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A comparison between different conformations of a given pro-

tein, relating both structure and dynamics, can be performed in

terms of combined principal component analysis (combined-

PCA). To that end, a trajectory is obtained by concatenating

molecular dynamics trajectories of the individual conformations

under comparison. Then, the principal components are calcu-

lated by diagonalizing the correlation matrix of the concaten-

ated trajectory. Since the introduction of this approach in 1995

it has had a large number of applications. However, the inter-

pretation of the eigenvectors and eigenvalues so obtained is

based on intuitive foundations, because analytical expressions

relating the concatenated correlation matrix with those of the

individual trajectories under consideration have not been pro-

vided yet. In this article, we present such expressions for the

cases of two, three, and an arbitrary number of concatenated

trajectories. The formulas are simple and show what is to be

expected and what is not to be expected from a combined-

PCA. Their correctness and usefulness is demonstrated by dis-

cussing some representative examples. The results can be sum-

marized in a simple sentence: the correlation matrix of a

concatenated trajectory is given by the average of the individ-

ual correlation matrices plus the correlation matrix of the indi-

vidual averages. From this it follows that the combined-PCA of

trajectories belonging to different free energy basins provides

information that could also be obtained by alternative and

more straightforward means. VC 2014 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23811

Introduction

Principal component analysis (PCA) has been widely used to

characterize the dynamics of proteins since it allows to detect

important directions in their multidimensional configurational

space.[1] These directions are obtained from molecular dynam-

ics (MD) simulations by diagonalizing the correlation matrix.
[2]Usually, a few eigenvectors stand out for having eigenvalues

far larger than the rest. Movements along these directions

account for the largest structural variations of the peptidic

chain, describing the so-called essential dynamics (ED) of the

protein. Motions along the remaining eigenvectors just corre-

spond to trivial, nearly Gaussian fluctuations. There have been

many discussions on the reliability, usefulness, and meaning of

the vectors identified by PCA.[3–7] Besides, several tools have

been provided to assess their stability and convergence.[1] The

main hypothesis of the approach is that the ED of a protein,

determined with PCA, contains the motions relevant to its

function.[2] This hypothesis has gained support from the build-

up of MD studies that describe a close relationship between

the first eigenvectors of the correlation matrix and the func-

tional motions of several proteins.[8–14] The PCA method is

closely related to quasiharmonic analysis, a method that pro-

vides an affordable approach to compute configurational

entropies.[15–17] Finally, we should note that PCA only identifies

linear correlations between atomic fluctuations. More sophisti-

cated procedures have to be used to detect correlations

beyond linearity.[18,19]

An extension of the PCA method consists of diagonalizing

the correlation matrix obtained by concatenating two or more

independent trajectories, each corresponding to an alternative

conformation of the same protein.[20] They could be, for exam-

ple, the trajectories for the holo and apo forms of a protein,

the active and inactive forms of an enzyme, the open and

closed structures of a channel protein or distinct oligomeriza-

tion states of a given protein subunit. It is known that the

main eigenvectors of these combined correlation matrices

(CCM) no longer describe the largest deformations of the con-

formations involved. Instead, it has been asserted that they

highlight differences in the structure and dynamics of the pro-

teins under comparison. The occurrence of static modes

among the eigenvectors of the CCM has frequently been

reported (see for example Refs. [20–24]). They are identified as

eigenvectors of the CCM for which the projections of the indi-

vidual trajectories differ significantly.

To the best of our knowledge, an analytical expression relat-

ing the CCM to the structures and correlation matrices of the

individual trajectories involved has not been provided yet. In

this article, we present such formulas for the cases of two,

three, and an arbitrary number of concatenated trajectories.

We believe that they will be useful to enlighten the interpreta-

tion of the results of combined-ED analysis and to guide its

discussion. Among other things, these expressions allow to

predict the number of static modes to be expected and afford

a precise and clear meaning for the eigenvalues and directions

of these eigenvectors.
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Methodology

In the following, we denote by N the number of structures

sampled from each single trajectory, and we assume that this

number is the same for all the trajectories included in the con-

catenated one. This is the usual procedure in combined-PCA

studies. Thus, a concatenated trajectory involving n single tra-

jectories has nN structures. The vector containing the atomic

Cartesian coordinates of the kth structure will be denoted by

x(k) and its ith element by x
ðkÞ
i . Therefore, index k runs from 1

to nN while index i runs from 1 to 3Nat, where Nat is the num-

ber of atoms considered.

It should be noted that, when the individual trajectories

remain within their own free energy wells during the whole

simulation, the construction of a combined correlation matrix

that uses the same N for all the trajectories leads to a wrong

weighting of the different conformations. Therefore, the

combined-PCA is deprived of any thermodynamic meaning.

However, even though it is the normal practice, there is no

need to use the same N for all the trajectories. Accordingly, for

completeness, we derive at the appendix the formula for the

correlation matrix of two concatenated trajectories for the

case in which the numbers of snapshots sampled from each

trajectory differ.

Formulas for two concatenated trajectories

Let us A and B denote two different stable conformations of

the same protein. After running MD simulations for A and B,

and sampling N structures from each trajectory, a new set is

formed by arranging the N structures coming from the simula-

tion of A in the first place, followed by the N structures com-

ing from the simulation of B. In this way, the new set fxg,
corresponding to the concatenated trajectory, contains 2N

structures:

fxg5fxð1Þ; . . . ; xðNÞ; xðN11Þ; . . . ; xð2NÞg: (1)

According with the usual PCA procedure, the 2N structures

are aligned to the same reference to eliminate overall rotations

and translations. After that, the correlation matrix for the con-

catenated trajectory, CAB, is calculated following the standard

protocols. The ijth element of CAB is given by

CAB
ij 5

1

2N

X2N

k51

x
ðkÞ
i 2hxiiAB

� �
x
ðkÞ
j 2hxjiAB

� �
: (2)

Here, hxiiAB and hxjiAB are the average values for coordinates

xi and xj, respectively, evaluated with the structures of the con-

catenated trajectory. Thus, for example,

hxiiAB
5

1

2N

X2N

k51

x
ðkÞ
i : (3)

Equation (2) can be rearranged by splitting the summation

into two contributions, one involving the structures coming

from A and one with the structures coming from B,

2NCAB
ij 5

XN

k51

x
ðkÞ
i 2hxiiAB

� �
x
ðkÞ
j 2hxjiAB

� �

1
X2N

k5N11

x
ðkÞ
i 2hxiiAB

� �
x
ðkÞ
j 2hxjiAB

� �
:

(4)

Formally, both summations are equivalent as they just differ

in the structures under consideration. Thus, we only analyze

one of them. Let us RA be the first summation on the right

side of eq. (4). It can be rewritten as

RA5
XN

k51

x
ðkÞ
i 2hxiiA1DhxiiA;AB

� �
x
ðkÞ
j 2hxjiA1DhxjiA;AB

� �
; (5)

where hxiiA and hxjiA are the averages for coordinates xi and

xj, respectively, evaluated with the N structures taken from the

A-simulation, while DhxiiA;AB and DhxjiA;AB express differences

between the average values calculated with the N structures

coming from the A-trajectory and the 2N structures of the

concatenated trajectory,

DhxiiA;AB
5hxiiA2hxiiAB;DhxjiA;AB

5hxjiA2hxjiAB: (6)

By partially distributing the right side of eq. (5), we obtain,

RA5
XN

k51

x
ðkÞ
i 2hxiiA

� �
x
ðkÞ
j 2hxjiA

� �

1DhxjiA;AB
XN

k51

x
ðkÞ
i 2hxiiA

� �
1DhxiiA;AB

XN

k51

x
ðkÞ
j 2hxjiA

� �

1NDhxiiA;ABDhxjiA;AB:

(7)

In this expression, the first summation equals to NCA
ij , where

CA
ij is the ijth element of the correlation matrix corresponding

to the A-simulation. Conversely, the second and third terms

vanish because of the very definitions of hxiiA and hxjiA. There-

fore, the final expression for RA is,

RA5NCA
ij 1NDhxiiA;ABDhxjiA;AB; (8)

with an equivalent equation bearing for RB, the second sum-

mation on the right side of eq. (4). Replacing the expressions

for RA and RB in eq. (4) and rearranging we obtain,

2CAB
ij 5CA

ij 1CB
ij 1DhxiiA;ABDhxjiA;AB

1DhxiiB;ABDhxjiB;AB: (9)

Equation (9) indicates that both, structural and dynamical

features, contribute to the correlation matrix for two concaten-

ated trajectories. The dynamical contribution is contained in

the correlation matrices of the individual trajectories. The

structural or static contribution comes from the differences

between the average structures. We collect the static contribu-

tions in matrix SAB,

SAB
ij 5

DhxiiA;ABDhxjiA;AB
1DhxiiB;ABDhxjiB;AB

2
: (10)

Thus, the final expression for CAB
ij is,
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2CAB
ij 5CA

ij 1CB
ij 12SAB

ij : (11)

A simpler and more explanatory expression for SAB
ij can be

obtained by noting that the average structure of the concaten-

ated trajectory is a combination of the individual averages,

2hxiiAB
5hxiiA1hxiiB; 2hxjiAB

5hxjiA1hxjiB: (12)

Introducing these relationships in eq. (10), we obtain,

SAB
ij 5

DhxiiA;BDhxjiA;B

4
; (13)

where,

DhxiiA;B5hxiiA2hxiiB;DhxjiA;B5hxjiA2hxjiB: (14)

Equation (13) shows that the elements of matrix SAB will be

negligible for those rows and columns corresponding to Carte-

sian coordinates that do not change significantly, on average,

in going from A to B. On the contrary, those pairs of coordi-

nates that change their averages in a considerable amount will

appear as large positive or negative peaks.

Formulas for n-concatenated trajectories

In this section, we derive the expression for the correlation

matrix obtained by concatenating n individual trajectories, Cn,

assuming that we know the formula for the correlation matrix

corresponding to (n21) concatenated trajectories, Cðn21Þ. As we

already have the expression for two concatenated trajectories,

the formula so obtained allows us to go from two concatenated

trajectories to three, from three to four and so on. The struc-

tures used in the calculation of Cn are arranged in the set,

fxg5fxð1Þ; . . . ; xðnN2NÞ; xðnN2N11Þ; . . . ; xðnNÞg; (15)

where the first ðn21ÞN structures are used in the computation

of Cn21, while the last N structures belong to the trajectory

being added. We call this last trajectory as the Z-trajectory and

its correlation matrix as CZ . The ijth element of Cn is given by

Cn
ij 5

1

nN

XnN

k51

x
ðkÞ
i 2hxiin

� �
x
ðkÞ
j 2hxjin

� �
; (16)

where hxiin and hxjin are the average values for coordinates xi

and xj, respectively, calculated with the nN structures of set 15.

The summation of eq. (16) can be split into two summations,

one involving the first (n21)N structures of set 15 and another

one with the remaining N structures coming from the Z-

trajectory,

nNCn
ij 5
XnN2N

k51

x
ðkÞ
i 2hxiin

� �
x
ðkÞ
j 2hxjin

� �

1
XnN

k5nN2N11

x
ðkÞ
i 2hxiin

� �
x
ðkÞ
j 2hxjin

� �
:

(17)

Let us call Rn21 to the first summation on the right side of

eq. (17) and RZ to the second one. We manipulate Rn21 by

adding hxiin21
2hxiin21 and hxjin21

2hxjin21 within the corre-

sponding parenthesis, where hxiiðn21Þ and hxjiðn21Þ are the aver-

age values for coordinates xi and xj, respectively, calculated with

the first ðn21ÞN structures of set 15. After this, Rn21 reads,

Rn215
XnN2N

k51

x
ðkÞ
i 2hxiin21

� �
x
ðkÞ
j 2hxjin21

� �

1Dhxjin21;n
XnN2N

k51

x
ðkÞ
i 2hxiin21

� �
1Dhxiin21;n

XnN2N

k51

x
ðkÞ
j 2hxjin21

� �

1ðn21ÞNDhxiin21;nDhxjin21;n;

(18)

where

Dhxiin21;n
5hxiin21

2hxiin;Dhxjin21;n
5hxjin21

2hxjin: (19)

The first term of eq. (18) equals to ðn21ÞNCn21
ij while the

second and third term vanish. Therefore, we obtain,

Rn215ðn21ÞNCn21
ij 1ðn21ÞNDhxiin21;nDhxjin21;n: (20)

A similar reasoning shows that RZ is given by,

RZ5NCZ
ij 1NDhxiiZ;nDhxjiZ;n; (21)

where,

DhxiiZ;n5hxiiZ 2hxiin;DhxjiZ;n5hxjiZ 2hxjin; (22)

while hxiiZ and hxjiZ are the average values of coordinates xi

and xj, respectively, computed with the last N structures of set

15. Replacing the expressions obtained for Rn21 and RZ in eq.

(17) and rearranging we obtain,

nCn
ij 5ðn21ÞCn21

ij 1CZ
ij 1ðn21ÞDhxiin21;nDhxjin21;n

1DhxiiZ;nDhxjiZ;n:
(23)

This equation looks similar to eq. (9) except for the fact that

the contributions coming from the (n21) concatenated trajec-

tories have a weight that is (n21) times larger than that of the

Z-trajectory. For n 5 2, eq. (23) becomes equivalent to eq. (9).

Formulas for 3-concatenated trajectories

Here, we use eq. (23) to obtain the correlation matrix for three

concatenated trajectories, C3, from the correlation matrix of

two concatenated trajectories, C2, and the matrix correspond-

ing to the trajectory being added, CZ . It should be noted that

names C2 and C2
ij used in this section are equivalent to CAB

and CAB
ij of the previous section, assuming that the two trajec-

tories considered in the computation of C2 are called A and B.

According with eq. (23) we have,

3C3
ij 52C2

ij 1CZ
ij 12Dhxii2;3Dhxji2;31DhxiiZ;3DhxjiZ;3: (24)

After replacing C2
ij for the expression given in eq. (9) we

obtain,
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3C3
ij 5CA

ij 1CB
ij 1CZ

ij 12Dhxii2;3Dhxji2;31DhxiiZ;3DhxjiZ;31

DhxiiA;2DhxjiA;21DhxiiB;2DhxjiB;2:
(25)

Even correct, this expression is not appropriate because it

does not treat the three trajectories on the same foot. To over-

come this drawback, we note that,

Dhxii2;35DhxiiA;32DhxiiA;25DhxiiB;32DhxiiB;2;

hxii35 hxiiA1hxiiB1hxiiZ
� �

=3;

hxii25 hxiiA1hxiiB
� �

=2;

(26)

with similar equations holding for coordinate xj. Introducing

these relationships into eq. (25) and rearranging, a simple

expression for C3
ij that treats the three trajectories on the same

foot can be obtained. It reads,

3C3
ij 5CA

ij 1CB
ij 1CZ

ij

1DhxiiA;3DhxjiA;31DhxiiB;3DhxjiB;31DhxiiZ;3DhxjiZ;3:
(27)

This equation is qualitatively similar to eq. (9). It shows that

the dynamical contributions to C3 are embodied in the correla-

tion matrices of the individual trajectories while the static con-

tributions come from differences between the average

structure of the concatenated trajectory and those of the indi-

vidual trajectories. As before, we collect the static contribution

in a single matrix that we denote as S3,

S3
ij5

DhxiiA;3DhxjiA;31DhxiiB;3DhxjiB;31DhxiiZ;3DhxjiZ;3

3
: (28)

Numerical evaluation

To assess the correctness of the expressions presented at the

previous sections, we performed PCA and combined-PCA for

three different structures of human serum albumin (HSA). This

protein consists of a single chain with 585 residues and con-

tains 17 pairs of disulfide bridges.[25] The structures used in

this numerical evaluation were: the apo form (HSA-apo), the

form complexed with lauric acid (HSA-lau), and the form com-

plexed with myristic acid (HSA-myr). In the following para-

graphs, we provide the details of the setting of the MD

trajectories and the implementation of the PCA and com-

bined-PCA.

The crystal structures used in the MD simulations were

taken from the Protein Data Bank. Their PDB-ID codes are

1AO6 (HSA-apo), 1E7F (HSA-lau), and 1E7G (HSA-myr). In these

structures, HSA-lau and HSA-myr have eight binding sites

occupied by the corresponding substrate molecules. The MD

simulations as well as the analysis presented below were per-

formed using the AMBER 12 suite of programs,[26] with the

Amber99SB force field,[27] following equivalent protocols for

the three systems. Briefly, the PDB files were fed into the Leap

module. There, they were solvated in a TIP3P parallelepiped

water box whose walls were 14.0 Å away from the solute. All

crystallographic water molecules were conserved. Periodic

boundary conditions were used, with a cutoff of 10.0 Å. The

SHAKE algorithm was applied to all hydrogen atoms thus

allowing an integration time step of 2.0 fs. The Particle Mesh

Ewald method was used to calculate the long-range Coulomb

forces.[28] The initial structures were first minimized at constant

volume and then heated from 0 K to a target temperature of

310 K during 100.0 ps, using the weak-coupling algorithm

with stp5 2.8 ps. During this heating, the volume was kept

constant. After this, we switched to constant temperature and

pressure conditions, using a value of 2.0 ps for both stp and sp.

Finally, we allowed for 1 ns of equilibration before a produc-

tion run of 30 ns. Snapshots were sampled every 20 ps. Thus,

each production phase contains in 1500 frames.

We performed standard PCA for the three individual trajec-

tories, as well as combined-PCA for the three possible pairs

(HSA-apo/HSA-lau, HSA-apo/HSA-myr, and HSA-lau/HSA-myr)

and for the three concatenated trajectories. Water molecules,

ions, and substrate molecules were removed from the snap-

shots obtained from the MD simulations, thus rendering equiv-

alent structures for the three systems. Then, following the

standard procedures, all the structures were least-square fitted

onto the same reference structure to eliminate overall transla-

tions and rotations. After that, the covariance matrices for the

Ca atoms were built and diagonalized to yield the first 20

eigenvectors. Matrices S2 and S3 appearing in the combined-

PCA were built and diagonalized using our home-made FOR-

TRAN programs.

Results

General remarks on the equations

Typical MD trajectories used in PCA (and also in combined-

PCA) are not long enough to allow the protein to change

from one stable conformation to the other. Thus, the fluctua-

tions observed during any individual trajectory are expected

to be significantly smaller than the differences between the

average structures of alternative conformations. In this situa-

tion, the main contribution to the concatenated correlation

matrix comes from matrix S, while the correlation matrices of

the individual trajectories only add relatively minor details. In

other words, the static contribution becomes the dominant

one. It is therefore relevant to analyze the properties of the S

matrices in more depth.

We concentrate on the expressions obtained for S2 and S3

[eqs. (10) and (28)]. A careful inspection shows that they could

be written in a more general form as,

Sn
ij 5

1

n

X
a

ðhxiia2hxiinÞðhxjia2hxjinÞ; (29)

where n 5 2 or 3, while a runs over {A, B} or {A, B, Z}, according

we are considering two or three concatenated trajectories. Writ-

ten in this form, it is clear that matrices S2 and S3 also have the

form of a correlation matrix: the correlation matrix of the individ-

ual average structures. Thus, S2 is formed with only two struc-

tures: the averages for trajectories A and B. Therefore, there is a
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single direction in the 3Nat-dimensional space that can explain all

the variations contained in S2. This is the direction of the line

that connects the average structure of A with that of B. But this

is also the direction of the first eigenvector of S2. Moreover, the

eigenvalue of this vector has a clear physical meaning that can

be appreciated by considering eq. (13). The equation shows that

the trace of matrix S2 gives the total squared deviation between

the two structures under consideration, divided by four. After

diagonalization, all these variations are accumulated into the

eigenvalue of the first eigenvector of S2. Therefore,

4kS2

1 5Nat:RMSD2; (30)

where kS2

1 is the first eigenvalue of S2 while RMSD is the root

mean square deviation between the average structures of A

and B. Finally, as the first eigenvector accounts for all the varia-

tions contained in S2, the eigenvalues for the rest of the

eigenvectors are necessarily null. Alternatively, one could say

that the two points considered in S2 span a 1-dimensional

subspace within the 3Nat-dimensional space of the protein.

Then, the diagonalization of matrix S2 just identifies the direc-

tion of the vector that spans this subspace.

Similarly, S3 is a correlation matrix formed with three struc-

tures: the averages for trajectories A, B, and Z. These structures

span a plane in the 3Nat-dimensional space of the protein

(except if they are aligned, but that would be extremely rare).

Accordingly, the diagonalization of matrix S3 only has two

eigenvectors with non-negligible eigenvalues. These vectors

span the plane that contains the three average structures.

Their orientations correspond to the directions of the largest

deviations between the individual averages and the average of

the concatenated trajectory.

A completely different situation is found when all the trajec-

tories involved in the combined-PCA correspond to the same

well of the free energy surface. That would be the case, for

example, of a combined-PCA involving alternative structures

obtained from nuclear magnetic resonance (NMR) experiments

of the same protein. If such trajectories are run for long

enough, they perform an equivalent sampling of the configu-

rational space. Accordingly, their average structures are all

pretty similar and the elements of the static matrix become

negligible. For that case, eq. (29) indicates that the combined

correlation matrix is just the average of the individual correla-

tion matrices. Thus, in this case, the combined-PCA does not

provide new information since equivalent results could be

obtained by just extending the run time of any of the individ-

ual trajectories involved.

Before closing this section, we note that the content of eqs.

(9) and (27) can be summarized in a simple sentence: “the cor-

relation matrix of the concatenated trajectory is equal to the

average of the individual correlation matrices plus the correla-

tion matrix of the individual average structures.”

Convergence of the individual PCA

We checked the convergence of the individual PCA by assess-

ing the convergence of the essential spaces (ES) determined

by them. To stablish the size of the essential spaces, we pro-

jected the individual trajectories onto the eigenvectors of the

corresponding individual correlations matrices. Vectors of the

essential space were detected as those for which the projec-

tion does not fit into a Gaussian function.[2] It was found that

the ES of each system was contained within the first 10 eigen-

vectors. They represent 90.5, 90.7, and 89.4% of the protein

motion for HSA-apo, HSA-lau, and HSA-myr, respectively. These

percentages were evaluated from the ratio between of the

fluctuations contained within the ES and the fluctuations con-

tained within the set of 20 eigenvectors computed in each

case. Then, the convergence of the essential spaces was

checked by calculating the root mean square inner product

(RMSIP) between the ESs evaluated from independent sub-

parts (a and b) of a given trajectory,

RMSIP5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM

i51

XM

j51

va
i :v

b
j

� �2

vuut : (31)

Here, M denotes the dimension of the ES (equal to 10 in

this case) while va
i and vb

j are the ith and jth eigenvectors

obtained from subparts a and b of the given trajectory,

respectively. In Figure 1, we show the time evolution of the

RMSIP for the systems under study. As can be seen, in the

three cases, the RMSIPs become time-independent after �2 ns,

indicating that the individual PCAs are well converged.

Before considering the eigenvalues and eigenvectors of the

combined-PCA for the three trajectories used in this numerical

evaluation, it is necessary to compare the fluctuations

observed within each trajectory with the differences between

their average structures. As a measure of the average fluctua-

tions within a given trajectory, we compute,

hRMSDCa
i5 1

N

XN

j51

RMSDCa
ð Þj; (32)

where N is the number of snapshots involved and RMSDCað Þj is

the Ca-root mean square deviation between snapshot j and

Figure 1. Time evolution of the RMSIPs for the three trajectories under

analysis. The time indicated on the x-axis corresponds to the lengh of the

independent simulations used to compute the RMSIP.
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the average structure of the trajectory considered. Table 1

compares the hRMSDCai computed for each individual trajec-

tory with the RMSDCa between the average structures of alter-

native trajectories.

It is observed that the differences between the average

structures are larger than the fluctuations observed within

each individual simulation. Therefore, the dominant contribu-

tion to the combined correlation matrix is the static one,

embodied in matrix S2. An illustrative example of this situation

is presented in Figure 2, where we compare matrices C2; S2,

and the individual correlation matrices, for the trajectories of

HSA-apo and HSA-myr. The similarities between matrices C2

and S2, and the differences between them and the correlation

matrices of the individual trajectories, are readily appreciated.

We note that matrices C2 and S2 have elements that are one

order of magnitude larger than those of the individual correla-

tion matrices. To make clearer the differences between these

matrices, we used a logarithmic scale to plot the matrix ele-

ments. Similar pictures are obtained when the other pairs are

considered.

PCA of 2-concatenated trajectories

Table 2 compares the largest eigenvalue of each combined

correlation matrix, C2, with the unique nonzero eigenvalue of

matrix S2. The scalar product between these two vectors is

also presented at the same table. As expected from the previ-

ous discussion, the scalar products are all close to one and the

first eigenvalues of C2 and S2 are pretty similar to each other.

The smallest scalar product and the largest relative difference

between the eigenvalues were obtained in the combined-PCA

of the two holo forms. This is because the RMSDCa between

these two average structures is the smallest one. Therefore,

the contribution of S2 is not so dominant in this case. Never-

theless, the differences are tiny.

For each combined-PCA, we computed the projections of

the individual trajectories onto the first eigenvector of matrix

S2. Then, we calculated the probability distributions for these

projections. The results are plotted in Figure 3. As expected,

the projections of the individual trajectories are located on

either side of the y-axis. Moreover, for each pair, the averages

of the individual distributions have the same absolute value,

and the distances between them are just the square root of

the corresponding eigenvalue. All these expectations, that

derive from the equations presented previously, are closely ful-

filled by the numerical examples presented in Figure 3. We end

this section by noting that the eigenvalues of S2 given in Table

2 and the RMSDCa of Table 1 fulfil the relationship expressed in

eq. (30), within the numerical accuracy of the values obtained.

PCA of 3-concatenated trajectories

In this case, the difference matrix has two eigenvectors with

nonzero eigenvalues: kS3

1 53235:03 Å2 and kS3

2 5683:00 Å2. Con-

versely, for matrix C3, we have kC3

1 53369:09 Å2 and kC3

2 5

781:98 Å2. Thus, the eigenvalues of corresponding eigenvec-

tors of matrices C3 and S3 are similar to each other. The rela-

tive difference is somewhat larger for k2. The scalar products

between corresponding eigenvectors are vS3

1 � vC3

1 50:999 and

vS3

2 � vC3

2 50:996. Altogether these values confirm that the larg-

est contribution to matrix C3 comes from matrix S3, while the

individual correlation matrices only add minor details. The pro-

jections of the individual trajectories onto the first two eigen-

vectors of matrix S3 are presented in Figure 4. The average

projection of each trajectory is indicated with a black dot

Table 1. Assessment of the contribution of matrix S2 to matrix C2 for the

three pairs of trajectories under analysis.

hRMSDCa i[a] RMSDCa

[b]

Apo 1.67(0.35) Å Apo-Myr 4.80 Å

Myr 1.44(0.30) Å Apo-Lau 5.49 Å

Lau 1.77(0.28) Å Lau-Myr 2.76 Å

[a] hRMSDCai measures the average fluctuations of the Ca atoms within

an individual trajectory [see eq. (30)]. [b] Ca-Root mean square deviation

between average structures of alternative trajectories. Numbers within

parenthesis indicate the statistical uncertainties.

Figure 2. Correlations matrices involved in the combined-PCA of HSA-apo

and HSA-myr. a) HSA-apo; b) HSA-myr; c) C2 matrix; and d) S2 matrix. A

logarithmic scale was used to plot the contours of the absolute values of

the matrix elements. This choice facilitates the visual inspection of the mat-

rices (see text).

Table 2. Results obtained from the correlation matrix corresponding to

the three concatenated trajectories.

Apo-Myr Apo-Lau Lau-Myr

kS2

1
[a] 3337.29 Å2 4361.59 Å2 1118.13 Å2

kC2

1
[b] 3435.47 Å2 4499.40 Å2 1231.73 Å2

VS2

1 � VC2

1
[c] 0.999 0.999 0.998

[a] Eigenvalues of the first eigenvector of matrix S2. [b] Eigenvalues of

the first eigenvector of matrix C2. [c] Scalar product between the first

eigenvector of S2 and that of C2.
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while their coordinates, in the plane expanded by vectors v1

and v2, are given at the figure caption. We note that eigenvec-

tor v1 is nearly aligned with the line that connects the average

of HSA-apo with the middle point between the averages of

HSA-myr and HSA-lau. This occurs because the distance

between the averages of HSA-myr and HSA-lau is significantly

smaller than the distances between any of these structures

and the average of HSA-apo. In the limiting case in which one

of the distances is negligibly with respect to the other two,

such alignment would be perfect. We finally note that, as

expected, the distances between the averages in Figure 4 are

the same as the corresponding distances in Figure 3.

Discussion

In this section, we summarize the main outcomes of this work.

They derive from the formulas presented at the Methodology

section and have been confirmed by the examples discussed

at the Results section.

� The correlation matrix of a concatenated trajectory, Cn, is

given by the average of the individual correlation matri-

ces
X

i

Ci=n, plus the correlation matrix of the individual

average structures, Sn.

� When the RMSDCa between the individual average struc-

tures is significantly larger than the hRMSDCai of the indi-

vidual trajectories, the dominant contribution to Cn

comes from Sn.

� The number of eigenvectors with non-negligible eigenval-

ues of matrix Sn is n21. When the dominant contribution

to Cn comes from Sn these vectors appear at the first

positions among the eigenvectors of Cn, constituting the

so-called “static modes.”

� When the dominant contribution to Cn comes from Sn,

the projections of the individual trajectories onto the

static modes are unavoidably large. Moreover, if they are

plot in the subspace expanded by the n21 eigenvectors

of Sn, the individual averages appear on either side of

the axes. This occurs because, according to the standard

PCA procedure, all the trajectories are referred to the

global average structure. This structure necessarily lies in

between the individual averages.

Figure 3. Probability distributions for the projections of the individual trajec-

tories onto the first eigenvector of matrix S2. a) Combined-PCA for HSA-apo

and HSA-myr; b) combined-PCA for HSA-apo and HSA-lau; and c) Combined-

PCA for HSA-myr and HSA-lau. Lengths are measured in Å. [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 4. Projections of the individual trajectories onto the first two eigen-

vectors of matrix S3. The coordinates of the average projections are

(279.454, 25.779) for HSA-apo, (28.833, 34.503) for HSA-myr and (50.621,

228.724) for HSA-lau. Lengths are measured in Å. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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� In the case of two concatenated trajectories, much of the

information contained in the static mode can be

obtained by alternative means (i.e., by computing the

average for each trajectory and the difference vector

between them).

� A few eigenvectors of matrix Cn (the static modes) inform

us about differences in the average structures of the tra-

jectories considered. The rest of the eigenvectors afford

dynamical information. However, their precise meaning is

more difficult to envision. The expressions presented

here indicate that they are the eigenvectors of a matrix

obtained by first averaging the individual correlation mat-

rices, and then projecting-out the directions of the static

modes.

Conclusions

We have presented several analytical expressions relating the

correlation matrix of a concatenated trajectory with the corre-

lation matrices and the average structures of the trajectories

involved. First, we derived the expression for two concaten-

ated trajectories. Then, we developed the more general case

of n concatenated trajectories, assuming that one already

knows the formulas for n21 trajectories. Finally, we use this

more general equation to obtain a compact and illustrative

expression for the case of three concatenated trajectories. The

analysis of the cases considered shows that the results can be

summarized in a single sentence: the correlation matrix of a

concatenated trajectory is given by the average of the individ-

ual correlation matrices plus the correlation matrix of the indi-

vidual averages. From this, it follows that the combined-PCA

of trajectories belonging to different free energy basins pro-

vides information that could also be obtained by alternative

and more straightforward means.

We performed combined-PCAs for two and three concaten-

ated trajectories, using the structures of HSA in the the apo

form as well as complexed with myristic acid and lauric acid.

These numerical examples demonstrated the accuracy of the

expressions presented in the article. We believe that these

expressions will help to enlighten the interpretation of the

results of combined-ED analysis and to guide their discussion.

Keywords: principal component analysis � essential dynami-

cs � concatenated trajectories � conformational changes � pro-

tein dynamics
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APPENDIX

Here, we derive an expression for the elements of the correlation

matrix of two concatenated trajectories, for the more general sit-

uation in which the number of structures taken from the individ-

ual trajectories is not the same. Let fxg be a set of Nt snapshots

obtained from MD simulations of trajectories A and B. We

assume that the first NA structures of the set were taken from

trajectory A while the remaining NB5Nt2NA come from trajec-

tory B. The ijth element of the combined correlation matrix fulfils,

Nt CAB
ij 5

XNt

k51

x
ðkÞ
i 2hxiiAB

� �
x
ðkÞ
j 2hxjiAB

� �
: (A1)

Here, hxiiAB and hxjiAB are the averages of coordinates xi and

xj computed with the set fxg. These averages are related to

the averages computed from trajectories A and B according to,

NthxiiAB
5NAhxiiA1NBhxiiB; (A2)

NthxjiAB
5NAhxjiA1NBhxjiB: (A3)
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The summation in eq. (A1) is now split into two summa-

tions, one containing the structures taken from trajectory A

and one with the structures taken from trajectory B,

Nt CAB
ij 5RA1RB; (A4)

with

RA5
XNA

k51

x
ðkÞ
i 2hxiiAB

� �
x
ðkÞ
j 2hxjiAB

� �
; (A5)

RB5
XNt

k5NA11

x
ðkÞ
i 2hxiiAB

� �
x
ðkÞ
j 2hxjiAB

� �
: (A6)

Following a procedure similar to those used in the main

text of this work, the expressions for RA and RB become,

RA5NACA
ij 1NADhxiiA;ABDhxjiA;AB; (A7)

RB5NBCB
ij 1NBDhxiiB;ABDhxjiB;AB (A8)

where DhxiiA;AB;DhxjiA;AB, so forth have the meaning expressed

in eq. (6). Replacing these expressions in eq. (A4) we obtain,

CAB
ij 5wACA

ij 1wBCB
ij 1SAB

ij ; (A9)

where wA5NA=Nt;wB5NB=Nt , while the static contribution to

the combined correlation matrix is given by

SAB
ij 5wADhxiiA;ABDhxjiA;AB

1wBDhxiiB;ABDhxjiB;AB: (42)

Finally, using the relationships given in eqs. (A2) and (A3),

the expression for SAB
ij simplifies to

SAB
ij 5wAwBDhxiiA;BDhxjiA;B: (A10)

which becomes equal to eq. (13) when the number of snap-

shots taken from each trajectory is the same. Moreover, as the

factor wAwB is maximum when wA5wB50:5 this last equation

demonstrates that the usual procedure of using the same

number of snapshots for both trajectories maximizes the static

contribution to the combined correlation matrix.
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