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Abstract. Starting from Lagrange interpolation of the exponential function ez in the
complex plane, and using an integral representation formula for holomorphic functions on
Banach spaces, we obtain Lagrange interpolating polynomials for representable functions
defined on a Banach space E. Given such a representable entire funtion f : E → C, in order
to study the approximation problem and the uniform convergence of these polynomials to f
on bounded sets of E, we present a sufficient growth condition on the interpolating sequence.
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1. Introduction

In [13] it was shown that for a Banach space E with a separable dual (or with

a separable predual) the Cauchy integral formula takes the form

f(x) =

∫

E′

eγ(x)f̃(γ) dW (γ),

where W is a Wiener measure on E′ and f̃ a transform of f involving the covariance

operator S : E → E′ of the measure. For any given f this transform f̃ is in Lp(W ) for

some p > 1. The formula holds for a wide class of holomorphic functions f : E → C

called the representable functions. This class includes the functions verifying the

growth condition

|f(x)| 6 ceσ‖S(x)‖.
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The same formula was extended to the context of fully nuclear spaces with basis

in [4].

When E = C
n, the measure W is simply the standard Gaussian measure on the

complex n-dimensional space:

W (A) =
1

π
n

∫

A

e−‖z‖2

dz1 . . . dzn.

On infinite-dimensional spaces there is no standard Gaussian measure. Modifications

must be introduced so that the variances in different directions are summable [11].

This gives rise to the covariance operator of the measure S : E → E′ defined by

S(x)(y) =

∫

E′

γ(x)γ(y) dW (γ),

which has a (densely-defined) inverse T : E′ → E. The transform f̃ referred to above

is (essentially) f̃(γ) = (f ◦ T )(γ).
In the finite-dimensional case the covariance operator is the identity, and the

integral formula reduces to

f(z) =

∫

Cn

eγ(z)f(γ) dW (γ).

Note that in this case the class of representable functions includes all functions of

order 2 and exponential type ε < 1, i.e.,

|f(z)| 6 ceε‖z‖
2

, with ε < 1.

For representable functions on Banach spaces f : E → C, the Taylor series of ez

at 0 automatically yields the Taylor series of f at 0:

f(x) =

∫

E′

eγ(x)f̃(γ) dW (γ) =

∫

E′

∞
∑

k=0

γ(x)k

k!
f̃(γ) dW (γ)

=
∞
∑

k=0

∫

E′

γ(x)k

k!
f̃(γ) dW (γ) =

∞
∑

k=0

Pk(x),

where Pk is the k-th Taylor polynomial of f . It is therefore natural to ask if other

approximations of the exponential function will give rise to the corresponding ap-

proximations of representable holomorphic functions f : E → C.

The main purpose of this paper is to show that this is indeed the case for the

Lagrange approximation.

282



Lagrange interpolation has been generalized to several variables by the work of

Kergin [10], Andersson and Passare [1], and the approximation problem has been

studied by Bloom [2], Filipsson [7] and others.

Petersson [12], Filipsson [6] and Simon [14] have extended Kergin interpolation and

approximation to the Banach space setting. Hence, the results obtained in this paper

are not entirely new. However, we believe there is some value to our method, since it

allows a jump from Lagrange interpolation of one function in one complex variable,

ez, to functions on Banach spaces. We note also that in the finite-dimensional case,

we obtain Gaussian-integral formulas for the Kergin polynomials.

We recall that given a sequence of complex numbers a0, a1, . . . , an, . . . the Lagrange

interpolating polynomial of order k for ez is the unique polynomial pk : C → C of

degree not exceeding k which takes the values

pk(aj) = eaj

for j = 0, 1, . . . , k. We allow the points aj to repeat themselves: if a appears m times

in the series a0, a1, . . . , ak, then

pk(a) = ea, p′k(a) = ea, . . . , p
(m−1)
k (a) = ea.

It is not always the case that the polynomials pk approximate e
z. In order to

obtain pk(z) → ez uniformly on compact subsets of C, a growth condition must be

imposed on the sequence (an):

lim sup
k

|ak|
k

< ln(2).

It is well-known that the polynomials pk may be written in terms of Newton’s

formula

pk(z) =
k

∑

j=0

[a0 . . . aj ](z − a0) . . . (z − aj−1),

where the coefficients [a0 . . . aj ] are inductively defined as the divided differences:

[a0] = ea0 ,

[a0 . . . aj] =







[a0 . . . aj−1]− [a1 . . . aj ]

a0 − aj
, if a0 6= aj,

[a1 . . . aj−1z]
′(a0), if a0 = aj.

The errors Ek(z) may also be expressed in terms of divided differences:

Ek(z) = ez − pk(z) = [za0 . . . ak](z − a0) . . . (z − ak).
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We will need to express [a0 . . . aj ] as

[a0 . . . aj ] =

∫

t0+...+tj=1

et0a0+...+tjaj

where the integration is over the simplex

Sj = {(t0, . . . , tj) ∈ R
j+1 : ti > 0 and t0 + . . .+ tj = 1}

with its standard j-dimensional Lebesgue measure. This formula is the Hermite-

Genocchi formula (see [3], [9]) in the special case of the exponential function.

2. Approximation on a Banach space

Let E be a Banach space with a separable dual (or with a separable predual). In

this section, given a sequence of points x0, x1, . . . , xn, . . . in E we will define Lagrange

interpolating polynomials for any representable entire function f : E → C, and study

the convergence of the Lagrange polynomials to the function f .

To this end, given the sequence of points and a function f , for each γ ∈ E′, we

define Lk,γ to be the k-th Lagrange polynomial for ez interpolating the sequence

γ(x0), γ(x1), . . . , γ(xn), . . . We now define the k-th Lagrange interpolant of f as

Lk(x) =

∫

E′

Lk,γ(γ(x))f̃(γ) dW (γ).

Our goal in this section is to prove the following:

i) the Lk’s are well-defined (i.e., Lk,γ(γ(x)) ∈ Lq(W ) for all q < ∞),
ii) the Lk’s are continuous polynomials of degree at most k on E,

iii) Lk interpolates f on x0, x1, . . . , xk, and

iv) with a suitable growth condition on x0, x1, . . . , xn, . . ., the Lk’s converge to f

uniformly on bounded subsets of E.

We begin with the first three points of our program.

Theorem 2.1. Each Lagrange polynomial Lk is well-defined, continuous and

interpolates f on x0, x1, . . . , xk.

P r o o f. Define Mk = max{‖xj‖ : j 6 k} and note that since

Lk,γ(γ(x)) =

k
∑

j=0

[γ(x0) . . . γ(xj)](γ(x) − γ(x0)) . . . (γ(x)− γ(xj−1)),
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we have

|Lk,γ(γ(x))| 6
k

∑

j=0

∣

∣

∣

∣

∫

t0+...+tj=1

eγ(t0x0+...+tjxj)

∣

∣

∣

∣

|γ(x− x0)| . . . |γ(x− xj−1)|

6

k
∑

j=0

e‖γ‖Mj

(j + 1)!
‖γ‖j(‖x‖+Mj−1)

j

6 e‖γ‖Mk

k
∑

j=0

[‖γ‖(‖x‖+Mk)]
j

j!

< e‖γ‖Mke‖γ‖(‖x‖+Mk)

= e‖γ‖(‖x‖+2Mk).

Thus for all q < ∞, |Lk,γ(γ(x))|q 6 eq‖γ‖(‖x‖+2Mk), which is bounded by eε‖γ‖
2

for

‖γ‖ large enough. But this function is W -integrable by Fernique’s theorem [5]. Thus
since f̃ is in Lp(W ) for some p > 1, the integral in the definition of Lk exists.

Lk,γ(γ(x)) is a finite sum of terms of the form aj,γγ(x)
j , each of which is in Lq(W )

as above, and produces a j-homogeneous continuous polynomial corresponding to the

symmetric j-linear form on E:

(y1, . . . , yj) 7→
∫

E′

aj,γγ(y1) . . . γ(yj)f̃(γ) dW (γ).

Finally, note that for j = 0, 1, . . . , k

Lk(xj) =

∫

E′

Lk,γ(γ(xj))f̃(γ) dW (γ)

=

∫

E′

eγ(xj)f̃(γ) dW (γ)

= f(xj).

Now, a growth condition onMk = max{‖xj‖ : j 6 k} allows approximation of the
original function f . �

Theorem 2.2. Let f : E → C be a representable function, and x0, x1, . . . , xn, . . .

a sequence of points in E verifying

lim
k

Mk√
k
= 0.

Then the Lagrange polynomials Lk converge to f uniformly on bounded subsets of E.
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P r o o f. We consider the error terms

eγ(x) − Lk,γ(γ(x)) = [γ(x)γ(x0) . . . γ(xk)](γ(x) − γ(x0)) . . . (γ(x) − γ(xk)).

Thus, as above, we obtain

|eγ(x) − Lk,γ(γ(x))| 6
∣

∣

∣

∣

∫

s+t0+...+tk=1

eγ(sx+t0x0+...+tkxk)

∣

∣

∣

∣

|γ(x− x0)| . . . |γ(x− xk)|

6
e‖γ‖(‖x‖+Mk)

(k + 2)!
‖γ‖k+1(‖x‖+Mk)

k+1.

When ‖x‖ is bounded and k is large, we may consider this to be of the form

Mk
k ‖γ‖keMk‖γ‖

k!
.

Now if f̃ ∈ Lp(W ), for p > 1, is such that

f(x) =

∫

E′

eγ(x)f̃(γ) dW (γ),

let q be the conjugate exponent of p, and using Fernique’s Theorem [5] we fix ε > 0

small enough to enssure that

∫

E′

eε‖γ‖
2

dW (γ) < ∞.

Then, using Young’s inequality, we obtain

Mk
k ‖γ‖keMk‖γ‖

k!
6

Mk
k ‖γ‖keqM

2
k/(2ε)eε‖γ‖

2/(2q)

k!

=
eqM

2
k/(2ε)qk/2Mk

k

εk/2
√
k!

· e
ε‖γ‖2/(2q)εk/2‖γ‖k

qk/2
√
k!

.

The second factor is bounded by

eε‖γ‖
2/(2q)

(

eε‖γ‖
2/q

)1/2
= eε‖γ‖

2/q.

We check that the first factor tends to zero as k grows. In fact, the sequence
(

e
qM2

k
/(2ε)

qk/2Mk
k

εk/2
√
k!

)

k
is summable: by the root test and Stirling’s formula we have

lim
k

eqM
2
k/(2kε)

√
qMk√

ε
2k
√
k!

= lim
k

eqM
2
k/(2kε)

√
qeMk√

ε
4k
√
2πk

√
k

= 0.
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Therefore,

|f(x)− Lk(x)| 6
∫

E′

|eγ(x) − Lk,γ(γ(x))||f̃ (γ)| dW (γ)

6
eqM

2
k/(2ε)qk/2Mk

k

εk/2
√
k!

∫

E′

eε‖γ‖
2/q‖f̃(γ)‖ dW (γ).

Now, using Hölder’s inequality, we obtain

|f(x)− Lk(x)| 6
eqM

2
k/(2ε)qk/2Mk

k

εk/2
√
k!

(
∫

E′

eε‖γ‖
2

dW (γ)

)1/q(∫

E′

‖f̃(γ)‖p dW (γ)

)1/p

=
eqM

2
k/(2ε)qk/2Mk

k

εk/2
√
k!

‖eε‖γ‖2‖1/q1 ‖f̃‖p → 0 as k → ∞.

Thus Lk converges to f uniformly on bounded subsets of E.

Two final comments regarding the growth condition in Theorem 1.2:

First, in the finite-dimensional case something more can be said. In this case,

the measure W is the standard Gaussian measure on C
n, and the k-th Lagrange

interpolant of f is

Lk(x) =

∫

Cn

Lk,γ(γ(x))f(γ)e
−‖γ‖2

dγ1 . . . dγn.

It is not hard to see then that if f ∈ Lp(W ), the Lagrange polynomials will converge

uniformly to f on bounded subsets of Cn if

lim sup
k

Mk√
k
6

0.6√
qe

where q is the conjugate exponent of p.

Secondly, as was mentioned in Introduction, growth conditions must be imposed

in order to enssure convergence of the Lagrange polynomials to the interpolated

function f . The condition mentioned there corresponds to the case of the exponential

function. The condition in Theorem 1.2 is independent of the function f and thus

must cover all representable functions. For a function of order 2 and exponential

type ε < 1, Gelfond’s classical condition in one complex variable [8] requires that for

large k,

|xk| < C k1/2,

where C =
√

ε−1(ln 2− 1/2). Thus our condition seems close to being the best

possible. �
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