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We present the first closed-loop separation control experiment using a novel, model-free
strategy based on genetic programming,s called ’machine learning control’ in the sequel.
The goal is to reduce the recirculation zone of backward-facing step flow at Reh =
1350 manipulated by a slotted jet and optically sensed by online PIV. The feedback
control law is optimized with respect to a cost functional based on the recirculation area
and a penalization of the actuation. This optimization is performed employing genetic
programming. After 12 generations comprised of 500 individuals, the algorithm converges
to a feedback law which reduces the recirculation zone by 80%. This machine learning
control is benchmarked against the best periodic forcing which excites Kelvin-Helmholtz
vortices. The machine learning control yields a new actuation mechanism resonating with
the low-frequency flapping mode instability. This feedback control performs similarly
to periodic forcing at the design condition but outperforms periodic forcing when the
Reynolds number is varied by a factor two. The current study indicates that machine
learning control can effectively explore and optimize new feedback actuation mechanisms
in numerous experimental applications.

1. Introduction

Flow control is a rapidly evolving interdisciplinary field comprising many disciplines,
like fluid mechanics, technological innovations for sensors and actuators, control theory,
optimization and machine learning. Its potential engineering applications have an epic
proportion, including aerodynamic of cars, trucks, trains, wind-turbines or gas-turbines,
as well as medical equipments or chemical plants. Flow control is employed to reduce
aerodynamic drag for cars (Beaudoin & Aider 2008; Gillieron & Kourta 2010; Joseph
et al. 2013), to find alternative lift-off and take-off configurations for aircraft and or to
improve mixing efficiency (M’Closkey et al. 2002).

There have been many successful implementations of passive and active open-loop
flow control (Fourrié et al. 2010; Joseph et al. 2012; Gautier & Aider 2013b). Closed-loop
control offers great potential for increased robustness and efficiency and is currently the
subject of an increasing ongoing research efforts (Henning & King 2007; Tadmor et al.
2010; Beaudoin et al. 2006; Pastoor et al. 2008; Brandt et al. 2011; Semeraro et al. 2011;
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Gautier & Aider 2013a). In experiments, most closed-loop controls are adaptive (Henning
& King 2007; Beaudoin et al. 2006; Gautier & Aider 2013a) and based on slowly vary-
ing periodic forcing. In-time control remains very challenging because of the non-linear
nature of fluid phenomena. Most model-based control designs are based on a (locally)
linear reduced-order model and ignore frequency cross-talk. The low-dimensionality of
the model is key for robustness and online capability in experiments (Noack et al. 2011;
Bergmann & Cordier 2008; Hervé et al. 2012). Only a few control-oriented reduced-order
models address frequency cross-talk (Luchtenburg et al. 2009; Luchtenburg 2010).

The challenges of model-based control design have led us to search for model-free
control laws using machine learning methods such as evolutionary algorithms (Wahde
2008) or artificial neural networks (Lee et al. 1997). These have been successfully used
in many disciplines such as bio-informatics, medicine and computer science (Harik 1997;
Ferreira 2001; Shah-Hosseini 2009).

This study builds on and extends pioneering works in machine learning based con-
trol by Rechenberg (1994), Lee et al. (1997) and Milano et al. (2002) to name a few.
The relevant techniques to achieve such a goal are genetic algorithms (GA), artificial
neural networks (ANN) and genetic programming (GP). GAs where first suggested for
flow control by (Rechenberg 1994). They have been used in fluid mechanics for shape
optimization (Toivanen et al. 1999; Gardner & Selig 2003), to optimize feedback control
schemes for wall Turbulence (Morimoto et al. 2002), to find optimal wing configurations
in insect flight (Berman & Wang 2007), to minimize drag on a cylinder in numerical sim-
ulations (Milano & Koumoutsakos 2002a) or to fine tune a control law to minimize drag
in a experimental turbulent channel flow (Milano & Koumoutsakos 2002b). It should be
noted that in these examples featuring GA the goal is optimizing tuning parameters.
The algorithm is used to search for the best parameters of a given, set control law. As
GA can tunes parameters, it can only be employed to optimize given designs of control
laws. Model-free control using machine learning methods has been pioneered by Lee et al.
(1997) using ANN (Kim 2003). While ANN can approach solutions by a complex com-
bination (described by the network structure) of sigmoids functions, the performance of
such an algorithm depends on the learning scheme implemented. If the classical errors
back-propagation learning scheme is implemented, then the search algorithm is gradient
based and thus sensitive to local minima. Genetic algorithms can be used to avoid this
problem.

The third technique (GP) is used to find a control law optimizing a cost function. As
with GA, an exploration of the search space is achieved alongside cost functional mini-
mization. The main difference and advantage compared to GA is that GP is optimizing
arbitrary functions, allowing for use in a model-free manner and thus explore a larger
search space. When comparing GP to ANN the advantage lies in the output of the GP,
which is the expression of the function. This allows the study of the control law and the
gain of knowledge on the flow physics.

These algorithms are commonly used in many logistic and pattern recognition tasks.
However GP-based control laws are rare in experimental closed-loop flow control. One of
the obstacles to application of GP to experimental flow control is that a large number
of experiments is required to fulfill the criterion for statistical convergence. Recently,
Duriez et al. (2014) used GP to find closed-loop control laws in flow control problems.
This approach proved surprisingly effective when applied on complex dynamical systems
to closed-loop turbulence control in an experiment (Parezanovic et al. 2014).

The objective of the present study is to use GP to control a separated flow for the first
time. The control objective is chosen to be the reduction of recirculation bubble area
downstream a backward-facing step (BFS). In Sect. 2, the experiment is described. The
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Figure 1: Sketch of the BFS geometry, position of the slotted jet and definition of the
main parameters.

genetic programming control is presented in Sect. 3. The closed-loop control results are
discussed and benchmarked against periodic forcing in Sect. 4. Sect. 5 summarizes the
main finding and provides future directions.

2. Experimental Setup

2.1. Water tunnel

Experiments were carried out in a hydrodynamic channel in which the flow is driven
by gravity. The flow is stabilized by divergent and convergent sections separated by
honeycombs. The quality of the main stream can be quantified in terms of flow uniformity
and turbulence intensity. The standard deviation σ is computed for the highest free
stream velocity featured in our experimental set-up. We obtain σ = 5.9 × 10−4 m.s−1

which corresponds to turbulence levels of σ/U∞ = 2.3×10−3. For the present experiment
the flow velocity is U∞ = 7.3×10−2 m.s−1 giving a Reynolds number based on step height
Reh = U∞h/ν = 1350. This Reynolds number was chosen because of the limitations of
the injection system.

2.2. Backward-Facing Step geometry

The BFS is considered a benchmark geometry for the study of separated flows: separation
is imposed by a sharp edge creating a strong shear layer susceptible to Kelvin-Helmholtz
instability. Upstream perturbations are amplified in the shear layer leading to significant
downstream disturbances. This flow has been extensively studied both numerically and
experimentally (Armaly et al. 1983; Hung et al. 1997; Beaudoin et al. 2004). The BFS
geometry and the main geometric parameters are shown in figure 1. BFS height is h =
1.5 × 10−2 m. Channel height is H = 7 × 10−2 m for a channel width w = 15 × 10−2 m.
The vertical expansion ratio is Ay = H

h+H = 0.82 and the spanwise aspect ratio is
Az = w

h+H = 1.76. The injection slot is located d/h = 2 upstream of the step edge. The
boundary layer thickness at the step edge is δ = 1.3h.

2.3. Sensor: 2D real-time velocity fields computations

The sensor is built on a real-time computation of the vector fields. The velocity fields
are computed based on snapshots from the seeded flow. The seeding particles are 20 µm
neutrally buoyant polyamid particles. They are illuminated by a laser sheet created by
a 2W continuous laser beam operating at λ = 532 nm. Images of the vertical symmetry
plane are recorded using a Basler acA 2000-340km 8bit CMOS camera. Velocity fields
are computed in real-time on a Gforce GTX 580 graphics card. The algorithm used to
compute the velocity fields is based on a Lukas-Kanade optical flow algorithm called
FOLKI developed by (Le Besnerais & Champagnat 2005). Its offline and online accuracy
has been demonstrated and detailed by (Champagnat et al. 2011; Gautier & Aider 2014b).
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Furthermore this acquisition method was successfully used in (Gautier & Aider 2013a;
Davoust et al. 2012; Gautier & Aider 2014a). Velocity fields are computed over an area
of (17.2 × 4.6) × 10−4 m2 which translates into a 9 × 3h2 area. The time between two
snapshots yielding one velocity field is δt = 10 × 10−3 s. 42 image pairs are processed
per second. Figure 2 a) shows a typical example of the instantaneous velocity magnitude
field downstream the step for the uncontrolled flow.
Recirculation plays a major role in the BFS flow and is overwhelmingly used for flow
assessment as well as an objective for the control of flow separation (Henning & King
2007; Chun & Sung 1996). It has also been shown that the recirculation bubble can be
linked to drag (although the relationship is far from trivial) (Dahan et al. 2012). We
choose to evaluate the state of the flow through the instantaneous recirculation area,
computed from instantaneous velocity fields, as our input. It is a 2D extension of the
more common recirculation length evaluated using wall measurements. The recirculation
area and recirculation length have been shown to behave the same way by Gautier &
Aider (Gautier & Aider 2013a). The normalized instantaneous recirculation area s(t) is
computed using equation (2.1),

s(t) =
∫
H(−u(x,y,t)) dxdy

A0

A0 = 1/T
∫ T

0
Auncont(t)dt,

(2.1)

where H is the Heaviside function , u(x, y, t) is streamwise velocity, A0 is the time-
averaged recirculation area for the uncontrolled flow and Auncont is the instantaneous
recirculation area for the uncontrolled flow. See figure 1 for x, y, z directions. The figure 2
b) shows the instantaneous recirculation area corresponding to the instantaneous velocity
field shown on figure 2 b) and computed using equation (2.1).

2.4. Actuator

Actuation is provided using upstream injection through a spanwise slotted jet as shown
in figure 1. The angle between the jet axis and the wall is 45o. The jet flow is induced
using a pressurized water tank. It enters a plenum and goes through a volume of glass
beads designed to homogenize the incoming flow. The jet amplitude Uj is controlled by
changing tank pressure. Because channel pressure is higher than atmospheric pressure
this allows us to provide both blowing and suction. Maximum actuation frequency fa
is about 2Hz. To achieve closed-loop control, the control value b = Uj/Umax (Umax

being the maximum jet velocity) is computed as a function of the sensor value s inside
a Labview project. The specific control laws are derived through genetic programming.

3. Genetic programming control

We propose a generic, model free, approach to closed-loop control of non-linear sys-
tems following (Duriez et al. 2014) we refer to this approach as machine learning control
(MLC). Control laws are optimized with regard to a problem specific objective function
using genetic programming (Koza et al. 1999). A first generation of control laws can-
didates b1i (s) , called individuals (b1i (s) is the ith individual of the 1st generation), is
randomly generated by combining user defined functions, constants and the sensor value
s (see appendix A). Each individual is evaluated yielding a value for the cost function J .
A new population b2i is then generated by evolving the first generation. The procedure is
iterated until either a known global minimum of J is reached or the evolution is stalled.
This process is resumed in figure 3.
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(a)

(b)

Figure 2: (a) Instantaneous velocity snapshot. Arrows show the instantaneous velocity
field while the background color indicates the magnitude of the instantaneous velocity.
The edge of the backward facing step is at x = 0 and y = 1. (b) Corresponding instan-
taneous mapping of the recirculation area. A black dot indicates a velocity vector with
negative streamwise velocity.

3.1. Population generation

The number of individuals inside a generation has a strong influence on the process.
While a large number of individuals will certainly lengthen the total time of the experi-
ment, it will also ensure a higher diversity which is known to be a key parameter of all
evolutive algorithms. In the present study, each generation is made of 500 individuals.
This number of individuals is a good compromise between performance and testing time.
It has proven to be enough to converge on most single input/single output problem, and
is still manageable in terms of total experimental time.

The first individuals b1i , 1 ≤ i ≤ 500 are generated as expression trees made of user-
defined nodes (see Appendix A). These nodes are functions (sin, cos, exp, log, tanh), basic
operations (+,−,×, /), constants and the sensor input s(t). The root of the expression
tree, i.e. the value returned by the function it defines, is the control value. To build
the expression tree, a recursive algorithm is used: a first node is chosen, then for each
argument this node can accept, new nodes are added randomly until all terminal nodes do
not accept any arguments (constants or sensor). The algorithm is made so that the first
generation contains expression trees of different depth and density to ensure diversity in
the population. Furthermore all individuals are different.
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Figure 3: Control loop featuring genetic programming. Control laws b(s) are evaluated
by the flow system. This is done over several generations of individuals. New generations
are generated by replication, cross-over and mutation Jn

i refers to the ith individual of
generation n.

3.2. Evaluation

Expression trees can be easily written as LISP expressions. The evaluation is done by
translating the LISP expression (for example (+(sin s)(/ 2.343 s))) into a control law in-
side the software responsible for the real-time closed-loop control (b = sin(s)+(2.343/s)).
The numerical value used to grade each individual is the cost function J linked to the con-
trol problem. In our case the goal is to reduce the recirculation area over the evaluation
time with a penalization by the energy used for the actuation:

J = 〈s〉T + w〈|b|〉2T > 0, (3.1)

where T is the evaluation time (T = 60 s). The first component, quantifies the state
of the flow and averages the sensor s(t) during the evaluation time. s(t) is normalized
by the time-averaged uncontrolled recirculation area A0 =< s >T . Normalization is
important as it allows corrections taking into account variations in the flow conditions
(i.e. temperature variations, flow rate drifts). A0 is recomputed every 250 individuals to
compensate for any drifts. The second component, weighted by w, is tied to actuation
energy and is normalized by the maximum jet velocity Umax. In the following, we choose
w = 3/2, to strongly penalize high actuation costs. Although the choice for w is arbitrary,
the value represents a trade-off between the gain on area reduction and actuation cost.
Setting a low (respectively high) value of w means that the performance of the system is
much more (respectively less) important than the cost of the control. A balanced value
can be derived by evaluating how much one is ready to spend in energy to achieve a
given performance. The ratio between performance gain and actuation cost of the most
effective open-loop control (see section 4.3) suggests a value close to w = 3/2. This value
was found to strike a good balance between recirculation reduction and actuation cost. It
should be noted J could be appended to further constrain the control laws, for example
it could be modified to penalize non zero-net mass flux actuation (by penalizing the
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Figure 4: Standard deviation of mean recirculation area in percentage over ten evaluations
for different evaluation periods.

difference between blowing and suction fluxes) or strong variations in actuation intensity
(by penalizing the derivative of the control signal).

The evaluation time is also a key parameter as it will determine how long the whole ex-
periment will last. Figure 4 shows that a one minute evaluation is enough to get significant
statistics for an evaluation of J good enough to discriminate individuals by performance.
As time is spent refilling the jet supply tank, the time between two evaluations varies
and can reach two minutes. Approximately 1000 individuals, i.e. two generations, are
evaluated over 24 hours.

Because control laws can be constants (e.g. b = 0.2+0.17) or be outside the actuator’s
operating range (e.g. b = exp(9.87) + (s × s)), each control law is pre-evaluated before
it is applied to the flow. If it is found to saturate the actuator, it is assigned a very
high cost. This step takes a few milliseconds and is done to ensure faster convergence by
discarding uninteresting functions. Because of the random nature of the first generation
most individuals saturate the actuator.

3.3. Breeding of subsequent generations and stop criteria

Once every individual of the current generation has been evaluated, they are sorted by
their cost function value J . The five best individuals are evaluated again, the cost values
are averaged and the population is sorted again. This re-evaluation procedure is repeated
five times to ensure that the value of the best individuals is reliable. The individuals of the
next generation are then produced through 3 different processes. Mechanisms are based
on a tournament process: 7 individuals are randomly chosen, the individual elected to
enter a breeding process is the one with the lowest cost function value. This ensures
that the best individuals inside a generation will be used a lot, while less performing
individuals still have a chance to be part of the next generation. Individuals selected this
way will then be either replicated, mutated or crossed to generate the individuals of the
next generation. The probabilities of replication, mutation and crossover are respectively
10%, 20% and 70%. This new generation is then evaluated and the whole process is
iterated. The process can stop for two reasons. The first one is when J reaches 0 which
in general does not occur. Most of the time, the process is stopped when the best values
of J over the population stop improving over several generations.

4. Results

The approach described in § 3 has been applied to the backward-facing step plant
presented in §2. Generation convergence is analyzed in § 4.1. The best control law of
the final generation is presented in § 4.2. This control law is compared with open-loop
forcing (§ 4.3) and tested for robustness with respect to the Reynolds number in §4.4.
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Figure 5: Cost functions of the first 300 individuals in all twelve generations.

Figure 6: Cost functions averaged over the five best individuals for each generation

4.1. Convergence of machine learning control

The evolution of the cost function with increasing number of individuals is shown in
Figure 5 for all twelve generations. All random control laws of the first generation are seen
to be ineffective, i.e. produce only cost functions which are worse than the uncontrolled
flow (J1

i > 1 for all i). Considering the large search space created by the many ways one
can arrange the node functions, sensor and constants, it is not surprising that a Monte-
Carlo process with 500 individuals is ineffective. A few effective control laws can be seen
as soon as the second generation. The slope of the cost function Ji as a function of the
index i is improved. This clearly shows that the search algorithm is effective in exploring
and exploiting the search-space defined by the cost function. All subsequent generations
perform better than the previous one, i.e. Jn+1

i < Jn
i . After the 9th generation, the

performance of the best individuals appear to converge.
The average of the best five control laws Jn

[1..5] := (Jn
1 + Jn

2 + Jn
3 + Jn

4 + Jn
5 ) /5 is

shown in figure 6 for each generation. Convergence is reached after the 8th generation.
A good termination criterion appears to be to stop the iteration once the average of the
cost function for the first 5 individuals no longer improves. In our case the experiment
was stopped after no substancial enhancement was obtained in 5 generations from the
8th to 12th generation. As the number of generations increases the first 5 control laws
become very similar and averaging over them is a more robust measure than taking just
the best one.

The evaluation of the 12 generations translates into a week of continuous automatized
experiments. At the end of the week, the training phase is finished and an effective,
closed-loop control law has been obtained. While a week of experiment is an investment,
it has to be compared with the time needed by other methods to obtain a viable real-time
closed-loop control, which usually is accounted in months. This places this approach in the
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Figure 7: Graph of the best control law b = K(s) ((4.1)) obtained after 12 generations.

category of control algorithm that can be used to obtain a controller in a comparatively
small amount of time.

4.2. Analysis of the best control law obtained through genetic programming

The control law b = K(s) has a complex mathematical expression, given in equation
(4.1).

b = exp−0.1138× log(cos(log(s))− sin(cos(tanh(sin(s)))). (4.1)

Yet, the graph of the best control law for the final generation has a simple structure as
shown on figure 7 for 0 ≤ s ≤ 1. Indeed, the controlled normalized recirculation area is by
definition positive, s ≥ 0. Experimentally, the instantaneous recirculation area associated
with the best law is found to be always smaller than the averaged uncontrolled region
resulting in s ≤ 1. Note that the control law leads to a combination of blowing and
suction as a function of s.

The actuation command b has an interesting non-proportional and non-monotonous
dependency on s with two similar maxima b ≈ 0.6 (injection) and two similar minima
b ≈ 0.3 (suction) which shows that it could not be obtained through a linear process. Near
uncontrolled values for the recirculation zone (s ∼ 1), large jet injection reduces the area.
This injection decreases with s until suction sets in at intermediate values (s ∼ 0.73).
In the post-transient regime (0.12 < s < 0.32), injection increases with recirculation
area. For s < 0.12, suction sets in. Most of the time, injection b ≈ 0.5 occurs. During
short periods with low recirculation zones, suction sets in or, at minimum, injection is
significantly reduced.

It is interesting to look at the time-series of s(t) (figure 8a) and the corresponding
actuation amplitude b(t) (figure 8b) for the best closed-loop control law. Once the control
starts at time t = 25 s (vertical red line) the recirculation area is quickly and strongly
decreased down to 20 %, corresponding to a 80% reduction on average. For 0 < s < 0.3,
actuation b is roughly an affine function of s (see figure 7). The figure 8b shows that the
actuation is indeed a succession of short period of suction followed by a longer period of
blowing (b ≈ 0.45).

This feedback loop creates oscillations at 0.1 Hz, as observed in figures 8a, 8b and
confirmed by the frequency analysis for the actuation signal shown in figure 9. We con-
jecture that this frequency is the flapping frequency of the recirculation bubble which is
typically an order of magnitude lower than the shear layer shedding frequency (Spazzini
et al. 2001) (shown in figure 10b), as illustrated by figure 9.

The 0.1 Hz feedback dynamics is probably triggered by the choice of our input, the
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(a)

(b)

Figure 8: (a) System response s to the control law, the vertical line shows when control
starts at t = 120 s

. (b) Corresponding actuation b.

Figure 9: Normalized frequency spectrum obtained by Fourier transform of the actuation
signal, frequency is normalized by vortex shedding frequency

instantaneous recirculation area, and the natural flapping frequency. The periodic events
of reduced injection or low suction are awarded by the cost function which penalizes the
actuation.

It is important to notice that the low frequency nature of this actuation enables ”slow”
actuators to positively affect high Reynolds number flows. It may remove strong con-
straints on the actuator in industrial settings which usually deal with high frequency
vortex sheddings (typically a few hundreds Hz for full-scale automotive aerodynamics).
In addition, it has been shown that recirculation area and recirculation length behave in
the same way (Gautier & Aider 2013a). Wall pressure sensors could be used to evaluate
recirculation length in real-time (Henning & King 2007) which could be used as an input
to this new control law, making realistic applications viable .

4.3. Comparison to periodic forcing

Pulsing jet injection at the natural shedding frequency is an effective way of reducing
recirculation area (Chun & Sung 1996; Pastoor et al. 2008; Gautier & Aider 2013b)
making it a natural benchmark for this approach. We choose a periodic forcing at the
Kelvin-Helmholtz frequency with a duty cycle of 50%, which means the jets are turned
on half the time. An effective way of computing the natural shedding frequency is to
compute the swirling strength criterion λci(s

−1). This criterion was first introduced and
subsequently improved by (Chong et al. 1990; Zhou et al. 1999). It was also recently
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(a)

(b)

Figure 10: λCi(t) signal over 60 non-dimensionalized time units, uncontrolled flow, (b)
Normalized frequency spectrum showing a peak at St = 0.2 corresponding to 0.97 Hz.

used as an input in closed-loop flow control experiments (Gautier & Aider 2013a). For
2D data λCi can be computed quickly and efficiently following equation (4.2),

λCi =
1

2

√
4 det(∇u)− tr(∇u)2, (4.2)

when such a quantity is real, else λCi = 0. The shedding frequency is obtained by spa-
tially averaging λCi in the vertical direction at x = 5h. The sampling frequency is fs =
10Hz. This is equivalent to counting vortices as they pass through an imaginary vertical
line at x = 5h. Figure 10a shows the corresponding scalar over 60 non-dimensionalized
time units. Figure 10b shows the frequency spectrum obtained by Fourier transform. The
natural shedding frequency is well defined and close to 1 Hz. This gives us the frequency
for periodic forcing.

Figure 11a shows the reduction of the recirculation area using periodic forcing (figure
11b). Control is effective in reducing the recirculation. The cost function for this control
law is Jperiodic = 0.423 which is quite similar to the one found through genetic program-
ming (Jgenetic = 0.419). The MLC law still performs slightly better. Intriguingly, similar
performances are achieved but with quite different dynamics and frequencies. The peri-
odic forcing excites the Kelvin-Helmholtz frequencies at 1 Hz while the MLC law exploits
the flapping frequency around 0.1 Hz.

4.4. Robustness

The control law was tested for various Reynolds numbers in order to test its robust-
ness. Table 1 shows the resulting cost functions. The cost function does not increase by
more than 20% while Reynolds number changes by a factor 2. The cost function for the
open-loop forcing is also shown. This open-loop forcing is done at the optimal shedding
frequency at Reh = 1350 and is not changed with Reynolds number. Because it is tied
to the recirculation area MLC control law adapts to changes in operating conditions,
ensuring consistent, reliable performances. Because natural frequency changes with free-
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(a)

(b)

Figure 11: (a) System response to periodic forcing over 100 convective time units. (b)
Corresponding actuation.

Reh 900 1350 1800

Jclosed−loop 0.33 0.42 0.59

Jopen−loop 0.75 0.42 0.76

Table 1: Cost function at different Reynolds numbers.

stream velocity, the open-loop control shows poor performance at different Reynolds
numbers. Performance variations for the MLC law are due to changes in jet to cross-flow
momentum ratio. To further improve robustness the control law could be amended in
the following way: b = f(Reh)K(s) where f is a function to be determined.

5. Conclusion

Machine learning control has been used to determine a cost effective control law mini-
mizing recirculation on a backward-facing step flow. During the twelve generations needed
to converge towards the control law, the population has evolved toward solutions bet-
ter fitting the problem, which is translated in lower cost function values. The process is
stopped when no amelioration can be foreseen, judging by the statistical values returned
by the algorithm. As no convergence can be proven, there is no guarantee this control is
optimal. However the nature of the cost function allows to judge the performance of the
solution and whether actuation can be rated as effective.

Without deriving a model for the input-output system, the genetic programming ap-
proach is able to converge on an efficient and robust control law linking a real-time
measure of recirculation area to actuation value. Though the design of the experiment
is kept at its simplest, an 80% reduction of the recirculation area has been achieved.
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Moreover, the control law obtained highlights a mechanism which is not based on the
exploitation of the Kelvin-Helmholtz instability as for the open-loop control, but rather
on lower frequencies which are likely related with frequencies of the recirculation region.

Robustness can be increased by closed-loop laws. It is demonstrated that the control
law designed by genetic programming for a given Reynolds number stays efficient in other
operative conditions as compared to open-loop designed control with rapidly deterioring
performance. Robustness would be reinforced by integrating a condition change during
evaluation, though it would lengthen overall evaluation time.

Genetic programming has proven to be efficient at resolving multi-input/multi-output
problems. Thus adding more freedom to the algorithm, by adding control outputs and
sensors inputs, will increase the number of mechanisms the control laws can access in
order to reduce the cost function. For instance adding time delays or derivative of the
sensor would allow an embedding of the dynamical system and thus allow the control
law to access more information on the state of the system.

This novel approach of experimental flow control competes with other approaches in
terms of efficiency and robustness. Being model-free and capable of producing virtually
any kind of control law (linear, non-linear, with history of sensors and actuators) it can be
used in a systematic fashion, with a known time consumption on the plant. This enables
the method to be used on flows with a specific geometry which has not been thoroughly
investigated, such as a detailed vehicle model or a turbine geometry.
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Figure 12: A typical expression tree.

Appendix A

In this appendix we provide further explanations about how control laws are trans-
lated from expression trees (§ A.1) and how the mutation and crossover operations are
performed (§ A.2).

A.1. Control laws and expression trees.

An expression-tree can be viewed in a graphical way as a tree-like representation of the
function under consideration as in figure 12 with nodes (round shapes) representing user-
defined functions and leaves (square shapes) representing the constants and inputs of the
function. The root of the tree (the top node) is the function output. This tree can also be
described by a LISP expression. A LISP expression is easily generated and manipulated
from a computational point of view. For instance the function b(s) = exp(s−2)+sin(3.56∗
s)) which is represented by the tree in figure 12 is represented by the LISP expression
+((exp(+(−2s)(sin(∗3.56s)))). The fact that the operator comes first allows to generate,
evaluate and manipulate the individual with recursive functions.

A.2. Genetic programming operations on expression trees.

The figure 13 illustrates how the operations of mutation and crossover are performed.
The mutation operations (left) are performed by selecting a node, erasing the node and

its subtree and growing a new subtree randomly. Part of the information contained in the
individual is kept while new information is allowed to enter the population. The mutation
operation increases the diversity and is responsible for exploring the search space with
larger steps. The crossover operation (right) consists in selecting one node in each of the
two individuals under consideration. The nodes and their subtrees are then exchanged.
No new content is brought in but combinations of operations from good individuals (they
both won a 7 contestants tournament) are tested together. The crossover is responsible for
exploring the search space around individuals that are performing correctly. By adjusting
the crossover and mutation probabilities, it is possible to adjust the genetic programming
way of converging. A high rate of mutation will explore more of the search space while
a high rate of crossover will converge faster around detected minima, whether global or
local.
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Figure 13: Left: a possible mutation of an individual. Right: a possible crossover between
two individuals


