wy 0.56/0.56
0.08 w3lws 0.67/0.63
—0.003 NN 0.56/0.60
—0.005 w3 /wy 0.54/0.59
0.01 ws|we 0.63/0.66
0.01 w7lwg 0.61/0.63
0.01 wh /Wy 0.64/0.64
fcc - wo 0.64/0.64
0.06 w1 0.66/0.66
0.06 wy 0.65/0.65 0.06" 0.65"
0.01 w3lws 0.76/0.72 0.01"
0.01 wy/wy 0.70/0.63
0.04 wh/wy 0.66/0.60
Table 5

Binding and migration energies in bcc Fe—Cr with N = 54 and N = 128 atoms, using
SIESTA + Monomer [13]. The Table description is he same as in Table 4. In columns
5—6, results taken from Refs. [4,5] using VASP with 54 atoms and SIESTA + Drag
method with 128 atoms, respectively.

N Eb(eV) ;i Epn(eV) Eb(eV) En(eV)
Present work Ref. [5]

54 — wo 0.67/0.67 - 0.67/0.67
—0.04 Wy 0.57/0.57 —0.045 0.58/0.58
0.01 w3fwy 0.67/0.64 —-0.01 0.69/0.65
0.01 Wl /Wy 0.63/0.61 -0.01 0.67/0.63
0.09 wy/wy 0.60/0.59 —-0.03 0.64/0.62
—0.04 ws/we 0.64/0.66 — —
Present work Ref. [4]

128 — wo 0.68/0.68 - 0.69/0.69
-0.04 Wy 0.56/0.56 -0.04 0.57/0.57
0.01 w3y 0.67/0.63 - 0.64/0.66
0.01 why [y 0.60/0.60 — 0.69/0.65
0.09 wy/wy 0.58/0.59 - 0.67/0.66
-0.04 ws|we 0.63/0.65 - 0.74/0.74
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temperature, are shown in Fig. 3.

Fig. 4 shows that b¥, is positive in all the temperature range and
increase monotonically with 1/T for the bcc Fe—Cr alloy, while is
negative for fcc Fe—Cr. This difference will be highly diminished in
the diffusion coefficient because the enhancement factor is multi-
plied by the solute concentration Cs, which is low for diluted alloys.

In the framework of a random alloy model, Belova and Murch
[37,38], have studied the enhancement of the solvent diffusivity, as
well as, the solvent correlation factor in diluted binary alloys in
terms of the jump frequencies w;. The authors have performed an
extensive Monte Carlo study of the tracer correlation factors in
simple cubic, bcc and fcc binary random alloys. On the other hand,
the kinetic formalism of Moleko et al. [39], also describes the
behavior of the tracer correlation factors for slow and faster
diffusers.

In the case of CMS calculations, the Onsager and diffusion co-
efficients were obtained by assuming a solute mole fraction of
Cs = 0.001, which corresponds to n¢ = 8.59 x 102> m~3 at. and
ner = 8.85 x 102> m3 at., respectively for bee and fcc Fe—Cr. For DFT
calculations, with N = 54 and N = 128 atoms, we assume a solute
molar fraction of Cs = 0.01 and Cs = 0.001, respectively.

Once the Onsager coefficients Lss and Lgs are obtained, the va-
cancy wind coefficient G = Las/Lss can be calculated directly from
(55). CMS and DFT results are presented in Fig. 5. We see that
G > —1 for all the temperature range considered, showing that the
vacancy drag mechanism is unlikely to occur in both bcc and fcc
phases using the present description. Our results are in agreement
with those in Refs. [5,33].

The full set of L-coefficients are displayed in Fig. 6 against 1/T, T
in K. We see that the L-coefficients follow an Arrhenius behavior,
which implies in a linear relation between the logarithm of L-co-
efficients against the inverse of the temperature (see Fig. 6).

Now, we are in position to obtain the diffusion coefficients D¥,
D¥. First, we present the ratio of the calculated tracer diffusion
coefficients D¥ /DX as a function of the inverse of the temperature
in Fig. 7.

The ratio of the tracer diffusion coefficients is particularly
important to understand the Radiation Induced Segregation (RIS)
profile in the Fe—Cr system. The ratio of transport coefficients
which determines the sign of RIS is the ratio Ca(Lss + Las)/
C(Laa + Las) and the ratio D¥ /D is an approximation of the latter.
In comparison with experimental data in Ref. [5] in Fig. 4b, our CMS
and DFT calculations accurately predict the relative relationship of
tracer diffusion coefficients between Fe and Cr in the ferromagnetic
Fe phase where the quotient is around 1.3—1.8.

In Figs. 8—10, we show the calculated D¥ and DY using equa-
tions (48) and (53), respectively. For the solute correlation factor, fs,
we discriminate between bcc and fcc Fe using expressions in (49)
and (50), while for fy, we use the associated values fy = 0.7272
and fy = 7814, respectively (see Section 4). We compare present
calculations with reliable experimental data which were plotted in
black triangles for Fe and orange stars for Cr (color online).

The present model is improved when the magnetic order is
taken into account and the phonon spectrum is used to compute

Table 6
Attempt frequencies »¥ in (45) from CMS calculations, in units of the Debye value
vp = 10" Hz [4].

Reference Lattice Fe — VinFe Cr - Vin Fe
Present work bcc 10.9 9.8

Ref. [4] bcc 8.17 8.17
Present work fcc 10.9 9.8

the mean jump frequencies involved in the tracer diffusion co-
efficients. In this way, it is important to consider the study of Self-
diffusion in bcc iron by lijima et al. [34], using a serial radio-
frequency sputter-microsectioning method with radioactive
tracers >>Fe and *°Fe in the temperature range 766—1148 K. Above
the Curie temperature the self-diffusion coefficient shows a linear
Arrhenius relationship with negligible influence of the short range
magnetic spin ordering, while below the Curie temperature
Tc = 1043 K, temperature dependence of the self-diffusion coeffi-
cient deviates from the linear Arrhenius relationship due to spon-
taneous magnetization. The temperature dependence of the self-
diffusion coefficient, DY, in the whole temperature range of bcc
Fe across the Curie temperature, has been expressed by

P 2
D¥ =D} (O)exp{ UL +/<:¥SX(T)] }mzs—g (58)

where X = S or A respectively for the solute or solvent atom, Q}; =

E}’ +EY and Qf =EY, +E}’ + Ep. sa(T), ss(T) are the ratio of the
spontaneous magnetization at TK to that at 0 K [35], and
sA(T) = ss(T) = 1 in the full temperature range of the ferromagnetic
phase. In (58) the activation energies in the paramagnetic phase is
corrected by the spontaneous magnetization term. Here we
extrapolate the values of ags(T) and acS(T) in Ref. [35] using a
quadratic curve from Ref. [36].

The modified activation energy is used in calculating the tracer
diffusion coefficients, as previously in the calculations of the Ons-
ager coefficients. The tracer diffusion expressions in Egs. (47) and
(52) are partitioned into pre-exponential factors and activation
energies to match the Arrhenius form following the procedure in
Ref. [5].

Fig. 8 shows the CMS calculations in two approximations. Fig. 8
(Left panel), shows the CMS calculated values of D} and D¥ using,
as in Ref. [5], v} =5 x 1012 Hz and neglecting magnetic order
corrections to the activation energy. In the right panel, we show, the
here improved model, using the calculated phonon spectrum to
compute v¥ (as in Table 6) involved in wj's, as well as, assuming
magnetic corrections to the paramagnetic Fe phase using eq. (58)
for self and solute activation energies.

We have observed that, the use of a different value of »¥ shifts
"rigidly” the diffusion profile without changing the overall shape.
The change of shape in Fig. 8 from left to right panels is due to
magnetic corrections that are taken into account in the right panel
and not in the left one. This is the reason why in the left panel (with
no magnetic corrections) the slopes for the bcc paramagnetic and
ferromagnetic phases are the same, there is no trace of the phase
transition. While in the right panel, the phase transition is clearly
seen by the change in the slope, which is due to the magnetic
correction taken into account for the ferromagnetic phase.

We can then observe that, for our improved model, Fig. 8 right
panel, calculations are in very good agreement with the experi-
mental data measured in Refs. [34,36], for both the solvent and
solute diffusion coefficients.

Fig. 9, shows our results from DFT calculations with 54 (Left) and
128 (Right) atoms with the above described improved model. That
is, taking into account, for both panels, magnetic corrections for the
ferromagnetic phase, as well as the calculation of v} from the
phonon spectrum. We can then observe that the slope of the results
of DFT calculations are in agreement with experimental data,
however the absolute value has a gap which is reduced by
increasing the total number of atoms as is shown in comparing
Fig. 9 left panel (54 atoms) with right panel (128 atoms). Also, it can
be seen that, although a better agreement with experimental data
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is observed when the number of atom is increased, CMS simula-
tions, shown in Fig. 8 (right panel), give more accurate results than
DFT ones.

In addition, in Fig. 10, we show the diffusion coefficients ob-
tained with DFT calculation with 54 atoms taking into account the
magnetic corrections, but using, as in Ref. [5], »¥ =5 x 10'2 Hz.
That is, without taking into account the calculated phonon spec-
trum to compute »¥. In comparison with Fig. 9 left panel, the use of
a different value of »} which shifts “rigidly” the diffusion profile
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without changing the overall shape, as we already mentioned.

Our calculations in Fig. 10, reproduce the results in Ref. [5]. We
can then observe that, although the slope of the diffusion co-
efficients vs 1/T matches well with experimental measurements,
the absolute value differs in four orders of magnitude.

Hence, the discrepancy between the measured and calculated
tracer diffusion coefficients, reported in Ref. [5], arises from two
features. The effect of the contributions of the phonon vibrations as
been neglected for the calculation of the frequency jumps. On the
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controlled by the vacancy mechanism at all temperatures. The
authors have obtained good agreement of the calculated diffusivity
with experimental data.

In summary, our present calculations for diluted alloys using
both, CMS and DFT, confirm that a vacancy drag mechanism is
unlikely to occur in bec/fcc Fe—Cr diluted alloys, in agreement with
previous results in Ref. [5]. The full set of L-coefficients against 1/T,

other hand, the use of ab-initio calculations with a too small
number of atoms can deliver incorrect results.

On the other hand, a similar accordance with experimental data
have been obtained using also a classical model, namely classical
Kinetic Monte Carlo algorithm with temperature dependent pair
interactions [4].

In Ref. [26], it was found that self-diffusion in pure bcc Fe is
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Fig. 8. Tracer self and Cr diffusion coefficients in Fe—Cr from CMS calculations. Left: Using, as in Ref. [5], v} =5 x 102 Hz and neglecting magnetic order corrections to the
activation energy. Right: Using »¥ calculated phonon spectrum (as in Table 6) and magnetic correction to the ferromagnetic bee-Fe phase. The lines correspond to the present model,
while stars and triangles correspond to the experimental values from Refs. [34,36], for Fe and Cr, respectively.
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with magnetic order corrections, follow an Arrhenius behavior. On
the other hand, present calculations from CMS, are in very well
agreement with experimental values of D¥ and D¥.

Finally we want to mention that, Garnier et al. [40], have
investigated the drag of solute atoms by vacancies at low temper-
atures, using a self-consistent mean field method. The method
takes into account interactions between the solute atom and a
vacancy up to the third nearest neighbor sites. They have identified
the mechanism involved in the solute drag by vacancies. Then, it
would be interesting to extend the calculations for a twelve-
frequency model as in Ref. [40] in order to obtain convergent re-
sults independently of the approximation employed.

6. Concluding remarks

In summary, in this work the diffusion properties in Fe—Cr
diluted alloys have been studied in an important temperature range
that includes both para and ferro magnetic orders as well as bcc and
fcc structures. For our study, we have adopted a multi frequency
model where the migration is driven by a vacancy mechanism. The
present model is improved when the magnetic order is taken into
account and the phonon spectrum is used to compute the mean
jump frequencies involved in the tracer diffusion coefficients.

The flux equations connect the diffusion coefficients with the

DFT + NEB, N=54

Serryus & Brebec

D (mf/s)

1000/T ( K1)

Fig. 10. Self-diffusion and Cr diffusion with DFT calculation with 54 atoms taking into
account the magnetic corrections, but using, as in Ref. [5], v =5 x 10'2 Hz.

Onsager tensor. While kinetic theory allows to write this Onsager
coefficients in terms of jump frequencies. In this way we could
write expressions for the diffusion coefficients only in terms of
microscopic magnitudes, i.e. the jump frequencies. In this context,
we use the approach developed by Allnatt [10,11] and Serryus and
Brevec [7] for fcc and bcc solvent phases, respectively. The multi-
frequency model has also been of great utility in order to
discriminate the relevant jump frequencies, which have been
calculated thanks to the economic technique namely the Monomer.

For the bcc phase, we have performed our calculations using
both, CMS as well DFT calculations with 54 and 128 atoms.
Although, DFT based results, depends on the size of the atomic cell,
CMS results do not. This is a consequence of quantum coherence,
that only DFT calculations take into account. In this way, our cal-
culations show that, in accordance with Bohr's correspondence
principle, as the size of the atomic cell (total number of atoms) is
increased, quantum results with DFT recover the classical ones
obtained with CMS.

On the other hand, temperature destroys coherent effects, and
the atomic diffusion process is studied at temperatures much
higher than ambient. In that case, the interaction of the system with
the thermal environment implies in decoherence effects, where the
classical limit is expected to be recovered. Hence, we do not expect
to observe any quantum feature.

Indeed, our results obtained with CMS simulations are in very
good agreement with available experimental data for both, tracer
solute and solvent diffusion coefficients. A similar accordance with
experimental data have been obtained using also a classical model,
namely classical Kinetic Monte Carlo algorithm with temperature
dependent pair interactions [4]. It must be noted that, the agree-
ment between CMS calculation and experimental data is not
fortuitous, it have been recently observed for diffusion in Ni—Al and
Al-U fcc lattices [3]. Hence, the atomic diffusion process in metals is
a classical phenomena, for which the large number of atoms and
the temperature has suppressed any coherent effect. Then, if reli-
able semi empirical potentials are available, a classical treatment of
the atomic transport in metals is much convenient than DFT.

In addition, the accordance with experiments validates the here
used multi frequency model. This implies that the diffusion process,
at thermal equilibrium, is mainly due to a vacancy mechanism. It
must be also noted that CMS simulations are much less computa-
tionally expensive method than DFT, for which computational time
largely increases with the number of atoms of the quantum sample
to be simulated.

For high temperatures, in the fcc phase, only CMS calculations
where performed. In that case, no experimental date of diffusion
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coefficients have been yet reported for Fe—Cr diluted alloys. Then,
our CMS calculations predict the diffusion behavior in this fcc
phase. Also the present CMS and DFT calculations in both bcc and
fcc phases, reveal that Cr in Fe, at diluted concentrations, migrates
as free species which implies that a vacancy drag mechanism is
unlikely to occur within the present approach.
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