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Abstract. This paper addresses the problem of trajectory tracking control in 

mobile robots under velocity limitations. Following the results reported in 1, 

the problem of trajectory tracking considering control actions constraint is 

focused and the zero convergence of tracking errors is demonstrated. In this 

work the original methodology is expanded considering a controller that 

depends not only on the position but also on the velocity. A simple scheme 

is obtained, which can be easily implemented in others controllers of the 

literature. Experimental results are presented and discussed, demonstrating 

the good performance of the controller.  

Keywords: Trajectory tracking control, difference equations, uncertainties, 

non-linear multivariable control, mobile robot. 
 

1. Introduction 

Control problems involving mobile robots have recently attracted considerable 

attention in the control community. Mobile robots with a steering wheel (unicycle) or 

two independent drive wheels are examples with substantial engineering interest. Most 



  

wheeled mobile robots can be classified as nonholonomic mechanical systems. 

Controlling such systems is, however, deceptively simple. The challenge presented by 

these problems comes from the fact that a motion of a wheeled mobile robot in a plane 

possesses three degrees of freedom (DOF); while it has to be controlled using only two 

control inputs under the nonholonomic constraint. In trajectory tracking problems the 

objective is to find the control actions that make the mobile robot to reach a Cartesian 

position (xref, yref) with a pre-established orientation θ at each sampling period. These 

combined actions lead the mobile robot to track the desired trajectory. 

This paper proposes a new approach to limit the control signals in a trajectory 

tracking of a unicycle-like mobile robot.  In the literature it is common to find works 

that use explicit saturation functions, such as the hyperbolic tangent, to limit control 

signals2, 3. In this work, a new control law based on linear algebra is proposed to achieve 

such limitation while keeping an efficient trajectory tracking controller operation. In 

addition, is presented a new scheme that allows to choose the controller parameters in 

order to accomplish the above objective.  This algorithm is also applied to a controller 

previously developed by the authors.  

In 1, a novel trajectory-tracking controller, has been presented. The originality of this 

control approach is based on the application of linear algebra for trajectory tracking, 

where the control actions are obtained by solving a system of linear equations. The 

methodology developed for tracking the reference trajectory (xref and yref) is based on 

determining the trajectories of the remaining state variables, in order to the tracking 

error tends to zero. These states variables are determined by analyzing the conditions so 

that the system of linear equations has exact solution. To achieve this objective only two 

control variables are available: the linear velocity (V) and the angular velocity (W) of 

the robot (Fig. 1). This design technique has been applied successfully in several 

systems 1, 4-6.  

Another typical problem, covered in the literature by other authors, 7, 8, is the 

trajectory tracking with constraints in the control signals. In general, in a robot mobile 

system, the linear and angular velocities constraints prevent the mobile robot from 

slipping and actuators saturation. Nonlinear system theory has been employed to solve 

this problem in 7. In 7, a saturation feedback controller (where the saturation constraints 



  

of the velocity inputs are incorporated into the controller design) is introduced. In 8, a 

model-predictive trajectory-tracking control applied to a mobile robot is presented. 

Linearized tracking-error dynamics is used to predict future system behavior and a 

control law is derived from a quadratic cost function penalizing the system tracking 

error and the control effort. In 9, fuzzy rules are adopted to achieve such limitation, 

combining the heuristic knowledge of the problem, the sector non linearity approach 

and the inverse kinematic of the mobile platform.  

This work is a continuation of 1 and 10, and provides an accurate answer to the 

following challenging problem. The approaches here proposed consider the problem of 

designing controllers based on linear algebra for trajectory tracking ensuring that the 

values of the control actions do not exceed the maximum allowable. The mains 

contributions of this work are a new control law and a new method for controllers’ 

tuning.  

The new controller proposed prevents the saturation of the actuators and ensures 

convergence to zero of tracking errors, this methodology is based on linear algebra and 

the trapezoidal approximation of the robots model. The trapezoidal approximation, here 

considered, includes the linear and angular references velocities in comparison of the 

control law presented in 1. 

The novel parameter assignment scheme presented in this work is based on the 

conditions that avoid the saturation of the control actions and on the conditions that 

ensure the convergence to zero of the tracking errors. In addition, a decremental reason 

of the controller parameters is defined in order to achieve such objective. This 

parameter assignment scheme is applied to the Euler based controller previously 

published by the authors and to the Trapezoidal based controller here proposed.  

The contributions, with respect to the previous works 1, 10, can be summarized as: 

• Respect to 1, a new control law is proposed. This law is based in the 

modification of the trapezoidal controller developed in 1 (Eqs. (31) and (33)). 

Another important contribution respect to 1 is a method for controller tuning 

that allows to choose the controller parameters (based on Euler 

approximation) proposed in Eq. (15) in 1. Furthermore, in this work is 

included an analysis of the controller parameters. The conditions so that the 



  

control actions do not exceed the maximum permitted and the tracking errors 

tend to zero arises from this analysis. The general contribution proposed in 

this paper is achieving the limitation in the control actions while keeping an 

efficient trajectory tracking controller operation. 

• Respect to 10, the methodology is expanded considering a controller that 

depends on the reference position and reference velocities. In addition, a new 

scheme for the controller tuning is proposed. This approach is simple and 

requires a less calculation time compared to 10. Therefore, it is suitable for 

any microcontroller programming, because it is not necessary to solve an 

optimization problem at each sampling time. In addition, the convergence of 

the tracking error to zero for the Trapezoidal controller here proposed is 

demonstrated in the Appendix.  
 

It is noteworthy that due to the above mentioned characteristics of the controllers 

proposed in this paper, the computing power required to perform the mathematical 

operations is low. Therefore it is possible to implement the algorithm in any controller 

with low computing capacity. Furthermore, the algorithm developed is easier to 

implement in a real system because the use of discrete equations allows direct 

adaptation to any computer system or programmable device running sequential 

instructions at a programmable clock speed. Thus, the main advantages of this approach 

are the simplicity of the controller and the use of discrete-time equations, simplifying its 

implementation on a computer system. The proof of the zero-convergence of the 

tracking error is another main contribution of this work.  

To develop and validate the proposed controller, the paper is hereinafter organized in 

seven sections. In Section 2, the kinematical model of the robot mobile is presented. 

The methodology of the Euler based controller design and the parameters analysis is 

shown in section 3. In Section 4, a new control law based on trapezoidal approximation 

is developed. The methodology for controller parameters selection is included in 

Section 5. Section 6 shows the experimental results and performance comparisons 

between the aforementioned controller 10. Finally, Section 7 highlights some 

conclusions. 



  

2. Kinematic model of the mobile robot  

This paper is a continuation of a previous work of the authors, 1 and 10. A nonlinear 

kinematic model for a mobile robot will be used as shown in Fig. 1, represented by (1),  

  
Figure 1 - Geometric description of the mobile robot. 
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where, V is the linear velocity of the mobile robot, W is the angular velocity of the 

mobile robot, ( , )x y  is the Cartesian position, and θ  is the mobile robot orientation. 

This model has been used in several recent papers such as 5, 11, 12. 

Then, the aim is to find the values of V and W  so that the mobile robot follows a 

pre-established trajectory (xref and yref) with a minimum error. The values of  ( )x t , ( )y t , 

( )tθ , ( )V t and ( )W t at discrete time 0t nT= , where 0T  is the sampling time and 

{ }0,1, 2,n∈ L , will be denoted as nx , ny , nθ , nV and nW , respectively.  

From (1), it follows,  
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In this work the Euler and Trapezoidal approximation are applied to the system of 

differential equations (1). 

Remark 1: The value of the difference between the reference and real trajectory will 

be called tracking error. It is given by , ,x n ref n ne x x= −  and , ,y n ref n ne y y= − . The tracking 

error is represented by ( )2 2
, ,n x n y ne e e= + . 

 

3. First approach: Euler’s approximation 

 In this section a control law previously published by the authors in 1 is shown. Then 

the controller behavior is analyzed when its parameters vary (10).  

 
3.1 Controller design 

Through the Euler’s approximation of the kinematic model of the mobile robot Eq. 

(1), the following set of equations is obtained: 
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Equation (3) can be re-arranged as, 
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                                   Eq. (4) 

and the proposed controller is (see 1 and 10, for details),  
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The reference trajectory is known, xref(t) and yref(t). The orientation θez represents the 

necessary orientation to make the mobile robot tend to the reference trajectory; kv and kw 



  

are positive constants that permit to adjust the performance of the proposed control 

system. The controller parameters fulfilled 0< kv <1 and 0< kw <1 so as to the tracking 

errors tends to zero, see 11 for details. 

By inspection of (5) and (6), a proportional action (kv and kw) to the error is 

considered in the computation of the control inputs. 

 

3.2 Analysis of Euler controller parameters 
In this section, the performance of the system when the controller parameters vary is 

analyzed 10.   

Considering that the reference trajectory satisfy Eq. (2), hence 
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From (7) the Eqs. (8) and (9) can be obtained. They represent the reference velocities 

at time n: 
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It is assumed that in each sampling time is fulfilled: |Vref,n|<Vmax and |Wref,n|<Wmax, 

where, Vmax and Wmax are the maximum allowable speeds. These conditions are assumed 

in order to make it possible to follow the reference trajectory. 

Now, robot velocities are analyzed when the controller parameters tends to one from 

the left side. If  kv→1¯  in Eq. (6),  
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As |Vref,n|<Vmax and |Wref,n|<Wmax, from Eq.(11) and Eq. (12) it can be seen that, when 

kv→1¯ and kw→1¯  then, Vn→ Vref,n and Wn→ Wref,n; therefore |Vn|<Vmax and |Wn|<Wmax. 

In 10, the authors have demonstrated that the convergence to zero of the tracking error is 

ensure when the controllers parameters fulfills 0< kv <1 and 0< kw <1. Thus, the latter 

indicates, for the Euler based controller, that a parameter value below (but close) to one, 

guarantees the convergence to zero of the tracking error, and control actions do not 

exceed the allowable values. 

If kv =1 and kw =1, verifies that, 
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 The latter demonstrates that a value below but close to one of the controller parameters 

(kv and kw), makes the actual velocities of the robot tend to the velocities used to 

generate the reference trajectory, and that the tracking error converges to zero.  

In Section 5 a novel methodology is proposed in order to solve the problem of 

selecting the kv and kw values. 

 

4. Second approach: (trapezoidal-type integration method) 

In this Section the trapezoidal controller presented in 1 is show. In addition, its 

parameters analysis is performed. Then, by re-design of the trapezoidal controller a new 

control law is obtained. With this new controller is possible to avoid the saturation of 

the actuators in the mobile robot which is the purpose of this work. 

 
4.1 Trapezoidal controller 

A second controller proposed in 1, is now presented. Through the Trapezoidal 

approximation of the kinematic model of the mobile robot (Eq. (1)), the following set of 

equations can be obtained: 
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The Eq. (15) can be re-arranged as, 
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and the proposed controller is (see 1 for details),  
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The reference trajectory (xref(t) and yref (t)) is known. The orientation θez represents 

the necessary orientation to make the mobile robot tends to reference trajectory; kv and 

kw are positive constants that allow adjust the performance of the proposed control law. 

The controller parameters fulfilled 0< kv <1 and 0< kw <1 to the tracking errors tends to 

zero, see 11. 



  

As can be seen in (17), (18) and (19), a proportional action (kv and kw) to the error is 

considered in the computation of the control inputs. 
 
4.2 Analysis of trapezoidal controller’s parameters 

In this section the performance of the system when the controller parameters vary is 

analyzed.  

Considering that, the desired trajectory satisfy (15), thus, 
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From (20), 
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The Vref,n+1 and Wref,n+1 represents the linear and angular velocities of the reference 

trajectory at the n+1 instant. The reference trajectory fulfills: |Vref,n+1|<Vmax and 

|Wref,n+1|<Wmax. 

Now, the controller performance is analyzed. First the mobile orientation is 

evaluated, if kv→1¯ in Eq. (18),  
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Then, the linear and angular velocities are studied in (17) when kv→1¯, 
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Equations (25) and (26) show that a value below but close to one of the controller 

parameters (kv and kw), do not ensures that the actual velocities of the robot tends to the 

references velocities (Vref and Wref). Thus, is not possible with the control law proposed 

in 1, ensure the trajectory tracking and avoid that the control actions exceed the 

allowable limits. 

 
4.3 Trapezoidal controller re-designs: Reference trapezoidal controller. 

 

In Section 4.2 was shown the performance of the controller proposed in 1 when its 

parameters vary. It was demonstrated that: if kv and kw tend to 1 from left, the variables 

Vn+1, and Wn+1 do not tend to reference values Vref,n+1, and W ref,n+1. Thus, is not 

possible, with the control law proposed in 1, ensure the trajectory tracking and avoid that 

the control actions exceed the allowable limits. In order to provide a solution to 

problem, we propose a new control law based on the re-design of the trapezoidal 

controller. 

From (15), the control law to move from ( ,n nx y ) to ( 1 1,n nx y+ + ) can be derived. 

Considering (15) and replacing [xn+1, yn+1] by the desired trajectory [xd,n+1, yd,n+1], Eq. 

(27) is given: 
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   Eq. (27) 

In order to avoid that the control actions exceeds the allowable limits and by 

inspection of (25) and (26), we propose the following replacements: 

, ,

, ,
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cos  cos

sin  sin
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ez n ez n
ez nW

T
θ θ+ −

=       Eq. (29) 

The orientation θez is the robot's orientation value such that the tracking errors tend to 

zero, see Appendix. Analyzing the conditions for the system (16) has an exact solution, 

we define θez in (30). In order to get a single solution, from (27) the direction 1nθ +  must 

be 
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   Eq. (30) 

The value of θn+1 is thus defined, and will be called θez,n+1. As shown in Eq. (16), this 

is a three-equation system where linear and angular velocities are unknown; from Eq. 

(16), (27), (28), (29) and (30), system (31) results, 
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   Eq. (31) 



  

At time n, the mobile is at [xn,yn], in order to get a smooth trajectory, the desirable 

next state, [xd,n+1,yd,n+1], is not necessarily the new reference state value. This state 

vector ([xd,n+1,yd,n+1]) is replaced according (32) assuming an proportional approach to 

the error. Furthermore, in (31) the orientation θd,n+1 will be replace by a proportional 

term to the error between θez,n and θn, in order to get a smooth trajectory 1. With this 

considerations, (32) is defined,  

( )
( )
( )

, 1 , 1 ,

, 1 , 1 ,

, 1 , 1 ,

d n ref n v ref n n

d n ref n v ref n n

d n ez n w ez n n

x x k x x

y y k y y

kθ θ θ θ

+ +

+ +

+ +

= − −

= − −

= − −

    Eq. (32) 

Where the controller parameters fulfills 0< kv <1 and 0< kw <1, in order to make the 

tracking errors tend to zero, (see Appendix). Note that: 

-  if kv = 0, ( , 1 , 1d n ref nx x+ += ), the goal is to reach the reference trajectory in one step.  

-  if kv = 1, the error will remain constant, ( , 1 , 1 ,d n n ref n ref nx x x x+ +− = − ). 

The same analysis can be applied to yd,n+1 and θd,n+1. Next, we define 
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   Eq. (34) 

The system (34) is of the type Au=b, with more equations than unknowns. Its 

solution by least squares can be obtained by solving the normal equations 13, 

ATAu=ATb, and thence, the proposed controller is: 
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   Eq. (35) 

Proof 1. If the system behavior is ruled by (15) and the controller is designed by 

(30), (33) and (35), then 0,ne n→ →∞  when trajectory tracking problems are considered 

and the controller parameters fulfill 0< kv <1 and 0< kw <1.  

The Proof 1 analysis is shown in Appendix. 

 
4.4 Analysis of reference trapezoidal controller's parameters. 

Now, the performance of the controller proposed in Section 4.3 when its parameters 

vary is discussed. 

Considering that the desired trajectory satisfies Eq. (15), then Eqs. (21), (22) and (23) 

are fulfilled. Here also, θref,n+1, Vref,n+1 and Wref,n+1 are the mobile robot orientation, 

linear and angular velocities of the reference trajectory, and the reference trajectory 

fulfills: |Vref,n+1|<Vmax and |Wref,n+1|<Wmax. 

Next, the trapezoidal controller performance is analyzed. First, the mobile orientation 

is evaluated in Eq. (30) when kv→1¯. 
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Eq. (36) 

By inspection of (21) and (30), when kv→1¯, Eq. (37) is given. As can be seen, 

θez,n+1→θref,n+1. 
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=       Eq. (37) 

Next, the linear velocity (V) is analyzed. From (35) and (37), 
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By comparison of (22) and (38), when kv→1¯, Eq. (39) is given.  
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 Finally, the angular velocity (W) is evaluated. From (35): 
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Considering (37) and replacing in (40), 
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According to (23) and (41), when kw→1¯ the Eq. (42) is given. 
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From (38) and  (41), when kv→1¯ and kw→1¯  then, Vn→ Vref,n and Wn→Wref,n; 

therefore, |Vn|<Vmax and |Wn|<Wmax. The latter demonstrates that a value below but close 

to one of the parameters (kv and kw), make that the actual velocities of the robot tend to 

the velocities used to generate the trajectory and the tracking error converges to zero. 

Thus, the aim of this work can be accomplish.  

In the next section is shown a new algorithm to select the controller parameters (kv 

and kw) in order to the tracking error tends to zero, and the control actions do not exceed 

the allowable limits. 

Remark 2: The results obtained in this work fulfill with Brockett's theorem, 14.  

 

 



  

5. ELECTION OF CONTROLLER PARAMETERS BY DELTA METHOD 

In this section, we propose an algorithm to find in each sampling time the controller 

parameters, such that tracking errors tend to zero and the control actions do not exceed 

allowable limits.  

In sections 3.2 and 4.4, it was shown for the Euler controller (presented in Section 

3.1) and Trapezoidal controller (proposed in Section 4.3) that: if kv and kw tend to one 

from the left, then, Vn→ Vref,n and Wn→Wref,n; therefore |Vn|<Vmax and |Wn|<Wmax. With 

this in mind, an algorithm that is running on each sample time is proposed. The 

controller parameters are initialized at each sampling time with values close to one 

(kvmax and kwmax), these values result in control actions that do not exceed the maximum 

allowable values. Then, its parameters are decreased according to the scheme proposed 

in Figure (2), where δ is the value of decreasing reason. The algorithm ends when 

control actions are less than the allowed maximum speeds or the controller parameters 

take their minimum values (kvmin and kwmin). 

Remark 3: The values of kvmin, kwmin, kvmax and kwmax are determined by empirical 

tests in the same way as in 10. In the experimentation, these values are set as 0.942, 

0.942, 0.99 and 0.99 respectively.  

It is important to remark that the algorithm proposed in Figure (2) is running in each 

sample time. By analyzing Figure (2), it can be seen that the ending conditions of the 

algorithm are: 

• Control actions reached the value of the permitted maximum speeds. 

• The controller parameters take their minimum values allowed (kvmin and 

kwmin).  

These two conditions ensure that always it will be find a feasible solution to 

implement in each sample time. Also ensure that tracking errors tend to zero, since the 

parameters of the controller always fulfill 0< kv <1 and 0< kw <1 (see Appendix). 
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Figure 2 – Flow chart of Delta method. 

 



  

6. EXPERIMENTAL RESULTS 

In this section, four experiments are reported to demonstrate the operation of the 

proposed controllers. Furthermore, the performance of the proposed controller is 

compared with the performance of the controller proposed in 10, where a nonlinear 

programming technique is used to limit the control actions.  

The experiments are performed using a PIONEER 3AT mobile robot. The PIONEER 

3AT mobile robot includes an estimation system based on odometric positioning 

system. Updating through external sensors is necessary. This problem is separated from 

the strategy of trajectory tracking and it is not considered in this paper, 15, 16. The 

PIONEER 3AT has a PID velocity controller used to maintain the velocities of the 

mobile robot at the desired value. Figure 3 shows the PIONEER 3AT and the laboratory 

facilities where the experiments were carried out.  

Next, several experiments are shown to evaluate the performance of the proposed 

controllers in different scenarios. In the first place, the behavior of the proposed 

controller in Section 3.1 (called C1 in the sequel) and the proposed controller in Section 

4.4 (called C2 in the sequel) is proved. Both controllers use the algorithm proposed in 

Section 5 to calculate the control actions. Secondly, an experiment is performed in order 

to compare the approaches proposed in this work (C1 and C2) with a controller recently 

developed in the literature in 10 (C3 in the sequel). Finally, the controllers’ performance 

when the sampling time is decreased is analyzed. 

In order to compare the controllers performances, the integrated squared error (ISE) 

is used 17, 18.  An idea widely used in the literature is to consider the cost incurred by the 

error. Let Φ be a desired trajectory, where #Φ is the number of points of such trajectory.  

Let  ( )2#
0 ( ) ( )0
.x i ref ii

C T x xΦΦ
=

= −∑  the integrated squared error in the x-coordinate; and 

( )2#
0 ( ) ( )0
.y i ref ii

C T y yΦΦ
=

= −∑ the integrated quadratic error in the y-coordinate, as proposed 

in 17, 18. Then, the cost function can be represent for the combination of both, the ISE in 

x-coordinate and the y-coordinate as shown in (43)  
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Figure 3 - PIONEER 3AT and the laboratory 

 

Remark 4: In the implementation of the proposed controllers in this paper, equations 

(21) and (30), which allow to find θref,n+1, are solved by the functions atan2 and unwrap 

of MatLab®. The function atan2 is the arctangent function with two arguments. The 

purpose of using two arguments instead of one is to gather information on the signs of 

the inputs in order to return the appropriate quadrant of the computed angle. The 

function unwrap corrects the radian phase angles in a vector. For details of these 

functions see the Help of MatLab®.  

 
6.1 Curvature test: circle-shaped trajectories. 

The first test carried out is a curvature test recommended in 19, in which the 

controllers performance using different circle-shaped trajectories are probed. Three 

circle-trajectories were used in this work, with different radius. The internal trajectory 

has a radius of r = 1.5m, the middle r = 2.5m and the last one r=3.5m. The initial 

position of the robot is the origin of the coordinate system and the trajectory begins in 

the position (xref, yref) = (1.5m, 0m) and the sample time is set as T0=0.1s. 

The reference trajectory and the results of the controllers are shown in Figure (4a). 

As can be seen, all controllers reach and follow the desired trajectory. Figure (4b) shows 

the plots of the tracking error in the x-coordinate and y-coordinate according to each 

controller used in the test. The Euler based controller, proposed in Section 3.1 named 



  

C1, presents a similar performance that C2 (our approach with trapezoidal 

approximation), but the lowest cost is obtained by C2, as can be seen in Fig. (4f). The 

control actions are shown in Fig (4c). These actions make that the mobile robot follows 

the desired trajectory, without exceed the maximum values of linear and angular 

velocities. The values of the controller parameters at each sampling time are shown in 

Fig (4d). The controller parameters changes to ensure that the tracking errors tend to 

zero and the control actions do not exceed the maximum allowed. The processing timed 

for each controller is show in Fig (4e): in general, C1 and C2 present a similar 

performance. Nevertheless, the trapezoidal based approach (C2) has more processing 

time in some sampling periods (blue-peaks) compared with C1. It is because C2 

includes more information of the reference trajectory (θref, Vref, Wref) in each sample 

time, then, more time is required to calculate the control actions. However, in the two 

controllers C1 and C2, the processing time is less than the sampling period for the entire 

trajectory. 
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Figure 4: a- Tracking trajectory of the mobile robot; b- Tracking errors vs. time; c-  

Control actions vs. time; d- Controller parameters vs. time; e- Processing time vs. time; 

f- Trajectories’ cost. 

 

6.2 Controller comparison. 
To test the advantages and drawbacks of our proposal, an experimental evaluation 

was carried out. For this reason, one controller previously published in the scientific 

literature was implemented for comparison on the mobile robot Pioneer 3AT.  The 

controllers implemented for comparison are the following: 

• Controller show in Section 3.1, C1 in the sequel (based on Euler 

approximation). In order to limit the control actions the scheme proposed in 

Section 5 was applied.  

• The controller developed in Section 4.3, C2 in the sequel (based on 

trapezoidal approximation). To limit the control actions the scheme 

proposed in Section 5 was used. 

• A non-linear trajectory tracking strategy developed by 10, C3 in the sequel. 

This approach proposes nonlinear programming techniques to limit the 

control action.  

The design details of the controller can be found in its respective references, and only 

the experimental results without a theoretical analysis of the controller’s properties are 

shown here. For those, 10, offer a deep insight into the controller design.  

Two tests with different trajectory references were performed to compare the 

controllers’ behavior. First a sinusoidal trajectory is generated with Vref = 0.5m/s, the 

initial position of the robot is at the system origin and the trajectory begins in the 

position (xref, yref) = (1m, 1m). The sample time used is T0=0.1s.  



  

Figure (5a) shows the tracking trajectory of the controllers C1, C2 and C3. As can be 

seen, the controllers reach and follow the desired trajectory without unexpected 

oscillations. Figure (5d) shows that C2 is the controller with lowest error. Figure (5b) 

shows the absolute values of the tracking errors for the x-coordinate and y-coordinate 

respectively. By inspection of the figures, the tracking error of C2 is the lowest and 

present a better performance against unwanted disturbances compared with C1 and C2. 

The processing time for the three controllers is show in Fig. (5c). As can be seen, the 

processing time of C1 and C2 is lower than C3’s processing time. This is due to C1 and 

C2 do not need to perform any optimization to calculate the control actions in each 

sampling period. 
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Figure 5: a- Tracking trajectory of the mobile robot; b- Tracking errors vs. time; c- 

Processing time vs. time; d- Cost of the trajectory tracking. 

 

In order to test the limits of our formulation the second test carried out is a square 

trajectory, as recommended by 19. This strategy can be used in applications such as 

obstacle avoidance and contour-following. So if the danger of collision is large, the 

trajectory to be followed by the robot is modified abruptly and the robot must follow 

that path to avoid collision. In several applications the desired trajectory to be followed 



  

by the robot is usually re-planned. Thus, the controller performance when the trajectory 

changes abruptly will be analyzed. The square reference trajectory is generated 

with constant linear velocity of V=0.3m/s. The initial position of the robot is at the 

system origin and the trajectory begins in the position (xref(0), yref(0)) = (2m,1m). The 

sample time used is T0=0.1s. 

Figure (6) shows the results of the implementation. By inspection of Fig. (6a), all 

controllers reach and follow the reference trajectory. However, for the square trajectory 

test, C2 shows the lowest error cost (as defined in Eq. (43)) when compared to the rest 

of the controllers (Fig. (6d)). This result can also be observed in Fig. (6b), which show 

the tracking errors in the x and y coordinate. Furthermore, the controllers C1 and C2 

have a quicker response to an abrupt change in the reference trajectory as can be seen in 

Figs (6a) and (6b). In this test is also verified that the processing time of C1 and C2 is 

lower than the C3’s processing time, as shown in Fig. (6c). 
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Figure 6: a- Tracking trajectory of the mobile robot; b- Tracking error vs. time; c-  

Processing time vs. time; d- Cost of the trajectory tracking. 

 

 

 



  

6.3 Experimental results decreasing the sample time. 
In order to expand the analysis and to enhance the controller performance the 

sampling time is decreased to: T0=0.05s, as recommended 11. In order to verify that 

proposal, here we used the same conditions and desired trajectory reported in test of 

Section 6.1 but using a sampling time T0=0.05s.  

The experimental results of this test are shown in Figure (7).  Figure (7b) shows the 

evolution of the tracking errors for the three curvatures presented in Fig (7a). When 

comparing Fig (4b) and Fig (7b) it is observed that the tracking errors have considerably 

decreased. The costs obtained in this test and the obtained in Section 6.1 are shown in 

Table 1. Analyzing the Table 1, the cost obtained with T0=0.05s is 10% less compared 

with T0=0.1s. This, can also be seen when comparing Figures (4f) and (7d), where the 

trajectory cost for the two controller is shown with T0=0.1s and T0=0.05s, respectively.  
 

Table 1: Summary of the costs obtained by the controllers. 

Sampling Time \ Controllers 
Trajectory 

Cost for C1 

Trajectory 

Cost for C2 

T0=0.1s 18.935CΦ =  16.185CΦ =  

T0=0.05s 16.297CΦ =  15.043CΦ =  

 

Based in an experimental analysis, decreasing sample time an error reduction is 

observed; this reduction obeys mainly to the additive disturbance and the fact that the 

error from unmodelled dynamics is corrected faster, keeping errors from kinematic 

considerations very small, as pointed in 11. Figure (7c) shows that the control actions do 

not exceed the maximum allowed values and remain close to Vref,n and Wref,n.  

The maximum tracking errors when the robot follows the reference trajectory are 

shown in Table 2.  
 
 
 
 
 
 
 
 
 



  

Table 2: Maximum tracking error obtained by the controllers. 

Sampling Time \ Controllers 

Maximum 

tracking error 

for C1 

Maximum 

tracking error 

for C2 

T0=0.1s max 0.1521 me =  max 0.1287 me =  

T0=0.05s max 0.1140 me =  max 0.0963 me =  
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Figure 7: a- Tracking trajectory of the mobile robot; b- Tracking error vs. time; c-  

Control actions vs. time; d- Cost of the trajectory tracking. 

 

7. CONCLUSIONS 

This paper proposes and validates a new technique for trajectory tracking in mobile 

robots limiting the control signals. One of the most significant contributions of this 

work involves the application of a method to find the parameters of the controller 

developed by 1. This method can be used to find values of the control actions that do not 

exceed the actuators saturation limits and forces the tracking errors tend to zero. In 



  

addition, a new nonlinear trajectory tracking control law based on trapezoidal approach 

has been proposed.  

The proposed controllers are easy to implement, making it suitable for 

implementation in low-profile processors. In addition, the control inputs are the linear 

and angular velocities, common at the most commercial robots. It provides an 

appropriate value for robot velocity commands, avoiding saturation values of control 

signals, while keeping a good performance of the control system. In comparison with 

previous published control law 10, the method proposed here, do not need to perform 

any optimization to calculate the control actions in each sampling period. Finally, the 

proof of convergence to zero of the tracking errors has been included. 
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Appendix 

Proof 1 Analysis: If the system behavior is ruled by (15) and the controller is 

designed by (30), (33) and (35), then 0,ne n→ →∞  when trajectory tracking problems 

are considered and the controller parameters fulfill 0< kv <1 and 0< kw <1. 

Remark 5: consider the next geometric progression,  

1 0
2

2 1 0

1 0
n

n n

a ka

a ka k a

a ka k a+

=

= =

= =

M
 

Then, if 0 1k< <  and n→∞ (with n � N), then 0na → . 

The proof of convergence to zero of the tracking errors starts with the variable θ.  

Considering the orientation from (15) and the control action from (35), 



  

( )0
1 12n n n n

T W Wθ θ+ += + +        (A.1) 

 

( )( ) , 1 ,
1 , 1 ,

0 0

2 ez n ez n
n ez n w ez n n nW k

T T
θ θ

θ θ θ θ +
+ +

−
= − − − −

    
(A.2)

 

 
By replacing the control action Wn+1 given by (A.2) in (A.1) and the Euler’s 

approximation of  Wn, the following expression is found: 
 

( )( ) , 1 ,0 1
1 , 1 ,

0 0 0

2
2

ez n ez nn n
n n ez n w ez n n n

T k
T T T

θ θθ θθ θ θ θ θ θ ++
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(A.3) 

 
After some simple operations, it yields: 

 

( ) ( ) ( ), 1 1 , , 1 1 ,
1 1 0
2 2ez n n w ez n n ez n n ez n nkθ θ θ θ θ θ θ θ+ + + +− − − − − + − =

  
(A.4) 

 
In (A.4) the difference between θez,n 

and θn will be denoted by eθ and represent the 

orientation error to the robot reach and follow the reference trajectory. Thus (A.5) and 

(A.6) results, 
 

, 1
,

1 0
2 2
n

w n

e
k eθ

θ
+ ⎛ ⎞− − =⎜ ⎟

⎝ ⎠     
(A.5) 

 
( ), 1 ,2 1 0n w ne k eθ θ+ − − =

    
(A.6) 

 
Thus, such that the error in (A.6) tends asymptotically to zero,  

 
( )2 1 1 0 1w wk k− < ⇒ < <

    
(A.7) 

 
Then if 0 1wk< <  and n→∞ (with n � N), then , 1 0neθ + → (see Remark 5). 

 
Now, the convergence analysis of ex and ey is developed below. From the 

corresponding equation of the system (15), 

 

( )0
1 1 1cos cos

2n n n n n n
Tx x V Vθ θ+ + += + +

  
(A.8) 

 



  

By using the Taylor interpolation rule, the functions 1cos nθ +  can be expressed as, 

( )( ) ( )
, 1,

1 , 1 , 1 , 1 1 , 1cos cos sin ;0 1
nn

n ez n ez n ez n n n ez n

eθλθ

θ θ θ λ θ θ θ θ λ
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+ + + + + +

−
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144244314444244443

 

(A.9) 

where ,nλθ  is an interpolation point between 1nθ +  and , 1ez nθ + . Thus, (A.8) will be:  
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(A.10) 

 
Then, considering the control action Vn+1 (35) and multiplying by , 1cos ez nθ + , 
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(A.11) 

 
From (30),  
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Considering (A.11) and (A.12), after some simple operations, it yields, 
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leading to,  
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Taking into account (A.10) and (A.14), it can be shown that 

,

0
1 , , 1 , , 1

0

2cos cos sin
2

n

n n n n x ref n ref n n n n

f

Tx x V V V e
T

λ

λ θθ θ θ+ + +

⎛ ⎞⎛ ⎞⎜ ⎟= + + Δ − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
14243

 (A.15) 

 
Next, the following replacements are considered:  
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, ,
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According to (A.15),  
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Thence 
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( ), 1 , 0 , , 12 1 0x n x n v n ne e k T f eλ θ+ +− − + =
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Now, the same reasoning is applied to the y-coordinate, 

 
From the corresponding equation of the system (15), 
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(A.21) 

 
By using the Taylor interpolation rule, the functions 1sin nθ +  can be expressed as, 
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(A.22) 

where ,nψθ  is an interpolation point between 1nθ +  and , 1ez nθ + . Thus, (A.21) will be:  
 

,

0
1 1 , 1 1 , , 1sin sin cos

2
n

n n n n n ez n n n n

f

Ty y V V V e
ψ

ψ θθ θ θ+ + + + +

⎛ ⎞
⎜ ⎟= + + −⎜ ⎟⎜ ⎟
⎝ ⎠

14243
 

   

(A.23) 

 
Then, considering the control action Vn+1 (35) and multiplying by , 1sin ez nθ + , 
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From (30), 
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According to (A.24) and (A.25), after some simple operations,  
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Taking into account (A.23) and (A.27), it can be shown that 
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Next, the following replacements are considered:  
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Considering (A.29) and taking into account (A.28),  
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Thence         
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leading to, 
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Considering (A.20) and (A.33) and taking into account that: 
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it yields, in compact form to: 
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Thus, for 0<kv < 1 the error (A.34) tends asymptotically to zero.  

Remark 6: The Eq. (A.34) is a linear system with a nonlinearity that tends to zero. It 

can be shown that the nonlinearity is bounded in the same manner as shown for other 

functions in 11. If 0< kv < 1 then ex,n 0 and ey,n 0 when n ∞ (11 (apendix A eqs. 

(A31), (A35)-(A41))). 

 

References 

1. G. Scaglia, L. Q. Montoya, V. Mut and F. di Sciascio, "Numerical methods based controller 
design for mobile robots Robotica 27(2), 269-279 (2009). 
2. V. Andaluz, F. Roberti, J. M. Toibero and R. Carelli, "Adaptive unified motion control of mobile 
manipulators Control Engineering Practice 20(12), 1337-1352 (2012). 
3. F. N. Martins, W. C. Celeste, R. Carelli, M. Sarcinelli-Filho and T. F. Bastos-Filho, "An 
adaptive dynamic controller for autonomous mobile robot trajectory tracking Control Engineering 
Practice 16(11), 1354-1363 (2008). 
4. A. Rosales, G. Scaglia, V. Mut and F. Di Sciascio, "Trajectory tracking of mobile robots in 
dynamic environments-a linear algebra approach Robotica 27(7), 981-997 (2009). 
5. A. Rosales, G. Scaglia, V. Mut and F. Di Sciascio, "Formation control and trajectory tracking of 
mobile robotic systems - A Linear Algebra approach Robotica 29(3), 335-349 (2011). 
6. M. E. Serrano, G. J. E. Scaglia, S. A. Godoy, V. Mut and O. A. Ortiz, "Trajectory Tracking of 
Underactuated Surface Vessels: A Linear Algebra Approach IEEE Transactions on Control Systems 
Technology, (2013). 
7. T.-C. Lee, K.-T. Song, C.-H. Lee and C.-C. Teng, "Tracking control of unicycle-modeled mobile 
robots using a saturation feedback controller Control Systems Technology, IEEE Transactions on 9(2), 
305-318 (2001). 
8. G. Klančar and I. Škrjanc, "Tracking-error model-based predictive control for mobile robots in 
real time Robotics and Autonomous Systems 55(6), 460-469 (2007). 
9. C. Z. Resende, R. Carelli and M. Sarcinelli-Filho, "A nonlinear trajectory tracking controller for 
mobile robots with velocity limitation via fuzzy gains Control Engineering Practice 21(10), 1302-1309 
(2013). 
10. M. E. Serrano, G. J. E. Scaglia, F. A. Cheein, V. Mut and O. A. Ortiz, "Trajectory-tracking 
controller design with constraints in the control signals: a case study in mobile robots Robotica, 1-18 
(2014). 
11. G. Scaglia, A. Rosales, L. Quintero, V. Mut and R. Agarwal, "A linear-interpolation-based 
controller design for trajectory tracking of mobile robots Control Engineering Practice 18(3), 318-329 
(2010). 
12. J. M. Toibero, F. Roberti and R. Carelli, "Stable contour-following control of wheeled mobile 
robots Robotica 27(1), 1-12 (2009). 
13. L. A. Strang and L. Aleebra, Its Applications In, (New York, Academic Press, 1980). 



  

14. R. W. Brockett, "Asymptotic stability and feedback stabilization Proceedings of the Conference 
Held at Michigan Technological University 27, 181-208 (1983). 
15. J. E. Normey-Rico, I. Alcalá, J. Gómez-Ortega and E. F. Camacho, "Mobile robot path tracking 
using a robust PID controller Control Engineering Practice 9(11), 1209-1214 (2001). 
16. J. E. Normey-Rico, J. Gómez-Ortega and E. F. Camacho, "A Smith-predictor-based generalised 
predictive controller for mobile robot path-tracking Control Engineering Practice 7(6), 729-740 (1999). 
17. P. D. Cha and J. I. Molinder, Fundamentals of Signals and Systems with CD-ROM: A Building 
Block Approach (Cambridge University Press, 2006). 
18. K. Marti, Stochastic optimization methods (Springer, 2008). 
19. S. A. Roth and P. Batavia, "Evaluating Path Tracker Performance for Outdoor Mobile Robots 
Automation Technology for Off-Road Equipment, (2002). 
 

 


	Documento1.pdf
	ROB-REG-14-0245.R3

