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The depth of a trie has been deeply studied when the source which produces the words10
is a simple source (a memoryless source or a Markov chain). When a source is simple11
but not an unbiased memoryless source, the expectation and the variance are both of12
logarithmic order and their dominant terms involve characteristic objects of the source,13
for instance the entropy. Moreover, there is an asymptotic Gaussian law, even though the14
speed of convergence towards the Gaussian law has not yet been precisely estimated. The15
present paper describes a ‘natural’ class of general sources, which does not contain any16
simple source, where the depth of a random trie, built on a set of words independently17
drawn from the source, has the same type of probabilistic behaviour as for simple sources:18
the expectation and the variance are both of logarithmic order and there is an asymptotic19
Gaussian law. There are precise asymptotic expansions for the expectation and the variance,20
and the speed of convergence toward the Gaussian law is optimal. The paper first provides21
analytical conditions on the Dirichlet series of probabilities of a general source under which22
this Gaussian law can be derived: a pole-free region where the series is of polynomial growth.23
In a second step, the paper focuses on sources associated with dynamical systems, called24
dynamical sources, where the Dirichlet series of probabilities is expressed with the transfer25
operator of the dynamical system. Then, the paper extends results due to Dolgopyat,26
already generalized by Baladi and Vallée, and shows that the previous analytical conditions27
are fulfilled for ‘most’ dynamical sources, provided that they ‘strongly differ’ from simple28
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2 E. Cesaratto and B. Vallée

1. Introduction33

1.1. Tries34

A trie is a tree structure which is used as a dictionary in various applications, such as35

partial match queries, text processing tasks or compression. As Flajolet wrote in [13], this36

justifies considering the trie structure as one of the central general-purpose data structures37

of computer science.38

The trie structure is based on a splitting according to symbols encountered in strings.39

If X is a set of strings over the alphabet Σ = {m1, m2, . . .} (finite or countably infinite),40

then the trie associated with X is defined recursively by the following rules: if X is empty,41

then Trie(X ) is empty; if X has only one element X, then Trie(X ) is a leaf labelled with42

X. For |X | � 2, the trie Trie(X ) is an internal node to which the sequence43

(Trie(X[m1]),Trie(X[m2]), . . . ,Trie(X[mr]), . . .)

is attached. Here, the set X[m] gathers the words of X that start with the symbol m and44

are stripped of their initial symbol m.45

As was recognized largely by Jacquet, Louchard and Szpankowski (see, e.g., [24, 29, 30]),46

digital tree analyses can serve as the basis of a remarkably precise understanding of the47

Lempel and Ziv schemes for data compression. The complexity of many algorithms48

that use the trie as their main underlying data structure can be expressed with various49

parameters of tries, for instance the path length, the size, the height, or the depth. The size50

is the total number of internal nodes; the length of a branch is the number of internal51

nodes it contains; the path length is the sum of the lengths of all the branches; the depth52

is the length of a (uniformly randomly selected) branch; the height is the maximum of53

the lengths of all the branches.54

1.2. Tries built on simple sources55

The probabilistic behaviour of these trie parameters strongly depends on the process56

which emits the words contained on the trie. In the context of information theory, a57

source is a probabilistic process, with discrete time, that emits symbols from the alphabet58

Σ one by one. If Yi is the symbol emitted at time t = i, the source, described by the59

sequence (Y1, Y2, . . . , Yi, . . .) of random variables, emits infinite words of ΣN and defines60

a probability distribution on the set ΣN. The sources for which the correlations between61

successive symbols are weak are called simple sources: there are memoryless sources, where62

the symbols Yi are drawn independently with the same distribution, or Markov chains63

(of order 1), where the random variable Yi+1 depends only on the previously emitted64

symbol Yi.65

When the trie is built on a simple source, the probabilistic behaviour of all the trie66

parameters is now well understood, and the book by Szpankowski [37] provides a complete67

review of the main results. The first work in the average-case analysis of tries is due to68

Knuth [27], followed by the seminal paper by Flajolet and Sedgewick [15]. Over time, in69

work by Jacquet, Louchard, Régnier, Szpankowski [23, 24, 22, 29, 30] and many others,70

all the main trie parameters have been analysed, in the case of simple sources. For71

instance, the trie depth has a mean value of order log n, and its distribution is known72
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to be asymptotically Gaussian, except in the case when the simple source is an unbiased73

memoryless source (all the symbols are independently emitted with the same probability).74

However, even for these simple sources, the existing results are not as precise as they could75

be: neither the speed of convergence towards the limit law nor the complete asymptotic76

expansions of the mean (and the variance) are precisely described in the literature. The77

recent work of Flajolet, Roux and Vallée [14] is a first step towards making the asymptotic78

behaviour of tries for simple sources more precise.79

1.3. General sources, Dirichlet generating functions and dynamical sources80

We are interested in the case when the words contained in the trie are emitted by a general81

source. A general source for the alphabet Σ is completely defined by the set (pw) of its82

fundamental probabilities: for w ∈ Σ�, the fundamental probability pw is the probability83

that a word emitted by the source begins with the (finite) prefix w. As noted early on for84

simple sources [12, 27], and further extended to the case of a general source [39, 8, 40],85

a central object of the analysis involves the Dirichlet generating functions of probabilities86

– the plain generating function Λ(s), or the bivariate generating function Λ(s, v) – which87

are defined in terms of the series88

Λk(s) :=
∑
w∈Σk

psw, (1.1)

as89

Λ(s, v) :=
∑
k�0

vkΛk(s) =
∑
k�0

vk
∑
w∈Σk

psw, Λ(s) := Λ(s, 1) =
∑
w∈Σ�

psw. (1.2)

In the past decade, Vallée [39] has introduced and studied the class of dynamical sources.90

This model of sources, built from dynamical systems, first encompasses all the simple91

sources (memoryless sources and Markov chains), and unifies their treatment. It also92

provides a natural and general framework where the dependency between symbols may93

depend on the whole history. Moreover, the Dirichlet generating function defined in (1.2)94

may be expressed via generalized transfer operators, namely secant transfer operators,95

which are introduced in [39]. This explains why this model can be studied precisely and96

analysed with mixed tools, originating in both dynamical systems theory and analytic97

combinatorics.98

1.4. Tameness of a source99

Observe that, for any k � 0, the series Λk(s) satisfy Λk(1) = 1, so that the equality100

Λ(1, v) = 1/(1 − v) holds and proves that (s, v) �→ Λ(s, v) is always singular at (1, 1). The101

behaviour of Λ(s, v), when �s is close to 1 and v close to 1, summarizes the main102

probabilistic properties of the source, and is central to Rice’s methodology, which is one103

of the main tools for analysing trie parameters. We first consider the case when v equals104

1, and we are interested in tameness properties of the source. The word tame was proposed105

by Philippe Flajolet and used for the first time in [40]. Subsequently, most papers that106

deal with probabilistic sources have used similar notions, and the word ‘tame’ is now107

widely used, for instance in the paper [9], in this issue of Combinatorics, Probability108

and Computing. A tameness region for the source is a region which strictly contains the109
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Figure 1. (Colour online) Three situations for the pole-free region R: the periodic case (a), and the aperiodic

case, which gives rise to two main subcases: H-tameness (b) and S-tameness (c).

half-plane �s � 1, where Λ(s) is analytic and of polynomial growth for |s| → ∞. Figure 1110

describes three possible shapes for tameness regions, which will be made precise later on111

in the paper, and are now summarized briefly.112

Periodic sources. If Λ(s) admits a pole on the punctured line {�s = 1, s �= 1}, it admits an113

infinite set of poles sk regularly spaced on this line, of the form sk = 1 + 2iπkτ (for some114

real τ > 0, and k varying in Z), and the source is thus called periodic. In this case, there115

is a vertical strip {1 − α < �s < 1} (for some α > 0) which is pole-free, and the tameness116

region is a punctured half-plane {�s > 1 − α, s �= sk}: the source is said to be P -tame (see117

Figure 1(a)).118

Aperiodic sources. On the other hand, if the only pole located on the line {�s = 1} is119

s = 1, the source is said to be aperiodic. In this case, the poles of Λ may come close to120

the left of the vertical line �s = 1 when |	s| becomes large, and an aperiodic source is121

tame if the poles of Λ(s) come close to the vertical line �s = 1 but not too fast, namely122

with polynomial speed: this means that the points s = σ + it of the frontier of R satisfy123

1 − σ = Ω(|t|−β) for some β � 0. The smallest possible exponent β is the hyperbolic124

exponent.125

(i) When β > 0, the tameness region has a hyperbolic shape (see Figure 1(b)), and the126

source is hyperbolic tame (H-tame for short).127

(ii) The case β = 0 gives rise to the largest possible tameness region, which is now a128

vertical strip (see Figure 1(c)), and the source is said to be strip tame (S-tame for129

short).130

Strongly tame sources. Very often, in this last situation, where there exists a vertical strip131

as a tameness region, the tameness region is large enough to be ‘perturbed’. This gives rise132

to the notion of strong tameness, which describes ‘nice’ behaviour for the Dirichlet series133

Λ(s, v): there exists a complex neighbourhood of v = 1 and a vertical strip R in which the134
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Dirichlet generating function Λ(s, v) admits a unique pole and is of polynomial growth,135

when |	s| → ∞ (uniformly with respect to v).1136

1.5. Role of source tameness in the analysis of tries137

This paper has three main aims.138

(a) We study the probabilistic behaviour of trie parameters, when the trie is built on a139

general source. With the use of Rice’s methodology, we make the role of tameness in140

the analysis of trie parameters more precise, first in the general case in Section 2, and141

then, in Section 3, in the particular case of simple sources.142

(b) We focus on the case when the source is strongly tame (the best situation from the143

tameness perspective). In this case the analysis of trie parameters can be performed144

in a transparent way, with the joint use of Rice’s methodology and the Quasi-Powers145

Theorem. This leads to asymptotic Gaussian laws with optimal speed (see Section 2).146

(c) We exhibit general sources which arise in a natural way and are strongly tame. Most147

simple sources are P -tame or H-tame, but a simple source is never strongly tame.148

Thus, strongly tame sources have to be found amongst sources that are not simple.149

We shall prove that a source is strongly tame as soon as it strongly differs from a150

simple source. We deal with the class of good dynamical sources that satisfy the UNI151

Condition (uniform non-integrability). This class was introduced by Dolgopyat [10].152

In Sections 5 and 6 we extend results due to Dolgopyat and generalized by Baladi153

and Vallée [2].154

1.6. Comparison with previous results155

In the case of simple sources, in Section 3 we study precisely the possible types of tameness156

and obtain precise remainder terms in the asymptotic estimates of the expectation and the157

variance of trie depth, correcting ‘classical’ results of the literature. The type of remainder158

term is closely related to the type of tameness (P ,H) of Λ(s). Section 3 is a summary of159

results that are partially described in [14] but not yet well known.160

In the case of a general dynamical source, the probabilistic analysis of three main161

parameters of a trie built on a dynamical source was achieved by Clément, Flajolet and162

Vallée [8]: the authors studied the path length, the size, and the height, mainly in the163

average case, except for the height which was analysed in distribution. Subsequently,164

Bourdon [3] extended this study to Patricia tries. The study of the size and path length in165

papers [8, 3] is not completely exact since it cannot be applied to any dynamical source.166

The proof needs the source to be tame, and the results of [14, 33, 34] are needed to167

complete the proof of [8]. Our parameter of interest, the depth, was precisely analysed168

by Flajolet and Vallée [17], for the particular source related to the continued fraction169

dynamical system. The authors exhibited the mean value of the depth and related it to170

some classical constants, together with the Riemann hypothesis.171

1 In Section 7 we shall return to the possible perturbation of the notion of H-tameness.
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1.7. Main results of the paper172

The present paper is devoted to the distributional analysis of the depth of a trie built on173

a general source. It can be viewed as an extension of the three papers [8, 17, 2]. We use174

the general methodology for analysis of tries described in [8]. We also apply some ideas175

that come from [17], well adapted to the study of this particular parameter (the depth),176

and extend them to a general dynamical source. And finally, since we wish to obtain177

distributional results, we extend results of Dolgopyat [10], already generalized by Baladi178

and Vallée [2], to the ‘secant’ transfer operator associated with a dynamical source. The179

main results of the paper can be described as follows.180

(i) Consider a general source which is strongly tame. The depth of a random trie built181

on n words independently emitted by this source is asymptotically Gaussian, with182

an expectation and a variance of order log n and a speed of convergence of order183

(log n)−1/2.184

(ii) Any dynamical source of the Good Class which satisfies the UNI Condition is strongly185

tame. Moreover, the constants which appear in the main terms of the mean and the186

variance of the trie depth are expressed in terms of the spectral objects of transfer187

operators, and they are computable.188

1.8. Plan of the paper189

Section 2 describes the general framework of sources and tries, and states an initial result190

which explains how to deal with the asymptotic behaviour of the trie depth when the191

source is strongly tame. Section 3 introduces tameness of sources more generally, and192

studies the behaviour of the trie depth in the case of simple sources. In Section 4 we193

introduce dynamical sources, and describe the subclass of interest, the Good-UNI Class,194

which gathers dynamical sources that can be proved to be strongly tame. We explain195

the central role that is played by the secant transfer operator, as it transfers geometric196

properties of the source into analytic properties for the generating function of the trie197

depth. Finally, Sections 5 and 6 focus on the case when the source belongs to the Good-198

UNI Class. We describe the main spectral properties of the secant transfer operator, when199

the parameter s is close to the real axis (Section 5) or far from the real axis (Section 6).200

The results of this paper have been stated in [5].201

2. General framework: sources, tries, the Gaussian law for the depth of a trie202

Here, the main objects of interest are introduced: sources, with their fundamental203

probabilities and their generating functions Λ(s),Λ(s, v), in Section 2.1, and then tries204

in Section 2.2. In Section 2.3 we relate the probabilistic behaviour of the trie depth to the205

generating function of the source. This expression involves a binomial sum, leading us to206

Rice’s methodology, which is recalled in Section 2.4. It is possible to use this method if we207

have good knowledge about the Dirichlet series Λ(s, v) when both �s and v are close to 1.208

This leads us to introduce the notion of strong tameness. Then, Section 2.6 focuses on the209

case when the source is strongly tame, and provides a simple estimate for the probability210

generating function of the depth. Finally, Sections 2.7 and 2.8 explain how an asymptotic211
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Gaussian law can be derived for the trie depth when the words are emitted by a strongly212

tame source.213

2.1. General model for a source214

Throughout this paper, an alphabet Σ (finite or denumerable) of symbols is fixed.215

Definition 1. A probabilistic source over the alphabet Σ is defined by a sequence of216

random variables (Y1, . . . , Yi, . . .). Each Yi represents the symbol which is emitted by the217

source at time t = i and the source produces infinite words of ΣN. A probabilistic source218

defines a probability P on the space ΣN which is specified by the set {pw, w ∈ Σ�} of219

fundamental probabilities pw , where pw is the probability that an infinite word begins with220

the finite prefix w. Namely, for w ∈ Σk , we have pw := P[(Y1, Y2, . . . , Yk) = w].221

Our analyses mainly deal with the Λ series of Dirichlet type, which involve fundamental222

probabilities, already defined in (1.2). For instance, the entropy h(S) of a probabilistic223

source S is defined in terms of fundamental probabilities, i.e.,224

h(S) := lim
k→∞

−1

k

∑
w∈Σk

pw log pw = lim
k→∞

−1

k

d

ds
Λk(s)|s=1, (2.1)

and thus involves the Λ series.225

2.2. Description of a trie226

We now describe the second main object of this work, the trie, which is a tree structure,227

used as a dictionary, that compares words via their prefixes.228

Definition 2. Given a finite set X = {X1, X2, . . . , Xn} formed with n (infinite) words229

emitted by the source, the tree Trie(X ) built on the set X is defined recursively by230

the following rules.231

(i) If |X | = 0, Trie(X ) = ∅.232

(ii) If |X | = 1, X = {X}, Trie(X ) is a leaf labelled by X.233

(iii) If |X | � 2, then Trie(X ) is formed with an internal node and n subtries respectively234

equal to235

Trie(X[m1]), . . . ,Trie(X[mr]),

where X[m] denotes the subset which gathers the words of X that begin with the236

symbol m, stripped of their initial symbol m. If the set X[m] is non-empty, the edge237

which links the subtrie Trie(X[m]) to the internal node is labelled with the symbol m.238

For a sequence X := {X1, X2, . . . , Xn} with n � 2, the trie Trie(X ) has exactly n branches,239

and the length of a branch is the number of (internal) nodes it contains. For i ∈ [1..n],240

the length of the ith branch of the trie (corresponding to the word Xi) is denoted by D(i)
n .241

In this paper, the parameter of interest is the depth Dn of a random branch. If P is the242
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X1 = aaabc . . .

X2 = abcab . . .

X3 = abcbc . . .

X4 = abccb . . .

X5 = bcaab . . .

X6 = bcabb . . .

X7 = cacba . . .

X8 = cbbbc . . .

X9 = cccab . . .

Figure 2. The trie T (X ) associated with a set X of nine (infinite) words on the alphabet Σ := {a, b, c}.

probability associated with the source by Definition 1, the depth Dn satisfies243

P[Dn � k + 1] =
1

n

n∑
i=1

P[D(i)
n � k + 1]. (2.2)

In the following, the parameter Dn will simply be called the depth of the trie. This is a244

random variable that depends on the set X of words, and we study its distribution when245

the source is fixed, when the set X is formed with words that are independently drawn246

from the source, and the cardinality n of X tends to ∞.247

2.3. Probability generating function of the trie depth248

Let D be a random variable over a probability space (Ω,P), with positive integer values.249

Its probability generating function is defined by250

G(v) := E[vD] =
∑
k�0

vk P[D = k],

and its moment generating function M(u) := E[exp(uD)] is exactly equal to G(eu).251

This paper deals with the sequence of random variables Dn defined in (2.2). We first252

provide an expression for the probability generating function Gn of the variable Dn.253

Proposition 2.1. Consider a probabilistic source, and let P denote the probability associated254

with the source. Consider a set of n infinite words independently emitted by the source. Then255

the depth Dn of the trie built on this set satisfies the following.256

(i) The distribution of Dn involves the fundamental probabilities of the source, in the form257

P[Dn � k + 1] =
∑
|w|=k

pw[1 − (1 − pw)n−1], for k � 0.
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(ii) The probability generating function Gn(v) of Dn is expressed via the function Λ(s, v)258

defined in (1.2), i.e.,259

n

[
Gn(v) − 1

v − 1

]
=

n∑
�=2

(−1)�
(
n

�

)
�Λ(�, v). (2.3)

(iii) The mean value of Dn is expressed via the function Λ(s) defined in (1.2), i.e.,260

E[Dn] =
1

n

n∑
�=2

(−1)�
(
n

�

)
�Λ(�). (2.4)

261

Proof. (i) Let D(i)
n be the length of the branch whose leaf contains the designated word262

Xi. The event [D(i)
n � k + 1] means that the word Xi shares its prefix of length k with263

at least another word Xj . Thus, the independence of the words of a set X implies the264

equality265

P[D(i)
n � k + 1] =

∑
w∈Σk

pw[1 − (1 − pw)n−1],

and now the definition of the typical depth, with relation (2.2), implies assertion (i):266

P[Dn � k + 1] =
1

n

n∑
i=1

P[D(i)
n � k + 1] =

∑
w∈Σk

pw[1 − (1 − pw)n−1].

267

(ii) Next, a straight binomial expansion provides an expression for P[Dn � k + 1] that268

reduces to a linear combination of the series Λk(�) defined in (1.2) in the form269

P[Dn � k + 1] =

n−1∑
�=1

(−1)�+1

(
n − 1

�

) ∑
|w|=k

p�+1
w =

1

n

n∑
�=2

(−1)�
(
n

�

)
�Λk(�).

The probability generating function is given by270

Gn(v) :=

∞∑
k=0

P[Dn = k] vk = 1 + (v − 1)

∞∑
k=0

P[Dn � k + 1] vk,

and, with the definition of function Λ(s, v) in (1.2), the following equality holds:271

n

[
Gn(v) − 1

v − 1

]
=

∞∑
k=0

n∑
�=2

(−1)�
(
n

�

)
Λk(�)v

k =

n∑
�=2

(−1)�
(
n

�

)
�Λ(�, v).

272

(iii) This is clear, since E[Dn] equals the derivative of v �→ Gn(v) at v = 1.273

2.4. Rice’s method274

An important tool that deals with binomial sums of the form (2.3) is Rice’s formula275

[31, 32]. As recalled in the following proposition, it transforms a binomial sum into an276

integral in the complex plane, and has been widely used in analytic combinatorics since277

the seminal paper of Flajolet and Sedgewick [15].278
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Proposition 2.2 (Rice’s integral). Consider a sequence S(n) defined as a binomial sum of279

the sequence T (�), namely280

S(n) =

n∑
�=2

(−1)�
(
n

�

)
T (�).

(i) Assume that there is a lifting 	(s) of the sequence k �→ T (k) which is analytic in the281

half-plane �(s) > C , with 1 < C < 2, and is of polynomial growth there (i.e., 	(s) is282

O(|s|r) when s → ∞). Then, for any real d with C < d < 2, the sequence S(n) admits an283

integral representation:284

S(n) = − 1

2iπ

∫ d+i∞

d−i∞
	(s)Ln(s) ds with Ln(s) =

(−1)n n!

s(s − 1)(s − 2) · · · (s − n)
. (2.5)

(ii) Assume now that the lifting 	(s) of the sequence T (k) is meromorphic in a region R285

that contains the half-plane �s � 1 and is of polynomial growth there (for |	s| → ∞).286

Then287

S(n) = −
[∑

k

Res[	(s)Ln(s); sk] +
1

2iπ

∫
C
	(s)Ln(s) ds

]
, (2.6)

where C is a curve (oriented from the south to the north) of class C1 included in R and288

the sum is extended to all poles sk of Ln(s) inside the domain D delimited by the vertical289

line �s = d and the curve C.290

The dominant singularities of 	(s)Ln(s) provide the asymptotic behaviour of S(n),291

and the remainder integral is estimated using the polynomial growth of 	(s)Ln(s) when292

|	(s)| → ∞.293

We wish to apply Rice’s method to the present case described by (2.3) and its particular294

case (2.4). This introduces the function 	v(s) related to the Dirichlet generating function295

Λ, via the equality 	v(s) = sΛ(s, v), and we thus need ‘good behaviour’ of the function296

s �→ Λ(s, v), first in the half-plane �s > 1, then near the point (s, v) = (1, 1), and finally on297

the left of the vertical line �s = 1.298

2.5. Strongly tame sources299

Here we describe a situation where the bivariate Dirichlet series Λ(s, v) has nice behaviour300

(in fact the best possible behaviour, as we will see later on). The following definition is301

not well justified here, and we explain later on, in Section 3.7, why this notion of strong302

tameness appears in a natural way.303

Definition 3 (strongly tame source). A source is strongly tame if there exist a complex304

neighbourhood V of v = 1, two functions (called the entropic functions) v �→ σ(v) and305

v �→ r(v) defined on V , and a half-plane R := {s; �s > 1 − γ}, such that the following306

hold.307

(a) For any v ∈ V , the unique singularity of s �→ Λ(s, v) in R is the (simple) pole located308

at 1 + σ(v), with residue r(v).309

usuario
Texto insertado
, determined by the with $\gamma>0$, 



Gaussian Distribution of Trie Depth for Strongly Tame Sources 11

(b) The functions σ and r satisfy310

σ(1) = 0, r(1) = σ′(1) = 1/h(S), and σ′′(1) + σ′(1) �= 0.

(c) The function (s, v) �→ Λ(s, v) is of polynomial growth in R × V: there exist ν > 0 and311

C,D > 0 such that, for any s = σ + it ∈ R with |t| � C , and any v ∈ V , we have312

|Λ(s, v)| � D|t|ν .

A source that satisfies σ′′(1) + σ′(1) �= 0 is said to be log-convex.313

2.6. The probability generating function Gn(v) for a strongly tame source314

We will now focus on strongly tame sources, and the following result provides in this case315

a simple expression for the moment generating function of the trie depth.316

Proposition 2.3. If the source S is strongly tame, with neighbourhood V , entropic functions317

σ(v), r(v), and width γ, then, for any δ ∈]0, γ[, there exists a complex neighbourhood W ⊂ V318

such that, for any v ∈ W , we have319

Gn(v) = (1 − v) r(v) Γ(−σ(v)) nσ(v) [1 + O(n−δ)], (2.7)

where the constant hidden in the O-term is uniform in W .320

Proof. If the source is strongly tame, then s �→ Λ(s, v) is of polynomial growth in the321

half-plane �s > 1 − γ. Then the line of integration �(s) = d can be moved to the left in322

(2.5), until we reach a vertical line ρ of equation �s = α, with α > 1 − γ, with residues323

s = 1 + σ(v) and s = 1 taken into account. Then324

n[Gn(v) − 1] = − Res[(v − 1)sΛ(s, v)Ln(s); s = 1 + σ(v)]

− Res[(v − 1)sΛ(s, v)Ln(s); s = 1] (2.8)

− 1

2iπ

∫
ρ

(v − 1)sΛ(s, v)Ln(s) ds.

The second residue in (2.8) at s = 1 is equal to −n, and we obtain325

Gn(v) = Res

[
(1 − v)Λ(s, v)

sLn(s)

n
; s = 1 + σ(v)

]
+

1

n

1

2iπ

∫
ρ

(1 − v)sΛ(s, v) Ln(s) ds. (2.9)

The remainder of the proof provides estimates for each term in (2.9). It is based on the326

following proposition, whose proof (given in the Appendix) is mainly due to Flajolet and327

Sedgewick [16]. In the present proof we only use the first two assertions (i) and (ii), but328

assertion (iii) will be used in the case of H-tameness (see Section 3.6).329

Proposition 2.4.330

(i) For any fixed s with s �∈ Z�0, we have331

Ln(s) :=
n!(−1)n

s(s − 1) · · · (s − n)
= −nsΓ(−s)

[
1 + O

(
1

n

)]
.
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The O-term is uniform for s in a bounded set.332

(ii) Consider a vertical line �(s) = α with α �∈ Z�0, and assume that 	(s) is continuous on333

�(s) = α and of at most polynomial growth there, i.e., 	(s) = O(|s|r) as |s| → ∞ on334

�(s) = α. Then, the integral admits the following estimate, as n → ∞:335 ∫
�s=α

	(s)Ln(s) ds = O(nα).

(iii) Consider a curve ρ of hyperbolic type, namely of the form336

ρ :=

{
s = σ + it, |t| � B, σ = σ0 − A

|t|β0

}
∪

{
s = σ + it, σ = σ0 − A

Bβ0
, |t| � B}

}
,

for some strictly positive constants (A,B, β0), and assume that 	(s) is continuous on ρ337

and of at most polynomial growth there, i.e., 	(s) = O(|s|r) as |s| → ∞. Then the integral338

of 	(s)Ln(s) on the curve ρ admits the following estimate, as n → ∞:339 ∫
ρ

	(s)Ln(s)ds = nσ0 · O(exp[−(log n)β]), with β <
1

1 + β0
.

340

We now apply Proposition 2.4 to the present situation, where it provides estimates341

for each term in (2.9). For the first term in (2.9), we apply assertion (i) at s = 1 + σ(v),342

together with the equality (1/n) sLn(s) = −Ln−1(s − 1),343

1 + σ(v)

n
Ln(1 + σ(v)) = nσ(v)Γ(−σ(v))

[
1 + O

(
1

n

)]
,

and the residue in (2.9) relative to the simple pole at 1 + σ(v) is344

Res

[
(1 − v)Λ(s, v)

sLn(s)

n
; 1 + σ(v)

]
= (1 − v)r(v)nσ(v)Γ(−σ(v))

[
1 + O

(
1

n

)]
,

where r(v) is the residue of Λ(s, v) at 1 + σ(v). At v = 1, the function σ satisfies σ(1) = 0,345

with σ′(1) �= 0. Since the Γ function has a simple pole at s = 0 with residue equal to 1,346

this implies that (1 − v)Γ(−σ(v)) equals 1/σ′(1) at v = 1 and is also analytic there. With347

properties of entropic functions σ(v), r(v), the expression (1 − v)r(v)Γ(−σ(v)) tends to 1348

for v → 1, and the first term in (2.9) is Θ(nσ(v)).349

For the second term in (2.9), assertion (ii) applied to 	v(s) := sΛ(s, v) implies that the350

integral in (2.9) along the vertical line �s = α is of order nα; with the division by n, the351

second term in (2.9) is of order nα−1 = O(n�σ(v)−δ), when v is close enough to 1, and δ < γ352

small enough. This completes the proof of Proposition 2.3.353

2.7. Towards asymptotic Gaussian laws354

Our main tool for proving an asymptotic Gaussian law for the trie depth Dn is the sequence355

of moment generating functions u �→ Mn(u) := En[exp(uDn)], related to the probabilistic356

generating functions Gn(v) via the equality Mn(u) = Gn(e
u). The following result, known357

as the Quasi-Powers Theorem, and due to Hwang [21], provides sufficient conditions on358

Mn(u) under which the asymptotic law of Dn is proved to be Gaussian.359
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Theorem 1 (Hwang). Consider a sequence of variables Dn, defined on probability spaces360

(Ωn,Pn), and their moment generating functions Mn(u) := En[exp(uDn)]. Suppose the func-361

tions Mn(u) are analytic in a complex neighbourhood U of zero, and satisfy362

Mn(u) = exp[βnU(u) + V (u)]
(
1 + O(κ−1

n )
)
, (2.10)

where the O-term is uniform on U . Moreover, βn → ∞, κn → ∞ as n → ∞, and U(u), V (u)363

are analytic on U .364

Then the mean and the variance satisfy365

En[Dn] = βnU
′(0) + V ′(0) + O(κ−1

n ), Vn[Dn] = βnU
′′(0) + V ′′(0) + O(κ−1

n ).

Furthermore, if U ′′(0) �= 0, then the distribution of Dn on Ωn is asymptotically Gaussian,366

with speed of convergence O(κ−1
n + β

−1/2
n ).367

2.8. Statement of the main result368

The Quasi-Powers Theorem is now applied to the present object of our study, and provides369

the first main result of the paper.370

Theorem 2.5. Consider a strongly tame source, defined in Definition 3 with entropic func-371

tions (σ(v), r(v)) and width γ, and a random trie with n keys built on the source. Then, the372

mean and the variance of the trie depth Dn admit the following estimates, for any δ ∈]0, γ[:373

E[Dn] = σ′(1) log n + c + O(n−δ),

V[Dn] = [σ′′(1) + σ′(1)] log n + d + O(n−δ).

The constants c and d are expressed with derivatives of functions σ and r at v = 1. Moreover,374

the constant σ′′(1) + σ′(1) is not zero, and the depth Dn asymptotically follows a Gaussian375

law with speed of convergence O((log n)−1/2).376

Proof. The moment generating functions Mn(u) are expressed as in the Quasi-Powers377

Theorem, with βn := log n, κn := nβ , and378

Mn(u) := En[exp(uDn)] = Gn(e
u) = exp(U(u) log n + V (u))

(
1 + O(κ−1

n )
)

with U(u) := σ(eu), V (u) := log[r(eu)(1 − eu)Γ(−σ(eu))],

Since, in a neighbourhood of v = 1, the function v �→ σ(v) is analytic and v �→ r(v)379

is analytic and bounded away from zero, the functions U and V are analytic in a380

neighbourhood of u = 0. In particular, notice that (1 − eu)Γ(−σ(eu)) is analytic, even at381

u = 0. Moreover, the first two derivatives of U at u = 0 satisfy382

U ′(0) = σ′(1), U ′′(0) = σ′′(1) + σ′(1),

and U ′′(0) is strictly positive.383

The rest of the paper is devoted to exhibiting a natural class of strongly tame sources384

to which Theorem 2.5 can be applied. This will be done in Sections 4, 5 and 6. But we385

first return to simple sources, for which we may also apply Rice’s methodology to the trie386
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depth study, provided that they fulfil tameness properties. The tameness of simple sources387

has not been deeply studied, and this explains why the remainder terms in the asymptotic388

estimates of the mean and variance of trie depth are not precisely given2 in the literature.389

3. Tameness of simple sources390

This section has two aims. It studies the simple sources (memoryless sources and Markov391

chains), and it also introduces and explains the notion of tameness for a general source. We392

first recall the definition of simple sources (Section 3.1). Then, in Section 3.2, we provide an393

expression of their Dirichlet generating functions, and describe their analytic properties,394

first on the half-plane �s > 1 in Lemma 3.2. In Section 3.3 we consider the situation on395

the vertical line �s = 1 and exhibit the periodicity phenomenon in Lemma 3.3, related396

to arithmetic properties of probabilities. Then, to deal with Rice’s methodology, we need397

precise knowledge of Λ(s) on the half-plane �s < 1, as explained in Section 2.4,398

This justifies the general notion of tameness, which describes the behaviour of Λ(s)399

for a general source. In Section 3.4 we introduce three shapes of tameness (S,H, P ) that400

seem a priori plausible. We then return to simple sources in Section 3.5, and describe401

their tameness properties. We observe in Lemma 3.4 that there are only two shapes of402

tameness (P ,H) that are possible for a simple source, and in Section 3.6 we derive a403

precise expression for the mean and variance of the trie depth in the case when the simple404

source is P -tame or H-tame.405

Finally, in Section 3.7, we focus on sources that are S-tame, and we explain why406

a natural perturbation of S-tameness may give rise to strong tameness, introduced in407

Section 2.5.408

3.1. Simple sources409

The memoryless source (where the random variables Yi are independent with the same410

distribution) and the Markov chain (of order 1) (where the emitted symbol can only411

be correlated with the previous symbol) are the simplest models of sources, where the412

correlations between symbols may exist but are ‘the weakest possible’.413

Definition 4 (simple sources).414

(a) Memoryless source. A source S is memoryless if the variables Yk are independent with415

the same distribution. Such a source is defined by the set pi of probabilities, where pi416

is the probability of emitting the symbol i ∈ Σ at any time k, namely pi := P[Yk = i].417

In the case when all the probabilities pi are equal, the source is called unbiased.418

(b) Markov chain. A source on the finite alphabet Σ is a Markov chain of order 1 if, at419

each time k, and for each pair (i, j) of symbols, the conditional probability of emitting420

i, knowing that the previously emitted symbol is j, does not depend on k, that is,421

for all k ∈ N, P[Yk+1 = i|Yk = j] =: pi|j .

2 and sometimes not even correct . . .
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A Markov chain is defined by its transition matrix P := (pi|j) and its initial distribution422

V = (vi).423

(c) Good Markov chain. A Markov chain is good3 if its matrix P is irreducible and424

aperiodic. The matrix P is irreducible if, for all (i, j), there exists an integer n for425

which the coefficient (i, j) of the matrix Pn is strictly positive. The matrix P is426

aperiodic if427

d := gcd(di) = 1 with di := gcd{n; Pn
i,i > 0}.

(d) Simple source. A source is simple if it is a memoryless source on a finite alphabet or428

a good Markov chain.429

3.2. Dirichlet series of simple sources430

For simple sources, the fundamental probabilities pw satisfy a multiplicative property. For431

w = i1i2 · · · ik ∈ Σk , two equalities hold:432

pw = pi1pi2 · · · pik (memoryless) or pw = vi1pi2|i1 · · · pik |ik−1
(Markov).

This leads to exact expressions of the Dirichlet series as quasi-inverses.433

Lemma 3.1 (expression of the Λ series). The Λ Dirichlet series of simple sources admit434

quasi-inverse expressions of the following types.435

(a) For a memoryless source, these are in terms of436

λ(s) :=
∑
i∈Σ

psi as Λ(s) =
1

1 − λ(s)
, Λ(s, v) =

1

1 − vλ(s)
. (3.1)

(b) For a Markov chain, they are given in terms of the matrix Ps whose general coefficient437

is psi|j , via438

Λ(s) = 1 + t1 · (I − Ps)
−1 · Vs, Λ(s, v) = 1 + t1 · (I − vPs)

−1 · Vs. (3.2)

Here the vector Vs has components vsi , where vi is the initial distribution of the symbol i.439

We now focus on the study of the plain generating function Λ(s) and we return to the440

bivariate generating function Λ(s, v) below in Section 3.7.441

Lemma 3.2 (properties of the Dirichlet series on �s > 1 and at s = 1).442

(a) The Dirichlet series Λ(s) of a simple source is meromorphic on the complex plane and443

analytic on the half-plane �s > 1, and has a simple pole at s = 1. Moreover, the set Z444

of poles is defined by445

Z = {s; λ(s) = 1} (memoryless) or Z = {s; det(I − Ps) = 0} (Markov). (3.3)

3 We use this terminology because the usual notion of aperiodicity might be confused with non-periodicity,

which appears in Section 3.3.
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(b) Consider λ(s) defined as in (3.1) for a memoryless source, or defined (for real s) as the446

dominant eigenvalue of Ps for a good Markov chain. Then two equalities hold,447

Res[Λ(s); s = 1] = − 1

λ′(1)
, h(S) = −λ′(1), (3.4)

and the entropy admits the following expressions:448

h(S) = −
∑
i∈Σ

pi log pi (memoryless) or h(S) = −
∑

(i,j)∈Σ2

π(j) pi|j log pi|j (Markov),

(3.5)

where π(j) are the components of the vector Π fixed by P, whose sum equals 1.449

Proof. (a) For a memoryless source, the function s �→ λ(s) defined in (3.1) is analytic on450

the complex plane, and thus the function s �→ Λ(s) is meromorphic with a set of poles451

Z defined in (3.3). Let σ := �s, and assume σ > 1. Then, the inequality |λ(s)| � λ(σ) <452

λ(1) = 1 entails that the set Z is contained in the half-plane �s � 1.453

For a good Markov chain, we use the Perron–Frobenius theorem, which states the454

following: A good matrix T with positive coefficients has a unique dominant eigenvalue455

λ, and a unique dominant eigenvector Π with positive components πi whose sum equals 1.456

We apply this theorem to the matrix Ps for any real s. Then the matrix Ps has a unique457

dominant eigenvalue λ(s) and a unique dominant eigenvector Πs with positive components458

π(j)
s whose sum equals 1. Since the matrix P is stochastic, the dominant value λ(s) satisfies459

λ(1) = 1, and the matrix P = P1 has a unique (normalized) fixed vector Π := Π1 with460

positive components π(j), whose sum equals 1.461

Moreover, the matrix Ps decomposes as a sum Ps = λ(s)Qs + Ns, where Qs is the462

projection on the dominant eigenspace, and Ns is the remainder matrix, whose spectral463

radius ρ(s) satisfies ρ(s) := max{|λ|; λ ∈ SpPs} < |λ(s)|. These matrices satisfy Qs · Ns =464

Ns · Qs = 0, so that the previous decomposition extends to any k � 1, namely465

Pk
s = λk(s)Qs + Nk

s , and thus (I − vPs)
−1 =

vλ(s)

1 − vλ(s)
Qs + (I − vNs)

−1. (3.6)

This first proves that Λ(s) has a simple pole at s = 1, and also the asymptotic estimate466

Λk(s) = λk−1(s)[t1 · Qs · Vs] +t1 · Nk
s · Vs = λk(s)ws[1 + o(ρk)] (3.7)

for some non-zero constant ws that satisfies w1 = 1, and some ρ < 1.467

The function s �→ Ps is analytic on the complex plane, and thus the function s �→ Λ(s)468

is meromorphic with a set of poles Z defined in (3.3). Let σ := �s. Then, the inequality469

‖Pk
s (s)‖ � ‖Pk

σ‖ holds and implies the inequality on the spectral radii r(s) � r(σ). In the470

case of a good Markov chain, the spectral radius r(σ) equals the dominant eigenvalue471

λ(σ). We now assume the strict inequality σ > 1, and wish to prove the strict inequality472

λ(σ) < λ(1) = 1. As the inequality λ(σ) � λ(1) holds, we assume that the equality λ(σ) =473

λ(1) holds, and we look for a contradiction. The equalities474 ∑
j

pσi|jπ
(j)
σ = λ(σ)π(i)

σ , λ(1) = 1 =
∑
i

pi|j =
∑
j

π(j)
σ
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imply the other two equalities,475

λ(σ) =
∑
i,j

pσi|jπ
(j)
σ =

∑
j

π(j)
σ

∑
i

pσi|j , 0 = λ(1) − λ(σ) =
∑
j

π(j)
σ

[∑
i

(pi|j − pσi|j)

]
.

This implies that for any i ∈ Σ there is a unique j = τ(i) ∈ Σ for which the probability476

pi|j = 1. When the Markov chain is good, there does not exist such a map τ : Σ → Σ.477

(b) In both cases, we first prove the equality h(S) = −λ′(1). This is obtained by taking the478

derivative of the estimate given in (3.7) with respect to k, namely479

1

k

d

ds
Λk(s) ∼k→∞ λ′(s)λk−1(s)ws and then

1

k

d

ds
Λk(s)|s=1 ∼k→∞ λ′(1).

We now obtain an alternative expression for the derivative λ′(1). This is clear in the480

memoryless case, and, for a good Markov chain, taking the derivative (with respect to s)481

of the equality Ps · Πs = λ(s) Πs leads at s = 1 to482

t1 · P′
1 · Π1 + t1 · P1 · Π′

1 = λ′(1) t1 · Π1 + λ(1) t1 · Π′
1.

Moreover, since the matrix P is stochastic, the equality t1 · P1 = t1 holds. This implies the483

expression for the entropy given in (3.5).484

3.3. Properties of Λ(s) on the line �s = 1; periodicity of simple sources485

The following result describes the position of the set Z of poles with respect to the486

vertical line �s = 1 and relates it to the rationality of ratios α, which involve logarithms487

of probabilities, and are defined below.488

Definition 5 (ratios α). The ratios α are defined as follows.489

(a) In the memoryless case, in terms of probabilities pi, the ratios are given by490

α(i, j) :=
log pi
log pj

for any pair (i, j) ∈ Σ2. (3.8)

(b) In the case of a good Markov chain, they are given in terms of probabilities of cycles.491

The probability of a cycle C := {i1i2, . . . , ik), is p(C) := pi2|i1 · · · pik |ik−1
pi1|ik , and492

α(C,K) :=
log p(C)

log p(K)
for each pair (C,K) of cycles of length at most r. (3.9)

Clearly the ratios of the Markov chain case extend the ratios of the memoryless case.493

Lemma 3.3 (periodicity of simple sources). For a memoryless source of probabilities P,494

the following conditions are equivalent.495

(a) The intersection Z ∩ {�s = 1} contains a point s �= 1.496

(b) All the ratios α(i, j) defined in (3.8) are rational numbers.497

(c) There exists τ > 0 for which the equality Z ∩ {�s = 1} = 1 + 2iπτZ holds.498

(d) The function λ(s) is periodic of period 2iπτ.499

usuario
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A memoryless source which satisfies one of these conditions is said to be periodic. For a500

Markov chain with transition matrix P, the following conditions are equivalent.501

(a) The intersection Z ∩ {�s = 1} contains a point s �= 1.502

(b) All the ratios α(C,K) defined in (3.9) are rational numbers.503

(c) There exists τ > 0 for which the equality Z ∩ {�s = 1} = 1 + 2iπτZ holds.504

(d) The matrix Ps is periodic of period 2iπτ.505

A Markov chain which satisfies one of these conditions is said to be periodic.506

This result is well known in the memoryless case, and less classical for Markov chains,507

where Jacquet, Szpankowski and Tang [25] provide such a characterization.508

3.4. General definitions for tameness509

The two previous sections describe, for simple sources, the position of the set Z of poles of510

Λ(s) in the half-plane {�s � 1}. We now focus on the left half-plane {�s < 1}, and isolate511

a region R ⊃ {�s � 1} where the Λ function is analytic. In fact, we have to reinforce our512

needs for the region R: to apply Rice’s methodology, it is also essential for Λ(s) to be of513

polynomial growth when s ∈ R tends to ∞. Such a region will play a central role in the514

subsequent analyses. We are then led to the following definition, which is proposed for515

any source. We return to simple sources in the next section.516

Definition 6 (tameness region). A tameness region for a general source S is a region517

R ⊃ {�s � 1} where the Λ series is meromorphic, with a only pole (simple) located at518

s = 1, and is of polynomial growth when |	s| → ∞.519

We now introduce three shapes for tameness regions, that seem to be a priori plausible.520

Definition 7 (shape of regions). A region R ⊃ {�s � 1} has:521

(a) an S-shape (short for strip shape) if R is a vertical strip �(s) > 1 − γ for some γ > 0,522

(b) an H-shape (hyperbolic shape) if R is a hyperbolic region R, defined by523

R :=

{
s = σ + it; |t| � B, σ > 1 − A

|t|β

} ⋃{
s = σ + it; σ > 1 − A

Bβ
, |t| � B

}
,

for some A,B, β > 0,524

(c) a P -shape (periodic shape) if R is a vertical strip ‘with holes’, namely525

R := R0 \ R1, R0 := {�s > 1 − γ}, R1 := {s = 1 + it; t = 2iπkτ, k ∈ Z \ {0}}

for some γ, τ > 0.526

When they exist, γ is the width, β is the hyperbolic exponent, and τ is the period.527

Definition 8 (shape of tameness). For X ∈ {P ,H, S}, a general source is X-tame if its528

series Λ(s) satisfies the following.529

(a) At s = 1 it admits a simple pole, with residue equal to 1/h(S) (where h(S) is the530

entropy of the source).531
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(b) It admits a tameness region with an X-shape as described in Definition 7.532

A vertical strip can be viewed as a region with a zero hyperbolic exponent. We are533

interested in tameness regions which are the largest possible. Then it is natural to define534

the hyperbolic exponent of the source S as the infimum of all the hyperbolic exponents of535

tameness regions of the source S . For instance, if the source admits a vertical strip as536

tameness region, then the hyperbolic exponent of the source equals 0. There also exist537

some sources for which the singularities of the Λ function come close to the vertical line538

�s = 1 very rapidly, with exponential speed. Such sources have a hyperbolic exponent539

equal to ∞, and they are not H-tame.540

3.5. Tameness of simple sources541

We now return to simple sources and examine the possible types of tameness. Even for542

simple sources, the position of the set of poles Z with respect to the vertical lines is still543

under investigation. The paper by Fayolle, Flajolet and Hofri [12] seems to have been the Q4544

first to conduct (in the memoryless case) a detailed discussion of the position of poles.545

In the memoryless case, Schachinger provides a rigorous and thorough discussion of this546

geometry of poles [36]. Finally, the paper [14] adapts deep results described in the book547

by Lapidus and van Frankenhuijsen [28] and precisely relates the shape of the pole-free548

region to arithmetic properties of probabilities. It proves that ‘most’ aperiodic memoryless549

sources are H-tame,550

The first result examines the possibilities for a P -shape or an S-shape.551

Proposition 3.4.552

(a) A simple source which is periodic is P -tame.553

(b) A non-aperiodic simple source is never S-tame.554

555

Proof. (a) In the case of a periodic simple source, the function s �→ λ(s) is periodic of556

period iτ. Then there is a vertical strip on the left of the vertical line �s = 1 where the Λ557

function is analytic and of polynomial growth. There exists in this case a tameness region558

of the source which is a ‘vertical strip with holes’.559

(b) (Sketch.) We now focus on non-periodic simple sources. In this case, the intersection560

Z ∩ {s; �s = 1} only contains the point s = 1, and we now recall why there exist points561

of Z which are arbitrarily close to the vertical line �s = 1. This will entail that an562

aperiodic simple source is never S-tame. In the aperiodic case, there is, indeed, amongst563

the coefficients of the matrix α, at least one coefficient α(i, j) which is irrational, and564

it is then possible to define an approximation function f : R → R which describes the565

approximability properties of the matrix α by rational numbers. There is a close relation566

between the approximation function f and the shape of a region which contains no567

element of Z . The distance between the frontier of this region and the vertical line �s = 1568

can be described with the approximation function f, and it always tends to zero for569

|	s| → ∞. Then the source cannot be S-tame.570
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Informally speaking, the source may be H-tame if the poles of Z come close to the571

vertical line �s = 1, but not too fast, namely at polynomial speed with respect to |	s|.572

We now describe arithmetical conditions which are sufficient to imply H-tameness. They573

deal with classical number-theoretic notions, which are now recalled.574

Definition 9 (irrationality exponent and Diophantine number).575

(a) For an irrational number x, the irrationality exponent is576

μ(x) := sup

{
ν,

∣∣∣∣x − p

q

∣∣∣∣ � 1

q2+ν
for an infinite number of integer pairs (p, q)

}
.

(b) An irrational number x is Diophantine if its irrationality exponent is finite.577

The irrationality exponent of the irrational x is then a measure of its approximability578

by rational numbers. Then, a Diophantine irrational number is not too well approximable579

by rational numbers: it can be viewed (informally) as an irrational number which strongly580

differs from a rational number. The approximability of an irrational number x is closely581

related to its continued fraction expansion, since truncations of this expansion give rise582

to the rational numbers that provide the best rational approximations of the irrational x.583

Instances of Diophantine numbers are irrational numbers whose quotients occurring in584

the continued fraction expansion of x are bounded.585

It is possible to define the irrationality exponent of a finite family of numbers, provided586

that they are not all rational. The irrationality μ(S) of a non-periodic simple source S is587

then defined as the irrationality exponent of the set {α(C,K); C,K cycles of length � r}.588

The source is Diophantine if the irrationality exponent μ(S) is finite.589

The following result, due to Roux and Vallée [34, 33] and based on the general590

framework described in the book [28], relates the irrationality exponent μ(S) of the591

source and its hyperbolic exponent β defined in Section 3.4.592

Theorem 2 (Diophantine source and H-tameness). For a simple non-periodic source, the593

two exponents – the irrationality exponent μ and the hyperbolic exponent β – are related by594

the equality β = 2μ + 2. A Diophantine non-periodic source is H-tame.595

For a memoryless source over an alphabet of size r, the irrationality exponent satisfies596

almost everywhere the inequality μ(P) + 1 = 1/(r − 1). Here, ‘almost everywhere’ means597

that the probability family P is randomly chosen in the subset598

{(p1, p2, . . . , pr) : pj > 0, p1 + p2 + · · · + pr = 1}

with respect to the Lebesgue measure. With the previous theorem, this implies that the599

hyperbolic exponent of a non-periodic memoryless source over an alphabet of size r is600

‘almost everywhere’ equal to 2/(r − 1). The hyperbolic exponent of a binary source is601

‘almost everywhere’ equal to 2.602
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3.6. Analysis of trie depth for simple sources603

We now make a ‘detour’ and provide estimates for the mean and the variance of the trie604

depth for simple sources. We begin with the expression of the mean4 given in (2.4) and605

use Rice’s method, namely Propositions 2.2 and 2.4 (notably assertion (iii)). We obtain606

precise remainder terms that depend on the type of tameness of the source.607

Theorem 3.5 (classical results revisited). Consider, for a simple source, λ(s) defined as in608

(3.1) for a memoryless source, or defined (for real s) as the dominant eigenvalue of Ps for609

a good Markov chain. For the depth of the trie built on a random sequence of n words610

independently drawn from the source, the following holds.611

(a) The mean and the variance satisfy612

E[Dn] = − 1

λ′(1)
log n + c + R1(n),

V[Dn] =
λ′2(1) − λ′′(1)

λ′3(1)
log n + d + R2(n).

The constants c, d also depend on the source. The only case for which the dominant613

constant of the variance is zero arises for an unbiased memoryless source.614

(b) The type of function Ri(n) depends on the tameness of the source.615

(b1) If the source is P -tame with width γ and period τ, then Ri(n) = Πi(n) + O(n−δ),616

where δ satisfies δ < γ and Πi(n) is a periodic function of log n, with period 1/τ.617

(b2) If the source is H-tame with hyperbolic exponent β0, then618

Ri(n) = O
(
exp[−(log n)β]

)
, with β < 1/(1 + β0).

With Proposition 3.4 and Theorem B, the previous result applies to almost all simple619

sources, namely all the periodic sources and all the Diophantine sources. However, it does620

not apply to any simple source. Indeed, there exist simple sources which are not tame, as621

their irrationality exponent is infinite. As explained in [14], the function f described in the622

proof of Proposition 3.4 may not be of polynomial order, and it is possible to construct623

simple sources for which the upper bound for remainder terms Ri(n) tends to 0 arbitrarily624

slowly.625

3.7. Towards strong tameness626

We now return to the main purpose of the paper, which deals with distributional studies627

where the bivariate generating function Λ(s, v) plays a central role, and we need tameness628

properties for Λ(s, v). Informally, they may be obtained by perturbation5 of those of Λ(s),629

provided there is ‘enough’ space to perturb. This is why S-tameness is certainly easier630

to perturb than H-tameness, where the distance between the frontier of the hyperbolic631

region and the vertical line tends to zero when |	s| becomes large.632

4 There is a similar expression for the variance involving the function Λ̃(s) := (d/dv)Λ(s, v)|v=1 (see, e.g., [20, 19]).
5 In the sense of perturbation theory (see [26]).
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In Section 7 we shall return to possible perturbations of H-tameness, but in the present633

paper we focus on a possible perturbation of S-tameness which naturally leads to strong634

tameness, as defined in Definition 3. This involves a vertical strip which is obtained635

as a perturbation of the vertical strip of Λ(s). Moreover, the unique pole of Λ(s, v) is636

also obtained as a perturbation of the unique pole of Λ(s), and we postulate that the637

series Λ(s, v) of any ‘nice’ source behaves like that of a simple source near the point638

(s, v) = (1, 1). Indeed, for simple sources, and with the expression of Λ(s, v) described in639

Lemma 3.1, together with the decomposition (3.6) for good Markov chains, the dominant640

term of Λ(s, v) near (1, 1) is closely related to 1/(1 − vλ(s)), which defines entropic functions641

(σ(v), r(v) as in Definition 3.642

All this explains why the notion of strong tameness is a natural perturbation of S-643

tameness. The following section exhibits a class of sources which will be proved to be644

strongly tame.645

4. Dynamical sources646

We first describe in Section 4.1 the general framework of dynamical sources, and then647

focus on dynamical sources which are complete or Markovian. These sources form an648

interesting subclass of the general sources and extend the simple sources in a natural way649

(Section 4.2). In Section 4.3, we present our main tool, the secant transfer operator Hs,650

which is an extension of the plain (usual) transfer operator of the underlying dynamical651

system. The importance of this operator becomes clear in Proposition 4.1, which proves652

that the function Λ(s, v) can be expressed as a function of the quasi-inverse (I − vHs)
−1.653

Then we describe geometric conditions related to the Good Class (Section 4.4) or the654

UNI Condition (Section 4.5). This defines the Good-UNI Class, which gathers sources655

that will be proved to be strongly tame, in the following sections.656

4.1. Dynamical sources657

Definition 10 (dynamical system of the interval). A dynamical system of the interval658

I := [0, 1] is defined by a mapping T : I → I (called the shift) for which the following659

holds.660

(a) There exists a (finite or denumerable) set Σ, whose elements are called symbols, and661

a topological partition of I with disjoint open intervals (Im)m∈Σ, i.e.,662

I =
⋃
m∈Σ

Im.

(b) The restriction of T to each Im is a C2 bijection from Im to T (Im).663

The system is complete when each restriction is surjective, i.e., T (Im) = I664

The system is Markovian when each interval T (Im) is a union of intervals Ij .665

A dynamical system, together with a distribution G on the unit interval I , defines a666

probabilistic source, called a dynamical source, which is now described. The map T is667

used as a shift mapping, and the mapping τ, whose restriction to each Im is equal to668
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m, is used for coding. The words are emitted as follows. With each real x (except for a669

denumerable set), we associate the word W (x) ∈ ΣN:670

W (x) = (m1(x), m2(x), . . . , mn(x), . . .) with mj(x) = τ(Tj−1(x)).

Given a prefix w ∈ Σ�, the set Iw denotes the set of all reals x for which the word W (x)671

begins with the prefix w. The set Iw turns out to be an interval,6 of the form ]aw, bw[, which672

is called the fundamental interval associated with w, and the measure of this interval (with673

respect to distribution G) equals (by definition) the fundamental probability pw:674

pw = G(bw) − G(aw).

In the case of a complete system, we let h[m] denote the local inverse of T restricted675

to Im, extended by continuity to the whole interval I , and we let H denote the set676

H := {h[m], m ∈ Σ} of all the local inverses. Each local inverse of the kth iterate Tk is677

associated with a prefix w of length k, of the form w = m1 · · ·mk ∈ Σk , and is written as678

h[w] := h[m1] ◦ h[m2] · · · ◦ h[mk].

Then the set of all the inverse branches of Tk is679

Hk = {h = h[m1] ◦ h[m2] · · · ◦ h[mk];mi ∈ Σ} = {h[w]; w ∈ Σk}.

Each fundamental interval Iw is then simply equal to Iw = h[w](
◦
I), and the fundamental680

probability satisfies681

pw = |G(h[w](1)) − G(h[w](0))|. (4.1)

For h ∈ Hk , the number k is called the depth of h, and is denoted by |h|. We let682

H� :=
⋃

k�0 Hk denote the set of all the inverse branches of any depth.683

4.2. Simple sources seen as dynamical sources684

Simple sources are related to the case when the branches of the system are affine, and the685

initial distributions are uniform. More precisely:686

(a) a complete dynamical source, with affine branches and a uniform initial distribution,687

defines a memoryless source,688

(b) a Markovian dynamical source, with affine branches and a family of uniform initial689

distributions on each Im, defines a Markov chain.690

As soon as the derivatives h′ of the branches are not constant, there exist correlations691

between successive symbols, and the dynamical source is no longer simple. A primary692

example is the dynamical source relative to the Gauss map, which underlies Euclid’s693

algorithm and is defined on the unit interval via the shift T :694

T (0) = 0, T (x) =
1

x
−

⌊
1

x

⌋
(x �= 0). (4.2)

6 Up to a denumerable set.
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Figure 3. (Colour online) Three different dynamical sources: two with affine branches (one complete, and one

Markovian), and the third one related to Euclid’s algorithm.

4.3. Transfer operators695

One of the main tools in dynamical systems theory is the transfer operator introduced696

by Ruelle [35], denoted by Hs. It generalizes the density transformer H that describes the697

evolution of the density. Here, as in [39], we describe a generalized version of the transfer698

operator – the secant operator – which gives rise to an expression of the Dirichlet series699

Λ(s) defined in (1.2) as a quasi-inverse (see Proposition 4.1), in a way that generalizes700

expressions obtained in (3.1) or in (3.2). We now limit ourselves to a complete dynamical701

system. There are easy extensions to a Markovian system, with heavier computations.702

If f = f0 denotes the initial density on I , and f1 the density on I after one iteration703

of T , then f1 can be written as f1 = H[f0], where the operator H (called the density704

transformer) is defined by705

H[f](x) :=
∑
h∈H

|h′(x)| f ◦ h(x).

The transfer operator Hs extends the density transformer; it depends on a complex706

parameter s, coincides with H when s = 1, and is defined by707

Hs[f](x) =
∑
h∈H

|h′(x)|s · f ◦ h(x). (4.3)

With multiplicative properties of derivatives, the kth iterate of the transfer operator708

involves the set Hk in the form709

Hk
s [f](x) =

∑
h∈Hk

|h′(x)|s · f ◦ h(x).

Here we are interested in the fundamental probabilities, whose expression is provided710

in (4.1) in the case of a complete dynamical system. We now introduce the main tool for711

generating these probabilities, namely the secant transfer operator. This operator involves712

the secant function of inverse branches (instead of their derivatives), and acts on functions713
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F of two variables; for s ∈ C, it is defined by714

Hs[F](x, y) :=
∑
h∈H

∣∣∣∣h(x) − h(y)

x − y

∣∣∣∣s · F(h(x), h(y)). (4.4)

The secant operator is then an extension of the plain transfer operator. On the diagonal715

x = y, the equality716

Hs[F](x, x) = Hs[diagF](x) (4.5)

holds and involves the ‘diagonal’ function diagF defined by diag F(x) := F(x, x). As for717

usual transfer operators, multiplicative properties of secants then give the relation718

Hk
s [F](x, y) =

∑
h∈Hk

∣∣∣∣h(x) − h(y)

x − y

∣∣∣∣sF(h(x), h(y)).

For w ∈ Σk , the probability psw is written as a function of the inverse branch h[w], in the719

form720

psw = |G(h[w](1)) − G(h[w](0))|s =

∣∣∣∣h[w](1) − h[w](0)

1 − 0

∣∣∣∣s ·
∣∣∣∣G(h[w](1)) − G(h[w](0))

h[w](1) − h[w](0)

∣∣∣∣s.
Then, if L is the secant of the distribution G, defined by721

L(x, y) :=
G(x) − G(y)

x − y
, (4.6)

then the series Λk(s) and Λ(s, v) are expressed as follows:7722

Λk(s) :=
∑
w∈Σk

psw = Hk
s [L

s](1, 0), Λ(s) = (1 − vHs)
−1[Ls](1, 0).

Finally, we have proved the following result, which provides an extension of formulae723

already obtained in (3.1) and (3.2) for the case of simple sources.724

Proposition 4.1. The Dirichlet series of a dynamical source, relative to a shift T and a725

distribution G, admit alternative expressions which involve the quasi-inverse of the secant726

operator, defined in (4.4), applied to the function Ls, where L is the secant of the distribution727

G, described in (4.6). We have728

Λk(s) = Hk
s [L

s](0, 1), Λ(s, v) = (I − vHs)
−1[Ls](0, 1).

729

4.4. The Good Class730

We now consider particular complete dynamical systems belonging to the so-called Good731

Class, for which the transfer operator has spectral properties that are similar to those732

of a good Markov chain (see Proposition 5.1). This will entail, with Proposition 4.1, nice733

properties for the function Λ(s, v).734

7 The formula extends to the Markovian case, replacing the operators with a matrix of operators.
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Definition 11 (Good Class). A dynamical system of the interval (I , T ) belongs to the735

Good Class if it is complete, with a set H of inverse branches which satisfies the following.736

(G1) The set H is uniformly contracting, i.e., the constant ρ defined by737

ρ = lim sup
n→∞

(
sup
h∈Hn

βh

)1/n

with βh := max
x∈I

|h′(x)| (4.7)

satisfies ρ < 1 and is called the contraction constant.738

(G2) There is a constant A > 0 such that every inverse branch h ∈ H satisfies |h′′| � A|h′|.739

(G3) There exists σ0 < 1 for which the series
∑

h∈H βs
h converges on �s > σ0.740

There exists a stronger version (G1) of condition (G1), which also seems more natural:741

∃ρ < 1, ∀h ∈ H, ∀x ∈ I , |h′(x)| � ρ.

However, condition (G1) is not satisfied for the Euclidean dynamical system, for instance,742

since there exist x ∈ I and h ∈ H for which |h′(x)| = 1, while condition (G1) holds for this743

system. Condition (G1) implies the following property: for any ρ̂ with ρ < ρ̂ < 1, there744

exists an integer N � 1 for which745

|h′(x)| � ρ̂n, for any n � N, h ∈ Hn, x ∈ I . (4.8)

The bounded distortion property (G2) and the property (G3) are always fulfilled for746

a finite alphabet Σ. Properties (G1) and (G2) together imply the existence of a constant747

K > 0, for which the following inequalities are true for all x, y ∈ I and all h ∈ H�:748

|h′′(x)| � K|h′(x)|, |h′(x)| � K|h′(y)|,
∣∣∣∣h(x) − h(y)

x − y

∣∣∣∣ � K|h′(x)|. (4.9)

4.5. The UNI Condition749

We now consider a subclass of the Good Class which gathers sources which strongly differ750

from sources with affine branches.751

We first define a probability Pn on each set Hn in a natural way. We let Pn{h} := |h(I)|,752

where |J | denotes the length of the interval J . Furthermore, Δ(h, k) denotes the ‘distance’753

between two inverse branches h and k of same depth, defined by754

Δ(h, k) = inf
x∈I

|Ψ′
h,k(x)| with Ψh,k(x) = log

∣∣∣∣h′(x)

k′(x)

∣∣∣∣. (4.10)

The distance Δ(h, k) is a measure of the difference between the ‘form’ of the two branches755

h, k. The UNI Condition, stated as follows, expresses that the probability of two inverse756

branches having almost the same form is very small.757

Property (UNI Condition). A dynamical system (I , T ) satisfies the UNI Condition if its758

set H of inverse branches satisfies the following.759

(U1) For any ρ̂ ∈]ρ, 1[, there exists C > 0, such that, for any integer n, and for any760

h ∈ Hn, we have761

Pn[k; Δ(h, k) � ρ̂n] � C ρ̂n.



Gaussian Distribution of Trie Depth for Strongly Tame Sources 27

(U2) Each h ∈ H is of class C3 and for each integer n, there exists Bn for which |h′′′| � Bn|h′|762

for any h ∈ Hn.763

A source with affine branches never satisfies the UNI Condition: in this case, the764

‘distance’ Δ is always zero, and the probabilities of assertion (U1) are all equal to 1.765

More generally, a dynamical source of the Good Class which satisfies the UNI Condition766

cannot be conjugate to a source with affine branches, as is (easily) proved in Proposition 1767

of [2]. Then, the UNI Condition excludes all the simple sources which cannot be strongly768

tame (see Proposition 3.4). The interest of the UNI Condition is due to the fact that it769

is sufficient to imply strong tameness, as shown in the rest of the paper, in particular in770

Theorem 6.2.771

Moreover, there are natural instances of sources that belong to the Good-UNI Class,772

for instance the Euclidean dynamical system defined in (4.2), together with two other773

dynamical systems, of Euclidean type, described in [2].774

4.6. Strong tameness of a dynamical source of the Good-UNI Class775

We will see that, on convenient functional spaces, the two operators (the plain operator776

Hs and the secant operator Hs) fulfil two kinds of properties which together imply that777

the dynamical source is strongly tame.778

(a) When the dynamical system belongs to the Good Class, these operators admit779

dominant spectral properties for s near the real axis, together with a spectral gap.780

This implies that, for v near 1, the function s �→ Λ(s, v) is meromorphic for s with781

small imaginary part, and admits a simple pole at s = 1 + σ(v) (see Propositions 5.5782

and 6.1).783

(b) When the dynamical system satisfies the UNI Condition, the function (v, s) �→ Λ(s, v)784

is analytic and of polynomial growth, for v near 1 and s with large imaginary part785

(see Theorem 6.2).786

The next theorem summarizes these main facts about dynamical sources of the Good-787

UNI Class and precisely describes the distribution of the depth of a trie built on the788

Good-UNI Class.789

Theorem 4.2. Consider a dynamical source, defined by a dynamical system of the Good-UNI790

Class and a distribution G of class C2 whose secant equals L. Then we have the following.791

(i) This source is strongly tame. Moreover, the entropic functions σ(v), r(v) from Definition 3792

are expressed with the dominant spectral objects8 of the secant operator Hs, defined in793

(4.4). The function σ(v) is defined from the dominant eigenvalue λ(s) via the implicit794

equation795

vλ(1 + σ(v)) = 1 with σ(1) = 0. (4.11)

8 In the following section they are proved to exist in the functional space C1(I × I).
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The residue r(v) of s �→ Λ(s, v) at s = 1 + σ(v) involves spectral objects of Hs at s =796

1 + σ(v), namely, the dominant eigenvalue λ(s) and the dominant projector Qs:797

r(v) := Res[s �→ Λ(s, v); 1 + σ(v)] =
−1

vλ′(1 + σ(v))
Q1+σ(v)[L

1+σ(v)](0, 1). (4.12)

(ii) The depth of a random trie built on this source asymptotically follows a Gaussian law798

with speed of convergence O((log n)−1/2). Moreover, the mean and the variance satisfy799

E[Dn] = − 1

λ′(1)
log n + c(S) + O(n−δ),

V[Dn] =
λ′2(1) − λ′′(1)

λ′3(1)
log n + d(S) + O(n−δ).

for any δ strictly less than the tameness width of the source.800

Assertion (ii) provides asymptotic expansions for the mean and the variance of trie801

depth for UNI sources, which can be compared with similar results obtained for simple802

sources in Theorem 3.5. We note that the main terms are of the same type and only involve803

the dominant eigenvalue λ(s). However, the remainder term is different and reflects the804

strong tameness of a source of the Good-UNI Class.805

The remainder of the paper is devoted to proving this theorem. Section 5 studies806

the spectral properties of transfer operators for parameters s with small or moderate807

imaginary part, whereas Section 6 deals with values of s with large imaginary part. This808

study aims to compare the two transfer operators, the usual one, Hs, and the secant809

one, Hs. There already exist studies of this type for secant operators acting on spaces of810

analytic functions (see [39] or [38], for instance, with corrections in [6]). However, we811

need to study secant operators when they act on spaces of functions of class C1, since we812

wish to use and extend estimates à la Dolgopyat obtained on such functional spaces.813

5. Spectral properties of transfer operators of the Good Class:814

case of parameters s with small imaginary part815

We first define the convenient functional spaces (Section 5.1), together with the notion of816

quasi-compactness (Section 5.2). We then recall in Section 5.3 the main spectral properties817

of the plain transfer operator Hs. Then Theorem 5.1, in Section 5.4, states the main spectral818

properties of the secant transfer operator. The following four subsections are devoted to819

the proof of this theorem. Finally, in Sections 5.9 and 6.1 we draw the conclusions of this820

section, namely Propositions 5.5 and 6.1. Q5821

5.1. Functional spaces822

We first define the functional spaces used for the plain transfer operator Hs and the secant823

transfer operator Hs.824

Consider the real σ0 defined in property (G3) of Definition 11 and the half-plane825

Σ0 := {s, �s > σ0}. (5.1)
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For s ∈ Σ0, the operator Hs acts on the space C1(I) endowed with the norm826

‖f‖1,1 = ‖f‖0 + ‖f‖1, with ‖f‖0 = sup
I

|f(x)|, ‖f‖1 = sup
I

|f′(x)|,

and Hs also acts on (C0(I), ‖.‖0). For s ∈ Σ0, the secant operator acts on the space827

C1(I × I) endowed with the norm828

‖F‖1,1 = ‖F‖0 + ‖F‖1,

with ‖F‖0 = sup
I×I

|F(x, y)|, ‖F‖1 = sup
I×I

[|Fx(x, y)| + |Fy(x, y)|].

We note the inequalities829

‖ diag F‖0 � ‖F‖0, ‖ diag F‖1 � ‖F‖1 so that ‖ diag F‖1,1 � ‖F‖1,1.

5.2. Quasi-compact operators830

Our operators of interest will be quasi-compact. We first recall this notion.831

For an operator L which acts on a Banach space, we let Sp L denote the spectrum of L,832

R(L) its spectral radius, and R(e)(L) its essential spectral radius, i.e., the smallest r � 0 such833

that any λ ∈ Sp(L) with modulus |λ| > r is an isolated eigenvalue of finite multiplicity.834

An operator L is quasi-compact if the equality Re(L) < R(L) holds.835

The following theorem due to Hennion provides sufficient conditions under which an836

operator is quasi-compact. These conditions generalize previous conditions due to Ionescu-837

Tulcea and Marinescu, and Lasota and Yorke [18]. It deals with a space B endowed with838

two norms.839

Theorem 3. Let B be a space endowed with a strong norm ‖ · ‖ and a weak norm | · |.840

Assume that the space (B, ‖ · ‖) is Banach and the unit ball of B is precompact in (B, | · |).841

Consider a bounded operator L on (B, ‖ · ‖) and assume that there are two sequences rn and842

tn of positive numbers such that, for all n � 1, the following bound, called the Lasota–Yorke843

bound, holds:844

‖Ln[f]‖ � rn‖f‖ + tn|f|.

Then the essential spectral radius of the operator L on (B, ‖ · ‖) satisfies845

Re(L) � r := lim inf
n→∞

(rn)
1/n.

If, moreover, the spectral radius R(L) in (B, ‖ · ‖) satisfies R(L) > r, then the operator L is846

quasi-compact on (B, ‖ · ‖).847

5.3. Spectral properties for the plain transfer operator848

The spectral properties of the plain transfer operator Hs, when the parameter s has small849

imaginary part, are summarized below in Theorem D. Proofs of these results can be found850

in [1, 4, 39].851
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Theorem 4 (classical spectral properties of the plain transfer operator). Consider a dynam-852

ical system (I , T ) of the Good Class with contraction constant ρ, and let Hs (for s ∈ Σ0)853

denote its plain transfer operator.854

(i) Quasi-compactness. If s ∈ Σ0 defined in (5.1), then Hs acts on C1(I). The spectral radius855

of Hs and its essential spectral radius satisfy, with σ := �s,856

R(Hs) � R(Hσ), Re(Hs) � ρ · R(Hσ).

In particular, Hs is quasi-compact for real s.857

(ii) Unique dominant eigenvalue. For real σ ∈ Σ0, Hσ has a unique eigenvalue λ(σ) of858

maximal modulus, which is simple and strictly positive, called the dominant eigenvalue.859

There exists an associated eigenfunction fσ which is strictly positive, and the associated860

eigenvector μσ of the adjoint operator H∗
σ is a Radon measure. With the normalization861

conditions, μσ[1] = 1, μσ[fσ] = 1, the measure μσ and the dominant eigenfunction fσ are862

defined in a unique way. In particular, μ1 is Lebesgue measure, with λ(1) = 1.863

(iii) Spectral gap. For a real parameter σ ∈ Σ0, there is a spectral gap, i.e., the subdominant864

spectral radius r(σ), defined by865

r(σ) := sup{|λ|; λ ∈ Sp(Hσ), λ �= λ(σ)},

satisfies r(σ) < λ(σ).866

(iv) Analyticity on compact sets. The operator Hs depends analytically on s for s ∈ Σ0.867

Thus, λ(σ)±1, f±1
σ , f′

σ , depend analytically on σ ∈ Σ0.868

(v) Decomposition of the quasi-inverse. For s close enough to the real axis and s ∈ Σ0, the869

operator Hs has a dominant eigenvalue λ(s) which is simple and separated from the rest870

of the spectrum by a spectral gap. The quasi-inverse of the operator Hs splits as871

(I − vHs)
−1[f] =

vλ(s)

1 − vλ(s)
Qs[f] + (I − vNs)

−1[f],

where Qs is the projector onto the dominant eigensubspace and the spectral radius of Ns872

is strictly smaller than |λ(s)|. The projector Qs satisfies Qs[f](x) := fs(x) · μs[f], where873

fs is the dominant eigenvalue and μs is the corresponding eigenvector of the adjoint874

operator. In particular, at s = 1, the equality μ1[f] =
∫
I f(x)dx holds.875

(vi) Dominant eigenvalue as a function of σ. The map σ �→ λ(σ) is decreasing, its derivative876

−λ′(1) equals the entropy h(S), and it is weakly log-convex, i.e., λ′′(1) − λ′(1)2 � 0.877

5.4. Spectral properties for the secant transfer operator878

The sets Σ1,Σ2 defined below will play a central role below.879

Definition 12. Let ρ be the contraction constant. The sets Σ1 and Σ2 are defined by880

Σ1 := Σ0 ∩ {s := σ + it : R(Hs) > ρ · R(Hσ)}, (5.2)

Σ2 := Σ1 ∩ {s; Hs has a unique simple dominant eigenvalue}. (5.3)

Our first main result extends the properties of the plain transfer operator stated in881

Theorem D to the secant transfer operator.882
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Theorem 5.1 (spectral properties for the secant transfer operator). Consider a dynamical883

system (I , T ) of the Good Class with contraction constant ρ, and let Hs (for s ∈ Σ0) denote884

the usual transfer operator and Hs the secant transfer operator. Let R(Hs) be its spectral885

radius and Re(Hs) its essential spectral radius.886

(ia) Quasi-compactness. If s ∈ Σ0, then Hs acts on C1(I × I). Its spectral radius and its887

essential spectral radius satisfy888

R(Hs) � R(Hs) � R(Hσ) = R(Hσ) and Re(Hs) � ρ · R(Hσ).

In particular, the line Σ0 ∩ R is included in Σ1, and Hs is quasi-compact for s ∈ Σ1.889

(ib) Comparison of spectra. Any eigenvalue λ of Hs with |λ| > ρR(Hσ) is an eigenvalue of890

Hs. The following inclusion holds:891

Sp Hσ+it ∩ {z; |z| > ρR(Hσ)} ⊂ SpHσ+it ∩ {z; |z| > ρR(Hσ)}.

Moreover, for s ∈ Σ1, the two spectral radii coincide, i.e., R(Hs) = R(Hs).892

(ii) Unique dominant eigenvalue. For s ∈ Σ2, the operator Hs has a unique dominant893

eigenvalue, equal to the dominant eigenvalue λ(s) of the plain transfer operator Hs.894

Moreover, the diagonal of a dominant eigenfunction Fs is a dominant eigenfunction fs895

of Hs. For real σ ∈ Σ2, there exists a strictly positive dominant eigenfunction Fσ .896

(iii) Spectral gap. For s ∈ Σ2, there is a spectral gap, i.e., the subdominant spectral radius897

r(Hs), defined by898

r(Hs) := sup{|λ|; λ ∈ Sp(Hs), λ �= λ(s)},

satisfies r(Hs) < R(Hs). Moreover, the inequality r(Hs) � max [r(Hs), ρ R(Hσ)] holds.899

(iv) Analyticity in compact sets. The operator Hs depends analytically on s for s ∈ Σ0.900

Thus, λ(s)±1, F±1
s , and DFs depend analytically on s, and are uniformly bounded when s901

belongs to any compact subset of Σ2.902

(v) Decomposition of the quasi-inverse. For s close enough to the real axis and s ∈ Σ2, the903

operator Hs has a dominant eigenvalue λ(s) which is simple and separated from the rest904

of the spectrum by a spectral gap. The quasi-inverse of the operator Hs splits as905

(I − vHs)
−1[F] =

vλ(s)

1 − vλ(s)
Qs[F] + (I − vNs)

−1[F], (5.4)

where Qs is the projector onto the dominant eigensubspace, and the spectral radius906

of Ns is strictly smaller than |λ(s)|. The projector Qs satisfies Qs[F](x, y) := Fs(x, y) ·907

μs[diagF], where Fs is the dominant eigenvalue and μs is the corresponding eigenvector908

of the adjoint of the plain operator Hs. In particular, for s = 1, we have909

Q1[F](0, 1) =

∫
I
F(x, x)dx.

Analytic properties of the secant operator have already been studied in [39], but in other910

functional spaces. The proofs of assertions (iv) and (v) follow the same lines as in [39].911

The following four subsections are devoted to proving assertions (i)–(iii) of Theorem 5.1.912
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5.5. Quasi-compactness and Lasota–Yorke bounds913

Here, the sup-norm ‖ · ‖0 is the weak norm and the ‖ · ‖1,1-norm is the strong norm. The914

following lemma proves that the secant operator satisfies a Lasota–Yorke bound, which915

will be used to prove quasi-compactness via Hennion’s theorem.916

Lemma 5.2 (Lasota–Yorke bounds). Let ρ be the contraction ratio defined in (4.7). There917

exists C > 0 such that, for any ρ̂ with ρ < ρ̂ < 1, there exists an integer N such that, for918

all n � N, for all s = σ + it ∈ Σ0, and all F ∈ C1(I × I), we have919

‖Hn
s [F]‖1,1 � ‖Hn

σ‖0

(
C |s| ‖F‖0 + ρ̂n‖F‖1

)
. (5.5)

Proof. With the inequality920

‖Hn
s [F]‖0 � ‖Hn

σ[1]‖0 · ‖F‖0 � ‖Hn
σ‖0 · ‖F‖0, (5.6)

it is sufficient to deal with ‖Hn
s [F]‖1. The function Hn

s [F] can be written as a sum over921

h ∈ Hn of terms of the form922 ∣∣∣∣h(x) − h(y)

x − y

∣∣∣∣sF(h(x), h(y)),

and we begin by considering the partial derivative of each term with respect to x, which923

is written as ph + qh, with924

|ph| � |s|
∣∣∣∣h(x) − h(y)

x − y

∣∣∣∣σ−1

·
∣∣∣∣h′(x)(x − y) − (h(x) − h(y))

(x − y)2

∣∣∣∣ · |F(h(x), h(y))|

and925

|qh| �
∣∣∣∣h(x) − h(y)

x − y

∣∣∣∣σ · |F ′
x(h(x), h(y))| · |h′(x)|.

The distortion assumption (4.9) is used to bound ph: the inequality926 ∣∣∣∣ x − y

h(x) − h(y)

h′(x)(x − y) − (h(x) − h(y))

(x − y)2

∣∣∣∣ � sup
(x,y)∈I×I

|h′′(x)|
|h′(y)| � L

implies the bound927

|ph| � L|s|
∣∣∣∣h(x) − h(y)

x − y

∣∣∣∣σ|F(h(x), h(y))|.

Finally, property (4.8) provides an estimate for qh, via the inequality (valid for n � N)928

|F ′
x(h(x), h(y))| · |h′| � ρ̂n · |F ′

x(h(x), h(y))|.

We then obtain929

|Hn
s [F]′

x| � L |s| ‖Hn
σ‖0 ‖F‖0 + ρ̂n ‖Hn

σ‖0 ‖F ′
x‖0.

As the partial derivative with respect to y can be bounded in the same vein, one obtains930

the bound931

‖Hn
s [F]‖1 � 2L|s| ‖Hn

σ‖0 ‖F‖0 + ρ̂n ‖Hn
σ‖0 ‖F‖1,
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and, with (5.6), the final result.932

Remarks. For an operator L which acts on a Banach space (B, ‖ · ‖), the Spectral Radius933

Theorem R(L) asserts the equality R(L) = limn→∞ ‖Ln‖1/n. In particular, this implies934

R(Hs) = lim
n→∞

‖Hn
s‖1/n

1,1 and R(Hs) = lim
n→∞

‖Hn
s ‖1/n

1,1 . (5.7)

For s := σ + it, the Lasota–Yorke bounds give the inequality935

R(Hs) � lim
n→∞

‖Hn
σ‖1/n

0 . (5.8)

The inequality ‖F‖1,1 � ‖F‖0 implies that inequality (5.8) is an equality for real s.936

5.6. Proof of assertion (ia) of Theorem 5.1937

The following lemma compares the spectral radii of secant and plain operators.938

Lemma 5.3. For s = σ + it ∈ Σ0, the following inequalities hold:939

R(Hs) � R(Hs) � R(Hσ) = R(Hσ). (5.9)

Proof. The diagonal relation (4.5) and the inequality ‖F‖1,1 � ‖ diag F‖1,1 together give940

‖Hn
s‖1,1 := sup

‖F‖1,1�1

‖Hn
s [F]‖1,1 � sup

‖F‖1,1�1

‖ diag Hn
s [F]‖1,1 = sup

‖F‖1,1�1

‖Hn
s [diagF]‖1,1. (5.10)

Now observe that the diagonal of any function F of C1(I × I) is also the diagonal of the941

function F̂ of C1(I × I), defined by942

F̂(x, y) = F(x, x) = diagF(x), for any (x, y) ∈ I × I , (5.11)

which furthermore satisfies the relation ‖F̂‖1,1 = ‖ diag F‖1,1. This implies the equalities943

sup
‖F‖1,1�1

‖Hn
s [diagF]‖1,1 = sup

f∈C1(I), ‖f‖1,1�1

‖Hn
s [f]‖1,1 = ‖Hn

s ‖1,1,

and thus the inequality ‖Hn
s‖1,1 � ‖Hn

s ‖1,1. With (5.7), the first inequality is proved. The944

second inequality follows easily from (5.8) and the inequality ‖F‖1,1 � ‖ · ‖0.945

Now, for a real σ, the bounded distortion property (4.9) implies the inequalities946 ∣∣∣∣h(x) − h(y)

x − y

∣∣∣∣σ � L|h′(x)|σ for all (x, y) ∈ I × I and h ∈ H�,

which imply, for any F ∈ C1(I × I) and n � 1, that947

‖Hn
σ[F]‖0 � L ‖Hn

σ[1]‖0 ‖F‖0 � L ‖Hn
σ[1]‖1,1 ‖F‖0.

With (5.7) and (5.8), it follows that948

R(Hσ) � lim
n→∞

‖Hn
σ‖1/n

0 � lim
n→∞

‖Hn
σ‖1/n

1,1 � R(Hσ),

which completes the proof of Lemma 5.3.949

usuario
Texto insertado
F instead of .
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Now, Lemma 5.2, Hennion’s theorem and Lemma 5.3 entail the inequality950

Re(Hs) � ρ̂ · R(Hσ) = ρ̂ · R(Hσ) for any ρ̂ > ρ, and thus

Re(Hs) � ρ · R(Hσ) = ρ · R(Hσ).

In particular, the operator Hs is quasicompact for real s. This completes the proof of951

assertion (ia) of Theorem 5.1.952

5.7. Proof of assertion (ib) of Theorem 5.1953

Eigenvalues of the plain operator Hs and those of the secant operator are closely related.954

Suppose that F is an eigenfunction of Hs relative to the eigenvalue λ. Then the diagonal955

relation (4.5) proves the equalities956

λ diagF = diag(λ F) = diag(Hs[F]) = Hs[diagF]. (5.12)

Then, the function diag F is an eigenfunction of Hs relative to λ provided that F is not957

identically zero on the diagonal D := {(x, x), x ∈ I}. The next result shows that this is958

not possible when the inequality |λ| > ρR(Hσ) holds.959

Lemma 5.4. Let ρ < 1 be the contraction ratio, and consider any pair (s, α) where s := σ +960

it belongs to Σ0, and α satisfies |α| > ρ · R(Hσ). Consider a function F for which Hs[F] = αF961

and diagF ≡ 0. Then F ≡ 0 on I × I .962

Proof. Consider ρ̂ with ρ < ρ̂ < 1. Then, the inequality which relates the function F to963

the function F̂ defined in (5.11), together with property (4.8), gives the bound, for n � N,964

h ∈ Hn, (x, y) ∈ I × I ,965

|F(h(x), h(y)) − F̂(h(x), h(y))| � ‖DF‖0 ‖h′‖0 � ‖DF‖0 ρ̂
n, (5.13)

which implies, for n � N, that966

|Hn
s [F](x, y) − Hn

s [F̂](x, y)| � ‖Hn
σ‖1,1 ‖DF‖0 ρ̂

n.

Now, consider an eigenfunction F relative to the eigenvalue α whose diagonal function is967

zero. Then, the function F̂ is zero and, for any n � N,968

|Hn
s [F](x, y)| � ‖Hn

σ‖1,1 ‖DF‖0 ρ̂
n.

Finally, for any n � N,969

|αn|‖F‖0 = ‖αnF‖0 = ‖Hn
s [F]‖0 � ‖DF‖0 ρ̂

n‖Hn
σ‖1,1. (5.14)

Assume now that F is not zero. Then, ‖F‖0 is not zero, and, with (5.14), the same is true970

for ‖DF‖0. Inequalities (5.14), with the Spectral Radius Theorem, imply the inequality971

|α| � ρ̂ · R(Hσ) for any ρ̂ > ρ, and then |α| � ρ · R(Hσ). With the equality R(Hσ) = R(Hσ),972

this provides a contradiction to the hypothesis. Then F is zero.973

Completion of the proof of assertion (ib). Assume that λ is an eigenvalue of Hs with974

|λ| > ρR(Hσ) and let F be an eigenfunction relative to Hs. Lemma 5.4 ensures that the975
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diagonal function of F is non-zero. Now, (5.12) proves that diagF is an eigenfunction976

relative to λ of Hs.977

For s ∈ Σ1, the secant operator Hs is quasicompact, with assertion (ia). Hence, there978

exists an eigenvalue of Hs whose modulus equals R(Hs). As this eigenvalue satisfies979

the hypothesis of Lemma 5.4, this is also an eigenvalue for the plain operator Hs,980

and the inequality R(Hs) � R(Hs) holds. Furthermore, with assertion (ia), the inequality981

R(Hs) � R(Hs) holds. This finally proves the equality between the two spectral radii.982

5.8. Proof of assertions (ii) and (iii) of Theorem 5.1983

(ii) Let us begin with assertion (ii). For s ∈ Σ2, there exists an eigenvalue λ of Hs whose984

modulus equals R(Hs). With assertion (ib), λ is an eigenvalue of Hs, and coincides with985

the dominant eigenvalue λ(s) of Hs. Again, assertion (ib) entails that λ(s) is the unique986

eigenvalue with maximal modulus. If not, the operator Hs would have an eigenvalue of987

maximal modulus different from λ(s).988

We now prove that λ(s) is simple. Suppose that F1 and F2 are two eigenfunctions of Hs989

related to λ(s). By (5.12), the diagonal functions diagF1 and diagF2 are eigenfunctions of990

Hs relative to λ(s). Since this eigenvalue is simple for Hs, the diagonal functions diagF1991

and diag F2 are linearly dependent, i.e., there are non-zero numbers α1 and α2 such that992

0 = α1 diagF1 + α2 diag F2 = diag(α1F1 + α2F2) for all x ∈ I .

The function F = α1F1 + α2F2 is an eigenfunction of Hs relative to λ(s), whose diagonal993

diag F is identically zero. With Lemma 5.4, the function F is identically zero on I × I .994

This proves that F1 and F2 are linearly dependent, and λ(s) is also simple for Hs.995

With the diagonal relation (4.5), diagFs is an eigenfunction of Hs which coincides with996

fs (with a convenient normalization).997

We now prove that, for real σ, there exists a dominant eigenfunction which is strictly998

positive on I × I . The operator Hσ has a dominant eigenfunction fσ which is strictly999

positive on I , and we consider the eigenfunction Fσ of Hσ whose diagonal function1000

diag Fσ coincides with fσ . As Fσ is continuous, there is a neighbourhood E of the diagonal1001

D where Fσ is positive. Consider an inverse branch h ∈ Hn and a point (x, y) ∈ I × I .1002

The distance of the point (h(x), h(y)) to the diagonal satisfies1003

d((h(x), h(y)),D) � |h(x) − h(y)| � ρ̂n, for n � N,

and then all the points (h(x), h(y)) belong to E as soon as the depth |h| is large enough.1004

Then, with the definitions of E and Fσ , the relation1005

Fσ(x, y) =
1

λ(σ)n
Hn

σ[Fσ](x, y) > 0

holds for any (x, y) ∈ I × I , and implies that Fσ is strictly positive on I × I .1006

(iii) The existence of a spectral gap is just a consequence of the definition of Σ2 and1007

assertion (ia). Now, suppose that the inequality r(Hs) > ρR(Hσ) holds. Then the inequality1008

r(Hs) > Re(Hs) holds, and there exists an eigenvalue of Hs whose modulus equals r(Hs). By1009

assertion (ib), this is an eigenvalue of Hs. Hence, in this case, the inequality r(Hs) � r(Hs)1010

between the subdominant spectral radii holds.1011
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The proof of Theorem 5.1 is now complete.1012

5.9. A first conclusion: properties of the quasi-inverse near the real axis1013

We now show how Theorem 5.1 entails the following two propositions, which are the first1014

two steps (the easiest ones) for proving Theorem 4.2.1015

Proposition 5.5. Consider a dynamical system of the Good Class and denote by Hs the1016

secant transfer operator. Then there exist a rectangle R1 := {s : |σ − 1| � γ1, |t| � t1}, with1017

t1, γ1 > 0, and a neighbourhood V of v = 1, for which the following holds.1018

(i) For any v ∈ V , the Dirichlet generating function Λ(s, v) has a unique pole in R1, located1019

at s := 1 + σ(v), with residue r(v). The function σ(v) is an analytic function defined by1020

the implicit equation described in (4.11) and the residue r(v) is described in (4.12). At1021

s = 1, we have σ′(1) = r(1) = −1/λ′(1).1022

(ii) The series Λ(s, v) is bounded on the vertical segment σ = 1 − γ1, |t| � t1, uniformly when1023

v ∈ V .1024

1025

Proof. (i) Assertions (iv) and (v) of Theorem 5.1 together with analytic perturbation1026

theory [26] imply the existence of a neighbourhood of the line Σ0 ∩ R where the quasi-1027

inverse splits as in (5.4). As soon as the subdominant spectral radius r(Hs) is strictly1028

less than |1/v|, the second term in (5.4) is analytic, and the singularities come from the1029

first term in (5.4). Indeed, with the equality λ(1) = 1, Theorem 5.1 shows the existence1030

of complex neighbourhoods U of s = 1 and V of v = 1 where the subdominant spectral1031

radius r(Hs) is strictly less than |1/v| for s ∈ U . Now, choose γ1 > 0 and t1 > 0 such1032

that the rectangle R1 := [1 − γ1, 1 + γ1] × [−t1, t1] satisfies R1 ⊂ U . Finally, the spectral1033

decomposition (5.4) holds on this rectangle. Moreover, with the analyticity of s �→ λ(s),1034

together with the inequality λ′(1) �= 0, the Implicit Function Theorem applies.1035

(ii) Restricting V , if necessary, we can assume that �σ(v) > −γ1 + ε for a small ε > 0. In1036

this case, the map (v, s) �→ (I − vHs)
−1 is continuous and thus uniformly bounded when s1037

belongs to the segment σ = 1 − γ1, |t| � t1 and v belongs to V .1038

6. Spectral properties of transfer operators of the Good-UNI Class:1039

case of parameters s with large or moderate imaginary part1040

We now consider a dynamical system of the Good-UNI Class. We first prove that the1041

quasi-inverse is well-behaved in ‘intermediate’ regions. Then, the following of the section1042

is devoted to extending Dolgopyat-type estimates to the secant operator for parameters s1043

with large imaginary part.1044

6.1. Properties of the quasi-inverse in any intermediate region1045

We first deal with the intermediate region and establish the following result, which1046

constitutes the second step for Theorem 4.2.1047
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Proposition 6.1. Consider a dynamical system of the Good-UNI Class and let Hs denote1048

the secant transfer operator.1049

(i) For any t �= 0, the distance d(1, Sp H1+it) is strictly positive.1050

(ii) Consider two positive reals t1 and t2 with t1 � t2. Then, there exists a rectangle R2 :=1051

{s; |σ − 1| � γ2, t1 � |t| � t2} with γ2 > 0 for which1052

d(1, Sp Hs) � β > 0 for s ∈ R2.

(iii) There exists a neighbourhood V2 of v = 1 for which the quasi-inverse (v, s) �→ (I −1053

vHs)
−1 is well defined on V2 × R2 and uniformly bounded.1054

1055

Proof. (i) There are two possibilities, according to whether s = 1 + it belongs to Σ1. For1056

s �∈ Σ1, the inequality R(Hs) � ρR(H1) = ρ holds, and implies the inequality1057

d(1, Sp H1+it) � 1 − ρ > 0.

Consider now s ∈ Σ1. With assertion (ia) of Theorem 5.1, the operator Hs is quasi-compact.1058

Then, if the distance d(1, Sp Hs) is zero, Hs has an eigenvalue equal to 1. The inequality1059

ρ < 1, together with assertion (ib) of Theorem 5.1, implies that 1 is also an eigenvalue1060

of the plain operator Hs. But Proposition 1 in [2] ensures that this is not possible for a1061

system of the Good-UNI Class. Finally, the secant operator Hs does not possess 1 as an1062

eigenvalue and thus d(1, SpH1+it) is strictly positive.1063

(ii) Continuity of the superior part of the spectrum implies the existence of γ2 > 0 and1064

β > 0, for which the inequality d(1, SpHs) � β1 > 0 holds if |σ − 1| < γ and t1 � |t| � t2.1065

(iii) Part (iii) is clear.1066

6.2. When s is far from the real axis1067

Results of Dolgopyat [10], generalized by Baladi and Vallée [2], provide estimates for1068

the quasi-inverse of the plain transfer operator when s is far from the real axis. This1069

section aims to prove that secant operators also satisfy Dolgopyat-type estimates. This1070

will constitute the third (and last) step for proving Theorem 4.2. In the statement, we use1071

the following family of equivalent norms on C1(I × I):1072

‖F‖1,t := ‖F‖0 +
1

|t| ‖F‖1 := sup |F | +
1

|t| sup||Fx| + |Fy|| t �= 0. (6.1)

Theorem 6.2 (Dolgopyat-type estimates for secant operators). Consider a dynamical sys-1073

tem of the Good-UNI Class and its secant transfer operator Hs acting on C1(I × I). Then,1074

there are δ < 1, a (complex ) neighbourhood V of v = 1, an unbounded rectangle of the form1075

R3 := {s; |σ − 1| � γ3, |t| � t2} with γ3 > 0, and a real D1 > 0 such that, for all v ∈ V , and1076

for all s = σ + it ∈ R3, we have1077

‖(I − vHs)
−1‖1,t � D1 · |t|δ . (6.2)
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On R3, the function s �→ Λ(s, v) satisfies, for some positive constant D,1078

|Λ(s, v)| � ‖(I − vHs)
−1[Ls]‖1,t � D1 · |t|δ · ‖Ls‖1,t � D|t|δ.

6.3. Return to the proof of Theorem 4.21079

Before proving Theorem 6.2, we explain how Theorem 6.2, together with Theorem 5.1,1080

Propositions 5.5 and 6.1, entail Theorem 4.2.1081

Assertion (i). Here we describe the properties of the dynamical source.1082

Properties of functions r(v) and σ(v). The definition of σ(v) and the expression for the1083

residue r(v) given in Theorem 4.2 are provided in Proposition 5.5. Taking derivatives with1084

respect to v leads to the expressions1085

σ′(1) = − 1

λ′(1)
, σ′′(1) + σ′(1) =

λ′(1)2 − λ′′(1)

λ′(1)3
.

Properties of the derivatives of the dominant eigenvalue at s = 1 have been widely studied.1086

In particular, it is well known that −λ′(1) equals the entropy h(S) (see, e.g., [39]). A proof1087

of strict log-convexity (namely λ′′(1) − λ′(1)2 > 0) can be found in [4].1088

Analyticity on half-planes to the right of �s = 1. The following facts are well known. For1089

σ > σ0, the map σ �→ R(Hσ) is decreasing, and R(H1) = 1. For s with �s � 1 + γ (with1090

γ > 0), the previous facts together with assertion (ia) of Theorem 5.1 prove the inequality1091

R(Hs) � R(H1+γ) < 1.

Then, in a small neighbourhood V of v = 1, the map Λ(s, v) is analytic and uniformly1092

bounded on V × {s,�s � 1 + γ}.1093

Analytic properties and polynomial growth on a vertical strip to the left of �s = 1. We1094

first choose rectangles R1 from Proposition 5.5 and R3 from Theorem 6.2 defined by1095

the pairs (γ1, t1) and (γ3, t2), and consider the corresponding neighbourhoods V1 and V31096

of v = 1. Then, Proposition 6.1, defines a real γ2 and a neighbourhood V2. Finally, the1097

vertical strip of Theorem 4.2 is given by |�s − 1| � γ with γ = min(γ1, γ2, γ3), whereas the1098

final convenient neighbourhood is V := V1 ∩ V2 ∩ V3.1099

Assertion (ii). This is a immediate consequence of assertion (i) and Theorem 2.5.1100

6.4. Description of the main steps of the proof of Theorem 6.21101

It will be convenient to associate with the secant transfer operator Hs a normalized1102

operator Hs defined by1103

Hs[F] =
1

λ(σ)Fσ

Hs[Fσ · F], s = σ + it. (6.3)

By construction, for σ ∈ Σ0, the operator Hσ acting on C1(I × I) has a spectral radius1104

equal to 1, and fixes the constant function 1. Also, the spectrum Sp Hσ+it satisfies1105

SpHσ+it = λ(σ)Sp Hσ+it. Then, the inequality ‖Hs[F]‖0 � ‖F‖0 Hσ[1] = ‖F‖0 implies the1106
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useful bound1107

‖Hs‖0 � 1. (6.4)

The proof of Theorem 6.2 follows the same lines as in [2]. We deal with the (1, t)-norm1108

defined in (6.1). We begin in Section 5.4 (see Lemma 6.3) with estimates on the L2-norm of1109

the secant operator, directly obtained from estimates on the usual operator. We transfer1110

these estimates into bounds for the convenient norm (1, t) in Section 5.6, after stating1111

useful lemmas in Section 5.5: the first one (Lemma 6.4) compares the operators H
k
1 and1112

H
k
σ , while the second one (Lemma 6.5) provides Lasota–Yorke bounds for the operator1113

Hs, which explain the introduction of the (1, t)-norm.1114

In the following, the notation A(x) � B(x) means that A is less than B up to absolute1115

multiplicative constants, or there exists some absolute constant k such that, for any x of1116

interest, the inequality A(x) � k · B(x) holds. It is synonymous of A(x) = O(B(x)) with an1117

absolute O-term.1118

6.5. UNI Condition and L2-estimates1119

The next result summarizes Lemmas 4 and 5 of Baladi and Vallée’s paper, which provide1120

L2-estimates for plain transfer operators. Using the diagonal relation (4.5), we rewrite1121

this result and transfer to a result on L2- estimates for the (normalized) secant transfer1122

operator.1123

Lemma 6.3. Consider a dynamical system of the Good-UNI Class, with contraction ratio1124

ρ < 1. Letting �x� denote the smallest integer greater than x, let us associate with s = σ + it1125

the integer n0(t) defined by1126

n0 :=

⌈
1

| log ρ| log |t|
⌉
. (6.5)

Let Hs denote the normalized version of the secant transfer operator. Then, for any interval1127

[1 − γ, 1 + γ], for any s with σ = �s ∈ [1 − γ, 1 + γ], |t| � 1/ρ2 and a with (2/5) < a < 1/2,1128

we have, for any function F ∈ C1(I × I),1129 ∫
I

| diag H
n0
s [F](x)|2 dx � ρ(1−2a)n0 ‖ diag F‖2

1,t. (6.6)

We recall the main ideas of the proof. The expression of | diag H
n
s [F](x)|2 involves a1130

sum over all the pairs (h, k) ∈ Hn. There are two parts to this sum. The first part of the1131

sum is relative to pairs (h, k) which are sufficiently close with respect to the distance Δ1132

defined in (4.10), and the UNI Condition (U1) entails that this sum is small enough. The1133

second part is relative to pairs (h, k) for which the distance Δ admits a lower bound. Then1134

the Van Der Corput Lemma, together with condition (U2), provides an upper bound for1135

this second part.1136
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6.6. Useful lemmas1137

We state three lemmas which follow the same lines as in [2]. The first lemma relates the1138

behaviour of the iterate H
k
σ to the iterate H

k
1, for any σ ∈ Σ0, and any integer k.1139

Lemma 6.4. For real σ such that σ and 2σ − 1 belong to Σ0, define Aσ as1140

Aσ :=
λ(2σ − 1)1/2

λ(σ)
.

Then, for any compact subset L of Σ0, and for any σ ∈ L, for any F ∈ C1(I × I), for any1141

integer k � 1, the inequality1142

‖H
k
σ[F]‖2

0 � A2k
σ ‖H

k
1[|F |2]‖0 (6.7)

holds and involves absolute constants that only depend on L. The map σ �→ Aσ is continuous1143

and satisfies A1 = 1.1144

Proof. Now consider F ∈ C1(I × I). The relation1145

|Hk
σ[F](x, y)| � 1

λ(σ)k

∑
h∈Hk

∣∣∣∣h(x) − h(y)

x − y

∣∣∣∣σ · |F |(h(x), h(y))

is valid if σ belongs to L, and, by the Cauchy–Schwarz inequality, with1146 ∣∣∣∣h(x) − h(y)

x − y

∣∣∣∣σ−1/2

and

∣∣∣∣h(x) − h(y)

x − y

∣∣∣∣1/2 · |F |(h(x), h(y)),

we obtain1147 ( ∑
h∈Hk

∣∣∣∣h(x) − h(y)

x − y

∣∣∣∣σ · |F |(h(x), h(y))

)2

�
( ∑

h∈Hk

∣∣∣∣h(x) − h(y)

x − y

∣∣∣∣2σ−1)
·
( ∑

h∈Hk

∣∣∣∣h(x) − h(y)

x − y

∣∣∣∣ · |F |2(h(x), h(y))

)
.

The second factor is exactly Hk
1[|F |2](x, y), which is less than H

k
1[|F |2](x, y) (up to absolute1148

multiplicative constants). Thanks to dominant spectral properties, the first factor is easily1149

related to λ(2σ − 1)k .1150

The normalized secant transfer operator admits Lasota–Yorke bounds, easily derived1151

from Lasota–Yorke bounds for the secant operator.1152

Lemma 6.5. For every compact subset L of Σ0, there exists C > 0 such that, for any ρ̂ with1153

ρ < ρ̂ < 1, there exists an integer N for which, for any n � N, for all s with �s ∈ L, and1154

all F ∈ C1(I × I),1155

‖H
n
sF‖1 � C

(
|s| ‖F‖0 + ρ̂n ‖F‖1

)
, for all n � N. (6.8)
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Proof. The two derivatives (normalized operator and non-normalized operator) are1156

related as follows:1157

D(Hn
s [F]) =

1

λ(σ)n

(
−1

F2
σ

Hn
s [F · Fσ]D[Fσ] +

1

Fσ

D[Hn
s [F · Fσ]]

)
.

Recall that Fσ and its derivatives are uniformly bounded from above and below when σ1158

belongs to a compact set L. Furthermore, the inequality R(Hs) � λ(σ) holds between the1159

spectral radius of Hs and the dominant eigenvalue λ(σ) for �s = σ. Hence, Lasota–Yorke1160

bounds for non-normalized operators entail, for ρ̂ > ρ and all n � N,1161

‖H
n
s [F]‖1 � λ(σ)−n

(
‖Hn

s‖0‖F‖0 + ‖Hn
s [F · Fσ]‖1

)
� C

(
|s|‖F‖0 + ρ̂n‖F‖1

)
,

where the constant C depends only on L.1162

First use of the (1, t)-norm1163

In the bound (6.8) of Lemma 6.5, there appear two terms: one contains a factor |s|, the1164

other a decreasing exponential in n. In order to suppress the effect of the factor |s|, in the1165

same spirit as in Dolgopyat’s works, we use the family of equivalent norms ‖.‖1,t already1166

defined in (6.1). With these norms and Lemma 6.5, together with (6.4), we obtain the first1167

(easy) result.1168

Lemma 6.6. For any t1 > 0, for every compact neighbourhood K of σ = 1, there exists1169

M0 > 0 such that, for all n � 1, and all s for which �s ∈ K, |	s| � t1, we have1170

‖H
n
s‖1,	s � M0.

6.7. Completion of the proof of Theorem 6.21171

We now operate transfers between various norms.1172

From the L2-norm to the sup-norm. Since the normalized density transformer H1 is quasi-1173

compact with respect to the (1, 1)-norm, and fixes the constant function 1, the spectral1174

decomposition (5.4) gives1175

‖H
k
1[|G|2]‖0 =

(∫
I

| diagG(x)|2 dx
)

+ O(rk1)‖G2‖1,1, (6.9)

where r1 is the subdominant spectral radius of H1.1176

Consider an iterate H
n
s with n � n0 (n0 defined in Lemma 6.3). Then1177

‖H
n
s [F]‖2

0 � ‖H
n−n0
σ [G]‖2

0 with G = |Hn0
s [F]|.

Now, using (6.7) from Lemma 6.4 and (6.9) with k := n − n0, together with the bound1178

(6.6) for the L2-norm and finally Lemma 6.5 to evaluate ‖G2‖1,1, we obtain, for any t with1179

|t| � t1,1180

‖H
n
s [F]‖2

0 � A2(n−n0)
σ

[
ρ(1−2a)n0 + rn−n0

1 |t|
]
‖F‖2

1,t.
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We now choose n = n1 as a function of t so that the two terms ρ(1−2a)n0 and rn−n0

1 |t| are1181

almost equal:1182

n1 = (1 + η)n0 with η := 2(1 − a)
log ρ

log r1
> 0. (6.10)

Now choose d such that 0 < η(5a − 2) < d < 1 − 2a < 1/5 (which is possible if a is of1183

the form a = 2/5 + ε, with a small ε > 0). Recalling (6.6), where a first neighbourhood1184

was defined, and considering a (real) neighbourhood R of s = 1 for which1185

Aη
σ < ρ−η(5a/2−1) < ρ−d/2 and λ(σ)1+η < ρ− 1

4
(1−2a−d), (6.11)

we finally obtain, for n1(t) and η defined in (6.10),1186

‖H
n1
s [F]‖0 � ρn1b ‖F‖1,t, with b :=

1 − 2a − d

2(1 + η)
. (6.12)

From the sup-norm to the ‖.‖1,t-norm. Using (6.12), applying Lemma 6.5 twice with a1187

given ρ̂, and choosing t sufficiently large for the integer n1(t) of (6.10) to be larger than1188

the integer N of (4.8), we obtain the inequality1189

‖H
2n1
s [F]‖1 � |s| ‖H

n1
s [F]‖0 + ρ̂n1 ‖H

n1
s [F]‖1

� |s| ρn1b‖F‖1,t + ρ̂ n1 |t|
(

|s|
|t| ‖F‖0 + ρ̂ n1

‖F‖1

|t|

)
� |t|ρ̂ n1b‖F‖1,t, (6.13)

which finally entails for n2 = 2n1 (and n1(t) as above)1190

‖H
n2
s ‖1,t � C ρ̂n2b/2. (6.14)

Now choose t sufficiently large, namely |t| � t2 := C4/(1−2a−d), to ensure the inequality1191

C < ρ̂−n2b/4 for any n2(t) with |t| � t2. Finally we have1192

‖H
n2
s ‖1,t � ρ̂n2b/4 (�s ∈ R, |t| � t2). (6.15)

6.8. The last step in Theorem 6.21193

For fixed t with |t| > t2, any integer n can be written n = kn2 + � with � < n2(t). Then1194

(6.14) and Lemma 6.6 imply1195

‖H
n
s‖1,t � M0 ‖H

n2
s ‖k1,t � M0 ρ̂

bkn2/4 � M0 ρ̂
bn/4 ρ̂−bn2/4.

Since bn2/4 = bn1/2 = (1 − 2a − d)n0/4, with n0 defined in (6.5), we finally obtain1196

‖H
n
s‖1,t � M0 |t|δ γn,

with δ :=
1 − 2a − d

4
, b :=

2δ

1 + η
, γ := ρ̂ b/4.

Therefore, returning to the operator Hs, we have shown that1197

‖Hn
s‖1,t � D3 · γn · |t|δ · λ(σ)n, ∀n, ∀t, with |t| � t2. (6.16)
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Finally, with1198

a ∈]2/5, 1/2[, η := 2(1 − a)
log ρ

log r1
, η(5a − 2) < d < 1 − 2a, δ :=

1 − 2a − d

4
,

we take a refinement of the R defined in (6.11) and K defined in Lemma 6.6, with a small1199

neighbourhood V of v = 1, we define the rectangle R3 as1200

R3 := {s = σ + it; |t| � t2, Aσ < ρ−(2−5a)/2, |v|λ(σ) < ρ−(1−2a−d)/16(1+η)}.

Then, for s ∈ R3 and v ∈ V , we have1201

γ|v|λ(σ) � ρ̂ (1−2a−d)/16(1+η) = γ̂ < 1.

This finally proves Theorem 6.2 with D1 := D3/(1 − γ̂).1202

We have shown in Section 6.3 how Theorem 6.2, together with Propositions 5.5 and Q61203

6.1, entails Theorem 4.2, which proves that tries built on dynamical sources of the Good-1204

UNI Class have a depth which follows an asymptotic Gaussian law, with a speed of1205

convergence of order (log n)−1/2.1206

7. Conclusion and extensions1207

Simple sources and Good-UNI sources. The probabilistic properties of a random trie,1208

built on n words independently drawn from a source, a priori depend on the probabilistic1209

properties of the underlying source. In the general context of dynamical sources, there is1210

a close relationship between the form of the branches and the analytic properties of the1211

Dirichlet generating functions of the source, in particular their tameness properties. From1212

this point of view, there are two extreme cases in the Good Class: the simple sources and1213

the sources which satisfy the UNI Condition. The simple sources are defined by dynamical1214

systems all of whose branches have the same form, as they are all affine. On the contrary,1215

for a Good-UNI source, the probability that different branches have ‘almost the same1216

form’ is exponentially small. The Good-UNI Class gathers sources which ‘strongly differ’1217

from the simple sources. This implies different tameness properties: the simple sources1218

are never strongly tame, whereas the sources of the Good-UNI Class are always strongly1219

tame. Then, the properties of random tries built on these two subclasses of sources may be1220

a priori different. The present paper shows that this is not actually the case: the dominant1221

terms in the asymptotic expansions of the expectation and the variance are the same, and1222

tameness only has an influence on remainder terms.1223

Good-DIOP sources. It is also interesting to study the probabilistic behaviour of tries1224

when they are built on other sources, for instance other dynamical sources of the Good1225

Class. Dolgopyat [11] introduced another class of dynamical systems, the Good-DIOP1226

Class. This class gathers dynamical sources which extend the Diophantine simple sources.1227

It is defined by arithmetical conditions on branches, of Diophantine type, and it contains1228

both simple sources and dynamical sources which are not conjugated to simple sources.1229

Dolgopyat showed in [11] that the quasi-inverse of the (plain) transfer operator of such a1230

dynamical system admits a pole-free region of hyperbolic shape, where it is of polynomial1231

growth. The works by Roux [33] and Roux and Vallée [34] use properties of the Good1232
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Class that are established here, extend Dolgopyat’s results to the secant operator, and1233

prove that such a source is hyperbolic tame: its Dirichlet generating function admits a1234

pole-free region, of hyperbolic shape, where it is of polynomial growth. It is then possible1235

to study the probabilistic behaviour of tries when they are built on Good-DIOP sources.1236

Using Rice’s method, it is proved that the trie depth for general sources of the Good-DIOP1237

Class behaves as for particular simple Diophantine sources.1238

Distributional results for the trie depth. We also prove here that the trie depth of a Good-1239

UNI source asymptotically follows a Gaussian law, with an optimal speed of convergence1240

of order (log n)−1/2. These results are based on tameness properties of the bivariate1241

generating function Λ(s, v), which are obtained via a perturbation of the series Λ(s) in a1242

complex neighbourhood of v = 1. In the case of H-tameness, as the distance between the1243

frontier of the hyperbolic region and the vertical line tends to zero (for |	s| → ∞), it is not1244

possible to use such a strong perturbation (in a whole complex neighbourhood of v = 1),1245

but there exist weakest notions of perturbation which are sufficient to obtain Gaussian1246

laws with an optimal speed of convergence. Instead of the Quasi-Powers Theorem, we use1247

the Goncharov theorem, followed by the Berry–Esseen inequality (see the recent paper1248

[20] and the thesis [19]).1249

Similar studies for the digital search tree. All the previous results about tries can be1250

extended to another type of digital trees, the digital search tree (DST for short). The DST1251

is more difficult to deal with, but the recent paper [20] and the thesis [19] show how1252

to conduct a similar study for typical depth, in a parallel way, for both tries and DSTs,1253

which leads to very similar results for the two types of digital tree.1254

Importance of source tameness. This paper is among the first9 to introduce this notion1255

and to show its importance, specifically in the analysis of trie depth. This notion appears1256

to be central to many other studies that deal with sources, either directly or indirectly, in1257

the analysis of data structures on words (for instance DST as in [20] or [19]) or algorithms1258

on words (for instance sorting algorithms as in [9] or searching algorithms as in [7]).1259
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Appendix1267

This Appendix is devoted to proving Proposition 2.4, which arises in the proofs of1268

Proposition 2.3 and Theorem 3.5. The main arguments10 are due to Flajolet and Sedgewick1269

and are summarized in [16].

Q7

1270

Proposition A.1 (Proposition 2.4 restated).1271

(i) For any fixed s with s �∈ Z�0, we have1272

Ln(s) :=
n!(−1)n

s(s − 1) · · · (s − n)
= −nsΓ(−s)

[
1 + O

(
1

n

)]
.

The O-term is uniform for s in a bounded set.1273

(ii) Consider a vertical line �(s) = α with α �∈ Z�0 and assume that 	(s) is continuous1274

on �(s) = α and of at most polynomial growth there, i.e., ω(s) = O(sr) as |s| → ∞ on1275

�(s) = α. Then, the integral admits the following estimate, as n → ∞:1276 ∫
�s=α

	(s)
n!

s(s − 1) · · · (s − n)
ds = O(nα).

(iii) Consider a curve ρ of hyperbolic type, namely of the form1277

ρ :=

{
s = σ + it, |t| � B, σ = σ0 − A

|t|β0

}
∪

{
s = σ + it, σ = σ0 − A

Bβ0
, |t| � B}

}
,

for some strictly positive constants (A,B, β0), and assume that 	(s) is continuous on ρ1278

and of at most polynomial growth there, i.e., 	(s) = O(|s|r) as |s| → ∞. Then the integral1279

of 	(s)Ln(s) on the curve ρ admits the following estimate, as n → ∞:1280 ∫
ρ

	(s)Ln(s)ds = nσ0 · O(exp[−(log n)β]), with β <
1

1 + β0
.

The proof is based on two main lemmas. The first lemma is useful for proving1281

assertion (i) and estimates the integrals of assertions (ii) and (iii) near the real axis,1282

whereas the second lemma is a main step for estimating the integrals of assertions (ii)1283

and (iii) near the imaginary infinity. Then, the proof has three main steps: the proofs of1284

the two lemmas, and then their use in the proof of Proposition A.1.1285

A.1. Estimates near the real axis1286

Lemma A.1. For s outside a fixed sector containing the negative real axis in its interior,1287

and under the condition |s| � √
n, we have, as n → ∞,1288

Ln(s) =
n!(−1)n

s(s − 1) · · · (s − n)
= −nsΓ(−s)

(
1 + O

(
1√
n

)
+ O

(
s2

n

))
. (A.1)

Also. for any fixed s with s �∈ N, we have1289

Ln(s) = −nsΓ(−s)

(
1 + O

(
1

n

))
. (A.2)

10 Many thanks are due to Philippe Flajolet for discussions on this proof.
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Proof. We have1290

n!(−1)n

s(s − 1) · · · (s − n)
= − n!

−s(−s + 1) · · · (−s + n)
= −Γ(n + 1)Γ(−s)

Γ(n − s + 1)
.

Stirling’s formula holds in the complex plane, provided a sector around the negative real1291

axis is avoided. Under this condition, we have1292

Γ(w + 1) = wwe−w
√

2πw

(
1 + O

(
1

n

))
, |w| → +∞. (A.3)

With the Stirling formula,1293

Γ(n + 1)

Γ(n − s + 1)
=

nne−n
√

2πn

(n − s)s+nes−n
√

2π(n − s)

(
1 + O

(
1

n

))

= exp[n log n − (n − s) log(n − s) − s]

(
1 + O

(
1√
n

))

= exp[s log n − (n − s) log(1 + s/n) − s]

(
1 + O

(
1√
n

))
.

In the region under consideration, we have s/n = O(1/
√
n), which is a small quantity, so1294

that log(1 + s/n) = s/n + O(s2/n2). Consequently,1295

Γ(n + 1)

Γ(n − s + 1)
= ns exp

[
O

(
s2

n

)](
1 + O

(
1√
n

))

= ns
(

1 + O

(
1√
n

)
+ O

(
s2

n

))
,

and we obtain (A.1). The proof of (A.2) is similar, indeed simpler, via the relation1296

s/n = O(1/n).1297

A.2. Far from the real axis1298

Lemma A.2. Fix any number m > 0. Then, there exists a computable constant Km > 0 such1299

that, for n large enough, s = b + it, b fixed and t � √
n, we have1300

|Ln(s)| � Km

tm
e−B

√
n, with B = log(

√
2).

Proof. The proof is given for b = 0, but extends to any fixed value of b. Choose an1301

integer m > 0 and set A = �
√
n�. We write1302

|Ln(s)| =

∣∣∣∣ n!

s(s − 1)(s − 2) · · · (s − n)

∣∣∣∣ =
1

|s|

m∏
a=1

∣∣∣∣ a

a − s

∣∣∣∣
m+A∏

a=m+1

∣∣∣∣ a

a − s

∣∣∣∣
n∏

a=m+A+1

∣∣∣∣ a

a − s

∣∣∣∣
The first product has a trivial bound:1303

m∏
a=1

∣∣∣∣ a

a − s

∣∣∣∣ < m!

tm
. (A.4)

For the second product, the complex s is close to the imaginary axis when n → ∞. The1304

triangle (a, 0, s) is approximately a right-angled triangle. The angle β at a satisfies, for n1305
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large,1306

tan(β) ∼ |s|
|a| � 1, and thus

∣∣∣∣ a

a − s

∣∣∣∣ = cos(β) < cos

(
π

4

)
=

(
1√
2

)A

.

resulting in1307

m+A∏
a=m+1

∣∣∣∣ a

s − a

∣∣∣∣ <
(

1√
2

)A

. (A.5)

For the third product, we use the triangle inequality, which gives |a/(a − s)| < 1 and1308

n∏
a=m+A+1

∣∣∣∣ a

a − s

∣∣∣∣ < 1. (A.6)

Collecting (A.4), (A.5), (A.6), we have1309

|Ln(s)| <
m!

tm

(
1√
2

)A

=
m!

tm
e−B

√
n.

Then, Km = m! and B = log(
√

2).1310

A.3. Proof of Proposition A.11311

It remains to prove assertions (ii) and (iii). We only need to consider the integrals in the1312

upper half-plane. We use T =
√
n as a cut-off point and decompose each positive part ρ̃1313

of the curve – the vertical line or the hyperbolic curve ρ – into two parts.1314

Case of a vertical line. We use the decomposition1315 ∫
ρ̃

	(s)Ln(s)ds =

∫ α+iT

s=α

	(s)Ln(s)ds +

∫ α+i∞

s=α+iT

	(s)Ln(s)ds.

Near the real axis, namely for s ∈ [α, α + iT ], we apply Lemma A.1:1316 ∫ α+iT

s=α

	(s)Ln(s)ds = −
∫ α+iT

s=α

nsΓ(−s)	(s)(1 + O(n−1))ds. (A.7)

As the fast decay of Γ(s) compensates more for the polynomial growth of 	(s) and1317

|ns| = nα, the integral is O(nα).1318

Far from the real axis, namely for s ∈ [α + iT , α + ∞t], we apply Lemma A.2,1319 ∫ α+i∞

s=α+iT

|Ln(s)|ds < Kme
−L

√
n

∫ ∞

t=T

tr

tm
dt = O(e−L

√
n), (A.8)

for n large enough, provided m has been chosen such that m > r + 2. The combination of1320

equations (A.7) and (A.8) yields the claimed estimate in the case of a vertical line.1321

Case of a hyperbolic curve. Now consider the case of a hyperbolic curve, and consider1322

the two parts of the curve ρ̃: the curve ρ− (near the real axis) and the curve ρ+ (near1323

imaginary infinity):1324 ∫
ρ̃

	(s)Ln(s)ds =

∫
ρ+

	(s)Ln(s)ds +

∫
ρ−

	(s)Ln(s)ds. (A.9)
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In the case of the curve ρ+, which resembles a vertical line, we apply Lemma A.1,1325 ∣∣∣∣
∫
ρ+

	(s)Ln(s)ds

∣∣∣∣ < Km

∫ ∞

T

O(tr) · O(t−m) · e−L
√
ndt = O(e−L

√
n), (A.10)

for n large enough, provided that m has been chosen such that m > r + 2.1326

Now, near the real axis, Lemma A.2 gives1327 ∫
ρ−

	(s)Ln(s)ds =

(∫
ρ−

nsΓ(−s)	(s)ds

)(
1 + O(n−1)

)
. (A.11)

Letting s := σ + it, and L := log n, we use the estimates1328

|ns| = nσ = nσ0 exp[−ALt−β0 ], |	(s)Γ(−s)| � exp[−Kt]

(for some K > 0). The first one is due to the definition of the curve whereas the second1329

one uses the fast decay of Γ(−s), which more than compensates for the polynomial growth1330

of 	(s). With L := log n, the modulus of the integrand is at most1331

|Ln(s)| � nσ0 exp[−Kt − ALt−β0 ].

When n (and then L) is fixed, the minimum of the function t �→ Kt + ALt−β0 is reached1332

for tβ0+1 = β0L/K . Then the maximum of |Ln(s) is of order nσ0 exp[−(log n)β] with1333

β < 1/(1 + β0). Using the same principles as in the Laplace method, we obtain the1334

estimate1335 ∫
ρ−

Ln(s)ds = nσ0O(exp[−(log n)β]) with β < 1/(1 + β0).

This yields the claimed estimate in the case of a hyperbolic curve.The proof of Proposi-1336

tion A.1 is now complete.1337
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