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Stochastic dynamics of collective modes for Brownian dipoles
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The individual motion of a colloidal particle is described by an overdamped Langevin equation. When rotational
degrees of freedom are relevant, these are described by a corresponding Langevin process. Our purpose is to
show that the microscopic local density of colloids, in terms of a space and rotation state, also evolves according
to a Langevin equation. The latter can then be used as the starting point of a variety of approaches, ranging from
dynamical density functional theory to mode-coupling approximations.
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I. THE INTEREST OF STUDYING COLLECTIVE MODES

Back in 1994, Kawasaki [1] proposed a phenomenological
equation for the evolution of the local density modes of an
assembly of interacting colloids, the individual dynamics of
which are governed by an overdamped Langevin process.
Kawasaki’s evolution equation was then used as a starting
point in dynamical density functional studies of supercooled
liquids. However, beyond its phenomenological nature, the
exact meaning of the coarse-grained density that the Kawasaki
equation theory deals with was unclear. A clarifying work
by Dean [2] came a little later: an exact Langevin equation
bearing on the microscopic colloidal density was put forward.
Dean’s equation has the pleasant feature that it involves the
free energy of a density profile in a physically transparent form
(with an entropic term arising from the ideal gas contribution,
and the standard two-body interaction for the potential energy
term). Beyond soon-to-be-resolved controversies [3–5] that
have to do with the singular nature of the local density field
(this is formally a sum of Dirac δ’s centered around each
particle’s position), the idea of Dean was then extended [6] to
underdamped Langevin dynamics, yielding consistency with
momentum-conserving fluctuating hydrodynamics, and the
relation to dynamical density functional theory (DDFT) was
further discussed by Yoshimori [7]. The statistical properties
of the Brownian gas were recovered in Ref. [8] with an
exact perturbative analysis of Dean’s equation. Nontrivial
concrete applications (that we are aware of) pertain to the
realm of glassy dynamics. The equation was exploited by a
series of authors, Miyazaki and Reichman [9], Andreanov,
Biroli, and Lefèvre [10], Basu and Ramaswamy [11], Kim
and Kawasaki [12,13], and more recently by Kim, Kawasaki,
Jacquin, and Van Wijland [14]. Connections of Dean’s deriva-
tion with other field-theory-based approaches were discussed
by Velenich, Chamon, Cugliandolo, and Kreimer [8] and An-
dreanov, Biroli, Bouchaud, and Lefèvre [15]. The motivation
behind this series of works is to provide a description of the
slowing down of the dynamics in the “supercooled” regime of
colloidal glass formers directly in terms of collective modes,
rather than resorting to the cumbersome projection operator

technique. This is more easily said than done, but it is a
developing research direction at present.

When colloids further possess rotational degrees of free-
dom, a number of physical complications emerge, as discussed
by Han et al. [16], in a careful study of the rotational
Brownian motion of ellipsoidal colloids. The assumed one-to-
one correspondence [17] between rotational and translational
diffusion is thus questioned, especially in active matter studies
where it is often important to filter out thermal fluctuations
from the contributions of the active processes driving the
system of interest out of equilibrium [18]. Similar questions
arise at the level of collective behavior, most notably in the
field of glasses, where translational and rotational degrees of
freedom have been shown to respond differently to temperature
or density changes. DDFT including rotational degrees of
freedom was derived and analyzed by Bagchi and Chandra [19]
and Wittkowski and Löwen [20], in the spirit of the early
approach of Kawasaki [1].

Our goal in this work is to establish a stochastic evolution
equation for the microscopic local density of rigid dipoles, with
given orientation and position. We will show that it takes the
form of a Langevin equation with some features that are very
similar to the ones discussed by Dean [2], but with a number of
differences due to the more complex individual rotational dy-
namics. We shall begin with a brief description of the rotational
motion of a single colloid in terms of a Langevin process. We
will then construct a Langevin equation for the local density
of a set of interacting particles. Our conclusion will point to a
number of direct applications that we plan for the future.

II. DYNAMICS OF A SINGLE PARTICLE

The translational motion of a particle i is characterized by
its time-dependent position ri and velocity vi . Each particle
carries an electric dipole orientation pi , also time dependent.
We assume for simplicity that the molecules are not polarizable
so that their dipolar momentum is simply pi . Although constant
in modulus, the orientation of the dipole is time dependent and
can be characterized by an angular velocity vector ωi such that
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dpi

dt
= ωi × pi . It is subjected to an external force Fi and to an

external torque �i . For a particle of mass m and inertia tensor
I (we have thin rods in mind), we have that

m
dvi

dt
= −γ vi + Fi + ηi , (1)

I
dωi

dt
= −ζωi + �i + λi . (2)

Here ηi and λi are Gaussian random forces and torques,
respectively, introduced to account for the thermal exchanges
with the surrounding medium. The friction coefficients γ

and ζ govern the dissipation into the thermal bath. Just as
γ and ηi are related by a Stokes-Einstein relation, a similar
relation between ζ and λi exists. We refer to the existing
literature [21–23] for a comprehensive presentation of the
motivations behind the modeling in Eqs. (1) and (2) which we
take for granted. As explained in these references, the Gaussian
random contributions ηi and λi have δ correlations in time, the
amplitude of which is constrained by the condition that for
conservative forces the equilibrium distribution should be the
standard Boltzmann-Gibbs exponential factor 〈ηi(t)ηj (t ′)〉 =
2γ kBT δij δ(t − t ′), and similarly for λi(t) with γ replaced by
ζ . Details about this can be found in Ref. [23]. In physical
conditions under which inertial effects can be discarded, at low
Reynolds numbers, we obtain a set of overdamped Langevin
equations

γ
dri

dt
= Fi + ηi , (3)

ζ
dpi

dt
= �i × pi + λi × pi , (4)

in which the latter equation, which features a multiplicative
noise, is to be understood with the Stratonovich, midpoint,
discretization scheme. Indeed, the Stratonovich convention is
manifestly consistent with the conservation of the modulus
of the dipole, as can be seen directly from (4), but we will
not make explicit use of that property in the course of our
derivation (although it is of course duly preserved). The
dangers and subtleties of this Langevin equation have been
recently thoroughly investigated in Ref. [24]. The ingredients
entering the force Fi experienced by particle i include an
external force field and possible interactions with other
colloids (which, for simplicity, we will assume to be two
body). Similarly, the torque �i experienced by particle i

can include the effect of an external field. In general, the
interaction energy V (ri − rj ,pi ,pj ) between particles i and
j depends on the distance between these particles and on
the orientation of the dipoles they carry, as is the case in
the well-known dipole-dipole interaction V (ri − rj ,pi ,pj ) =

1
4πε0

(
pi ·pj

r3
ij

− 3 (pi ·rij )(pj ·rij )
r5
ij

)
. Both the force Fi and the torque

are then derived from the total potential energy Epot =
1
2

∑
i �=j V (ri − rj ,pi ,pj ) according to

Fi = −∂Epot

∂ri

, (5)

�i = −pi × ∂Epot

∂pi

. (6)

The combination �i × pi can also be written in the form

�i × pi = Eip
2
i − (pi · Ei)p, (7)

Ei = −∂Epot

∂pi

. (8)

The individual dynamics of each particle being now given,
we set out to determine the evolution dynamics of the local
particle and dipole density.

III. COLLECTIVE MODES

The position-dipole density ρ is defined by

ρ(x,π ,t) =
∑

i

δ(x − ri)δ(π − pi), (9)

where the δ’s are actually vectorial δ(3)’s. Our goal is to find
an evolution equation for the fluctuating microscopic density
ρ. We begin by writing that

∂tρ = −∂x ·
∑

i

dri

dt
δ(x − ri)δ(π − pi)

− ∂π ·
∑

i

dpi

dt
δ(x − ri)δ(π − pi). (10)

We have applied the usual rules of differential calculus, as
allowed by the use of the Stratonovich discretization prescrip-
tion. Note that even though (3) is discretization independent,
the resulting multiplicative noise (10) is understood in the
Stratonovich sense. Then we insert in Eq. (10) the evolution
equations for the individual position and dipole ri and pi , as
given in Eqs. (3) and (4). This leads to

∂tρ = −∂x ·
∑

i

1

γ
(Fi + ηi) δ(x − ri)δ(π − pi)

− ∂π ·
∑

i

1

ζ
((�i + λi) × pi)δ(x − ri)δ(π − pi). (11)

Our method follows the one described by Van Kampen [25]: we
determine the Kramers-Moyal coefficients of ρ and this leads
us to identify an evolution equation (which will be of Langevin
form) characterized by the same Kramers-Moyal coefficients.
This path is completely equivalent to the Itô calculus used
by Dean [2] but physicists may be more familiar with it. The
idea is to evaluate the moments of �ρ = ρ(x,π ,t + �t) −
ρ(x,π ,t) = ∫ t+�t

t
dτ∂τρ for a random process taking place

between t and t + �t , with fixed value of the density ρ at the
initial time t , and with ∂τρ being given by the right-hand side
(RHS) of (11). We are interested in

lim
�t→0

〈�ρk〉
�t

, (12)

where, for k � 2, the �ρ’s are evaluated at distinct x,π

arguments. As is obvious from Eq. (11), this limit vanishes
for any value of k � 3. This means that ρ evolves according
to a Langevin equation. It suffices to determine the first
two nontrivial moments of �ρ. The second one, which is
insensitive to discretization choices, and with an obvious
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notational shortcut, reads

〈�ρ�ρ ′〉
�t

=
[

2T

γ
∂x∂x′ + 2T

ζ
∂πα∂π ′β (π · π ′δαβ − παπ ′β)

]

× ρ(x,π )δ(x − x′)δ(π − π ′). (13)

(We set kB = 1.) The first moment is somewhat more delicate
to evaluate, because of the chosen midpoint discretization
scheme. Defining �αβ = π2δαβ − παπβ , we have

〈�ρ〉
�t

= T γ −1∂2
x ρ + T ζ−1∂πα∂πβ (�αβρ)

+ 2T ζ−1∂πα (παρ) − γ −1∂x · (ρf)

− ζ−1∂π · [ρg × π ], (14)

where f = − ∫
x′,π ′ ∂xV (x − x′,π ,π ′)ρ(x′,π ′) and g = π ×

E, with the local electric field E = − ∫
x′,π ′ ∂πV (x −

x′,π ,π ′)ρ(x′,π ′). The vector fields f and g are the force and
torque density, respectively. The last two terms in Eq. (14)
are the direct consequence of the deterministic contributions
Fi and �i in Eq. (3). The first three contributions are often
gathered under the spurious drift terminology, in spite of their
physically obvious meaning (these are diffusion terms).

We can immediately write down the corresponding
Langevin equation governing the evolution of ρ, which we
choose to write in the Itô scheme. In this discretization
scheme 〈�ρ〉/�t yields the “force” term, while 〈�ρ�ρ ′〉/�t

determines the factor that multiplies the noise. We cast the
ensuing Langevin equation in the form of a generalized
continuity equation:

∂tρ = −∂x · j − ∂π · k, (15)

where the spatial j current reads

j = −T γ −1∂xρ + γ −1ρf + σ x (16)

with 〈σ x(x,π ,t)〉 = 0 and〈
σα

x (x,π ,t)σβ
x (x′,π ′,t ′)

〉
= 2T γ −1ρδαβδ(t − t ′)δ(x − x′)δ(π − π ′). (17)

The dipole rotational current k has the expression

kα = −T ζ−1∂πβ (�αβρ) + ζ−1(Eβ�αβ − 2T πα)ρ + χα

= −T ζ−1�αβ∂πβ ρ + ζ−1Eβ�αβρ + σα
π (18)

and the Gaussian noise σα
π has zero average and correlations〈

σα
π (x,π ,t)σβ

π (x′,π ′,t ′)
〉

= 2T ζ−1 �αβρ δ(t − t ′)δ(x − x′)δ(π − π ′). (19)

The local field E was defined after (14). There is a compact
way of rewriting the Langevin equation for ρ that takes us one
step closer to recent works exploiting a free-energy functional
(e.g. [20]), that we denote by

F [ρ] = T

∫
x,π

ρ(x,π ) ln

(
ρ(x,π )

ρeq

)

+ 1

2

∫
x,x′,π ,π ′

ρ(x,π )V (x − x′,π ,π ′)ρ(x′,π ′), (20)

where ρeq = ρ0

4π
for a space density ρ0 of dipoles with

no orientational order. If an external field Eext is applied,

the right-hand side of (20) must be supplemented with a
contribution − ∫

x,π
ρ(x,π )π · Eext. We may then recast the

Langevin evolution of ρ in the following synthetic form:

∂tρ = (∂x∂π )

[
ρ

(
γ −11 0

0 ζ−1�

)(
∂x
∂π

)
δF

δρ
+ σ

]
.

(21)

The Gaussian noise σ = (σ x,σπ ) has correlations

〈σ (x,π ,t) ⊗ σ (x′,π ′,t ′)〉

= 2Tρ

(
γ −11 0

0 ζ−1�

)
δ(x − x′)δ(π − π ′)δ(t − t ′). (22)

Note that, by construction from the Kramers-Moyal coeffi-
cients, both Langevin equations (15) [supplemented with the
definition of the local fluctuating currents (16), (18)], and (21)
are to be understood with the Itô discretization scheme. In
the absence of dipolar degrees of freedom this equation boils
down to the one in Ref. [2].

A natural technical question that arises regards the choice
of Cartesian rather than spherical, coordinates, given that the
latter are ideally suited to deal with vectors with constant
norm. Our preference for Cartesian coordinates lies in the
awkward properties of the Langevin noise in the right-hand
side of (4) when it is expressed in terms of spherical
coordinates coding for the direction of the dipolar momentum:
noise is multiplicative, and has nonzero average (see [24] for a
clear exposition); hence our choice of manipulating Cartesian
coordinates when evaluating the Kramers-Moyal coefficients.
It is however a very simple matter to rephrase (21) in terms of
π/p which exists on the unit sphere (here p = ||pi || denotes
the individual dipole carried by each particle). We arrive at the
following Langevin equation for ρ(x,π ,t):

∂tρ = (∂x∂π )

[
ρ

(
γ −11 0

0 ζ−11

) (
∂x
∂π

)
δF

δρ
+ σ

]
, (23)

where now the differential operator ∂π acts on the sphere.
So far we have achieved our primary goal, namely, that

of projecting the dynamics of the individual dipoles onto the
dynamics of their density modes, the latter evolving according
to a Langevin equation with multiplicative noise. Before we
discuss the consequences of our finding we wish to propose a
number of comments. First, it is important to realize that the
fluctuating density field ρ is a highly singular object (a sum
of δ peaks). This is neither a partially smoothed nor a coarse-
grained version of the density. As such, the Langevin evolution
for ρ includes all the microscopic details of the dynamics. As
can be read in the existing literature, trial density functionals,
whether for statics [19] or dynamics [20], always involve
dressed correlations instead of the bare interaction potential,
as we have in our Eq. (20). It has been shown [13], within
the more conventional framework of translational motion of
colloids, that using a dressed free-energy functional could
lead to spurious findings when building up approximation
schemes. Our second comment is of more technical nature.
It is possible to construct a Martin–Siggia–Rose–Janssen–De
Dominicis path-integral formulation that is fully equivalent
to the Langevin formulation (see [26] for a comprehensive
review). Once the path integral is reexpressed in terms of a pair
of bosonic fields via a Cole-Hopf transformation (see [8] or
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Chap. 9 in Ref. [26]), the ideal gas is described by a quadratic
action, and the stage is set for approximations that expand
around the ideal gas (such as a dynamical version of the virial
expansion). We will return to this in the final section. Further
mathematical considerations along the lines of those presented
by Jack and Zimmer [27] on Dean’s equation could certainly
extend to the equation that we propose here.

IV. CORRELATIONS AND COLLECTIVE EFFECTS

The results presented in the previous section may appear
to be formal. It is, however, interesting to explore a few doors
they open up, something we do in this section.

Once a Langevin equation is obtained for ρ, be it nonlinear
and with multiplicative noise, simple approximations can be
devised. Suppose one is interested in correlations between
dipole orientations. Then the first task is to evaluate the two-
body correlations C(x,π ,t ; x′,π ′,t ′) ≡ 〈ρ(x,π ,t)ρ(x′,π ′,t ′)〉
(with, for concreteness, t > t ′). These are connected to three-
body correlations via a Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy, the first equation of which reads

∂tC(x,π ,t ; x′,π ′,t ′) = T γ −1∂2
x C(x,π ,t ; x′,π ′,t ′)

+ T ζ−1∂π [�∂πC(x,π ,t ; x′,π ′,t ′)]

+ γ −1
∫

x′′,π ′′
∂x · [∂xV (x − x′′,π ,π ′′)

×C(3)(x,π ,t ; x′′,π ′′,t ; x′,π ′,t ′)]

+ ζ−1
∫

x′′,π ′′
∂π · [�∂πV (x − x′′,π ,π ′′)

×C(3)(x,π ,t ; x′′,π ′′,t ; x′,π ′,t ′)], (24)

where C(3)(x,π ,t ; x′′,π ′′,t ; x′,π ′,t ′) stands for
〈ρ(x,π ,t)ρ(x′′,π ′′,t)ρ(x′,π ′,t ′)〉. If the quantity of interest
is indeed the two-point function, the difficulty then lies in
expressing, by means of appropriate approximations, the
right-hand side of (24) in terms of two-body correlations.
We illustrate in the following sections two strategies that our
functional formalism allows us to phrase in an elegant way.

A. The random phase approximation closure scheme

The simplest closure scheme, which in liquid state the-
ory [28] is often termed the random phase approximation
(RPA) scheme, translates, in the density language, into a
Gaussian truncation for the fluctuations around the mean
density. Suppose we are in a disordered phase with equilibrium
density given by ρeq = 〈ρ〉 = ρ0

4π
, where ρ0 is the actual

particle density. We immediately obtain that in the time-
translation-invariant regime, with τ = t − t ′, correlations
evolve according to

∂τC(x,π ,x′,π ′,τ )

= (
γ −1∂2

x + ζ−1∂π · �∂π

)[
T C(x,π ,x′,π ′,τ )

+ ρ0

4π

∫
x′′,π ′′

V (x − x′′,π ,π ′′)C(x′′,π ′′,x′,π ′,τ )

]
(25)

in full agreement, of course, with the entire Sec. V in Ref. [19],
but at virtually no technical cost. The RPA is notoriously
unable to address nonlinear effects, such as the glass transition,
that are observed when denser systems are considered. The
next section illustrates, following the ideas presented in
Ref. [9], but supplemented with the formalism of [13], how
functional methods can efficiently match other theoretical
approaches.

B. A memory kernel approach

A more refined approximation scheme is the mode-coupling
approach. The mode-coupling theory (MCT) was first ap-
plied [29] to pointlike particles with Hamiltonian dynamics
and it was later extended by Szamel and Löwen [30] to
pointlike particles with overdamped Langevin dynamics. For
particles with an internal structure, Schilling and Scheidste-
ger [31] extended the original calculation for Hamiltonian
dynamics to linear molecules. Our purpose here is twofold. We
want to illustrate the elegance and compactness of functional
methods by showing that a quadratic approximation to F
coupled to a one-loop expansion leads to a mode-coupling
equation for two-body correlations. We will thus present a
result for a mode-coupling equation for polar molecules that
tries to extend that of [31] to the Langevin case (in much the
same way as [30] extended [29]).

One way to understand the approximations behind the
mode-coupling equation for C that can be found in the
literature [31] is to postulate a simple quadratic approximation
for the equilibrium free-energy functional F that we express
in terms of ψ = ρ − ρ0

4π
,

βF [ψ] = 1

2

∫
x,π ,x′,π ′

ψ(x,π )C−1
eq (x,π ; x′,π ′)ψ(x′,π ′), (26)

and to endow the density modes with the same dynamics as in
Eq. (21). The equilibrium static correlations are given by Ceq

and the inverse has to be understood operationally.
In a dynamical functional formulation like that of

Janssen [32] and De Dominicis [33] the action reads

S[ψ̄,ψ] =
∫

t,x,π

[
iψ̄∂tψ + T γ −1ρ (∂xiψ̄) · ∂x

(
C−1

eq ∗ ψ
)

+ T ζ−1ρ (∂πα iψ̄)�αβ∂πβ

(
C−1

eq ∗ψ
)

− T γ −1ρ (∂xiψ̄)2 − T ζ−1ρ (∂πα iψ̄)�αβ∂πβ iψ̄
]
,

(27)

where ∗ is defined by

C−1
eq ∗ ψ(x,π ,t) =

∫
x′′,π ′′

C−1
eq (x,π ; x′′,π ′′)ψ(x′′,π ′′,t).

The only interaction terms of the resulting field theory are
cubic, and they arise from the multiplicative ρ factor, bearing
in mind that ρ = ρ0

4π
+ ψ . The generating functional is Z =∫

DψDψ Pi[ψ(−T )]e−S[ψ,ψ] where Pi is the field probability
at the initial time −T which, in canonical equilibrium, is given
by Pi[ψ(−T )] = Z−1e−βF [ψ(−T )], with Z the normalization
constant.
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The action S + ln Pi (as well as the measure) is invariant
under the linear transformation

ψ(x,π ; t) 
→ ψ(x,π ,−t), (28)

iψ(x,π ; t) 
→ −iψ(x,π ,−t) + 1

T

δF

δψ(x,π ,−t)
. (29)

The stochastic equation on ρ, although with multiplicative
noise and in the Itô convention, does not imply any unconven-
tional chain rule for the time derivatives of functionals of ρ.
The corresponding dynamic action (27) is also insensitive to
the discretization rule.

A more compact way of writing (27) is to define a dif-
ferential operator �D acting on the (3 + 3)-dimensional phys-
ical and dipolar spaces, defined by �D = (γ −1/2∂x,ζ

−1/2iL)
(where iL = π × ∂π ), which allows us to rewrite the
action as

S[ψ̄,ψ] =
∫

t,x,π

[
iψ̄∂tψ + T

ρ0

4π
�Diψ̄ · �D(

C−1
eq ∗ ψ

)

− T
ρ0

4π
( �Diψ̄)2 + T ψ �Diψ̄ · �D(

C−1
eq ∗ ψ

)

−T ψ( �Diψ̄)2

]
.

Formally at least, we are working within the framework
of “class II” systems considered in Ref. [9], and our con-
tribution now consists in dealing with the more complex
space structure and in exploiting time-reversal invariance
[Eqs. (28) and (29)] in a slightly more compact fashion. With
standard notations, the Schwinger-Dyson equation for the four
correlations between the fields, gathered in a matrix G, reads
G−1

0 G = 1 − �G, where G0 is the propagator related to the
Gaussian part of the action (30). The matrix G’s entries are the
various ψ̄ψ̄ , ψ̄ψ , or ψψ correlations. The former being zero
by causality, G can be expressed solely in terms of C = 〈ψψ〉
and R = 〈iψ̄ψ〉. Assuming time-translational invariance we
project the Schwinger-Dyson equation for each matrix entry,
to arrive at

∂tC(t) − T
ρ0

4π
�D2

(
C−1

eq ∗ C(t)
)

= −
∫ +∞

−∞
dτ �ψ̄ψ̄ (t − τ ) ∗ R(−τ )

−
∫ +∞

−∞
dτ �ψ̄ψ (t − τ ) ∗ C(τ ).

To alleviate the overall appearance of the equation we have
momentarily dropped the space and orientational coordinates
and we have kept only the time dependence. A similar equation
holds for the evolution of R but, under the assumptions we are
using, it is actually strictly redundant.

The time-reversibility symmetry (28) and (29) leads to a
tremendous simplification, because it is linear and it leaves the
Gaussian part and the interaction part of the dynamic action
separately invariant. Hence, on top of being causal, R is simply
related to C. Using the symmetry (28) and (29) we recover the
result found by Deker and Haake [34] in a straightforward fash-

ion; given that 〈iψ̄(0)ψ(t)〉 = 〈
(
−iψ(0) + 1

T
δF

δψ(0)

)
ψ(−t)〉,

FIG. 1. The left diagram has two R internal lines, while the right
one has an R and a C internal line (an arrowed leg denotes a response
field ψ̄ and a plain leg denotes the density field ψ).

we arrive at

R(t) + R(−t) = C−1
eq ∗ C(t). (30)

Using the techniques developed in Ref. [13], a similar relation
can be shown to hold for the vertex functions,

�ψ̄ψ (t) + �ψ̄ψ (−t) = −C−1
eq ∗ �ψ̄ψ̄ (t). (31)

Using these proportionality relations along with the causality
of R and �ψ̄ψ , we immediately arrive at

∂tC(t) − T
ρ0

4π
�D2

(
C−1

eq ∗ C(t)
)

= −
∫ t

0
dτ �ψ̄ψ (t − τ ) ∗ C(τ ), (32)

which is still devoid of any approximation (beyond the
quadratic assumption on F and equilibrium).

The only task left is to evaluate the vertex function �ψ̄ψ ,
which can be done in a loop expansion or, in other words, in
powers of the cubic interaction terms. If �ψ̄ψ is determined in
a perturbation theory then, to leading order, both (32) and

∂tC(t) − T
ρ0

4π
�D2

(
C−1

eq ∗ C(t)
)

= 4π

ρ0T

∫ t

0
dτ �ψ̄ψ (t − τ ) ∗ (Ceq ∗ ( �D2)−1∂τC(τ )) (33)

are equivalent. Equation (33) has the exact same structure as
the mode-coupling equation derived in [30] on condition that
the memory kernel can be expressed as a quadratic form in C.

This is indeed the case because the two diagrams shown in
Fig. 1 that contribute to �ψ̄ψ have internal loops involving C

and R.
The algebra simplifies greatly if we focus on the

Fourier transform of C(x,π ; x′,π ′,t), which we denote by
C(k; m,l; m′,�′,t) (where k is conjugate to x − x′, and �,m, �′,
and m′ are the indices of the coefficients of the expansion of C

on the spherical harmonics). Some tedious algebra leads to the
one-loop expression for �ψ̄ψ in terms of C. To indicate space
and orientational degrees of freedom we use the short notation
n = (xn,πn) and use the Einstein convention on repeated
indices. The memory kernel �ψ̄ψ (1,2; t) has the following
explicit expression:

�ψ̄ψ (1,2; t)

= T 2D
β

2

{−2
(
Dα

1 R(2,1)
)(

D
β

2 C−1
eq (2,3)

)(
Dα

1 R(3,1)
)

+ (
Dα

1 R(4,1)
)(

Dα
1 C−1

eq (1,3)
)(

D
β

2 C−1
eq (2,4)

)
C(2,3)

+ (
Dα

1 R(2,1)
)(

Dα
1 C−1

eq (1,3)
)(

D
β

2 C−1
eq (2,4)

)
C(3,4)

+ (
Dα

3 C−1
eq (3,1)

)(
D

β

2 C−1
eq (2,4)

)(
Dα

3 R(4,3)
)
C(3,2)

+ (
Dα

3 C−1
eq (3,1)

)(
D

β

2 C−1
eq (2,4)

)(
D

β

3 R(2,3)
)
C(3,4)

}
,

032139-5
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�ψ̄ψ (1,2; t)

= T 2D
β

2

{−2
(
Dα

1 R(2,1)
)(

D
β

2 C−1
eq (2,3)

)(
Dα

1 R(3,1)
)

+ (
Dα

1 R(4,1)
)(

Dα
1 C−1

eq (1,3)
)(

D
β

2 C−1
eq (2,4)

)
C(2,3)

+ (
Dα

1 R(2,1)
)(

Dα
1 C−1

eq (1,3)
)(

D
β

2 C−1
eq (2,4)

)
C(3,4)

+ (
Dα

3 C−1
eq (3,1)

)(
D

β

2 C−1
eq (2,4)

)(
Dα

3 R(4,3)
)
C(3,2)

+ (
Dα

3 C−1
eq (3,1)

)(
D

β

2 C−1
eq (2,4)

)(
D

β

3 R(2,3)
)
C(3,4)

}
,

where �Dn means that the derivatives are taken with respect
to xn and πn. While the above expression for the memory
kernel �ψ̄ψ appears overly intricate, owing to the absence of
translation invariance in dipolar space, a simple check that
this result must be correct is first to replace �D with ∂x while
forgetting about dipolar coordinates, and then go to Fourier
space. The standard mode-coupling memory kernel found in
Refs. [29,30] is then immediately recovered, on condition
that the inverse structure factor C−1

eq is replaced with the
direct correlation function −C−1

eq + 1/(ρ0/4π ). This proviso
comes from our using a Gaussian truncated equilibrium energy
even for the ideal gas, instead of the standard entropic ρ ln ρ

contribution arising from Poisson statistics. It was shown
explicitly in Ref. [14] (Sec. IV A) how to recover the original
mode-coupling kernel with the direct correlation function
appearing in the memory kernel, instead of the structure factor.
With this caveat in mind, keeping dipolar coordinates but using
the Fourier variables conjugate to the real space coordinates,
we realize that our memory kernel is identical to that presented
in Ref. [31], and which was derived there for Hamiltonian
dynamics by means of more standard projection techniques.

V. CONCLUSIONS

We have presented a derivation of the Dean-Kawasaki
equation for systems with translational and rotational degrees
of freedom. After having written this equation, we discussed
the BBGKY hierarchy of equations ruling the evolution of
the correlation functions and two approximations, the RPA
Gaussian closure and the MCT.

One can envisage extending the renormalized perturbation
theory techniques proposed by Kim and Kawasaki for the
field theory associated with the density field of pointlike
particles [12,13] to the present case with both translational
and rotational degrees of freedom. In this way one should be
able to obtain evolution equations for the density correlation
functions, probably differing from those obtained in Ref. [35].
This is of great interest since the onset of glassiness does not
occur at the same temperatures for translational degrees of
freedom and for rotational ones. Hence a global treatment of
both translational and rotational degrees of freedom would
allow one to explicitly disentangle the former from the latter.
Applications to other fields can also be foreseen.

On the one hand, the interplay between translational and
rotational motion is of particular interest in active matter as
active units are typically elongated. This is the case in both
natural, as in bacteria, or artificial, as in chemically propelled
nanorod, systems. Activation can be modeled at the level of
the departing Langevin equation for the single units, as was

done in Refs. [36–38] for dumbbell particles, and the extension
to Eq. (21) be readily worked out. One could also choose a
simpler approach and add sources of activation at the level of
Eq. (21) by supplementing it with nonthermal sources of noise
or by embedding it in an external density-dependent velocity
field.

Multiplicative noise always arises in mechanical over-
damped rotational Brownian motion, which in turn is in use for
handling the thermal random rotational dynamics of perma-
nent electric dipoles, as well as Langevin paramagnets relevant
to the Debye relaxation mechanism in ferrofluids [23,39].
Multiplicative noise is also important for handling the Néel
relaxation mechanism pertaining to the thermally activated
magnetization reversal inside magnetic nanoparticles, where
the micromagnetic magnetization rotation mode is the Stoner-
Wohlfarth uniform mode [40]. In particular, as shown in the
Appendix, our formalism allows the direct treatment of the
dynamics of interacting magnetic nanoparticle assemblies,
had the magnetic particles been frozen in a solid matrix—in
which case only the spin degrees of freedom are relevant—or
with coupled mechanical and spin degrees of freedom if
the assembly consists of colloidal suspensions in a liquid
carrier. The problem of handling such dynamics is extremely
important from both the fundamental and the applied points of
view [41,42].
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APPENDIX: MAGNETIC DIPOLES

In this Appendix we briefly review the magnetic analog of
the calculation presented in the body of this paper, pointing to
existing differences with electric dipoles. The physical system
we have in mind is a suspension of anisotropic magnetic
nanoparticles, which, as well as being characterized by a
position ri and a direction π i (which does not have to be
related to an actual electric dipole and may just be a director if
the particle is anisotropic), now bear a magnetic dipole μi . The
energy Epot({ri ,pi ,μi}) of this set of particles now contains a
magnetic dipole pair interaction of the form

Epot|mag = U0

∑
i,j

μi · μj − 3(r̂ij · μi)(r̂ij · μj )

r3
ij

, (A1)

but simpler, Heisenberg-like pair interactions have also been
considered in the past [43]. The physics of our energy function
differs from those that can be found in continuous field descrip-
tions [44,45] in that we have neglected inertial contributions.
In addition to the individual evolution equations (1) and (2),
each magnetic dipole evolves according to the Gilbert-Landau-
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Lifschitz equation [46,47] (and the notations of [24]):

dμi

dt
= −γ0μi ×

(
−∂μi

Epot + hi − η

μs

dμi

dt

)
, (A2)

where hi(t) is a Gaussian random white noise with variance
2T η

μs
The potential energy Epot may now depend on the μj ’s.

The latter equation, using the notation Hi = −∂μi
Epot, is

equivalent to

dμi

dt
= − γ0

1 + γ 2
0 η2

μi

×
(

Hi + hi + ηγ0

μs

μi × [Hi + hi]

)
. (A3)

The Langevin equations (A2) and (A3) are to be understood
in the Stratonovich discretization scheme that ensures the
conservation of the modulus of each magnetic moment.

The local density ρ(x,π ,m,t) = ∑
i δ(x − ri)δ(π −

π i)δ(m − μi), as in the body of the paper, will also evolve
according to a Langevin equation with the Itô discretization
prescription that reads

∂tρ = (∂x ∂π ∂m)

⎡
⎢⎣ρ

⎛
⎜⎝

1
γ

0 0
0 �

ζ
0

0 0 η

μs
M

⎞
⎟⎠

⎛
⎝∂x

∂π

∂m

⎞
⎠ δF

δρ
+ σ

⎤
⎥⎦,

(A4)

where the new tensor M has the expression

Mαβ =
(

γ0

1 + γ 2
0 η2

)2 (
1 + η2γ 2

0

μ2
s

m2

)
(m2δαβ − mαmβ).

The noise σ appearing in the right-hand side of the
first-order differential equation on ρ not only has three
components for spatial diffusion and three components for the
diffusion of the director, but also another set of three compo-
nents for diffusion in magnetization space, σ = (σ x,σπ ,σ m).
Its correlations, in the magnetization subspace, are
given by

〈σ m(x,π ,m,t) ⊗ σ m(x′,π ′,m′,t ′)〉
= 2T η

μs

M ρ(x,π ,m,t)δ(x − x′)δ(π −π ′)δ(m − m′)δ(t − t ′).

The functional F involved here is a direct extension of
the one considered previously, and incorporates the magne-
tization degrees of freedom and their interactions; beyond
the standard dipole-dipole interaction, such contributions as
F = −K

∑
i(pi · μi)2 = −K

∫
x,π ,m(π · m)2ρ that favor the

alignment of the magnetic dipole along the easy axis of the
particle may be included.

In the ηγ0  1 limit which is relevant to ferrofluids [39], M
simplifies to Mαβ = (μsη)−2m2(m2δαβ − mαmβ). Note that a
special form of (A4) has implicitly been used by Déjardin [48]
who used a mean field version of this equation in order to
handle the Néel magnetization reversal in assemblies of weakly
interacting uniaxial magnetic nanoparticles, with the result
that the thermally activated reversal time is consistent with a
Vogel-Fulcher behavior, as was first expected by Shtrikman
and Wohlfarth [49] on qualitative grounds, which is valid for
all values of the dissipation, for uniaxial particles within the
mean field approximation.
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