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Effects of the sticking probability on the scaling of the island density in a point island model
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The behavior of the island density exponentx for a model of deposition, nucleation, and aggregation of
particles, forming point islands with a sticking probabilityp in one dimension, is analyzed. Using Monte Carlo
simulation we found thatx depends onp. For p51 we obtainx> 1

4 , the well-known result for perfect sticking
and one-dimensional diffusion. Interestingly, asp is decreased,x adopts higher values. Possible reasons for
this behavior are addressed. The universal result for a one-dimensional diffusion,x5

1
4 , is expected to be

recovered, for allp, only in the asymptotic regime.
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I. INTRODUCTION

The study of submonolayer deposition on surfaces
attracted a great deal of interest in recent years. From
experimental point of view, this is due to the recent dev
opment of scanning tunneling microscopy, which allows
to analyze the island morphology generated by the molec
beam epitaxy technique at very low coverage@1–3#. In order
to understand the microscopy mechanics responsible for
formation of these island morphologies, several models
deposition, diffusion, nucleation, and aggregation of partic
forming islands in a two-dimensional substrate were rece
developed and studied@3–10#. From a basic theoretical poin
of view, the studies focused on finding scaling laws in t
island density distributions and scaling functions in the
land size distributions@4,6–9,11–19#. In all these models
particles are deposited at random with a constant flux a
after deposition, each particle performs a random walk.The
end of the diffusion for a particle occurs when it sticks
another diffusing particle~a nucleation process takes plac
and a new island is created! or to a preexisting island~an
aggregation process!. A time-independent parameter of th
models is the ratioR between the mean number of jumps p
unit of time performed by an isolated particle and the me
number of deposited particles per substrate site and un
time. Starting with an empty substrate, the final island str
ture for each specific model depends on the final coverag
particles on the substrateu and R. In most models, islands
can neither break nor diffuse. In the following we will re
strict ourselves to immobile islands and irreversible nuc
ation and aggregation.

When R increases, each particle performs on averag
greater number of hops before the incoming of new partic
Then they have a greater probability of reaching pre-exis
islands than forming new ones. At a fixed coverageu, and
for large enough values ofR, the island densityN ~the aver-
age number of islands per site! satisfies the following powe
law @6–9#

N;R2x, ~1!
1063-651X/2001/63~6!/066120~5!/$20.00 63 0661
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where x is the so-calledisland density exponent. In many
models the nucleation and aggregation processes take p
at the first encounter of a particle with another particle
island. In other words, the sticking isperfect~i.e., its occurs
with probability one!.

For the case of islands occupying single lattice sites~point
islands! and perfect sticking, the following was found:~i! x
5 1

4 when the deposited particles perform a one-dimensio
diffusion between its deposition and its attachment to
other particle or island, and~ii ! x5 1

3 when the particles per
form a two-dimensional diffusion@6,7#. The one- or two-
dimensional character of the diffusion can be determined
computing the mean valueS(ns) of different visited sites by
a deposited particle afterns steps. Forns around the mean
value of stepŝns&, performed between its deposition and t
end of diffusion,S(ns) behaves asns

a , wherea5 1
2 or 1 for

one- or two-dimensional diffusion, respectively. Intere
ingly, some models show an intermediate behavior, with1

2

,a,1. For example, in a two-dimensional substrate w
randomly distributed repulsive impurities~a case in which
the available space for diffusion is reduced!, an exponent14
,x, 1

3 was found in an intermediate regime ofR @11#. An-
other interesting case arises when the diffusion is anisotro
in a two-dimensional substrate~i.e., the diffusion constant in
one direction is much greater than the diffusion constan
the perpendicular direction!. Due to this anisotropy,a5 1

2 for
smallns , anda51 for largens . As the density of islandsN
decreases whenR increases@see Eq.~1!#, ^ns& increases be-
cause the particles need a larger number of steps to stic
an island. Then a crossover from a one-dimensional reg
~at intermediate values ofR! to a two-dimensional regime~at
very large values ofR! was found@7#.

In Ref. @18# the case of finite-size islands consisting
linear chains of monomers oriented in one direction o
square lattice was studied. The growth sites of an island
located at both ends of the monomer chain, when a part
arrives at these sites, it always aggregates to the island. A
nucleation takes place at the first encounter of two diffus
particles. Then we are dealing with a model of perfect sti
ing. The lateral sides of these islands act as obstacles, bl
©2001 The American Physical Society20-1
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ing the diffusion in the perpendicular direction of the chain
The effects of diffusional anisotropy, where diffusion
easier in the direction perpendicular to chains than in
direction of the chains, were analyzed. It was found that
an intermediate region ofR, the exponentx changes
smoothly from 1

3 to 1
4 when the diffusion changes from iso

tropic (a>1) to highly anisotropic (a> 1
2 ). It is expected

that in the asymptotic regime,R→`, x5 1
4 independently of

anisotropy@19#. The value of the exponentx5 1
4 for both the

intermediate and asymptotic regimes is due to the prese
of long monomer chains, because the particles are oblige
perform a one-dimensional diffusion.

In the present paper we show that the above-mentio
non universal behavior of the exponentx, in the intermediate
region ofR, can also be obtained with an imperfect stickin
More specifically, we introduce a point island model in
one-dimensional lattice in which the nucleation and aggre
tion processes take place with a sticking probabilityp(0
,p<1). We found thatx depends onp. However, the rea-
son for this dependency is quite different from those for
above-mentioned examples. As we are working with a o
dimensional lattice, the particles always perform a o
dimensional diffusion~i.e., a5 1

2 !. In this paper we explain
why the sticking probabilityp is responsible for the nonuni
versal behavior ofx.

II. MODEL

The model is defined on a one-dimensional lattice w
periodic boundary conditions~a ring! in order to avoid edge
effects. In the simulation we use lattices of at least 106 sites.
Once deposited, the particles perform random walks
form islands. The islands are immobile, and are compose
two or more particles that occupy a single site~i.e., we are
dealing with a point island model!. The islands cannot brea
and grow irreversibly by aggregation. The formation of
new island and aggregation take place with a probab
p(0,p<1). More specifically, the rules of the depositio
diffusion, nucleation, and aggregation processes are as
lows.

~i! Deposition: each empty site of the lattice is occup
by a new particle with probability«, per unit of timet.

~ii ! Diffusion: an isolated particle~i.e., a particle not
bounded to an island! attempts to jump to any of its neare
neighbor~NN! sites with probabilityq5 1

2 per unit of timet.
~iii ! Nucleation: if, as a consequence of diffusion, a p

ticle tries to jump from a sitei to a NN site occupied by a
another isolated particle, these two particles nucleate wi
probability p, forming a new island of two particles. With
probability 1-p the first particle jumps over the second, a
riving at the NN site of the second particle opposite to siti.
If there are two or more consecutively occupied sites,
particle continues jumping in the same direction, until
finds the first empty site where it is deposited.

~iv! Aggregation: if, as a consequence of diffusion, a p
ticle tries to jump from sitei to a NN site occupied by an
island, this particle aggregates to the island with probabi
p, increasing the number of particles in the island by 1. W
a probability 1-p, the particle jumps over the island an
06612
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arrives at the NN site of the island opposite to sitei. If there
are two or more consecutively occupied sites, the parti
continues jumping in the same direction until it finds the fir
empty site where it is deposited.

III. RESULTS AND DISCUSSIONS

The island densityN as a function ofR in log-log scales
for different values ofp, extracted from our Monte Carlo
simulations, are shown in Fig. 1. From the slope of th
straight lines we foundx varying from 0.24160.005 for p
51 to 0.30560.005 for p50.001. Note that forp51 we
obtain a value ofx very close to1

4 which, as mentioned, is
the expected value for the island point model in one dime
sion with a perfect sticking probability. The numerical resu
is slightly lower than1

4, as previously reported@6,7#. The
analytical resultx5 1

4 can be reached only for extremely
large values ofR.

The data of Fig. 1 clearly show that the behavior ofN as
a function ofR strongly depends onp. We now explain why
for large enough values ofR ~not shown in the figure! the
effects ofp must finally become irrelevant. Let us consider
one-dimensional lattice where the sites are located atm
50,61,62,63,... LetW(Ns ,m) be the average number o
times that a sitem has been visited by a random walker afte
Ns steps, starting at the originm50. At each step the random
walker jumps to any of its NN sites with a probability12.
Then @20#

W~Ns ,m!5 (
M>m

Ns M !

@~M2m!/2#! @~M1m!/2#!
~1/2!M,

~2!

FIG. 1. The island density for different sticking probabilitiesp
as a function ofR. Squares correspond top51, circles to p
50.02, triangles top50.005, and inverted triangles top50.001.
The island density exponentx is 0.24160.005, 0.25760.005,
0.28160.005, and 0.30560.005 forp51, 0.02, 0.005, and 0.001,
respectively.
0-2



-
r

t

n

n

e

i

ce

es

r
n
n

al
ort
for

by a
ion

n
e

ion.

h

ve
e

s
den-

a
re-

al-
ga-
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where the sum runs over even values ofM, if m is even, or
odd numbers ofM, if m is odd. In Fig. 2,W/Ns

1/2 is shown as
a function ofm/Ns

1/2 for Ns5103, 104, and 105, andm>0.
For large values ofM, each term of the sum can be approxi
mated by a Gaussian distribution, and the sum by an integ
@20#. After an appropriate change of variables,W/Ns

1/2 is a
function of m/Ns

1/2, in agreement with the data collapse
shown in Fig. 2. Letm1(Ns) be the maximum value ofm for
which W(Ns ,m)>1 holds, or equivalentlyW(Ns ,m111)
,1. For 2m1<m<m1 all sites have been visited at leas
once. Thenm15S(Ns);Ns

1/2.
Let us now consider the aggregation process in the isla

point model which is dominant in the range of interest be
causeN@n, whereN and n are the density of islands and
monomers, respectively. A deposited particle that, after
diffusion process, arrives for the first time at a NN site of a
islandi, has a probabilityp to aggregate. Before a successfu
aggregation takes place, this particle will attempt to aggr
gate on average, 1/p times. For example, one possibility is
that the particle triesl/p times to aggregate to islandi and
(12l)/p times to aggregate to another islandj (0<l
<1). For a given value ofp we defineNsp such that 1/p
>W(Nsp,0). Let l p5m1(Nsp);Nsp

1/2. From Fig. 2,
W(Nsp,0);Nsp

1/2 for largeNsp and thenl p;(1/p), for small
p. Let us assume that we are working with a value ofR such
that the average distance between consecutive islandsl
51/N@ l p . In this condition it is highly probable that the
particle aggregates to the first found island~i.e., the islandi!
since the distance between this island and any other one~as
island j! is very large. In other words, the particle will at-
tempt to aggregate to the first island 1/p times before finding

FIG. 2. The average number of times divided byNs
0.5 that a site

m is visited by a random walker that starts at the origin afterNs

steps. The curve corresponds toNs5105, circles correspond toNs

5103, and crosses correspond toNs5104. The inset shows the
average number of times divided byNs

0.5 that the starting site (m
50) is visited as a function ofNs . Note that the same value is
obtained forNs>103.
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any other island~i.e., l51!. As m1 and W(Ns,0) increase
with Ns , aggregation is not expected forNs,Nsp for the
above-specified values ofp andR. The fact that aggregation
occurs at the first found island, as in the case ofp51, holds
for even larger values ofR, because the average distan
between consecutive islands increases withR @note that l
51/N and N decreases withR; see Eq.~1!#. Also l p is the
maximum distance that the particle can travel after it arriv
at the first island. Then, forl @ l p the effects ofp become
irrelevant, and the same value of the island densityN must
be obtained forp51 andp,1. The behavior of the smalle
value ofR, denoted byRc , at which the collapse occurs ca
be estimated as follows. AtRc , the mean distance betwee
islands,l c , must bel c@ l p . That is,l c5alp , with a@1. For
l; l c we have the one-dimensional behaviorl c;Rx, with
x5 1

4 . Then,Rc;(a/p)4 for small values ofp. Although the
confirmation of this relation is beyond our computation
facilities, the numerical results shown in Fig. 1 give supp
to all the above reasoning. From this figure we expect,
large enough values ofR ~not shown in the figure!, that the
curves ofN corresponding top,1 andp51 collapse onto
one curve. For decreasing values ofp the collapse will occur
at increasing values ofR.

In order to understand the behavior of the exponentx for
different values ofp, we computeDx/ l , where Dx is the
square root of the mean-square displacement performed
particle between its deposition and the end of the diffus
due to nucleation or aggregation. Asn!N, the value ofDx
is dominated by aggregation. Forp51 the ratioDx/ l is not
expected to depend onl. The particle is deposited betwee
two islands and then, sincep51, it cannot escape from th
region limited by these two islands. Forp,1 the particle can
escape and aggregate to other islands outside this reg
Therefore, for a specific value ofl, Dx/ l , corresponding to
p,1, is greater than or equal toDx/ l corresponding top
51. In Fig. 3 we plotDx/ l as a function ofl in log-log scales
for different values ofp. We expect that for large enoug
values of l all these curves will collapse because, asl be-
comes greater thanl p , the particle, as in the case ofp51,
will not escape from a region limited by the two consecuti
islands where it was deposited. From Fig. 3, we can writ

Dx/ l; l 2«, ~3!

where« is an effective exponent which depends onp. From
the above-mentioned collapse ofDx/ l , it can be expected
that «→0 whenl→` for all values ofp.0.

We now focus on the relation between the exponent«
andx. Due to nucleation and aggregation processes, the
sity of monomers,n, decreases per unit of time asn/t, where
t is the lifetime of monomers. Since we are dealing with
point island model, the probabilities of nucleation and agg
gation of a monomer arePn;n/(n1N) and Pa;N/(n
1N), respectively. Note that these relations hold for all v
ues ofp because, in our model, the nucleation and aggre
tion are affected in the same way byp. Assumingn!N, as
occurs for large values ofR, one has@6,11,18#
0-3
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dn

dt
>«2

n

t
, ~4!

dN

dt
>~n/t!~n/N!. ~5!

The average number of steps^ns& performed by a deposite
particle until the end of the diffusion, due to nucleation
aggregation processes, is

^ns&52qt5«Rt. ~6!

For R@1 a quasistationary regime exists for whichdn/dt
;0 ~which is verified numerically!. From Eqs.~4!–~6!, and
usingdu5«dt, one obtains

dN

du
>

^ns&
RN

. ~7!

Considerinĝ ns&}Dx2 andl 51/N, Eq. ~7! can be written as

dN

du
;

1

RN3 FDx

l G2

. ~8!

N cannot be expressed as a function ofR and u integrating
Eq. ~8! from u50, becauseDx/ l is an unknown function of
u and because foru>0 this equation is no longer valid~for
example, the inequalityn!N is not true!. Now, assuming
that, in the region of interest, 0.03<u<0.15, the exponentx
does not depend onu @i.e., N5 f (u)R2x, which numerically

FIG. 3. The ratio of the square root of the mean-square displ
ment in thex direction and the average distance between cons
tive islandsl as a function ofl for different values ofp. The expo-
nent« @see Eq.~3!# is 0.3160.07 for p50.005 and 0.4460.07 for
p50.001. The region ofl shown corresponds to 107<R<1011 for
p51 and 0.005 and 108<R<1011 for p50.001.Dx andl are mea-
sured in terms of the distance between nearest-neighbor sites o
lattice.
06612
r

was found as a very good approximation#, dN/du;N. From
Eqs.~3! and ~8! the relationN;R2x is obtained, with

x51/~422«!. ~9!

As already mentioned,Dx/ l does not depend onl for p51
~i.e., «50; see Fig. 3!, and Eq.~9! predicts the well-known
one-dimensional exponentx5 1

4 for perfect sticking. For
other values ofp this equation is in good agreement wi
numerical results. For example, from the slopes of
straight lines of Fig. 3 we obtain«50.3160.07 and 0.44
60.07 for p50.005 and 0.001, respectively. Using Eq.~9!
we can determinex50.3060.02 and 0.3260.02. These re-
sults must be compared withx50.28160.005 and 0.305
60.005 determined from Fig. 1.

We also expect that«→0 for l→` ~i.e., N→0! which
from Eq. ~9! implies that, in the asymptotic regime,R→`,
the one-dimensional exponentx5 1

4 is recovered for all val-
ues of p.0. Finally, note that forp50 there is neither
nucleation nor aggregation in the model~N50 for all R!, and
then the limitp→0 is different from the casep50.

IV. SUMMARY AND CONCLUSIONS

In this paper a point island model with a sticking pro
ability 0,p<1, that affects both, the nucleation and agg
gation processes, was introduced and studied. In an inte
diate region ofR, of four orders of magnitude, the islan
density exponentx was found to depend onp ~see Fig. 1!.
For p51 we obtainx>0.24, which is in agreement with th
well-known result x5 1

4 for perfect sticking and one
dimensional diffusion. Although the deposited particles p
form a one-dimensional diffusion for all values ofp, the
exponentx increases whenp decreases.

For p,1, the particles have a probability to escape fro
the region limited by two consecutive islands where th
were deposited. With the arguments of Sec. III and the an
sis of the functionW ~see Fig. 2!, it can be concluded that
for a fixed value ofp, this probability decreases as the ave
age distance between consecutive islandsl increases. Then
Dx/ l decreases withl ~see Fig. 3!, and from Eqs.~3! and~9!
an exponentx. 1

4 , that depends on the specific value ofp, is
obtained.

In the asymptotic regime,R→`, it is expected thatx
5 1

4 for all values ofp; then the universality is recovered. I
short, before a successful attachment occurs, the particle
to aggregate, on average, 1/p times. With the functionW, we
showed that for large values ofR the mean distance betwee
islands becomes so large that the deposited particle m
stick to the first island that it finds, as in the case ofp51.
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