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a b s t r a c t

This paper describes a new exact algorithm for the Equitable Coloring Problem, a coloring problem
where the sizes of two arbitrary color classes differ in at most one unit. Based on the well known DSATUR
algorithm for the classic Coloring Problem, a pruning criterion arising from equity constraints is
proposed and analyzed. The good performance of the algorithm is shown through computational
experiments over random and benchmark instances.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

There exists a large family of combinatorial optimization problems
having relevant practical importance, besides its theoretical interest.
One of the most representative problem of this family is the Graph
Coloring Problem (GCP), which arises in many applications such as
scheduling, timetabling, electronic bandwidth allocation and sequen-
cing problems.

Given a simple graph G¼ ðV ; EÞ, where V is the set of vertices
and E is the set of edges, a coloring of G is an assignment of colors
to vertices such that the endpoints of any edge have different
colors. A k-coloring of G is a coloring that uses k colors. The GCP
consists of finding the minimum number k such that G admits a k-
coloring. This minimum number of colors is called the chromatic
number of G and is denoted by χðGÞ.

It is well known that GCP models some scheduling problems.
The simplest version considers assignments of workers to a given
set of tasks. Pairs of tasks may conflict each other, meaning that
they should not be assigned to the same worker. The problem is
modeled by building a graph containing a vertex for every task and
an edge for every conflicting pair of tasks. A coloring of this graph
represents a conflict-free assignment and the chromatic number of
the graph is exactly the minimum number of workers needed to
perform all tasks.

However, an extra constraint could be required to ensure the
uniformity of the distribution of workload employees. The addi-
tion of this extra equity constraint gives rise to the Equitable

Coloring Problem (ECP), introduced in [1] and motivated by an
application concerning garbage collection [2]. Other applications of
the ECP concern load balancing problems in multiprocessor
machines [3] and results in probability theory [4]. An introduction
to ECP and some basic results are provided in [5].

Formally, an equitable k-coloring (or just k-eqcol) of a graph G is
a k-coloring satisfying the equity constraint, i.e. the size of two
color classes cannot differ by more than one unit. The equitable
chromatic number of G, χeqðGÞ, is the minimum k for which G
admits a k-eqcol. The ECP consists of finding χeqðGÞ.

Computing χeqðGÞ for arbitrary graphs is proved to be NP-Hard
and just a few families of graphs are known to be easy such as
complete n-partite, complete split, wheel and tree graphs [5].

There exist some differences between GCP and ECP that make
the latter harder to solve. It is known that the chromatic number
of an unconnected graph G is the maximum among the chromatic
numbers of its components. Algorithms that solve GCP can take
advantages of the property mentioned above (e.g. [6]) by solving
GCP on each component, which is less CPU intensive than address
the problem on the whole graph. Moreover, one can preprocess
the graph in order to reduce its size and, consequently, the time of
optimization. For example, choosing two non-adjacent vertices
with the same neighborhood, known as twin vertices, and deleting
one of them. The chromatic number of the graph remains the
same after deletion, since the deleted vertex can inherit the color
of the other one. None of these recipes can be applied when
solving ECP. For instance, let G be the graph of Fig. 1a and G0 be the
graph compounded of two disjoint copies of G. Then, χeqðG0Þ ¼ 2
but χeqðGÞ ¼ 3. Also, let H0 be the graph of Fig. 1b. Clearly, v and v0

are twin vertices. Let H0 be H after v is deleted. We have χeqðH0Þ ¼ 2
but χeqðHÞ ¼ 3.

There are very few tools in the literature related to ECP
resolution. Two constructive algorithms called NAIVE and SUBGRAPH
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were given in [5] to generate greedily an equitable coloring of a
graph and, as far as we know, two integer linear programming
approaches are available. The first one is a Branch-and-Cut algo-
rithm, called B&C-LF2 [7], which is based on the asymmetric
representative formulation for GCP described in [8]. The other
one [9] adapts to ECP the formulation and techniques used by
Méndez–Díaz and Zabala for GCP in [6], studies its polyhedral
structure and derives families of valid inequalities. Some of them
have shown to be very effective as cutting planes in preliminary
computational experiments.

Regarding GCP, we can find good exact algorithms which are not
based on IP techniques. One of the most well known example is
DSATUR, proposed by Brélaz in [10]. This Branch-and-Bound algorithm
has been referred in the literature several times and is still used by its
simplicity, its efficiency in medium-sized graphs and the possibility of
applying it at some stage in metaheuristics or in more complex exact
algorithms like Branch-and-Cut ones [6]. Recently, it was shown that
a modification of DSATUR performs relatively well compared with
many state-of-the-art algorithms based on IP techniques, showing
superiority in random instances [11].

This fact encourages us to research how to modify a DSatur-
based solver in order to address the ECP, which is the goal of this
paper. Our approach exploits arithmetical properties inherent in
equitable colorings and combines them with the techniques
originally developed by Brown [12] and Brélaz [10] for DSATUR,
and improved by Sewell [13] and San Segundo [11]. We call it
EQDSATUR. A preliminary version of this algorithm with weaker
pruning rules than the one analyzed in this work was already
presented in [14].

The paper is organized as follows. Section 2 gives a brief
summary of known DSatur-based algorithms for GCP. Section 3
shows the background math for our pruning rule. Section 4
describes an implementation of EQDSATUR. Section 5 discusses
methods for obtaining lower and upper bounds of the equitable
chromatic number. Section 6 reports computational experiments
carried out to tune up the behavior of EQDSATUR, and compares our
algorithm against other ones from the literature. Finally, Section 7
gives final conclusions.

We now introduce some notations and definitions employed
throughout the paper. For any positive integer k, ½k� denotes the set
f1;2;…; kg. Given a graph G¼ ðV ; EÞ, we assume the set of vertices
is V ¼ ½n�. A graph for which every vertex is adjacent to each other
is called a complete graph. Given S� V , we denote by G½S� the
subgraph of G induced by S. A set Q � V is a clique of G if G½Q � is a
complete graph.

Given uAV , the neighborhood of u is the set of vertices adjacent
to u and is denoted by N(u). The closed neighborhood of u, N½u�, is
the set NðuÞ [ fug. The degree of u, d(u), is the cardinality of N(u).
The maximum degree of vertices in G is denoted by ΔðGÞ.

A stable set is a set of vertices of G no two of which are adjacent.
We denote by αðGÞ the stability number of G, i.e. the maximum
cardinality of a stable set of G. Given S� V , we also denote by αðSÞ
the stability number of G½S�.

A partial k-partition of G, denoted by Π ¼ ðC1;C2;…;CnÞ, is a
collection of disjoint sets such that [k

j ¼ 1Cj � V and Cj ¼∅ if and
only if jZkþ1. We write kðΠÞ to refer the number of non-empty
sets inΠ. We denote by UðΠÞ the set of vertices not covered by the
sets of Π, i.e. UðΠÞ ¼ V n [k

j ¼ 1Cj. If UðΠÞ ¼∅ we say that Π is a k-
partition. Given vAV n U, we denote by ΠðvÞ the number of the set
to which v belongs, i.e. vACΠðvÞ.

A partial k-coloring of G is a partial k-partition Π ¼
ðC1;C2;…;CnÞ of G such that each Cj is a stable set of G. In this
context, UðΠÞ is called the set of uncolored vertices of a partial k-
coloring Π. If UðΠÞ ¼∅ we say that Π is a k-coloring.

Given vAV and a partial k-coloring Π, let DΠ ðvÞ be the set of
different colors assigned to the adjacent vertices of v, i.e.
DΠ ðvÞ ¼ fΠðwÞ : wANðvÞ n UðΠÞg. The saturation degree of v in Π,
ρΠ ðvÞ, is the cardinality of DΠ ðvÞ and the set of available colors of v,
FΠ ðvÞ, is the set of unused colors in the neighborhood of v, i.e.
FΠ ðvÞ ¼ ½n� n DΠ ðvÞ.

Given a partial k-partition Π, uAUðΠÞ and jA ½kþ1� we denote
by Πþ 〈u; j〉 to the partial partition obtained by adding u to Cj.

We say that a partial k-partition (or partial k-coloring) Π ¼ ðC1,
C2,…, CnÞ can be extended to a k0�partition (or k0�coloring) if there
exists a k0�partition (or k0�coloring) Π 0 ¼ ðC 0

1;C
0
2;…;C0

nÞwhich can
be obtained fromΠ by successive applications of the operator “þ”.
A direct consequence is that krk0 and Cj � C 0

j for all jA ½k�.
We say that a k-partition or k-coloringΠ ¼ ðC1;C2;…;CnÞ of G is

equitable if it satisfies the equity constraint, i.e.

jCij�jCjj
�� ��r1; for i; jA ½k�:

An equitable k-coloring is also called k-eqcol for the sake of
simplicity.

2. An overview of DSatur-based algorithms for GCP

The idea behind an enumerative algorithm such as DSATUR is to
determine early whether it is possible to extend a partial coloring
to a proper coloring so that uncolored vertices are painted with
available colors. In this way, the enumerative procedure avoids to
explore partial colorings that will not lead to an optimal coloring,
and therefore would be needlessly enumerated.

DSATUR is based on a generic enumerative scheme proposed by
Brown [12], outlined as follows:

INPUT: G a graph, Π0 an initial partial coloring of G and Πn an
initial coloring of G.

OUTPUT: Πn an optimal coloring of G, UB the chromatic number
of G.

ALGORITHM: Set UB’kðΠnÞ. Then, execute NodeðΠ0Þ.
NODE ðΠÞ:

Step 1. If UðΠÞ ¼∅, set UB’kðΠÞ, Πn
’Π and return.

Step 2. Select a vertex uAUðΠÞ.
Step 3. For each color jA ½minfkðΠÞþ1;UB�1g� such that jAFΠ ðuÞ:

Set Π 0
’Πþ 〈u; j〉.

If FΠ0 ðvÞ \ ½UB�1�a∅ for all vAUðΠ 0Þ, execute NODE ðΠ 0Þ.

The previous scheme only works when the initial partial
coloring Π0 can be extended to an optimal coloring. A suitable
Π0 can be computed as follows: if Q ¼ fv1; v2;…; vqg is a maximal
clique of G, it is known that a q-partial coloring Π0 such that
Π0ðviÞ ¼ i for all iA ½q� can be extended to a χðGÞ�coloring.

Indeed, we must know a maximal clique Q and an initial
coloring Πn in advance. Moreover, we must state the rule for
choosing vertex u in Step 2 and the order in which colors from F(u)
have to be evaluated. From now on, we call to these criteria vertex
selection strategy (VSS) and color selection strategy (CSS).

Fig. 1. An example.
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Brélaz proposed the algorithm DSATUR [10] by obtaining a
maximal clique Q and an initial coloring Πn with greedy heuristics
(one is SLI given in [15] and the other is contributed by himself).
The vertex selection strategy, which we call DSATUR-VSS, selects
the uncolored vertex with the largest saturation degree. In case of
a tie, select the vertex with the largest degree. More specifically,
let ρ be the maximum saturation degree of Π and T be the so
called set of candidate vertices:

T ¼ fuAUðΠÞ : ρΠ ðuÞ ¼ ρg:
DSATUR-VSS chooses uAT that maximizes d(u). In the case that
more than one vertex in T has the maximum degree, unite them
according to some predetermined order, e.g. its number in V.

Sewell [13] suggested a modified tie breaking rule for choosing
u from the set T, called CELIM (CELIM-VSS). It consists of selecting
from the set of vertices tied at maximum saturation degree, the
one with the maximum number of common available colors in the
neighborhood of uncolored vertices. That is, choose uAT such that
the value

celimðuÞ ¼ ∑
jA FΠ ðuÞ

jfvANðuÞ \ UðΠÞ : jAFΠ ðvÞgj

is the highest.
Let us note that, while DSATUR-VSS attempts to estimate future

color availability through the degree of vertices, CELIM-VSS also
contemplates the impact of coloring a vertex over the uncolored
vertices yet. Although CELIM-VSS is more CPU intensive than
DSATUR-VSS, fewer nodes are evaluated and, in the case of
medium and high density instances, less time is required to reach
the optimality.

A further improvement in the vertex selection strategy was
recently proposed by San Segundo [11]. The criterion chooses the
vertex uAT that maximizes the value

passðuÞ ¼ ∑
jAFΠ ðuÞ

jfvANðuÞ \ T : jAFΠ ðvÞgj:

By comparing it with Sewell's criterion we may observe that
CELIM-VSS attempts to minimize the number of subproblems by
systematically reducing available color at deeper levels of the
search tree. By constrast, San Segundo's criterion restricts this
computation to the neighbors in the set of tied vertices, reducing
color domains of vertices which are already known to have the
least number of available colors, and so therefore more likely to
require a new color at deeper levels of the search tree.

At an early stage of enumeration, the set T has many vertices
and the computation of pass(u) induces an overload in the strategy
that, in some cases, worsens the overall performance. In order to
prevent this overload, a threshold called TH is introduced by the
author. If kðΠÞ�ρrTH, he chooses from the set T, the vertex u
whose value of pass(u) is the highest. Otherwise, he chooses the
vertex u whose degree is the highest just like DSATUR-VSS. This
strategy is called PASS (PASS-VSS). Several values of this threshold
were tested in [11] and TH¼3 was settled as the best option.

This approach proved to be quite competitive with other exact
algorithms for GCP from the literature.

Regarding the color selection strategy, as far as we know, all
DSatur-based implementations merely consider the set of avail-
able colors in ascending order: first evaluate color 1, then color 2,
and so on. We call it DSATUR-CSS.

Considering the good performance of DSatur-based algorithms
for GCP, it is natural to derive an algorithm for ECP consisting of
the previous Brown's scheme by changing the initial coloring in
the initialization by an equitable coloring, and checking whether
Π is an equitable coloring in Step 1. In summary, this simple
algorithm, which we call TRIVIALEQDSATUR, only applies the equity
constraint at the leafs of the search tree in the hope that the
resulting coloring is equitable. This may cause TRIVIALEQDSATUR to

explore vast regions of the search tree that will not lead to
equitable colorings.

Nevertheless, the exploration of useless nodes could be avoided
by checking, at each node, whether a partial coloring can be
extended to an equitable coloring. In the next section, we study
necessary and sufficient conditions for a partial coloring to be
extended to an equitable coloring and how to implement it as part
of a DSatur-based algorithm.

3. A pruning rule for the ECP

We now study arithmetical properties of the sizes of color
classes in equitable colorings and how to combine them in order
to propose a pruning rule for our algorithm.

From now on, for a partial k-partition Π ¼ ðC1;C2;…;CnÞ, let
MðΠÞ be the largest color class in Π, TðΠÞ be the index of color
classes in Π with size MðΠÞ, and tðΠÞ be the cardinality of TðΠÞ,
i.e. MðΠÞ ¼max fjCjj : jA ½k�g, TðΠÞ ¼ fjA ½k� : jCjj ¼MðΠÞg and
tðΠÞ ¼ jTðΠÞj.

The following result fully characterizes when a partial partition
can be extended to an equitable partition.

Theorem 1. Let Π be a partial k-partition, M¼MðΠÞ and t ¼ tðΠÞ.
Then, Π can be extended to an equitable partition if and only if

nZ ðM�1Þ � kþt ð1Þ

Proof. Clearly, if Π can be extended to an equitable partition Π 0,
then the classes from TðΠÞ in Π 0 must have at least M vertices.
Consequently, the classes from ½k� n TðΠÞ in Π 0 must have at least
M�1 vertices. Then, nZM � tþðM�1Þ � ðk�tÞ which is equivalent
to (1).

On the other hand, if (1) holds then UðΠÞ has enough vertices
for the following procedure to get an equitable k-partition: add
one by one the remaining uncolored vertices to the smallest non-
empty class at each step. □

Formula (1) allows us to obtain another way of characterizing
equitable colorings besides the traditional definition:

Corollary 2. Let Π be a k-coloring of G, M¼MðΠÞ and t ¼ tðΠÞ.
Then, Π is a k-eqcol if and only if (1) holds.

Proof. By Theorem 1, if (1) holds then Π is extended to the
equitable k-partition Π itself. Since Π is already a coloring, Π is a
k-eqcol. The converse is analogous. □

If we wonder when a partial coloring can be extended to an
equitable coloring, it is clearly that condition (1) is necessary.
However, if we know a lower bound of χeq, the condition can be
tightened:

Corollary 3. Let Π be a partial k-coloring, M¼MðΠÞ, t ¼ tðΠÞ and
LB be a lower bound of χeqðGÞ. If Π can be extended to an equitable
coloring, then

nZ M�1ð Þ �maxfk; LBgþt ð2Þ

Proof. In the case that kZLB, (2) holds by Theorem 1. Hence, we
assume koLB. If Π can be extended to an equitable k0�coloring
Π 0, we have that k0ZχeqðGÞZLB and classes from TðΠÞ in Π 0 must
have at least M vertices. Consequently, classes from ½LB� n TðΠÞ in
Π 0 must have at least M�1 vertices. Therefore, nZM � tþðM�1Þ �
ðLB�tÞ and (2) holds. □

We include the condition given in the previous result as a
pruning rule in the Brown's scheme. Below, we sketch our
approach called EQDSATUR:
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INPUT: G a graph, Π0 an initial partial coloring of G, Πn an initial
equitable coloring of G and LB a lower bound of χeqðGÞ.

OUTPUT: Πn an optimal equitable coloring of G, UB¼ χeqðGÞ.
ALGORITHM: Set UB’kðΠnÞ. Then, execute NodeðΠ0Þ.
NODE ðΠÞ:

Step 1. If UðΠÞ ¼∅, set UB’kðΠÞ, Πn
’Π and return.

Step 2. Select a vertex uAUðΠÞ.
Step 3. For each color jA ½minfkðΠÞþ1;UB�1g� such that

jAFΠ ðuÞ:
Set Π 0

’Πþ 〈u; j〉.
If nZ MðΠ 0Þ�1

� � �maxfkðΠ 0Þ; LBgþtðΠ 0Þ and FΠ 0 ðvÞ \
½UB�1�a∅ for all vAUðΠ 0Þ, execute NODE ðΠ 0Þ.

The following theorem shows that EQDSATUR works:

Theorem 4. If Π0 can be extended to a χeqðGÞ-eqcol then EqDSatur
GIVES THE VALUE OF χeqðGÞ into the variable UB and an optimal equitable
coloring into Πn after its execution.

Proof. In the case that (2) does not hold, the node corresponding
to Π 0 is not called since Π 0 can not be extended to an equitable
coloring according to Corollary 3. Therefore, the algorithm does
not prune nodes that could reach an optimal equitable coloring.

Also, each coloring reached at Step 1 is indeed an equitable
coloring, due to Corollary 2 and the fact that the current coloring
satisfies (2). □

4. Implementation of EqDSatur

It is clear that the scheme proposed previously is barely helpful
if we do not know how to implement it in a efficient way.

Below, we propose a detailed fast implementation of EQDSATUR.
Indentations are meaningful and mark the scope of the operations
involved. All sets listed in the implementation are represented by
global binary-valued arrays. Global variable k is the number of
colors of the current partial partition.

INPUT: G a graph, Πn an initial eqcol of G and LB a lower bound
of χeqðGÞ.

OUTPUT: Πn an optimal eqcol of G, UB¼ χeqðGÞ.
ALGORITHM:

Set UB’kðΠnÞ.
Create a partial coloring Π such that Ci’fvig for all iA ½q�,
where Q ¼ fv1; v2;…; vqg is a maximal clique of G.
Set UðΠÞ’V=Q and k’q.
Execute Nodeð1; qÞ.

NODE(M,t):

Step 1. If UðΠÞ ¼∅, set UB’k, Πn
’Π and return.

Step 2. Select a vertex uAUðΠÞ.
Step 3. For each jA ½minfkþ1;UB�1g� such that jAFΠ ðuÞ:

Set size’jCjj.
If jrk, do:

If size¼M, set t0’1 and M0’Mþ1.
If size¼M�1, set t0’tþ1 and M0’M.
If sizerM�2 set t0’t and M0’M.

If j¼ kþ1, do:
If M¼1, set t0’tþ1 and M0’M.
If MZ2, set t0’t and M0’M.

Set previous_k’k.
Set k’maxfj; kg.
If nZ M0 �1

� � �maxfk; LBgþt0, do:
Set Cj’Cj [ fug.
Set UðΠÞ’UðΠÞ=fug.

Execute NODE ðM0; t0Þ.
Set UðΠÞ’UðΠÞ [ fug.
Set Cj’Cj=fug.

Set k’previous_k.

We do not describe implementation details of how to update
FΠ ðvÞ for the sake of readability, but it can be found in [11]. On the
other hand, details of how to compute the clique Q and the initial
equitable coloring are discussed in Section 5.

It is not hard to see that variables M and t are indeed the
cardinality of the largest class and the number of color classes with
sizeM in the current partial coloring. The update of these variables
as well as UðΠÞ, Cj and k is performed in constant time.

Updating M and t, and checking (2) is cheap but not free. So, it
becomes important to analyze if the usage of this pruning rule
pays off in terms of CPU time. This task is performed in Section 6
through empirical experimentation.

5. Lower and upper bounds of χeqðGÞ

In order to initialize EQDSATUR, it is necessary to compute
bounds of the equitable chromatic number. In this section, we
discuss how to obtain such values and we report some computa-
tional experiments related to them. We remark that, in particular,
the lower bound LB remains constant during the enumeration, so
it is essential that the value of LB be as best as possible.

5.1. Computation of lower bounds

Clearly, every equitable coloring of G is also a classic coloring of
G so every lower bound of χðGÞ can be used as a lower bound of
χeqðGÞ. In particular, the size of any maximal clique of G is a known
lower bound of χðGÞ and χeqðGÞ. There are several ways suggested
in the literature to obtain such cliques. The easiest method is, for a
given graph G and a given vertex v, a greedy algorithm that
includes v as the first vertex of the clique and then selects the
vertex adjacent to the clique with highest degree in each step until
no more vertices can be added to the clique. Furthermore, one may
apply this method to different initial vertices v and choose the
largest clique. In the case that two cliques of the same size are
found, it is advisable to follow a suggestion made by Sewell [13]:
retain the clique Q that maximizes ∑qAQdðqÞ. The clique found
with this criterion will lead to smaller initial sets F(v) since those
colors used by the clique will not be available for vertices v

adjacent to some vertex in the clique. Let us call FINDCLIQUE(G) to
this algorithm.

Let us notice that the distance between χðGÞ and χeqðGÞ can be
as far as we want. Such is the case with star graphs K1;m [1] (i.e. a
graph K1;m is composed of a vertex v and a stable set S of size m
such that v is adjacent to every vertex in S):

χeqðK1;mÞ�χðK1;mÞ ¼ ð⌈m=2⌉þ1Þ�2¼ ⌈m=2⌉�1:

Therefore, it becomes essential to find other lower bounds for
χeqðGÞ besides a maximal clique of G. Lih and Chen [16] proved that

χeqðGÞZ
nþ1

αðV=N½v�Þþ2

� �

for any vAV . However, it requires to know the stability number of
G½V=N½v��, an NP-Hard problem [17]. Nevertheless, a relaxation of
this value can be used instead. It is known that the cardinality of a
partition in cliques of a graph is an upper bound for the stability
number of that graph. Let PCv be the cardinality of a partition in
cliques of G½V=N½v��. The lower the size of the partition is, the
tighter the bound becomes. Let us call EQLOWBOUND(G) to the
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algorithm that computes the number:

max ⌈
nþ1
PCvþ2

⌉ : vAV
� �

;

where PCv is obtained by the following greedy heuristic. Initially,

let Gv be the graph G½V=N½v��. We compute a maximal clique of Gv

and thenwe delete those vertices from Gv that belong to the clique
found. This simple procedure is repeated until Gv becomes empty,
and PCv is the number of cliques found.

We want to emphasize that both procedures (FINDCLIQUE and
EQLOWBOUND) could be improved, thus obtaining better bounds of
χeq but at the expense of spending more CPU time.

5.2. Computation of upper bounds

A known upper bound for χeqðGÞ is ΔðGÞþ1 [18], but a slightly
better one can be derived from a result stated in [19]: “every
graph satisfying dðuÞþdðvÞr2rþ1 for every edge (u,v), has a
ðrþ1Þ-eqcol”. From this result, it is straightforward to obtain the
following relationship:

χeqðGÞr
maxfdðuÞþdðvÞ : ðu; vÞAEg�1

2

� �
þ1: ð3Þ

Another way for finding an initial upper bound is via heuristics.
In our implementation, we adopt NAIVE [5] which is a heuristic that
works well and produces good solutions. Basically, NAIVE generates
a classic coloring with the algorithm SL [15] and then re-color
vertices from the biggest color class to the smallest color class.
When it is not possible, a new color is assigned to some vertex
from the biggest class. The re-coloring procedure is repeated until
an equitable coloring is reached.

5.3. Quality of the bounds

As we said above, it is important to bear in mind that the CPU
time assigned to the procedures yield the bounds and how much
they will impact in the enumerative algorithm. Since these
procedures are fast heuristics, we are not sure whether they yield
quality bounds. Next, we analyze them through experimentation.

This experiment and all the further ones shown in this paper
were carried out on an Intel i5 CPU 750@2.67 GHz with Ubuntu
Linux O.S. and Intel Cþþ Compiler.

We denote by LBFC to the size of the maximal clique returned by
FINDCLIQUE, LBELB to the lower bound computed by EQLOWBOUND, UBð3Þ
to the upper bound given by (3) and UBNV to the number of colors
of the equitable coloring returned by NAIVE.

Random instances are generated from two parameters: the
number of vertices n and the probability p that an edge is included
in the graph. Let us note that p is approximately equal to the

Table 1
Comparison of bounds.

n p Lower bound Upper bound % Rel. gap

LBFC LBELB UBð3Þ UBNV

125 0.1 4.03 3 21.13 7.67 46.5
125 0.3 6.2 5.13 49.9 20.13 68.37
125 0.5 9.1 9 75.8 33.03 71.3
125 0.7 14.13 17.2 99.3 46.67 62.53
125 0.9 31 40.67 119.7 68.33 40.1

250 0.1 4.23 3 38.43 12.27 64.87
250 0.3 6.97 6 93.67 38.17 81.13
250 0.5 10.33 11.03 146.33 65.77 82.53
250 0.7 16.33 22.63 193.47 92.87 75.23
250 0.9 38.33 63 236.7 137.17 53.17

500 0.1 4.9 4 69.3 22.5 77.9
500 0.3 7.73 7 180.2 72.23 88.83
500 0.5 11.46 13 281.9 129.57 89.5
500 0.7 18.6 28.43 378.67 184.8 84.1
500 0.9 46.57 93.63 467.57 286.1 66.73

Table 2
Tests on different vertex selection strategies.

n p % Solved Av. UB

DSATUR CELIM PASS DSATUR CELIM PASS

70 0.1 100 100 100 4 4 4
70 0.3 100 100 100 7.93 7.93 7.93
70 0.5 93 97 100 12.03 11.93 11.83
70 0.7 97 100 100 17.53 17.3 17.3
70 0.9 100 100 100 29.2 29.2 29.2

80 0.1 100 100 100 4.23 4.23 4.23
80 0.3 100 97 100 8.43 8.53 8.43
80 0.5 87 87 93 13.47 13.47 13.2
80 0.7 53 50 70 20.1 20.2 19.53
80 0.9 100 100 100 31.7 31.7 31.7

90 0.1 100 100 100 5 5 5
90 0.3 100 100 100 9 9 9
90 0.9 100 100 100 34.2 34.2 34.2

Table 3
Tests on different vertex selection strategies.

n p Av. nodes Av. time

DSATUR CELIM PASS DSATUR CELIM PASS

70 0.1 216 168 208 0 0 0
70 0.3 401,862 253,181 171,448 0.1 0.1 0.07
70 0.5 6,116,237 5,134,138 4,702,843 6.61 7.76 6.7
70 0.7 21,048,794 11,175,213 12,020,710 28.2 23.5 21
70 0.9 249,682 145,481 138,057 0.17 0.17 0.1

80 0.1 1132 967 5186 0 0 0
80 0.3 31,102,992 17,153,530 15,495,305 27.7 25.2 22.7
80 0.5 540,416,906 333,631,281 192,172,556 601 574 324
80 0.7 821,110,267 480,890,653 959,670,395 1263 1162 1817

675165908† 308;409;086† 410;011;950† 1035† 749† 791†

80 0.9 5,513,947 3,098,276 3,817,790 8.2 7.6 6.57

90 0.1 4521 3186 2875 0 0 0
90 0.3 83,857,234 58,179,096 32,510,740 86.8 88.6 52
90 0.9 144,093,673 71,388,770 73,185,398 305 218 161
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density of the random graph, i.e.

2jEj
nðn�1Þ:

Table 1 summarizes the average of the bounds over 450
randomly generated instances of different sizes (each row of the
table corresponds to 30 instances). Columns 1 and 2 show the
number of vertices n and probability p of the evaluated instances.
Columns 3 and 6 display the average of LBFC, LBELB, UBð3Þ and UBNV,
and Column 7 is the average of percentage of relative gap, i.e.

100ðminfUBNV ;UBð3Þg�maxfLBFC ; LBELBgÞ
minfUBNV ;UBð3Þg

:

As we can see from Table 1, LBELB is particularly useful for
medium and high density graphs. The time spent in the computa-
tion of the bounds (less than a second) can be considered
negligible compared to the duration of the enumerative algorithm.
Therefore, it is reasonable to have on hand both lower bounds and
choose the best one for each case.

Regarding UBð3Þ, it seems to be useless compared to UBNV.
Moreover, we did not find any instance such that UBNV ZUBð3Þ
showing that NAIVE algorithm is enough to provide good upper
bounds.

It is worth mentioning that medium density graphs present the
worst average of relative gap. Unfortunately, this issue is trans-
ported to the enumerative algorithm making these instances the
hardest to solve.

We also evaluated the heuristics on a set of 64 benchmark
instances, of which 60 are from a subset of DIMACS COLORLIB
library [20] and the remaining 4 are Kneser graphs [21]. Both
COLORLIB and Kneser graphs were already used by other authors
for evaluating equitable coloring algorithms (c.f. [7]).

Results are given in Tables 8 and 9. Columns 1–4 show the
name of the instance, its number of vertices and edges, and its
equitable chromatic number (a question mark “?” means χeqðGÞ is
unknown so far). Columns 5–9 display the value of the lower
bounds, the upper bounds and the percentage of relative gap.
Values marked in boldface mean they match with χeqðGÞ.

Similarly to the previous experiment, heuristics took less than
1 s for almost all instances. The worst case was latin_sq_10
which took 4 s.

Let us note that optimality is reached in 6 instances, namely anna,
games120, homer, huck, jean and le450_25b. NAIVE also is able
to compute the optimal solution in 10 instances (mugn_n,
n-Insertions_n, myciel4 and kneser7_3). On the other hand,
FINDCLIQUE reachs the best lower bound in 12 instances (zeroin.i.1,
queen7_7, queen8_12, mulsol.i.1, school1_nsh, fpsol2.i.1,
len_n and inithx.i.1) while EQLOWBOUND reachs it only for david.

We conclude that heuristics presented in this section are
reasonably fast, simple to implement, and suitable to provide
good quality bounds to an exact algorithm.

6. Computational experiments

In this section, we make computational experiments in order to
find the best strategies for EQDSATUR and compare it against other
exact algorithms. We work with random graphs with nAf70;80g
and pAf0:1;0:3;0:5;0:7;0:9g, and with n¼90 and pAf0:1;0:3;0:9g.
For each combination of n and p, we generate T¼30 instances and
we analyze the performance of our algorithm by considering the
following indicators:

� Percentage of solved instances (% solved): An instance is con-
sidered “solved” when the time needed to reach the optimal
value is at most 2 h. The percentage of solved instances is the
value 100:jSj=T where S is the set of solved instances.

� Average of the best upper bound reached (Av. UB): It is the
average of the upper bound obtained after the enumeration,
over all T instances.

� Average of nodes evaluated (Av. nodes): It is the average of nodes
evaluated of the search tree over the set of solved instances S.

Table 4
Tests on different color section strategies.

n p % Solved Av. UB

DSATUR BCCOL ORDER1 DSATUR BCCOL ORDER1

70 0.1 100 100 100 4 4 4
70 0.3 100 100 100 7.93 7.93 7.93
70 0.5 100 100 100 11.8 11.8 11.8
70 0.7 100 93 100 17.3 17.8 17.3
70 0.9 100 77 100 29.2 30.8 29.2

80 0.1 100 100 100 4.23 4.23 4.23
80 0.3 100 93 100 8.43 8.63 8.43
80 0.5 93 93 93 13.2 13.3 13.2
80 0.7 70 73 70 19.5 20.3 19.5
80 0.9 100 90 100 31.7 32.5 31.7

90 0.1 100 100 100 5 5 5
90 0.3 100 100 100 9 9 9
90 0.9 100 80 100 34.2 36.5 34.2

Table 5
Tests on different color section strategies.

n p Av. nodes Av. time

DSATUR BCCOL ORDER1 DSATUR BCCOL ORDER1

70 0.1 208 208 311 0 0 0
70 0.3 171,448 139,351 166,733 0.07 0.03 0.07
70 0.5 4,702,843 34,141,331 10,586,393 6.7 35.9 14.3
70 0.7 12,020,710 116,668,568 12,120,596 21 109 25.1
70 0.9 138,057 11,987,145 138,058 0.1 10.3 0.13

80 0.1 5186 932 1006 0 0 0
80 0.3 15,495,305 17,812,892 15,394,052 22.7 21.9 23
80 0.5 192,172,555 270,041,809 179,275,549 324 379 318
80 0.7 959,670,395 810,826,785 941,362,879 1817 1179 1807

1052136994† 923999573† 1028274591† 1978† 1259† 1963†

80 0.9 3,817,790 42,009,653 3,818,024 6.57 37.7 6.8

90 0.1 2875 5907 2909 0 0 0
90 0.3 32,510,740 47,623,951 44,847,604 52 74.1 65.6
90 0.9 73,185,398 164,689,901 73,184,947 161 253 168
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� Average of time elapsed (Av. time): It is the average of time in
seconds needed to solve each instance, over the set of solved
instances S.

We report them on tables, where each row corresponds to a
different combination of n and p, and each column displays the
value of an indicator for the strategy to be compared. In general,
best values are marked in boldface. We do not evaluate combina-
tions n¼90 with pAf0:5;0:7g since DSatur-based algorithms
(including ours) solves few instances in those cases and compar-
isons become rough. The total number of instances amounts
to 390.

When we compare two strategies A and B, it may happen that
the instances solved by A and B are different and the comparison
of the averages of nodes and time may be ambiguous or unfair. In
those cases, we consider these averages over the set of instances
solved by both strategies: if SA and SB are the set of solved
instances for A and B respectively, we also compute the average
of nodes and time over the set SA \ SB. These values are reported
with a mark “†”.

6.1. Vertex selection strategy

The following experiment compares an implementation of EQD-
SATUR with the three vertex selection strategies mentioned in Section
2 namely DSATUR-VSS, CELIM-VSS and PASS-VSS. Tables 2 and 3
resume the results.

As we can see, PASS-VSS has been able to solve more instances
than the other strategies. Also, PASS-VSS performs better in terms
of time. Nevertheless, DSATUR-VSS and CELIM-VSS reports less
time than PASS-VSS for graphs of 80 vertices and p¼0.7. Since
PASS-VSS has solved more instances than the other two strategies,
we have added an extra row marked with “†” reporting averages
for the three strategies over the instances that the three strategies
have been able to solve simultaneously. Here, CELIM-VSS seems to
be a little better than PASS-VSS. In our opinion, it is not worth
considering these small improvements at the expense of solving
fewer instances.

Our conclusion is that PASS-VSS is the right choice for our
algorithm.

6.2. Color selection strategy

We contemplate four options:

� DSATUR-CSS. Consider the set of available colors in ascending order.
� BCCOL-CSS [6]. First consider the new color (kþ1) and then the

set of available colors in ascending order.
� ORDER1-CSS. Sort color classes of Π according to their size in

ascending order: jCi1 jr jCi2 jr…r jCik j. Then consider colors in
the following order: i1, i2, …, ik, kþ1.

� ORDER2-CSS. Do the same as in ORDER1-CSS but considering
colors in the following order: kþ1, i1, i2, …, ik.

BCCOL-CSS is implemented as part of the branching strategy in
the Branch-and-Cut BC-COL and the idea is that it tends to find
feasible colorings quickly, albeit not good since it introduces new
colors to reach them. ORDER1-CSS is inspired in the heuristic
presented in [22]. This rule tends to balance the sizes of color
classes and finds equitable colorings early. The downside is that a
QuickSort must be performed on each node. ORDER2-CSS is a mix
between ORDER1-CSS and BCCOL-CSS. Since we have noticed that
it does not perform as well as the others, we do not report it.

Results for DSATUR-CSS, BCCOL-CSS and ORDER1-CSS are
resumed in Tables 4 and 5.Ta
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We first analyze the differences between the classical strategy
DSATUR-CSS and BCCOL-CSS, where the latter performs quite well
for n¼80 and p¼0.7. We have noticed that both strategies do not
solve the same instances, hence the discrepancy between solved
instances (70% and 73% respectively) and average of UB (19.5 and
20.3 respectively), so we have added an extra row reporting
averages over the instances that both strategies have been able
to solve simultaneously. Although, by inspecting the extra row,
BCCOL-CSS solves the “common” instances 57% faster than DSA-
TUR-CSS, the performance of BCCOL-CSS is worse for most of the
remaining rows.

Regarding ORDER1-CSS, we can note that there are few
differences between this strategy and DSATUR-CSS. Both strategies
solves the same instances and reaches the same UB for every non-
solved graph. The time used by DSATUR-CSS is slightly less than
ORDER1-CSS for graphs of 70 and 90 vertices. For n¼80 and
pAf30;50g, ORDER1-CSS evaluates 7% and 2% less nodes respec-
tively than DSATUR-CSS. Since ORDER1-CSS performs a QuickSort
at each node, the differences in time among these strategies fall to
2% and 0.6% respectively.

We choose DSATUR-CSS for our implementation of EQDSATUR,
but ORDER1-CSS may be considered as an alternative strategy
anywise.

6.3. TrivialEqDSatur vs. EqDSatur

Our next experiment consists of comparing TRIVIALEQDSATUR and
EQDSATUR implementations in order to verify whether the pruning
rule given in Section 3 is efficient. We recall that TRIVIALEQDSATUR is
a simple modification of the standard DSATUR that checks whether
the colorings at the leafs of the search tree are equitable or not.
Both algorithms use the same selection strategies previously
chosen and the same bounds given by the heuristics proposed in
Section 5 (although TRIVIALEQDSATUR does not take advantage of the
value of LB). Table 6 resumes the results.

We have noticed that every instance solved by TRIVIALEQDSATUR
has been solved by EQDSATUR too, but not conversely. This fact led
us to insert an extra row in the table for the case n¼80 and p¼0.7,
where we report the average of nodes evaluated and time elapsed
of EQDSATUR for those instances that have been solved by
TRIVIALEQDSATUR.

We can observe that EQDSATUR outperforms TRIVIALEQDSATUR for
all the indicators.

Table 9
COLORLIB instances (part 2) and Kneser graphs.

Name Vert. Edges χeq Lower bound Upper bound % Rel. gap.

LBFC LBELB UBð3Þ UBNV

fpsol2.i.1 496 11,654 65 65 3 253 85 23.53
fpsol2.i.2 451 8691 47 30 5 347 62 51.61
fpsol2.i.3 425 8688 55 30 7 347 80 62.5
1-Insertions_4 67 232 5 2 3 16 5 40
2-Insertions_3 37 72 4 2 3 7 4 25
3-Insertions_3 56 110 4 2 3 8 4 25
4-Insertions_3 79 156 4 2 2 9 4 50
DSJC125.1 125 736 5 4 3 22 8 50
DSJC125.5 125 3891 ? 9 9 75 27 66.67
DSJC125.9 125 6961 ? 30 42 120 66 36.36
DSJC250.1 250 3218 ? 4 3 37 13 69.23
DSJC250.5 250 15,668 ? 10 11 146 65 83.08
DSJC250.9 250 27,897 ? 37 63 235 136 53.68
le450_5a 450 5714 5 5 3 41 12 58.33
le450_5b 450 5734 5 5 4 41 12 58.33
le450_15a 450 8168 15 15 5 89 18 16.67
le450_15b 450 8169 15 15 5 91 17 11.76
le450_25a 450 8260 25 25 5 118 26 3.85
le450_25b 450 8263 25 25 6 107 25 0
inithx.i.1 864 18,707 54 54 3 503 70 22.86
inithx.i.2 645 13,979 ? 30 8 542 158 81.01
myciel4 23 71 5 2 3 9 5 40
myciel5 47 236 6 2 3 18 9 66.67
myciel6 95 755 ? 2 3 36 11 72.73
flat300_20_0 300 21,375 ? 10 11 160 81 86.42
latin_sq_10 900 307,350 ? 90 82 684 460 80.43
ash331GPIA 662 4181 4 3 3 24 8 62.5
will199GPIA 701 6772 7 6 4 39 9 33.33
kneser7_2 21 105 6 3 3 11 8 62.5
kneser7_3 35 70 3 2 2 5 3 33.33
kneser9_4 126 315 3 2 2 6 4 50
kneser11_5 462 1386 3 2 2 7 4 50

Table 8
COLORLIB instances (part 1).

Name Vert. Edges χeq Lower bound Upper bound % Rel. gap.

LBFC LBELB UBð3Þ UBNV

miles750 128 2113 31 30 11 64 33 9.09
miles1000 128 3216 42 40 17 87 47 14.89
miles1500 128 5198 73 69 43 107 74 6.76
zeroin.i.1 211 4100 49 49 3 111 51 3.92
zeroin.i.2 211 3541 36 30 4 141 51 41.18
zeroin.i.3 206 3540 36 30 4 141 49 38.78
queen6_6 36 290 7 6 5 20 10 40
queen7_7 49 476 7 7 6 24 12 41.67
queen8_8 64 728 9 8 8 28 18 55.56
queen8_12 96 1368 12 12 11 33 20 40
queen9_9 81 1056 10 9 8 32 15 40
queen10_10 100 1470 ? 10 10 36 18 44.44
anna 138 493 11 11 3 61 11 0
david 87 406 30 11 30 59 40 25
games120 120 638 9 9 5 14 9 0
homer 561 1628 13 13 2 89 13 0
huck 74 301 11 11 6 40 11 0
jean 80 254 10 10 3 30 10 0
1-FullIns_3 30 100 4 3 3 12 7 57.14
2-FullIns_3 52 201 5 4 3 16 9 55.56
3-FullIns_3 80 346 6 5 3 20 7 28.57
4-FullIns_3 114 541 7 6 3 24 12 50
5-FullIns_3 154 792 8 7 3 28 9 22.22
1-FullIns_4 93 593 5 3 3 33 7 57.14
mug88_1 88 146 4 3 3 5 4 25
mug88_25 88 146 4 3 3 5 4 25
mug100_1 100 166 4 3 3 5 4 25
mug100_25 100 166 4 3 3 5 4 25
mulsol.i.1 197 3925 49 49 4 122 63 22.22
mulsol.i.2 188 3885 ? 31 11 157 58 46.55
school1 385 19,095 15 14 9 278 49 71.43
school1_nsh 352 14,612 14 14 8 231 40 65

Table 7
Performance of EQDSATUR and CPLEX on random graphs.

n p % Solved Av. LB Av. UB Av. time

CPX EqDS Init. CPX Init. CPX EqDS CPX EqDS

60 0.1 100 100 3.23 4 4.9 4 4 0 0
60 0.3 100 100 5.23 7.03 10.7 7.03 7.03 506 0
60 0.5 63 100 7.63 10.6 17.1 11 10.8 1825 0.6
60 0.7 90 100 12.7 15.7 22.7 15.8 15.7 942 1.6
60 0.9 100 100 22.8 26 32.3 26 26 1 0

70 0.1 100 100 3.5 4 5.03 4 4 0.03 0
70 0.3 50 100 5.33 7.5 12.6 8 7.93 4005 0.07
70 0.5 0 100 8.13 11 19.1 12.8 11.8 – 6.7
70 0.7 20 100 13.9 16.7 26.6 18.2 17.3 2360 21
70 0.9 100 100 25.1 29.2 37.7 29.2 29.2 258 0.1

80 0.1 100 100 3.67 4.23 5.63 4.23 4.23 1.33 0
80 0.9 90 100 27.1 31.6 42.1 31.7 31.7 659 6.57

100 0.1 100 100 3.9 5 6.87 5 5 15.5 0
120 0.1 50 100 4 5 7.73 5.5 5.1 1673 2.57
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6.4. Comparing against other exact algorithms

This subsection is devoted to compare EQDSATUR against the
Branch-and-Cut B&C-LF2 described in [7] and the general purpose
solver CPLEX 12.4 with the IP formulation given in [9] and the
initial bounds computed by the heuristics given in Section 5.

In the first experiment, we consider 30 instances for each
combination of nAf60;70g and pAf0:1;0:3;0:5;0:7;0:9g. We also
consider nAf80;100;120gwith p¼0.1 and n¼80 with p¼0.9 since
CPLEX solves very few medium-density random instances with
nZ80. The total number of instances amounts to 420.

Table 7 summarizes the results, where LB and UB are averaged
over all instances while the time elapsed is averaged over solved
instances. A mark “–” is reported when no instance is solved.
Columns called “Init.” correspond to the bounds computed by the
initial heuristics.

We note that our algorithm is able to solve more instances than
CPLEX in considerably less time. The differences are more pro-
nounced in medium density instances.

We do not compare EQDSATUR directly against B&C-LF2 since
values reported in [7] consider different random instances. Despite
this, we remark that B&C-LF2 has failed to solve any instance with

Table 10
Performance of the algorithms on COLORLIB instances and Kneser graphs.

Name χeq Lower bound Upper bound Time

Init. CPX BCLF2 Init. CPX BCLF2 EqDS EqDSn CPX BCLF2 EqDS EqDSn

miles750 31 30 31 31 33 31 31 33 31 0 171 – 0
miles1000 42 40 42 42 47 42 42 47 42 0 267 – 0
miles1500 73 69 73 73 74 73 73 73 73 0 13 0 0
zeroin.i.1 49 49 49 49 51 49 49 49 49 0 50 0 0
zeroin.i.2 36 30 36 36 51 36 36 51 51 2 510 – –

zeroin.i.3 36 30 36 36 49 36 36 49 49 5 491 – –

queen6_6 7 6 7 7 10 7 7 7 7 1 1 0 0
queen7_7 7 7 7 7 12 7 7 7 7 0 0 0 0
queen8_8 9 8 9 9 18 9 9 9 9 654 441 6 1
queen8_12 12 12 12 20 12 12 20 5 3079 –

queen9_9 10 9 9 15 11 10 10 – 475 499
queen10_10 ? 10 10 18 12 13 11 – – –

david 30 30 30 30 40 30 30 30 30 0 13 0 0
1-FullIns_3 4 3 4 4 7 4 4 4 4 0 2 0 0
2-FullIns_3 5 4 5 5 9 5 5 5 5 0 25 1 1
3-FullIns_3 6 5 6 6 7 6 6 7 7 0 85 – –

4-FullIns_3 7 6 7 7 12 7 7 12 7 0 72 – –

5-FullIns_3 8 7 8 8 9 8 8 9 9 0 268 – –

1-FullIns_4 5 3 5 7 5 5 5 28 1404 1412
mug88_1 4 3 4 4 4 4 4 1 109 120
mug88_25 4 3 4 4 4 4 4 0 56 60
mug100_1 4 3 4 4 4 4 4 1 4425 4946
mug100_25 4 3 4 4 4 4 4 1 4978 5595
mulsol.i.1 49 49 49 63 49 49 49 1 0 0
mulsol.i.2 ? 31 34 58 39 58 58 – – –

school1 15 14 14 49 49 49 49 – – –

school1_nsh 14 14 14 40 14 23 40 1840 – –

fpsol2.i.1 65 65 65 85 65 65 65 11 0 0
fpsol2.i.2 47 30 47 62 62 62 62 – – –

fpsol2.i.3 55 30 55 80 80 80 80 – – –

1-Insertions_4 5 3 4 5 5 5 5 – 1055 1088
2-Insertions_3 4 3 4 4 4 4 4 0 0 0
3-Insertions_3 4 3 4 4 4 4 4 8 1 2
4-Insertions_3 4 2 4 4 4 4 4 836 1615 1701
DSJC125.1 5 4 5 8 5 5 5 214 0 0
DSJC125.5 ? 9 13 27 27 19 19 – – –

DSJC125.9 ? 42 43 66 47 47 47 – – –

DSJC250.1 ? 4 5 13 13 9 9 – – –

DSJC250.5 ? 11 12 65 65 36 65 – – –

DSJC250.9 ? 63 63 136 136 86 86 – – –

le450_5a 5 5 5 12 5 12 10 4558 – –

le450_5b 5 5 5 12 5 12 12 4305 – –

le450_15a 15 15 15 18 18 17 17 – – –

le450_15b 15 15 15 17 17 16 16 – – –

le450_25a 25 25 25 26 25 25 25 54 0 0
inithx.i.1 54 54 54 70 54 55 55 63 – –

inithx.i.2 ? 30 30 158 158 158 158 – – –

myciel4 5 3 5 5 5 5 5 5 5 0 5 0 0
myciel5 6 3 6 9 6 6 6 149 0 0
myciel6 ? 3 6 11 7 7 8 – – –

flat300_20_0 ? 11 11 81 81 81 81 – – –

latin_sq_10 ? 90 460 460 460 460 – – –

ash331GPIA 4 3 4 8 8 8 4 – – 1
will199GPIA 7 6 7 9 9 9 7 – – 2
kneser7_2 6 3 6 6 8 6 6 6 6 0 6 0 0
kneser7_3 3 2 3 3 3 3 3 3 3 0 2 0 0
kneser9_4 3 2 3 3 4 3 3 3 3 0 809 0 0
kneser11_5 3 2 3 4 3 3 4 84 2128 –
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n¼70 and pAf0:3;0:5g whereas EQDSATUR can solve instances of
the same size without difficulty.

The last experiment consists of comparing EQDSATUR against CPLEX
and B&C-LF2 on DIMACS COLORLIB instances and Kneser graphs
proposed in Section 5, except those instances that have been already
solved by the initial heuristics. Besides DSATUR-CSS, we also take into
account the alternative color strategy ORDER1-CSS.

Table 10 reports the final results. Columns 1 and 2 display the
name of the instance and its equitable chromatic number. Col-
umns 3–5 and 6–10 show the bounds given by the initial
heuristics and the bounds obtained by each algorithm after its
execution. Finally, columns 11–14 show the time needed to solve
the instance, or “–” if the algorithm is not able to solve it within
the limit of 2 h. Columns called “EqDS” and “EqDSn” correspond to
EQDSATUR with DSATUR-CSS and ORDER1-CSS respectively.

Results for B&C-LF2 are taken from [7]. We leave blank when
the instance is not mentioned in that paper. We also recall that
these results had been obtained with a slightly different platform:
an 1.8 GHz AMD-Atlon machine with Linux and XPRESS 2005-a as
the linear programming solver.

From the 58 evaluated instances, CPLEX has solved 38, EQDSATUR
with DSATUR-CSS has solved 29 and with ORDER1-CSS has solved
31. However, some of the instances not solved by both versions
of EQDSATUR (more precisely, 3-FullIns_3, 4-FullIns_3 and
5-FullIns_3) are indeed hard to solve by enumerative schemes,
as reported in [11], so in our opinion EQDSATUR presents the
expected behavior. On the other hand, both versions of EQDSATUR
outperform CPLEX and B&C-LF2 in queen8_8, and CPLEX in
myciel5 and queen9_9. In particular, the version with ORDER1-
CSS outperforms B&C-LF2 in miles750 and miles1000.

Let us note that DSATUR-CSS delivers a faster algorithm than
ORDER1-CSS for the set of instances solved by both. Also, it is able
to solve queen8_12 and kneser11_5 in more than half an hour.
Nevertheless, by using ORDER1-CSS, miles750, miles1000,
ash331GPIA and will199GPIA can be solved without difficulty.

7. Conclusions

In this paper, we present and analyze an exact DSatur-based
algorithm for ECP. We propose a pruning rule based on arithme-
tical properties related to equitable partitions, which has shown to
be very effective. We also discuss several color and vertex selection
strategies and how to obtain lower and upper bounds of the

equitable chromatic number for initializing the algorithm. Finally,
several experiments were carried out to conclude that our
approach can tackle the resolution of random graphs better than
other algorithms found in the literature so far.
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