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SHORT COMMUNICATION

Glial and light-dependent glutamate metabolism in the
suprachiasmatic nuclei

M. J. Leone1, C. Beaule2, L. Marpegan1, Tatiana Simon2, E. D. Herzog2, and D. A. Golombek1

1Departamento de Ciencia y Tecnologı́a, Universidad Nacional de Quilmes, Buenos Aires, Argentina and
2Department of Biology, Washington University, Saint Louis, MO, USA

The suprachiasmatic nuclei, the main circadian clock in mammals, are entrained by light through glutamate released
from retinal cells. Astrocytes are key players in glutamate metabolism but their role in the entrainment process is
unknown. We studied the time dependence of glutamate uptake and glutamine synthetase (GS) activity finding
diurnal oscillations in glutamate uptake (high levels during the light phase) and daily and circadian fluctuations in GS
activity (higher during the light phase and the subjective day). These results show that glutamate-related astroglial
processes exhibit diurnal and circadian variations, which could affect photic entrainment of the circadian system.
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INTRODUCTION

The central circadian clock in mammals is located in the
hypothalamic suprachiasmatic nuclei (SCN) (Lehman
et al., 1987; Moore & Eichler, 1972; Morin et al., 1989;
Ralph et al., 1990; Sujino et al., 2003), which are strongly
modulated and entrained by light (Aschoff, 1960;
Pittendrigh, 1981). In the presence of light, a specific
type of retinal ganglion cells (melanopsin-positive)
release glutamate in the ventral area of the SCN
via the retino-hypothalamic tract (RHT) (Golombek &
Rosenstein, 2010). Within the SCN, astrocytes and
neurons (Guldner, 1983) respond to glutamate leading
to phase shifts and the entrainment process (Meijer
et al., 1993).

All known glutamate receptors are present in the SCN
including ionotropic-NMDA receptor (NMDAR), AMPA
receptor (AMPAR), kainite receptor (KAR) and the
metabotropic receptors (mGluRs) (Gannon & Rea,
1994). Light-induced phase shifts of circadian rhythms
are blocked by glutamate antagonists in vivo and in
hypothalamic brain preparations containing the SCN,
while both glutamate and NMDA phase shift circadian
rhythms and induce c-FOS expression in the nuclei (Abe
et al., 1991, 1992). NMDA induces photic-like phase
shifts when administered in the SCN both in vivo and
in vitro, causing delays when applied during the early
night and advances when applied in the late night.

NMDAR is considered to be key players in the entrain-
ment process (Colwell & Menaker, 1992), while mGluR
was shown to modulate the SCN response (Haak, 1999;
Haak et al., 2006; Meijer et al., 1988; Mintz et al., 1999;
Shibata et al., 1994).

Astrocytes can release, take up and respond to
glutamate (Kettenmann & Steinhäuser, 2005;
Verkhratsky & Kirchhoff, 2007a,b; Volterra & Meldolesi,
2005); they play a critical (and almost exclusive) role in
the clearance of extracellular glutamate through uptake
and degradation (Schousboe & Waagepetersen, 2005).
The glutamate released to the extracellular space is
removed by astroglial cells via glutamate transporters
(both GLAST and GLT-1) and subsequent conversion to
glutamine through the activity of glutamine synthetase
(GS, an enzyme which is absent in neurons) (Norenberg
& Martinez-Hernandez, 1979). Glutamate transporter
(GluT) is also expressed in the SCN (Spanagel et al.,
2005) but no circadian rhythms of glutamate uptake were
reported (Beaule et al., 2009). Astrocytes Q3also exhibit
molecular circadian rhythms in vitro that can be
synchronized by serum shocks, temperature pulses and
VIP (Marpegan et al., 2009, 2011; Prolo et al., 2005).
Immunoreactivity to glial fibrillary acidic protein (GFAP),
a structural protein of glial cells, exhibits daily rhythms
within the SCN (Lavialle et al., 2001; Leone et al., 2006).

As the effects of light on the mammalian circadian
system are achieved mostly through retina-derived
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glutamate release in the ventral SCN, we hypothesized
that the presence of light would lead to high astrocytic
glutamate metabolism, while darkness will lead to lower
glutamate metabolism within the SCN, resulting in a
daily rhythm with glutamate metabolism being high
during the day and low during the night.

We tested if glutamate metabolism oscillates
throughout the day in the rodent SCN and whether
this variation is dependent on the light cycle. We found
diurnal variations in both glutamate uptake and glu-
tamine synthetase activity, suggesting that SCN astro-
glial cells can be key players in glutamate mechanisms
involved in photic circadian entrainment.

MATERIALS AND METHODS

Animals
Adult (3–5 months old) and young (15 days) male mice
(Mus musculus, C57Bl/6J background) were raised in
our colony, housed under a 12:12-h light:dark photo-
period (LD, with light onset at 8 AM and lights off at 8
PM) with food and water ad libitum. Time is expressed
as zeitgeber time (ZT), with ZT12 defined as the time of
lights off. For constant dark conditions (DD), animals
were kept 2 days in DD and circadian time 12 (the start
of subjective night) was considered to be the same than
the previous ZT. All animal experiments were carried
out in accordance with the NIH Guide for the care and
use of laboratory animals; and all experimental proto-
cols were performed according to international ethical
standards (Portaluppi et al., 2010).

Enucleation
Mice were anesthetized (ketamine/xylazine) and eyes
were removed from their cavity as previously described
by Lavialle et al. (2001). Animals were monitored under
anesthesia and then returned to their cage for a 2-week
recovery. Running-wheel activity was monitored to
estimate culling time for the experiments.

Glutamate uptake in crude synaptosomal fractions
L-[3H]-glutamate uptake was assessed in crude SCN
synaptosomal preparations with minor modifications to
the previously described protocol (Moreno et al., 2005).
Animals were sacrificed at two different time points for
each condition: midpoint of the day/subjective day
(ZT7/CT7), midpoint of the night/subjective night
(ZT19/CT19) and brains were quickly removed and
placed in a glass dish on ice. Hypothalamic sections,
2 mm thick, were cut and the region containing the SCN
was punched out. The influx of L-[3H]-glutamate was
assessed in a crude synaptosomal fraction of SCN
punches. SCN tissue was homogenized in 0.32 M
sucrose containing 1 mM MgCl2 and centrifuged at
900 g for 10 min at 4 !C. Nuclei-free homogenates were
further centrifuged at 30 000 g for 20 min. The pellet was
immediately resuspended in HEPES-Tris buffer, con-
taining 140 mM NaCl, 5 mM KCl, 2.5 mM CaCl2, 1 mM

MgCl2, 10 mM HEPES, 10 mM glucose adjusted to pH 7.4
with Tris base. Samples were then incubated with
L-[3H]-glutamate (200 000–500 000 dpm/tube, specific
activity 17.25 Ci/mmol) for 10 min at 37 !C. Uptake was
stopped by addition of 4 ml of ice-cold HEPES-Tris
buffer. The mixture was immediately poured onto
Whatman GF/B filters under vacuum. The filters were
washed twice with 4 ml aliquots of ice-cold buffer, and
the radioactivity on the filters was counted in a liquid
scintillation counter. Non-specific uptake into synapto-
somes was assessed by adding an excess of glutamate
(10 mM) (Moreno et al., 2005).

Glutamate uptake in the SCN
Glutamate uptake in the SCN was measured with minor
modifications to a previously described Q3protocol (Beaule
et al., 2009). Young (15–25 day old) mice were anesthe-
tized with CO2 and decapitated at ZT10–11. Their brains
were then dissected and glued to a vibroslicer plate
submerged in cold oxygenated HBSS (Hank’s Balanced
Salt Solution, from Sigma Q1). Slices (300 mm) containing the
SCN were collected and 2 mm punches were obtained
from the SCN area. These punches were placed on a
square piece of Millicell-CM organotypic culture mem-
brane placed on top of a Millicell insert (Millipore, 0.4 mm
pore size, PICM0RG50). The insert was placed in a 35 mm
sterile Petri dish (Falcon BD Biosciences, CA) containing
1 ml of DMEM (Dulbecco’s Modified Eagle Medium,
Sigma) containing 2% B27 supplement (50X, Life
Technologies) and 2% L-Glutamine (Life Technologies),
and kept in a cell culture incubator at 37 !C for 36 h before
measurements. The explants with their Millicell mem-
brane were transferred to a 48-well culture plate and
incubated for 30 min at 37 !C in 300 ml of uptake buffer
(5 mM Tris base, 10 mM HEPES, 140 mM NaCl, 2.5 mM
KCl, 1.2 mM CaCl2, 1.2 mM MgCl2, 1.2 mM K2HPO4,
10 mM dextrose and 1 mM methionine sulfoximine) for
30 min. Methionine sulfoximine was added to inhibit
glutamine synthetase activity. After pre-incubation, the
buffer was replaced for uptake buffer supplemented with
radioactive glutamate for 10 min at 37 !C (1 mM or 10 mM
with 0.2mCi L-[3H]-glutamate "55 Ci/mmol-, GE
Healthcare, Pittsburgh, PA). To test for nonspecific
glutamate uptake, 100 mM L-2,4-trans-PDC (L-trans-pyr-
rolidine-2,4-dicarboxylic acid, Tocris Bioscience, Ellisvill,
MO) was added to the uptake buffer of some cultures to
block high-affinity transporters. In all cultures, we
terminated uptake with four 2-min buffer rinses (iden-
tical to uptake buffer except that NaCl was replaced by
140 mM LiCl) at 4 !C. We lysed the cells immediately after
the fourth wash with 0.1 M NaOH and divided the lysate
to measure glutamate levels (100 ml of cell lysate) and
protein concentrations (30ml cell lysate). Glutamate
levels were measured by liquid scintillation counting
(Wallac 1410 Liquid Scintillation Counter) by 3 ml
of liquid scintillation cocktail (Ecoscint made by
MP Biochemicals, Solon, OH). Protein concentration
for each sample was measured in duplicate against a
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Bovine Serum Albumin (BSA) standard using
the Bradford Assay (Fisher Thermo Scientific,
Waltham, MA).

Western blotting
To assess daily variations on GS expression, animals were
sacrificed at each ZT (3, 9, 15, 21), brains were quickly
removed on ice and placed at "80 !C. Hypothalamic
sections 2 mm thick were cut and the SCN region was
punched out and homogenized in 50 mM Tris/HCl buffer
(pH 7.4), with 1% NP-40, 150 mM NaCl, 1 mM EGTA,
1 mM EDTA, 1 mM NaF, a protease inhibitor cocktail
(AEBSF, E-64, bestatin, aprotinin and leupeptin) and
1 mM sodium ortovanadate (all drugs from Sigma-
Aldrich, St. Louis, MO). SCN protein blots (30mg run in
9% SDS-PAGE gels and transferred to Hybond nitrocel-
lulose membranes from Amersham Bioscience,
Piscataway, NJ) were incubated for 12 h at 4 !C with
specific mouse antibodies anti-GS (BD Transduction
Laboratories, 1/2500 in Tris-HCl 20 mM buffer with 0.1%
Tween-20 – TTBS). Immunoreactivity was assessed using
a secondary antibody coupled to horseradish peroxidase
and visualized with the ECL kit (Amersham). Blots were
stripped (according to Amersham Bioscience’s protocol)
and re-incubated with rabbit antibody anti-actin (Sigma,
diluted 1/2000 in TTBS, incubated for 12 h at 4 !C).
Densitometry of immunoreactive bands was analyzed by
means of one-way ANOVA followed by Tukey’s test.

GS activity measurement
SCN tissue was obtained as described for glutamate
uptake in synaptosomes. Each SCN was homogenized in
75 ml of 10 mM potassium phosphate, pH 7.2. Glutamine
synthetase activity was measured as previously
described (Moreno et al., 2005) with minor modifica-
tions. Reaction mixtures contained 50 ml of SCN hom-
ogenates and 50 ml of a stock solution (100 mM
imidazole-HCl buffer, 40 mM MgCl2, 50 mM b-mercap-
toethanol, 20 mM ATP, 100 mM glutamate and 200 mM
hydroxylamine, adjusted to pH 7.2). Tubes were incu-
bated for 15 min at 37 !C. The reaction was stopped by
adding 200 ml of ferric chloride reagent (0.37 M FeCl3,
0.67 M HCl and 0.20 M trichloroacetic acid). Samples
were placed for 5 min on ice. Precipitated proteins were
removed by centrifugation, and the absorbance of the
supernatants was read at 535 nm against a blank. Under
these conditions, 1 mmol of g-glutamyl hydroxamic acid
gives an absorbance of 0.340. Glutamine synthetase-
specific activity was expressed as mmoles of g-glutamyl
hydroxamate per hour per milligram of protein (Moreno
et al., 2005).

Statistical analysis
According to the experimental designs, data were
analyzed using Student’s t test, one-way ANOVA and
two-way ANOVA, as specified in the Results section.

RESULTS

Glutamate uptake exhibits daily but not circadian
variations in mouse SCN
Glutamate uptake was measured in SCN crude synap-
tosomal extracts from mice at two different time points
in LD and DD conditions (Figure 1A). In LD, glutamate
uptake was compared between ZT7 (daytime) and ZT19
(night time) and, in DD between the resting phase at
CT7 (subjective day) and active phase at CT19 (subject-
ive night). We found higher glutamate uptake during the
light phase (Student’s t test, p50.05) than the dark
phase in LD and no differences between the subjective
night and subjective day in DD (Student’s t test,
p40.05). This daily rhythm indicates that glutamate
uptake in the SCN is influenced by the presence of a
light/dark cycle.

FIGURE 1. Glutamate uptake in the SCN. (A) Glutamate uptake
was measured in SCN synaptosomal crude extracts from animals
in LD and DD. Uptake velocity was higher during the day in LD
(n¼ 3 SCN per time point; two-tail Student’s t test, *p50.05) but
did not vary significantly in DD (n¼ 3 SCN per time point; two-tail
Student’s t test, p40.05). (B) Glutamate uptake was not circadian
in SCN slices. Glutamate uptake was reliably about 10 times higher
for 10 mM glutamate than 1 mM glutamate, but did not differ with
circadian time at either concentration (n¼ 3–4 SCN per time
point). Two-way ANOVA showed a significant main effect of
glutamate concentration (p50.01) and no effect for circadian time
(p40.05), with no significant interaction (p40.05). Post hoc com-
parisons using the Bonferroni test revealed that glutamate uptake
velocity was significantly higher for 10 mM glutamate than 1 mM
glutamate for each CT (***p50.001). Data are plotted as
mean ± SEM.
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The glutamate uptake assay was specific and
reflected glial-dependent activity. Glutamate uptake in
SCN explants was dose-dependent with significantly
increased uptake at higher glutamate concentrations
and was significantly inhibited in the presence of
100 mM trans-PDC (a high-affinity glutamate transporter
inhibitor) (Supplementary Figure 1Q2 ). However, glutam-
ate uptake did not change under constant dark condi-
tions at any of the tested doses (two-ways ANOVA
followed by a Bonferroni post-hoc test, p50.01 for
glutamate concentration, p40.05 for circadian time)
(Figure 1B).

Glutamine synthetase activity exhibits daily and
circadian rhythms in the mouse SCN
We observed strong constitutive GS expression in
protein extracts from mouse SCN at all time-points
(Figure 2A, one-way ANOVA, p40.05). However, we
found significant day–night variations for GS activity
under both LD and DD (Figure 2B). Higher levels of GS
activity were found during the day or subjective day
under LD and DD, respectively (Student’s t test,
*p50.05).

To test if the variations of GS activity were locally
controlled within the SCN or a consequence of retinal
input, we evaluated GS activity in extracts from
enucleated mice. We found a variation in GS activity,
but contrary to the results for LD and DD, we observed a
higher GS activity during the subjective night as
compared to the subjective day (Student’s t test,
*p50.05). We conclude that SCN GS activity is elevated
during the day by the circadian clock and modulated by
the eye.

DISCUSSION

Our results indicate that astroglial glutamate metabol-
ism in the mouse SCN is modulated along the day,
depending on input from the eyes. Specifically, we find
that glutamate uptake in the SCN is enhanced by
daytime light and degraded by enhanced daytime GS
activity. Input from the eyes reduces GS activity, espe-
cially at night. Moreover, the circadian clock modulates
GS activity, but not glutamate uptake.

The high levels of glutamate uptake by SCN synapto-
somes and GS activity by SCN glia during the light phase
are consistent with mechanisms aimed at reducing
glutamate levels in the SCN following light-induced
release from the retina. Enhanced glutamate metabol-
ism during the light phase could result, for example,
from glutamate-induced translocation of GluT to the
plasma membrane or via glutamate receptor regulation
(Duan et al., 1999; Gegelashvili et al., 1996; Hertz, 2006).
The absence of evidence for diurnal variations of GS
expression suggests that glutamate conversion to glu-
tamine is regulated by modulation of enzymatic activity
and not by changes in GS protein levels throughout
the day.

Diurnal variations in glutamate uptake can explain
the differences found between glutamate- and NMDA-
induced phase-response curves, which have been pre-
viously reported (Ding et al., 1994; Mintz et al., 1999;
Shibata et al., 1994). While NMDA changes the phase of
circadian oscillations both in vivo and in vitro, glutam-
ate induces a photic-PRC in vitro but not in vivo (Ding
et al., 1994). A possible explanation is that in vivo
glutamate is quickly removed from the extracellular
space after its release or infusion by EAAT, but since
NMDA is not a target of transporters, it can phase-shift

FIGURE 2. GS abundance and activity in the mouse SCN. (A)
Glutamine synthetase protein levels did not vary in the mouse SCN
under LD conditions. The upper panel shows a representative
Western blot for GS and b-actin. Control relative values from
different experiments indicated no significant differences between
ZTs (one way ANOVA, p40.05). (B) Glutamine synthetase activity
in the mouse SCN under different environmental conditions. GS
activity was significantly lower at night in LD (ZT19) (*p50.01
Student’s t test, n¼ 9 SCN per time point) and at subjective night in
DD (CT19) (*p50.01 Student’s t test, n¼ 20 SCN per time point). In
enucleated mice (YY), GS activity was higher during the subjective
night (YY19) (*p50.01 Student’s t test, n¼ 9). Data are shown as
mean ± SEM.
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the clock without being affected by GluT. In vitro,
glutamate induces phase shifts only at high concentra-
tions (the SCN are resistant to glutamate concentrations
which are excitotoxic for other brain regions, such as
1 mM (Meijer et al., 1993) and this could also be a
consequence of glutamate uptake (in the SCN the
uptake is about three times higher than in cortex
tissue (data not shown)). Finally, the co-administration
of a GluT inhibitor (directly in the SCN) potentiates
light-induced phase delays during the early subjective
night (Kallingal & Mintz, 2006): again, if glutamate
uptake is inhibited, glutamate can be available in the
synaptic space during a longer time and/or at higher
concentration.

We tested a second hypothesis regarding whether
diurnal variations in glutamate metabolism are lost
under constant darkness, a condition where glutamate
levels should be very low in the SCN due to the absence
of light-induced retinal signals. We found that glutamate
uptake was not circadian either in synaptosomes from
animals sacrificed in DD or in SCN slices in vitro
(Figure 1). However, GS activity did exhibit a circadian
variation (Figure 2). Therefore, the presence of light
and/or modulatory processes originating from the eye
itself are modifying glutamate metabolism in the SCN:
glutamate uptake is light-dependent while GS activity is
under circadian control, as was previously described for
GFAP expression in the SCN (Lavialle et al., 2001; Lee
et al., 2003; Yamazaki et al., 2002). Finally, the phase of
the circadian rhythm of GS activity was different in the
absence of retinal innervation. Previous work showed
that the eye influences SCN circadian rhythms in DD
(Beaule & Amir, 2003; Lavialle et al., 2001; Lee et al.,
2003; Yamazaki et al., 2002). The interaction between the
retina and hypothalamic oscillators might represent
mechanisms for the modulation of neuronal and glial
activity, which deserve to be explored further. Beyond
retinal derived glutamate, other non-glutamatergic sig-
nals participate in SCN entrainment (Beaule et al., 2009;
Hannibal et al., 2008)Q3 and can be affecting it through the
modulation of glutamate metabolism (Figiel & Engele,
2000).

In order to have a complete understanding of the role
of astroglial glutamate metabolism in the SCN, it is
necessary to extend the results of this work to other
time-points along the day and to use higher resolution
real-time techniques to understand how the neurons
and astrocytes within the SCN interact eliminating
confounding effects of extra-suprachiasmatic areas.

In summary, our results suggest that different vari-
ables related to glutamate metabolism in the SCN are
under diurnal, circadian and/or retinal modulation.
Since this excitatory neurotransmitter represents the
main neurochemical input to the biological clock, these
variations are certainly important for the understanding
of how the circadian oscillator keeps track of internal
and external time.
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