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Effects of the sticking probability on the scaling of the island density in a point island model
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The behavior of the island density expongnfor a model of deposition, nucleation, and aggregation of
particles, forming point islands with a sticking probabilityn one dimension, is analyzed. Using Monte Carlo
simulation we found thay depends op. Forp=1 we obtainxs%, the well-known result for perfect sticking
and one-dimensional diffusion. Interestingly, @$s decreasedy adopts higher values. Possible reasons for
this behavior are addressed. The universal result for a one-dimensional diffp{siofn, is expected to be
recovered, for alp, only in the asymptotic regime.

DOI: 10.1103/PhysReVE.63.066120 PACS nunier05.40—a, 68.35.Fx

[. INTRODUCTION where y is the so-calledsland density exponentn many
models the nucleation and aggregation processes take place

The study of submonolayer deposition on surfaces haat the first encounter of a particle with another particle or
attracted a great deal of interest in recent years. From aisland. In other words, the sticking merfect(i.e., its occurs
experimental point of view, this is due to the recent devel-with probability one.
opment of scanning tunneling microscopy, which allows us For the case of islands occupying single lattice gjp@ént
to analyze the island morphology generated by the moleculgglands and perfect sticking, the following was found) y
beam epitaxy technique at very low covergge3]. In order =1 when the deposited particles perform a one-dimensional
to understand the microscopy mechanics responsible for thgiffusion between its deposition and its attachment to an-
formation of these island morphologies, several models ofher particle or island, angi) y=3% when the particles per-
deposition, diffusion, nucleation, and aggregation of particlesy . a two-dimensional diffusion6,7]. The one- or two-
forming islands in a two-dimensional substrate were recentlyyiansional character of the diffusion can be determined by
developed and studig@—10]. From a basic theoretical point computing the mean valu&(n) of different visited sites by

of view, the studies focused on finding scaling laws in thea deposited particle aftar. stens. Fom. around the mean
island density distributions and scaling functions in the is- b P s SIEpS. 3

land size distributiong4,6—9,11—19 In all these models, value of stepgng), performed between its deposition and the

. _1
particles are deposited at random with a constant flux angnd of diffusion,S(ny) behaves asg’, wherea=3 or 1 for

after deposition, each particle performs a random walie ~ One- or two-dimensional diffusion, respectively. Interest-
end of the diffusion for a particle occurs when it sticks toingly, some models show an intermediate behavior, with
another diffusing particlga nucleation process takes place, <@<1. For example, in a two-dimensional substrate with
and a new island is createdr to a preexisting islandan  randomly distributed repulsive impuritig case in which
aggregation processA time-independent parameter of the the available space for diffusion is redugedn exponent
models is the rati& between the mean number of jumps per < y<3 was found in an intermediate regime Rf11]. An-
unit of time performed by an isolated particle and the mearother interesting case arises when the diffusion is anisotropic
number of deposited particles per substrate site and unit dh a two-dimensional substratee., the diffusion constant in
time. Starting with an empty substrate, the final island strucene direction is much greater than the diffusion constant in
ture for each specific model depends on the final coverage dhe perpendicular directionDue to this anisotropyy = 3 for
particles on the substrat¢ and R. In most models, islands smallng, anda=1 for largeng. As the density of islandksl
can neither break nor diffuse. In the following we will re- decreases wheR increasegsee Eq(1)], (ns) increases be-
strict ourselves to immobile islands and irreversible nuclecause the particles need a larger number of steps to stick to
ation and aggregation. an island. Then a crossover from a one-dimensional regime
When R increases, each particle performs on average &t intermediate values &) to a two-dimensional regim@t
greater number of hops before the incoming of new particlesvery large values oR) was found[7].
Then they have a greater probability of reaching pre-existing In Ref.[18] the case of finite-size islands consisting of
islands than forming new ones. At a fixed coveraggend linear chains of monomers oriented in one direction of a
for large enough values &, the island densit\N (the aver-  square lattice was studied. The growth sites of an island are
age number of islands per sitsatisfies the following power located at both ends of the monomer chain, when a particle
law [6—9] arrives at these sites, it always aggregates to the island. Also,
nucleation takes place at the first encounter of two diffusing
particles. Then we are dealing with a model of perfect stick-
N~R™X, (1) ing. The lateral sides of these islands act as obstacles, block-
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ing the diffusion in the perpendicular direction of the chains.
The effects of diffusional anisotropy, where diffusion is
easier in the direction perpendicular to chains than in the
direction of the chains, were analyzed. It was found that, ir
an intermediate region oR, the exponenty changes
smoothly from3 to ; when the diffusion changes from iso-
tropic (e=1) to highly anisotropic ¢=3). It is expected
that in the asymptotic regim&—oe, y= 3 independently of
anisotropy[19]. The value of the exponet= % for both the
intermediate and asymptotic regimes is due to the presenc
of long monomer chains, because the particles are obliged 1
perform a one-dimensional diffusion.

In the present paper we show that the above-mentione
non universal behavior of the expongntin the intermediate
region of R, can also be obtained with an imperfect sticking.
More specifically, we introduce a point island model in a
one-dimensional lattice in which the nucleation and aggrega
tion processes take place with a sticking probabifit{0
<p=<1). We found thaty depends ormp. However, the rea-
son for this dependency is quite different from those for the R
above-mentioned examples. As we are working with a one- ) ) ) o .
dimensional lattice, the particles always perform a one- FIG. 1. The island density for different sticking probabllltlps
dimensional diffusior(i.e., a=1). In this paper we explain as a function ofR Squares correspond tp=1, circles top

L e . . =0.02, triangles tgp=0.005, and inverted triangles {o=0.001.
why the sticking probabilityp is responsible for the nonuni- ; . )
versal behavior of. The island density exponent is 0.241+0.005, 0.257%0.005,

0.281£0.005, and 0.3050.005 forp=1, 0.02, 0.005, and 0.001,
respectively.
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II. MODEL . . . . ..
arrives at the NN site of the island opposite to sitH there

The model is defined on a one-dimensional lattice withare two or more consecutively occupied sites, the particle
periodic boundary condition@ ring in order to avoid edge continues jumping in the same direction until it finds the first
effects. In the simulation we use lattices of at leastdifes.  empty site where it is deposited.

Once deposited, the particles perform random walks and
form islands. The islands are immobile, and are composed of
two or more particles that occupy a single dite., we are ) ] ) .
dealing with a point island modelThe islands cannot break  The island densitN as a function oR in log-log scales
and grow irreversibly by aggregation. The formation of afor different values ofp, extracted from our Monte Carlo
new island and aggregation take place with a probabiliysimulations, are shown in Fig. 1. From the slope of the
p(0<p=<1). More specifically, the rules of the deposition, Straight lines we found varying from 0.2410.005 forp
diffusion, nucleation, and aggregation processes are as fof 1 to 0.305:0.005 forp=0.001. Note that fop=1 we
lows. obtain a value ofy very close to} which, as mentioned, is

(i) Deposition: each empty site of the lattice is occupiedthe expected value for the island point model in one dimen-
by a new particle with probabilitg, per unit of timet. sion with a perfect sticking probability. The numerical result

(i) Diffusion: an isolated particldi.e., a particle not IS slightly lower thanj, as previously reporte6,7]. The
bounded to an islandattempts to jump to any of its nearest analytical resulty=; can be reached only for extremely
neighbor(NN) sites with probabilityq= % per unit of timet.  large values oR. _

(iii ) Nucleation: if, as a consequence of diffusion, a par- The data of Fig. 1 clearly show that the behavioMbés
ticle tries to jump from a sité to a NN site occupied by a & function ofR strongly depends op. We now explain why
another isolated particle, these two particles nucleate with £r large enough values d® (not shown in the figurethe
probabmty P, forming a new island of two partic|es_ With a effects Ofp mUSt f|na”.y become Irrelevfélnt. Let us consider a
probabmty 1_p the first partic'e jumps over the Second, ar- One-d|mens|0na| Iatt|Ce Whel’e the sites are |Ocatednat
riving at the NN site of the second particle opposite to site =0, *1,=2,%3,... LetW(N;,m) be the average number of
If there are two or more consecutively occupied sites, thdimes that a siten has been visited by a random walker after
particle continues jumping in the same direction, until it Ns Steps, starting at the origin=0. At each step the random

Ill. RESULTS AND DISCUSSIONS

finds the first empty site where it is deposited.

walker jumps to any of its NN sites with a probability

(iv) Aggregation: if, as a consequence of diffusion, a par-Then[20]

ticle tries to jump from sita to a NN site occupied by an

island, this particle aggregates to the island with probability
p, increasing the number of particles in the island by 1. With

a probability 1¢, the particle jumps over the island and

Ns M!
W(Ns,m)zMém [(M=m)/2]'[(M +m)/2]! (12",
2
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1 any other islandi.e., A\=1). As m; and W(N,0) increase
0.9 with Ng, aggregation is not expected fot;<Ng, for the
above-specified values pfandR. The fact that aggregation
0.85 |= occurs at the first found island, as in the cas@#sfl, holds
for even larger values oR, because the average distance
between consecutive islands increases VRtnote thatl
VI L ——— =1/N andN decreases witlR; see Eq.(1)]. Also |, is the
maximum distance that the particle can travel after it arrives
S at the first island. Then, for>1, the effects ofp become
10 10° 10° 107 irrelevant, and the same value of the island denisitynust
be obtained fop=1 andp<1. The behavior of the smaller
value ofR, denoted byR., at which the collapse occurs can
be estimated as follows. AR, the mean distance between
islands,| ., must bel :>1,. Thatis,|.;=al,, with a>1. For
I~1. we have the one-dimensional behavigr-RX, with
. ‘ x=13. Then,R.~ (a/p)* for small values op. Although the
o 05 1 15 2 25 3 confirmation of this relation is beyond our computational
facilities, the numerical results shown in Fig. 1 give support
m/Nso'5 to all the above reasoning. From this figure we expect, for
large enough values d&® (not shown in the figune that the
FIG. 2. The average number of times dividedd$° that a site  curves ofN corresponding tgp<1 andp=1 collapse onto
m is visited by a random walker that starts at the origin agr  one curve. For decreasing valuespahe collapse will occur
steps. The curve correspondsNg=10°, circles correspond tblg at increasing values dR.
=10°, and crosses correspond My=10". The inset shows the |n order to understand the behavior of the exponefur
average number of times divided m};-f" that the starting siteng different values ofp, we computeAx/l, where Ax is the
=0) is visited as a function oNs. Note that the same value is square root of the mean-square displacement performed by a
obtained forN=10°. particle between its deposition and the end of the diffusion

where the sum runs over even values\fif mis even, or du€ 1o nucleation or aggregation. As<N, the value ofAx

odd numbers of, if mis odd. In Fig. 2W/NY2is shown as 1S dominated by aggregation. Fpe=1 the ratioAx/l is not

2 function ofm/N’”z for No= 168 10* z;md 156 andm=0 expected to depend dn The particle is deposited between
s s ) [l [ = WU.

For large values of, each term of the sum can be approxi- two islands and then, singe=1, it cannot escape from the

mated by a Gaussian distribution, and the sum by an integra“egIcm limited by these two islands. Fpr=1 the particle can

. : 12 escape and aggregate to other islands outside this region.
[20]. .After an aplgm'“_’”ate change Of,va”abl(WINS IS a Therefore, for a specific value of Ax/l, corresponding to
function of m/N5“, in agreement with the data collapse

e : p<1, is greater than or equal thx/I corresponding tq
shown in Fig. 2. Lem;(N,) be the maximum value oh for

: . =1. In Fig. 3 we plotAx/I as a function of in log-log scales
which W(Ns,m)=1 holds, or equivalentiy¥(Ns,mi+1) o giferent values ofp. We expect that for large enough
<1. For —m;=m=m; all sites have been visited at least

P values ofl all these curves will collapse because,|dse-
once. Therm, = S(Ng) ~Ng*. . _ __comes greater thah,, the particle, as in the case pf1,
Let us now consider the aggregation process in the islangj|| not escape from a region limited by the two consecutive

point model which is dominant in the range of interest be-islands where it was deposited. From Fig. 3, we can write
causeN>n, whereN andn are the density of islands and

monomers, respectively. A deposited particle that, after a

diffusion process, arrives for the first time at a NN site of an Ax/I~17¢, ®)
islandi, has a probability to aggregate. Before a successful

aggregation takes place, this particle will attempt to aggre-

gate on average, fi/times. For example, one possibility is wheree is an effective exponent which depends mrFrom
that the particle triea/p times to aggregate to islancand  the above-mentioned collapse ai/I, it can be expected
(1-\)/p times to aggregate to another islajdO<\  thate—0 whenl—c for all values ofp>0.

<1). For a given value op we defineNs, such that 1 We now focus on the relation between the exponents
=W(Ngp,0). Let Iy= ml(NSp)~N§’pZ. From Fig. 2, andy. Due to nucleation and aggregation processes, the den-
W(NSp,O)~N§’p2 for large Ng, and thenl ,~(1/p), for small  sity of monomersn, decreases per unit of time a&r, where

p. Let us assume that we are working with a valudkafuch 7 is the lifetime of monomers. Since we are dealing with a
that the average distance between consecutive islants ispoint island model, the probabilities of nucleation and aggre-
=1/N>1,. In this condition it is highly probable that the gation of a monomer ard,~n/(n+N) and P,~N/(n
particle aggregates to the first found islainé., the island) +N), respectively. Note that these relations hold for all val-
since the distance between this island and any othe@ne ues ofp because, in our model, the nucleation and aggrega-
islandj) is very large. In other words, the particle will at- tion are affected in the same way py Assumingn<N, as
tempt to aggregate to the first islangb imes before finding occurs for large values @®, one hag6,11,19
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was found as a very good approximafjodN/d6~N. From
Egs.(3) and(8) the relationN~R™* is obtained, with

3
v
x=1/(4-2¢). 9
2
As already mentioned\x/I does not depend onfor p=1
Ax/1 u (i.e.,e=0; see Fig. 3 and Eq.(9) predicts the well-known

one-dimensional exponeng=73 for perfect sticking. For
1 L other values ofp this equation is in good agreement with
i numerical results. For example, from the slopes of the
straight lines of Fig. 3 we obtaia=0.31+0.07 and 0.44
+0.07 for p=0.005 and 0.001, respectively. Using E§)
p=1 we can determing=0.30=0.02 and 0.320.02. These re-
------------ o -0 -0 ___ 0O sults must be compared witp=0.281*+0.005 and 0.305
. . o +0.005 determined from Fig. 1.
100 1000 We also expect that —0 for [ —o (i.e., N—0) which
i from Eq. (9) implies that, in the asymptotic regimB— e,
the one-dimensional exponegt=; is recovered for all val-
FIG. 3. The ratio of the square root of the mean-square displacedes of p>0. Finally, note that forp=0 there is neither
ment in thex direction and the average distance between consecwiucleation nor aggregation in the moddl= 0 for all R), and
tive islandsl as a function of for different values of. The expo-  then the limitp— 0 is different from the casp=0.
nente [see Eq(3)] is 0.31+0.07 for p=0.005 and 0.44 0.07 for
p=0.001. The region of shown corresponds to & R=<10'" for

p=1 and 0.005 and f&<R<10' for p=0.001.Ax and| are mea- IV. SUMMARY AND CONCLUSIONS
sured in terms of the distance between nearest-neighbor sites of the . o . L
lattice. In this paper a point island model with a sticking prob-

ability 0<p=1, that affects both, the nucleation and aggre-
dn n gation processes, was introduced and studied. In an interme-
—=g——, (4)  diate region ofR, of four orders of magnitude, the island
dt T density exponenjy was found to depend op (see Fig. L
For p=1 we obtainy=0.24, which is in agreement with the
d—NZ(n/T)(n/N) (5) well-known result y=3 for perfect sticking and one-
dt ' dimensional diffusion. Although the deposited particles per-
form a one-dimensional diffusion for all values pf the
The average number of stefis;) performed by a deposited exponenty increases whep decreases.
particle until the end of the diffusion, due to nucleation or For p<1, the particles have a probability to escape from

aggregation processes, is the region limited by two consecutive islands where they
were deposited. With the arguments of Sec. Il and the analy-
(ng=2q7=¢Rr. (6)  sis of the functionW (see Fig. 2, it can be concluded that,

for a fixed value ofp, this probability decreases as the aver-
For R>1 a quasistationary regime exists for whidin/dt  age distance between consecutive islahitscreases. Then
~0 (which is verified numerically From Eqgs.(4)—(6), and  Ax/| decreases with(see Fig. 3, and from Eqs(3) and(9)

usingd6=edt, one obtains an exponeni> %, that depends on the specific valugppis
obtained.
dN_ (ny) In the asymptotic regimeR—oe, it is expected thajy
dé~ RN’ () =1 for all values ofp; then the universality is recovered. In

short, before a successful attachment occurs, the particle tries
Considering ng)« Ax? andl = 1/N, Eq.(7) can be written as 10 aggregate, on averageptimes. With the functiorw, we
showed that for large values Bfthe mean distance between
2 islands becomes so large that the deposited particle must
(8)  stick to the first island that it finds, as in the casepef1.

AX

dN 1
d6  RN°

N cannot be expressed as a functionRoénd @ integrating
Eq. (8) from =0, becaus&\ x/l is an unknown function of
0 and because fof=0 this equation is no longer validor This work was partially supported by the National Coun-
example, the inequalitpy<<N is not trug. Now, assuming cil for Scientific and Technical Researc@@ONICET) of Ar-
that, in the region of interest, 0.639=<0.15, the exponent  gentina. K. M. acknowledges financial support from FOMEC
does not depend ofi[i.e., N=f(#)R X, which numerically  (Argenting.
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