
Doubly Robust Estimation of the Local Av-

erage Treatment Effect Curve

Elizabeth L. Ogburn
Johns Hopkins University, Baltimore, USA.

Andrea Rotnitzky
Di Tella University, Buenos Aires, Argentina and Harvard University, Boston,
USA.

James M. Robins
Harvard University, Boston, USA.

Abstract. We consider estimation of the causal effect of a binary treat-
ment on an outcome, conditional on covariates, from observational studies
or natural experiments in which there is a binary instrument for treatment.
We describe a doubly robust, locally efficient estimator of the parameters
indexing a model for the local average treatment effect conditional on co-
variates V when randomization of the instrument is only true conditional
on a high dimensional vector of covariates X, possibly bigger than V. We
discuss the surprising result that inference is identical to inference for the
parameters of a model for an additive treatment effect on the treated condi-
tional on V that assumes no treatment-instrument interaction. We illustrate
our methods with the estimation of the local average effect of participating
in 401(k) retirement programs on savings using data from the U.S. Census
Bureau’s 1991 Survey of Income and Program Participation.

Keywords: Instrumental variables; Multiplicative effect; LATE; Local effi-
ciency.

1. Introduction

Economists and biostatisticians have long been concerned with the prob-
lem of how to estimate the causal effect of a treatment on an outcome of
interest, and how this effect is modified by baseline covariates. Estima-
tion of average treatment effects is often facilitated by the unconfounded-
ness assumption that a vector of measured covariates suffices to control
for all confounding of the treatment-outcome relationship. When this as-
sumption is thought implausible, but instrumental variables satisfying the
monotonicity assumption given in section 2.1 are available, it is possible to
estimate the so called local average treatment effect contrasts. These are
treatment effect contrasts for the subpopulation of compliers, i.e. subjects
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for whom treatment and instrument agree. Beginning with the seminal pa-
per of Imbens and Angrist (1994), non- and semiparametric instrumental
variable methods for estimation of local average treatment effects have re-
ceived considerable attention in the literature (Angrist and Imbens, 1995;
Angrist, Imbens and Rubin, 1996; Angrist, Graddy and Imbens, 2000;
Abadie, 2002, 2003; Abadie, Angrist and Imbens, 2002; Froelich, 2007;
Tan, 2006a, 2010; Kasy, 2009, Cheng, Small, Tan and Ten Have, 2009,
Cheng, Qin and Zhang, 2009).

In this paper we consider estimation of models for the dependence of
local average treatment effects on baseline covariates V. We assume that
the treatment and instrument are binary and that the outcome support is
either the real line, the non-negative real line or the non-negative integers.
Like Abadie (2003), Tan (2006a), Froelich (2007), and Uysal (2011), we
consider settings in which conditioning on a set of covariates X is necessary
in order for the identifying instrumental variable assumptions to be valid.
These settings are important because in practice the instrument may itself
be confounded, and conditioning on covariates X may be required to make
the key condition of instrument randomization plausible (Abadie, 2003).
We extend the work of these authors to allow X to be larger than V. This
is an important contribution of our methodology, providing desirable flex-
ibility in the definition of the target estimand as often investigators wish
to report the treatment effect at low aggregation levels. Specifically, the
covariate vector X is the set of variables that must be conditioned on in
order for the instrument-outcome and instrument-treatment relationships
to be unconfounded within levels of covariates; however, local average
treatment effects conditional on V, a subset of X, may be the relevant
contrasts to help guide decision makers who, due to limited resources, will
have access only to information about the subset V of X. For example,
consider a study conducted in a sophisticated health maintenance organi-
zation (HMO). Suppose that the instrument is the therapy prescribed by
the physician, the treatment is the therapy actually followed by the pa-
tient, and X is a vector of measured risk factors for the outcome that were
used by the HMO physician to decide on the therapy prescription. The
covariates X could include the results of expensive tests administered to
patients at high risk for disease, such as magnetic resonance angiograms,
that would not be available to community physicians. Thus, community
physicians would need to decide what therapy to prescribe based on just
the subset V of X that encodes the data available to them. Estimation
of effect modification of the local average treatment effects by V is then
critical to enable community physicians to make informed treatment deci-
sions.

The literature on local average treatment effects has primarily focused
on the estimation of the local average treatment effect on the additive
scale (LATE), defined as the difference in means of the two potential out-
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comes (under treatment and under no treatment) in the subpopulation
of compliers. Identification of the multiplicative local average treatment
effect contrast (MLATE), i.e. the ratio of the potential outcome means
among compliers, follows trivially from results of Abadie (2003) but, to our
knowledge, estimators of parametric specifications for the dependence of
MLATE on covariates has not been discussed in the literature. In this pa-
per we consider estimation of models for LATE and MLATE as functions
of V.

When the dimension of the covariate vector X is large, as will often be
required in practice in order for the assumption of a conditionally uncon-
founded instrument to hold, nonparametric estimation of LATE (Froelich,
2007), of MLATE, and of parametric specifications for the dependence of
these contrasts on covariates V is not feasible, due to the curse of dimen-
sionality. When V is null, Tan (2006a) and Uysal (2011) derived estimators
of LATE that are consistent provided either two models for two specific
conditional means given the instrument and X, or a model for the instru-
ment propensity score (the probability that the instrument is equal to 1
conditional on the covariates X) are correctly specified. In this paper we
derive a new class of doubly robust estimators of parametric specifications
for the dependence of LATE or MLATE on covariates V which remain
consistent and asymptotically normal provided that either the propensity
score model or a model for another conditional mean given the instrument
and X are correctly specified. When V is non-null, the conditional mean
models required by our doubly robust estimator are guaranteed to cohere
with a parametric specification for the dependence of the local average
treatment effect on V. Extensions of the doubly robust methods proposed
by Tan and Uysal to the case V non-null do not have this property.

In Section 2 we introduce the notation, models, and assumptions. We
also review existing non and semiparametric methods for estimating local
average treatment effects with instruments confounded by X. In Section
3 we describe the proposed doubly robust estimating procedures, discuss
efficiency properties and estimation under incorrect specifications for the
dependence of LATE or MLATE on V. In Section 4 we explain a surprising
result earlier noted in the absence of covariates X by Clarke and Wind-
meijer (2010): inference under our models for the local average treatment
effects is identical to inference under models proposed by Robins (1994)
and Tan (2010) for a very different causal effect measure, namely the treat-
ment effect on the treated. In Section 5 we re-analyze the data used in
Poterba, Venti and Wise (1995) and Abadie (2003) with the goal of es-
timating the causal effect of participating in 401(k) retirement programs
on savings using eligibility for a 401(k) program as a binary instrument.
Section 6 concludes the article.
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2. Background and notation

Suppose that we observe a random sample of size n of the vector O =

(Z,D,X, Y ), where D is a binary variable denoting the presence (D = 1)

or the absence (D = 0) of a treatment whose effect on the outcome Y we
wish to investigate, X is a vector of baseline covariates, and Z is a binary
instrumental variable. Define D

z

to be the potential treatment status that
would be observed if Z were externally set to z, and define Y

dz

to be the
potential outcome that would be observed if D were externally set to d
and Z to z, with d, z = 0, 1. Following Angrist et al. (1996), we say a
subject is a complier if D1 > D0, an always taker if D1 = D0 = 1, a never
taker if D1 = D0 = 0, and a defier if D1 < D0.

2.1. Assumptions and identification
Following Abadie (2003), Tan (2006a), Froelich (2007), and Uysal (2011),
we assume:

(i) Conditional unconfoundedness of the instrument: (Y00, Y01,Y10, Y11, D0, D1)

is conditionally independent of Z given X.
(ii) Exclusion of the instrument: P (Y1d = Y0d) = 1 for d 2 {0, 1}.
(iii) Common support of the instrument: 0 < P (Z = 1|X) < 1 with

probability 1 (w.p.1).
(iv) Instrumentation: P (D1 = 1|V) 6= P (D0 = 1|V) w.p.1.
(v) Monotonicity: P (D1 � D0) = 1.
(vi) Consistency: Y = DY1+(1�D)Y0, D = ZD1+(1� Z)D0, where

Y
d

⌘ Y1d = Y0d by (ii).
When assumptions (i)-(iv) and (vi) hold, Z is said to be an instrumen-

tal variable for the effect of D on Y. Assumption (i) says that, within levels
of X, Z is as good as randomly assigned. Assumption (ii) postulates that
the effect of Z on the outcome is entirely mediated by D. It implies that
Y
dz

is independent of z, and therefore we write Y
d

throughout. Assumption
(iii) requires there to be a positive probability of receiving each instrument
value within each level of X or, equivalently, that the support of X is the
same among those with Z = 1 and Z = 0. Assumption (v) excludes the
existence of defiers. Assumption (vi) states that the observed outcome
is equal to the potential outcome evaluated at the observed treatment
value, and that the observed treatment is equal to the potential treat-
ment evaluated at the observed instrument value. Finally, under assump-
tion (v), assumption (iv) is the same as P (D1 = 1|V) > P (D0 = 1|V)

which, in turn, under (i) and (vi) it is the same as P (D = 1|Z = 1,V) >
P (D = 1|Z = 0,V) . So it is tantamount to the assumption of positive cor-
relation between Z and D. Abadie (2003) noted that assumptions (i)-(vi)
are conditional versions of the assumptions made by Angrist et al. (1996),
and Vytlacil (2002) noted that they are equivalent to the assumptions
imposed by a nonparametric selection model (Heckman, 1976) in which
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treatment is seen as an indicator of whether a latent index, e.g. expected
treatment utility, has crossed a particular threshold.

Abadie (2003) showed that under assumptions (i)-(vi) E (Y1|D1 > D0,V)

and E (Y0|D1 > D0,V) are identified, and consequently so is

LATE (v) ⌘ E (Y1|D1 > D0,V = v)� E (Y0|D1 > D0,V = v) .

Under the additional assumption
(vii) Non-null complier mean under control: E {Y0 | D1 > D0,V} 6= 0

w.p.1, the contrast

MLATE (v) ⌘ E (Y1|D1 > D0,V = v) /E (Y0|D1 > D0,V = v)

is well defined with probability 1 and identified.
For conciseness, we will refer to assumptions (i)-(vi) if referring to infer-

ence about LATE (·) or (i)-(vii) if referring to inference about MLATE (·)
as the instrumental variable (IV) assumptions.

The curves LATE (v) and MLATE (v) describe how treatment effects
in the complier subpopulation vary with values v of V, the first quanti-
fying the effects on an additive scale and the second on a multiplicative
scale. Theorem 3.1 in Abadie (2003) implies that under the IV assump-
tions LATE (v) is equal to the conditional version of the IV estimand,

IV (v) ⌘ E {E (Y |Z = 1,X)� E (Y |Z = 0,X) |V = v}
E {E (D|Z = 1,X)� E (D|Z = 0,X) |V = v} , (1)

and MLATE (v) is equal to

MIV (v) ⌘ � E {E (Y D|Z = 1,X)� E (Y D|Z = 0,X) |V = v}
E [E {Y (1�D) |Z = 1,X}� E {Y (1�D) |Z = 0,X} |V = v]

.

(2)
To our knowledge, the specific expression (1) for the functional identifying
LATE (V) with V null first appeared in Tan (2006a). The M in front of
the acronym MIV is a reminder that this functional identifies a multiplica-
tive treatment effect. The functionals IV (·) and MIV (·) are the target
of inference when, as we will assume throughout, the IV assumptions are
valid and interest is in estimation of LATE (·) and MLATE (·) .

2.2. Review of existing estimators
The estimators that we will propose in Section 3 can accommodate any
setting in which V is a subset of X. Previous proposals for estimators
of LATE have generally only considered the special cases in which V is
null or V is equal to X; to our knowledge the case in which V is a strict,
non-empty subset of X has not been addressed in the literature.

For the special case in which V is null, Froelich (2007) studied the
asymptotic distribution theory of estimators of the IV functional that
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rely on two distinct nonparametric estimation methods for the four curves
E (Y |Z = z,X = ·) and E (D|Z = z,X = ·) , z = 0, 1, namely local poly-
nomial regression and nonparametric series regression. His estimators,
however, suffer from the curse of dimensionality. If the dimension of X is
large, as will be the case in many applications in order to render the uncon-
foundedness assumption plausible, the IV functional will not in general be
estimable in moderately sized samples, essentially because no two units will
have values of X close enough to each other to allow for the borrowing of
information needed for the smoothing implicit in these methods. Again for
the special case in which V is null, Tan (2006a) considered estimating the
IV functional under parametric models for each of the conditional means
E (Y |D = d, Z = z,X = ·) and E (D|Z = z,X = ·) , d, z = 0, 1. The con-
sistency of the estimator of the IV functional then hinges on the correct
specification of both of these models. See Section 3 for a contrast between
these models and the models that must be specified to carry out the doubly
robust estimation approach proposed in this paper.

Neither Froelich nor Tan (2006a) addressed the case when V is a non-
empty, strict subset of X, but further difficulties arise for each of their
strategies in this case. Extending Froelich’s approach to nonparametrically
estimate the functionals IV (V) and MIV (V) not only requires smooth
estimators of the aforementioned conditional means, but also of the con-
ditional means given V of the differences involved in the numerators and
denominators of these functionals. One possible extension of Tan’s (2006a)
fully parametric approach along the lines proposed in that paper for the
case X = V, would also require specifying parametric models for the con-
ditional means given V in the numerator and denominator of the IV (V)

functional. As noted by Abadie (2003), this approach will generally pro-
duce parametric specifications for the LATE (·) and MLATE (·) curves
that are difficult to interpret. For example, linear specifications for each
of the four conditional on V mean functions involved in the IV (V) func-
tional do not imply a linear model for LATE (V) . An alternative strategy
that avoids this particular difficulty would be to use the approach of Tan
(2010); however this latter approach involves specifying working models
that may not cohere with the assumed model for LATE (·).

For the special case in which V is null, and with the goal of reduc-
ing sensitivity to model misspecification, Tan (2006a) and Uysal (2011)
described doubly robust estimators of the IV functional whose consis-
tency depends on correct parametric specification either of the instru-
ment propensity score or, in the case of Uysal, of E (Y |Z = z,X = ·) and
E (D|Z = z,X = ·) , z = 0, 1, and, in the case of Tan, of
E (Y |D = d, Z = z,X = ·) and E (D|Z = z,X = ·) , d, z = 0, 1.

The special case of V equal to X was considered by Abadie (2003), Tan
(2006a), Hirano et al. (2000), and Little and Yau (1998). Tan’s (2006a)
estimator of LATE (X) again requires parametric specifications of the four
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conditional expectations involved in the IV (X) functional, which results
in a specification of LATE(X) that may be difficult to interpret. Hirano
et al. (2000) and Little and Yau (1998) specified fully parametric like-
lihood functions for the observed data and unobserved compliance types
(complier, defier, always taker, never taker) and used Bayesian methods to
estimate the posterior distribution of Y conditional on compliance type,
treatment, and instrument. Abadie (2003) proposed an estimating proce-
dure in which models for E (Y

d

|D1 > D0,X = ·), d = 0, 1 ensure that the
resulting model for LATE(X) is easily interpretable. His method hinges on
consistent estimation of the instrument propensity score P (Z = 1|X = ·).
Abadie considered estimation of the propensity score under a parametric
model as well as by nonparametric power series methods. When X is high
dimensional and the sample size is moderate, non-parametric propensity
score estimation yields poorly behaved estimators of parametric specifica-
tions of E (Y

d

|D1 > D0,X = ·) , d = 0, 1 due to the curse of dimensionality.

3. New methods

In this section we describe estimation of the parameters indexing the fol-
lowing parsimonious models for LATE(V) and MLATE(V)

LATE (v) 2 F1 = {m1 (v;�) : � 2 B ⇢ Rp} (3)

and
MLATE (v) 2 F2 = {m2 (v;�) : � 2 B ⇢ Rp} (4)

for specified functions m
j

(·, ·) smooth in �, j = 1, 2. For inference under
model F1 we assume that Y has unbounded support and for inference
under model F2 we assume that Y has support equal to the non-negative
real line or the non-negative integers.

For the special case in which V is equal to X, Abadie also considered
estimation of LATE (X) under a parametric specification for the curve.
However, his approach estimates LATE (X) as the difference of the estima-
tors of the means E (Y

d

|D1 > D0,X) , d = 0, 1, under separate parametric
models for each of them. We prefer estimating LATE (X) under a model
that parameterizes just this contrast rather than under separate models
for each of the counterfactual means so as to reduce the opportunities of
model misspecification.

For estimation of LATE and MLATE, i.e. when V is null, the dou-
bly robust estimators that we describe in this section, like the doubly
robust estimators proposed by Tan (2006a) and Uysal (2011), are con-
sistent under a correct parametric specification of the propensity score
curve P (Z = 1|X = ·) . Like the estimators of Tan and Uysal, our estima-
tors remain consistent even under incorrect specification of the propen-
sity score curve provided another set of curves are correctly parameter-
ized. Tan’s approach requires modeling E (Y |Z = ·, D = ·,X = ·, ) and
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E (D|Z = ·,X = ·), and Uysal’s approach requires modeling E (Y |Z = ·,X = ·)
and E (D|Z = ·,X = ·). Our approach, by contrast, requires modeling the
conditional mean E

�

' (X) |V = · of a user-specified function ' (X) (if
V 6= X) and the conditional expectation E (H

j

|Z = ·,X = ·) (j = 1 if
inference is about LATE and j = 2 if is about MLATE), where

H1 ⌘ Y �D ⇥ IV (V)

and
H2 ⌘ Y ⇥MIV (V)

�D .

The issue of which curves must be modeled in the doubly robust pro-
cedure, i.e. those in Tan, Uysal or our proposal, is inconsequential when
V is null. However, it is an important issue if V is non-empty. As
shown in the supplementary Web Appendix, when Y has unbounded sup-
port, E

�

' (X) |V = · , E (H1|Z = ·,X = ·) and P (Z = 1|X = ·) are vari-
ation independent with IV (·) and when Y has support equal to [0,1)

or the non-negative integers, E
�

' (X) |V = · , E (H2|Z = ·,X = ·) , and
P (Z = 1|X = ·) are variation independent with MIV (·). Therefore, our
doubly robust procedure offers two genuine independent opportunities to
produce consistent estimators of parametric specifications for LATE (·) or
MLATE (·), as neither the models for E

�

' (X) |V = · and E (H1|Z = ·,X = ·)
nor the model for P (Z = 1|X = ·) can conflict with parametric specifi-
cations of IV (V = ·) and, neither the models for E

�

' (X) |V = · and
E (H2|Z = ·,X = ·) nor the model for P (Z = 1|X = ·) can conflict with
parametric specifications of MIV (V = ·). Essentially, the variation in-
dependence of H1 (H2) with IV (·) (MIV (·)) is a consequence of the
fact that the restrictions imposed on the law of H1 (H2) by the IV as-
sumptions do not depend on the functional form of IV (·) (MIV (·)). In
contrast, restrictions on E (Y |Z = ·,X = ·) and E (D|Z = ·,X = ·) or on
E (Y |Z = ·, D = ·,X = ·) and E (D|Z = ·,X = ·) impose restrictions on
IV (·) and therefore may conflict with parametric specifications for it.

On the other hand, it is worth noting that E (Y |Z = ·,X = ·), E (D|Z = ·,X = ·),
and E (Y |Z = ·, D = ·,X = ·) are functionals of the observed data only.
Although our proposed method has an important theoretical advantage
over methods that rely on correct specifications of these conditional means,
a practical advantage of the latter methods is that model building and
model checking for these observed data quantities may be more straight-
forward and intuitive than for E (H

j

|Z = ·,X = ·), j = 1, 2.

3.1. Estimation of LATE (·) and MLATE (·) under models for the propen-
sity score or outcome regression

The following theorem gives two key expressions for the moment restric-
tions that are satisfied by the functionals IV (V) and MIV (V) on which
our proposed estimators rely.
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Theorem 1. For j 2 {1, 2}, if the denominators of IV (V) and
MIV (V) are non-zero with probability 1, then

E {E (H
j

|Z = 1,X)� E (H
j

|Z = 0,X) |V} = 0 w.p.1 (5)

and
E
n

(�1)

1�Z p (Z|X)

�1 H
j

|V
o

= 0 w.p.1, (6)

where p (Z|X) ⌘ P (Z = 1|X)

Z {1� P (Z = 1|X)}1�Z .

Proof: Equation (5) with j = 1 follows by algebra from the definition
(1) and with j = 2 it follows from the definition (2). Specifically, to arrive
at (5) from (1) when j = 1 note that the difference between the numerator
in the right hand side of (1) and the product of IV (v) with the denom-
inator in the right hand side of (1) is the same as the left hand side of
(5) . Likewise, to arrive at (5) from (2) when j = 2 note that the sum
of the denominator in the right hand side of (2) with the product of the
numerator in the right hand side of (2) times MIV (v)

�1 is the same as
the left hand side of (5) . Equation (6) is equivalent to equation (5) because
E
n

(�1)

1�Z p (Z|X)

�1 H
j

|V
o

= E
hn

Zp (Z|X)

�1 � (1� Z) p (Z|X)

�1
o

H
j

|V
i

,

E
n

Zp (Z|X)

�1 H
j

|V
o

= E {E (H
j

|Z = 1,X) |V} and

E
n

(1� Z) p (Z|X)

�1 H
j

|V
o

= E {E (H
j

|Z = 0,X) |V} .

Theorem 1 suggests that well behaved estimators of � can be obtained
under parametric specifications of either P (Z = 1|X) or E (H

j

|Z,X) where
throughout we assume j = 1 if � indexes the parametric specification (3)

for LATE (V) and j = 2 if � indexes the specification (4) for MLATE (V).
We now describe such estimators.

Define
H1 (�) ⌘ Y �Dm1 (V;�)

and
H2 (�) ⌘ Y m2 (V;�)�D

where m1 (V;�) and m2 (V;�) are the parametric specifications for LATE (v)

defined in (3) and for MLATE (v) defined in (4) respectively. Throughout
we let �0 denote the true the value of � under the given specification (3)

or (4) .

A consistent and asymptotically normal (CAN) estimator b�
ipw

of �0

under a parametric class for the instrument probabilities

P (Z = 1|X = x) ⌘ ⇡ (x) 2 P =

�

⇡ (x;↵) : ↵ 2 A ⇢ Rd

 

(7)
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where ⇡ (·; ·) is a specified function smooth in ↵ and A is a specified subset
of Rd, is computed as the solution of

E
n

n

q (V;�) (�1)

1�Z p (Z|X; b↵)�1 H
j

(�)
o

= 0 (8)

where p (Z|X;↵) ⌘ ⇡ (X;↵)Z {1� ⇡ (X;↵)}1�Z , q (V;�) is a user speci-
fied p⇥ 1 vector valued function (for example q (V;�) = @m

j

(V;�) /@�),
and

b↵ = argmax

↵

E
n

⇣

log

h

⇡ (X;↵)Z {1� ⇡ (X;↵)}1�Z

i⌘

(9)

is the maximum likelihood estimator of ↵. Throughout E
n

(·) stands for
the empirical mean operator. Identity (6) implies that under the IV as-
sumptions, under the parametric specification (3), and with j = 1 in dis-
play (5),

p
n
⇣

b�
ipw

� �0

⌘

converges in law to a mean zero normal distri-
bution when (7) and regularity conditions hold and, in addition, for some
� and z = 0, 1, P (Z = z|X;↵) > � > 0. The same holds under the
parametric specification (4) and with j = 2 in display (5).

Alternatively, one can compute a CAN estimator �0 under a parametric
class for E (H

j

| Z,X) that respects the constraint (5) . To aid the spec-
ification of such parametric class, we re-express the constraint (5) as the
condition that for some r (X) ,

E (H
j

| Z = 1,X)� E (H
j

| Z = 0,X) = r (X)� E {r (X) |V} .
When V is not equal to X we derive a flexible parametric specification
for E (H

j

| Z,X) that respects the constraint (5) from the following three
specifications:

(1) a linear parametric specification for r (X)

r (X) 2 R =

�

⇢T' (X) : ⇢ 2 RK

 

(10)

where ' (X) ⌘ ('1 (X) , ...,'
K

(X))

T and '
s

, s 2 {1, ...,K} , are user-
specified real valued functions,

(2) a linear model for the mean of ' (X) given V,

E
�

' (X) |V 2 M =

�

� (V; �) : � 2 �

 

(11)

where � (V; �) ⌘ (�1 (V; �) , ...,�
K

(V; �))T , � is a subset of a Euclidean
space and �

k

, k 2 {1, ...,K} , are user-specified real valued functions (when
V is null we set � (V; �) = � thus leaving M unrestricted),

(3) a parametric specification for E (H
j

| Z = 0,X) , i.e.

E (H
j

| Z = 0,X) 2 K = {k (X; ⌫) : ⌫ 2 ⌥} (12)

where k (·; ·) is a specified function smooth in ⌫ and ⌥ is a subset of a
Euclidean space.
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Specifications (10) , (11) , (12) imply the following model respects the
constraint (5) ,

E (H
j

| Z = z,X = x) 2 H =

�

h (z,x; ⌘, �) : ⌘ 2 RK ⇥⌥ , � 2 �

 

(13)

where ⌘ ⌘ (⇢, ⌫) and h (z,x; ⌘, �) ⌘ k (x; ⌫) + ⇢T
�

' (x)� � (v; �)
 

z.
When V = X, we ignore (11) and replace the specification (13) with

E (H
j

| Z = z,X = x) 2 H = {h (X; ⌘) : ⌘ 2 ⌥} (14)

where h (·; ·) is a specified function smooth in ⌘ and ⌥ is a subset of a
Euclidean space. This specification also respects the constraint (5) be-
cause when V = X this constraint is the same as the condition that
E (H

j

| Z,X = x) does not depend on Z.

An estimator b�
reg

consistent and asymptotically normal (CAN) for �0

under specifications (11) and (13) when V 6= X or specification (14) when
V = X can be computed as the first component of the vector

⇣

b�
reg

, b⌘
⌘

solving
E

n

{l (Z,X;�, ⌘, b�) "
j

(�, ⌘, b�)} = 0 (15)

where l (·, ·; ·, ·, ·) is a user-specified vector-valued function of the same
dimension as (�, ⌘) ,

"
j

(�, ⌘, �) ⌘ H
j

(�)� h (Z,X; ⌘, �)

and b� solves E
n

hn

@� (V; �)T /@�
o

�

' (X)� � (V; �)
 

i

= 0 if V 6= X,

and "
j

(�, ⌘, �) ⌘ H
j

(�) � h (X; ⌘) if V = X . One practical choice of
l (Z,X;�, ⌘, b�) is

l (Z,X;�, ⌘, �) =



l
⌘

(Z,X; ⌘, �)
l
�

(Z,X;�)

�

=



@h (Z,X; ⌘, �) /@⌘
Z ⇥ @m (V;�) /@�

�

. (16)

Under (11) and (13) when V 6= X or (14) when V = X, the IV
assumptions and the parametric specification (3) if j = 1 or (4) if j = 2,
E {"

j

(�0, ⌘0, �0) |Z,X} = 0 where (⌘0, �0) are the true values of (⌘, �) ,

so
p
n
⇣

b�
reg

� �0

⌘

converges in law to a mean zero normal distribution
provided standard regularity conditions for convergence of M� estimators
hold.

Selection of the parametric class for E (H
j

|Z,X) can be aided with the
following ↵�level score type test of the null hypothesis H0 : ⌘2 = 0 where
⌘ =

�

⌘T1 , ⌘
T

2

�

T and ⌘2 is of dimension, say, d2. Let

R
n

= E
n

⇢

@h
⇣

e�
reg

, e⌘1, ⌘2, b�
⌘

/@⌘2
�

�

�

⌘2=0

�

"
j

⇣

e�
reg

, e⌘1, 0, b�
⌘

�

where
⇣

e�
reg

, e⌘1
⌘

solves E
n

⇢

h

@h (Z,X; ⌘1, 0, b�) /@⌘T1 , l� (Z,X;�)T
i

T

"
j

(�, ⌘1, 0, b�)

�

= 0 .
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Under H0,
p
nR

n

converges in law to a mean zero d2�variate normal
distribution with variance covariance matrix, say, J. Thus, if bJ is a consis-
tent estimator of J, a test that rejects H0 when RT

n

bJR
n

> �1�↵,d2 where
�1�↵,d2 is the 1� ↵ quantile of a chi-squared distribution with d2 degrees
of freedom is an asymptotic ↵� level test of H0. A consistent variance
estimator bJ can be derived from standard Taylor expansion arguments for
M estimators (Stefanski and Boos, 2002).

3.2. Doubly robust estimation of LATE (·) and MLATE (·)
In this section we derive a doubly robust estimator b�

dr

of � which satisfies
that

p
n
⇣

b�
dr

� �0

⌘

converges to a mean zero normal distribution under the
IV assumptions and regularity conditions provided one of the following two
conditions (i) or (ii) holds, even if both don’t hold simultaneously:

(i) specifications (11) and(13) are correct when V 6= X, or specification
(14) is correct when V = X,

(ii) specification (7) is correct.
The estimator b�

dr

solves the estimating equations

E
n

h

q (V;�) (�1)

1�Z p (Z|X; b↵)�1 {H
j

(�)� a (X; b↵, b⌘ (�) , b�)}
i

= 0

(17)
where, for each fixed �, b⌘ (�) solves E

n

{l
⌘

(Z,X;�, ⌘, b�) "
j

(�, ⌘, b�)} = 0

with l
⌘

defined as in (16) and

a (X;↵, ⌘, �) ⌘ {1� ⇡ (X;↵)}h (1,X; ⌘, �) + ⇡ (X;↵)h (0,X; ⌘, �)

if V 6= X or a (X;↵, ⌘, �) ⌘ h (X; ⌘) if V = X.

The estimator b�
dr

is consistent for �0 when (ii) holds because
E
n

q (V;�) (�1)

1�Z p (Z|X;↵0)
�1 a (X;↵, ⌘, �)

o

= 0 for all � since

E
n

(�1)

1�Z p (Z|X;↵0) |X
o

= 0.

On the other hand, consistency when (i) holds can be seen after re-
expressing equation (17) as

E
n

(

q (V;�)
(�1)

1�Z

p (Z|X; b↵)
"
j

(�, b⌘ (�) , b�)

)

+

E
n

[q (V;�) {h (1,X; b⌘ (�) , b�)� h (0,X; b⌘ (�) , b�)}] = 0

and noting that, by virtue of equality (5) of Theorem 1,
E [q (V;�) {h (1,X; ⌘0, �0)� h (0,X; ⌘0, �0)}] = 0 and by E {"

j

(�, ⌘0, �0) |Z,X} =

0, E [b (Z,X) "
j

(�, ⌘0, �0)] = 0 for all b (Z,X) and, in particular, for
b (Z,X) = q (V;�) (�1)

1�Z p (Z|X;↵)�1 with arbitrary ↵.
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The convergence of
p
n
⇣

b�
dr

� �0

⌘

to a normal distribution follows

after noticing that
⇣

b�
dr

, b⌘, b�, b↵
⌘

where b⌘ ⌘ b⌘
⇣

b�
dr

⌘

is an M-estimator,
i.e. it solves a joint system of estimating equation. The accuracy of this
asymptotic result in finite samples hinges on the strength of the instrument
Z, i.e. on how close � (V) = E {E (D|Z = 1,X)� E (D|Z = 0,X) |V} is
to 0. Theoretical results exploring the asymptotic distribution of b�

dr

as
� (V) shrinks to zero at different rates with sample size, similar to those
in the conventional IV literature, should be explored but are beyond the
scope of this paper.

The asymptotic variance of b�
dr

can be consistently estimated with
the standard empirical sandwich variance estimator (Stefanski and Boos,
2002) or with the nonparametric bootstrap (Gill, 1989).

In the special case of estimation of �0 ⌘ LATE, i.e. when V is
null, we have that H1 (�) = Y � �D and our doubly robust estimator
is similar to that in Tan (2006a) and that in Uysal (2011), except that
these authors replace h (Z,X; b⌘ (�) , b�) with bE (Y |Z,X) � � bE (D|Z,X) .
Tan computes estimators bE (Y |Z,X) and bE (D|Z,X) under parametric
models for E (Y |D = d, Z = z,X = ·) and E (D|Z = z,X = ·) , d, z = 0, 1
whereas Uysal (2011) under parametric models for E (Y |Z = z,X = ·) and
E (D|Z = z,X = ·) , z = 0, 1.

3.3. Local efficiency under correct parametric specification of the propen-
sity score model

In addition to b�
ipw

and b�
dr

, there are other consistent and asymptotically
normal estimators of �0 under the propensity score specification (7) and
the IV assumptions. Specifically, given a user-specified p ⇥ 1 function
s (x;�), consider the estimator b�

s

solving

E
n

h

q (V;�) (�1)

1�Z p (Z|X; b↵)�1 {H
j

(�)� s (X)}
i

= 0.

Because E
n

q (V;�) (�1)

1�Z p (Z|X)

�1 s (X)

o

= 0 it follows that under

regularity conditions, when (7) holds,
p
n
⇣

b�
s

� �0

⌘

converges to a mean
zero normal distribution with variance ⌃

q,s

, where ⌃

q,s

depends on q (·)
and on s (·) . Invoking the theory of inverse probability weighted estimation
in Robins and Rotnitzky (1992), in the supplementary Web Appendix we
show that for each fixed q (·) the optimal choice s

opt,j

(X), in the sense
that ⌃

q,s

� ⌃

q,s

opt,j

� 0 (i.e. semipositive definite), is given by

s
opt,j

(X) = {1� ⇡ (X)}E (H
j

| Z = 1,X) + ⇡ (X)E (H
j

| Z = 0,X) .

In the supplementary Web Appendix we also show that when the spec-
ifications (11) , (13) and (7) hold if V is not equal to X or when the
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specifications (14) and (7) hold if V = X, the limiting distribution ofp
n
⇣

b�
dr

� �0

⌘

has variance precisely equal to the bound ⌃

q,s

opt,j

. The

estimator b�
dr

, however, may have asymptotic variance even larger than
that of b�

ipw

if specification (11) and/or (13) is incorrect when V 6= X or
if specification (14) is incorrect when V = X. Using ideas similar to those
in Tan (2006b, 2010) we can construct another doubly robust estimator
e�
dr

that remedies this flaw. The estimator e�
dr

is computed by solving

E
n

h

(�1)

1�Z p (Z|X; b↵)�1
n

H
j

(�) Id� a (X; b↵, b⌘ (�) , b�) bC (�)T
o

q (V;�)
i

= 0,

(18)
where Id is the p⇥ p identity matrix and bC (�) is the p⇥ p matrix formed
by the first p columns of the p⇥ (p+ d) matrix

E
n

n

(�1)

1�Z p (Z|X; b↵)�1 H
j

(�) q (V;�)⇥K (�)
o

⇥

E
n

⇢

q (V;�) (�1)

1�Z p (Z|X; b↵)�1 h (Z,X; b⌘ (�) , b�)
@ log p (Z|X;↵) /@↵|

↵=b↵

�

⇥K (�)

��1

with

K (�) =
n

q (V;�)T (�1)

1�Z p (Z|X; b↵)�1 a (X; b↵, b⌘ (�) , b�) , @ log p (Z|X;↵) /@↵T

�

�

↵=b↵

o

.

Like b�
dr

, the estimator e�
dr

is doubly robust and has asymptotic variance
equal to ⌃

q,s

opt,j

when specifications (11) , (13) and (7) are correct ((14)
and (7) are correct if V = X), but unlike b�

dr

, it is guaranteed to be
the most efficient estimator, asymptotically, among the class of estimators
solving equations of the form (18) with bC (�) replaced by an arbitrary p⇥p
constant matrix C. In particular, letting C = 0 we conclude that under
model (7) , e�

dr

is never less efficient asymptotically than b�
ipw

. See the
supplementary Web Appendix for a sketch of the proof of the asymptotic
properties of e�

dr

.
A further result, derived in the supplementary Web Appendix, estab-

lishes that for j 2 {1, 2} the optimal function q
opt,j

(·), in the sense that
⌃

q,s

opt,j

� ⌃

q

opt,j

,s

opt,j

� 0 for any q (·), is

q
opt,j

(V;�) = {@m
j

(V;�) /@�} c
j

(V;�)

where

c
j

(V;�) = �m
j

(V;�)2(1�j) E
n

(�1)

1�Z p (Z|X)

�1 DY j�1
�

�

�

V

o

⇥

E
h

p (Z|X)

�2 {H
j

� s
opt,j

(X)}2 | V
i�1

.

The optimal function q
opt,j

(·) depends on the unknown observed data
distribution and hence it is not available for data analysis. However, we
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can estimate it under working parametric specifications for its unknown
constituents,

E
n

(�1)

1�Z p (Z|X)

�1 DY j�1
�

�

�

V

o

2 E
j

= {e
j

(V; �) : � 2 �} (19)

and

E
h

p (Z|X)

�2 {H
j

� s
opt,j

(X)}2 | V
i

2 T
j

= {t
j

(V;!) : ! 2 ⌦} (20)

where e
j

(·; ·) and t
j

(·) are smooth functions and � and ⌦ are included in
Euclidean spaces. To do so we estimate � and ! with the weighted least
squares estimators b� and b! by regressing (�1)

1�Z p (Z|X; b↵)�1 DY j�1 and

p (Z|X; b↵)�2
n

H
j

⇣

b�
dr

⌘

� a
⇣

X; b↵, b⌘
⇣

b�
dr

⌘

, b�
⌘o2

on V under models (19)

and (20) respectively, where b�
dr

is a preliminary doubly robust estimator
of � computed using an arbitrary q (V;�). We then estimate q

opt,j

(V;�)

with bq
opt,j

(V;�) ⌘ � {@m (V;�) /@�}⇥m
j

(V;�)2(1�j) e
j

⇣

V;

b�
⌘

t
j

(V; b!)�1 .

When specification (7) is correct and P (Z = z|X) > � > 0 for z = 0

or 1, the estimators b�
dr

and e�
dr

that use bq
opt,j

(V;�) for q (V;�) and the
estimator e�

C

that solves (18) with bC (�) replaced by an arbitrary p ⇥ p
constant matrix C and with bq

opt,j

(V;�) instead of q (V;�) satisfy under
regularity conditions:

(a)
p
n
n

b�
dr

� �0

o

,
p
n
n

e�
dr

� �0

o

and
p
n
n

e�
C

� �0

o

converge to mean
zero normal distributions with variances

P

dr

,
P

better.dr

and
P

C

re-
spectively. Furthermore,

P

better.dr

�P

C

 0 and
P

better.dr

�P

dr


0.

(b) If, additionally, the specifications (11) and (13) are correct when
V 6= X, or the specification (14) is correct when V = X, then
P

dr

=

P

better.dr

= ⌃

q

opt,j

,s

opt,j

.

3.4. Estimation of least squares approximations under incorrect specifi-
cations of local average treatment effect curves.

A slight modification of the procedure for computing b�
dr

and e�
dr

yields
estimators that are doubly robust for least squares approximations of the
true local average treatment effect curves when the parametric specifica-
tions for these curves are incorrect.

Given a real valued function w (v) , the w-weighted least squares ap-
proximation of the LATE (·) curve is

�
w,0 ⌘ argmin

�

E
h

w (V) {LATE (V)�m1 (V;�)}2 |D1 > D0

i

. (21)
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In the supplementary Web Appendix we show that under the IV-conditions,
�
w,0 satisfies

E
n

q
w

(V) (�1)

1�Z p (Z|X)

�1 H1 (�w,0)

o

= 0 (22)

where q
w

(V) ⌘ w (V) @m1 (V;�) /@�|
�=�

w,0
. Arguing as in section 3.2,

we conclude that when condition (ii) of section 3.2 holds (i.e.when the
propensity score specification (7) is correct), the estimators b�

dr

and e�
dr

that use q (V;�) equal to q
w

(V;�) ⌘ w (V) @m1 (V;�) /@� converge in
probability to �

w,0 even if the specification (3) is incorrect.
On the other hand, unfortunately, b�

dr

and e�
dr

need not converge to �
w,0

for any w when the propensity score model is incorrect even if condition
(i) of section 3.2 holds. This happens essentially because (22) is equivalent
to

E [q
w

(V) [E {H1 (�w,0) |Z = 1,X}� E {H1 (�w,0) |Z = 0,X}]] = 0, (23)

which involves E {H1 (�w,0) |Z,X} but not E (H1|Z,X) . Nevertheless, the
equality (23) suggests that CAN estimators of �

w,0 under parametric mod-
els for E {H1 (�w,0) |Z,X} should exist. However, some care must be
taken in formulating such models. For instance, one cannot postulate that
E {H1 (�w,0) |Z,X} 2 H where H is defined in (13) with j = 1 since this
specification is necessarily wrong if the model (11) is correct. This hap-
pens because H respects the constraint (5) but E {H1 (�w,0) |Z,X} does
not, since of all random variables of the form H1 (m) = Y �m (V)D for
any m (V) , only H1 = Y � IV (V)D satisfies the constraint (5) as this
constraint identifies the IV (·) curve.

A slight modification to the class H yields a new class that respects
the constraint (23) but not necessarily the stronger constraint
E[[E {H1 (�w,0) |Z = 1,X} � E {H1 (�w,0) |Z = 0,X}]|V] = 0 and thus
gives the opportunity of formulating a correctly specified model for
E {H1 (�w,0) |Z,X} . Specifically, the parametric specification

E {H1 (�w,0) | Z = z,X = x} 2 H
w

=

�

k (x; ⌫) + �T

�

' (x)� ✓q
w

(v)

 

z : � 2 RK , ⌫ 2 ⌥

 

(24)

where ' (·) and k (·; ·) are user-chosen functions as defined in section 3.1
and

✓ = E
n

' (X) q
w

(V)

T

o

E
n

q
w

(V) q
w

(V)

T

o�1
(25)

necessarily respects the constraint (23) but not the aforementioned stronger
constraint.

A modification in the computation of b�
dr

yields a new estimator bb�
dr

,
described below, that satisfies for a given, user-specified, weight function
w (·) the following two conditions:
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a

p
n

✓

b

b�
dr

� �0

◆

converges to a Normal distribution if the parametric

specification (3) for LATE (·) is correct and either condition (i) or
condition (ii) of section 3.2 hold, and

b

p
n

✓

b

b�
dr

� �
w,0

◆

converges to a Normal distribution if the parametric

specification (3) for LATE (·) is incorrect but either condition (ii) of
section 3.2 or the parametric specification (24) hold.

Consider first the case V 6= X. The estimator bb�
dr

solves equation (17)

with q
w

(V;�) instead of q (V;�) , and with a (X; b↵, b⌘ (�) , b�) replaced by

b (X;↵, ⌘, �, ✓) ⌘ {1� ⇡ (X;↵)}h
w

(1,X;�, ⌘, �, ✓)+⇡ (X;↵)h
w

(0,X;�, ⌘, �, ✓) ,

where ⌘ = (⌫, ⇢,�) ,

h
w

(z,x;�, ⌘, �, ✓) ⌘ k (x; ⌫)+⇢T
�

' (x)� � (v; �)
 

z+�T

�

' (x)� ✓q
w

(v;�)
 

z,
(26)

b⌘ (�) solves E
n

hn

@h
w

⇣

Z,X;�, ⌘, b�, b✓ (�)
⌘

/@⌘
o

"
w

⇣

�, ⌘, b�, b✓ (�)
⌘i

= 0

with
"
w

(�, ⌘, �, ✓) ⌘ H1 (�)� h
w

(z,x;�, ⌘, �, ✓) ,

b� solves E
n

hn

@� (V; �)T /@�
o

�

' (X)� � (V; �)
 

i

= 0 and b✓ (�) ⌘
E

n

n

' (X) q
w

(V)

T

o

E
n

n

q
w

(V) q
w

(V)

T

o�1
. When V = X,

b

b�
dr

is com-
puted analogously except that ⇢ is set to 0 and � is absent.

The desired properties (a) and (b) of the estimator b

b�
dr

are deduced
from the following considerations. When condition (ii) holds the esti-
mator b

b�
dr

is CAN for �
w,0 regardless of whether or not (3) holds be-

cause E
n

h

q
w

(V;�) (�1)

1�Z p (Z|X; b↵)�1 b
⇣

X;�, b↵, b⌘ (�) , b�, b✓ (�)
⌘i

con-
verges to zero in probability for all �. On the other hand, the convergence
of bb�

dr

to �0 when (3) and condition (i) hold, and the convergence of bb�
dr

to
�
w,0 when (3) is incorrect but (24) holds follows arguing as in section 3.2

for the convergence of b�
dr

.to �0 when condition (i) holds, after noticing
that the class

Hext ⌘ �

h
w

(z,x;�, ⌘, �, ✓) : ⇢ 2 RK ,� 2 RK ,� 2 Rp, � 2 �

 

with ✓ defined as in (25) includes both the class H (corresponding to � = 0)

and the class H
w

(corresponding to ⇢ = 0).
An estimator ee�

dr

satisfying (a) and (b) and additionally guaranteed to
be at least as efficient asymptotically as b�

ipw

is constructed just as e�
dr

in
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section 3.2 but replacing a (X; b↵, b⌘ (�) , b�) with b
⇣

X;�, b↵, b⌘ (�) , b�, b✓ (�)
⌘

,

q (V;�) with q
w

(V;�) and h (Z,X; b⌘ (�) , b�) with h
w

⇣

Z,X;�, ⌘, b�, b✓ (�)
⌘

.

In the supplementary Web Appendix we also describe an estimator bb�
opt,dr

which satisfies property (a) and has limiting normal distribution with vari-
ance equal to ⌃

q

opt,1

,s

opt,1

when conditions (i) and (ii) of section 3.2 hold
and yet converges to a weighted least squares approximation when the
specification (3) for LATE (V) is wrong.

For estimation of the MLATE (·) curve in the supplementary Web
Appendix we show that the estimator bb�

dr

computed using H2 (�) instead
of H1 (�) and with q

w

(V;�) redefined as m2 (V;�)⇥ {@m2 (V;�) /@�}⇥
w (V) satisfies (a) and (b) where in the statements of these properties,
specifications (3) and (24) are replaced with (4) and the specification that
E {H2 (�w,0) | Z = z,X = x} 2 H

w

respectively, and �
w,0 is redefined as

�
w,0 ⌘ argmin

�

E
h

e0 (V)w (V) {MLATE (V)�m2 (V;�)}2 |D1 > D0

i

,

with e0 (v) ⌘ E (Y0|D1 > D0,V = v) . Note that, unlike the definition
(21), �

w,0 is now a weighted least squares approximation with weights that
are unknown to the data analyst since they depend on the unknown func-
tion e0 (V) . It does not appear to be possible to construct doubly robust
estimators of weighted least squares approximations to the MLATE (·)
curve for known, i.e. user-specified, weights.

4. Connections to models for the treatment effect on the treated

Robins (1994) and Tan (2010) considered estimation of the so-called ad-
ditive treatment effect on the treated contrast

ATT (z,v) ⌘ E (Y1|Dz

= 1,V = v)� E (Y0|Dz

= 1,V = v) .

This contrast quantifies the effect of treatment D on the subset of the
subpopulation with baseline covariates V = v comprised of subjects who
would be treated with D = 1 if Z were set to z. Robins (1994) showed for
V = X and Tan (2010) showed for V a strict subset of X, that ATT (z,v)
is identified under the IV assumptions assumptions (i)-(iv) and (vi) and
specific restrictions on ATT (·, ·). In particular, Robins (1994) showed that
when V = X, ATT (z,v) is identified under the assumptions (i)-(iv), (vi),
and the assumption

(v-ATT) No additive treatment-instrument interaction on the treated:
ATT (z,v) = ATT (v) does not depend on z.
Remarkably, Robins showed that under these assumptions ATT (v) is
equal to the IV (v) .
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In fact, it is easy to show that the preceding assertions remain true
when V is a strict subset of X. We thus see that under assumptions
(i)-(iv) and (vi), the structural interpretation of the observed data func-
tional IV (v) depends on which of the assumptions (v) or (v-ATT) is
adopted. The only exception is when P (D0 = 1) = 0, or equivalently
when P (D = 1|Z = 0) = 0, since in such case the complier subpopula-
tion is the same as the subpopulation defined by condition D1 = 1, and
consequently LATE (v) = ATT (v) .

A further deep connection exists between the works of Robins (1994)
and Tan (2010) and the problem addressed in this article. For short, refer
to the model defined by assumptions (i)-(vi) as "our additive model" and
to the model defined by assumptions (i)-(iv), (vi) and (v-ATT) as the
"Robins-Tan additive model". Remarkably, the problem of estimating the
parameter � indexing a parametric specification m1 (v;�) for LATE (v)

under our additive model is formally identical to the problem of estimating
the parameters � indexing a parametric specification m1 (v;�) for ATT (v)

under the Robins-Tan additive model. This surprising fact is explained by
the following three results whose proofs will be sketched below:

(a) under the intersection model that assumes (i)-(vi) and (v-ATT), i.e.
the model that makes simultaneously the assumptions of our addi-
tive model and of the Robins-Tan additive model, LATE (v) and
ATT (v) are indeed identical causal effect contrasts,

(b) our model is statistically indistinguishable from the intersection model.
That is, given our model, the intersection model imposes restrictions
that always fit the observed data perfectly and hence cannot be re-
jected by any statistical test,

(c) the restrictions imposed on the observed data law by the intersection
model and not imposed by the Robins-Tan additive model are only
inequality constraints.

Results (a) and (b) imply that a functional of the observed data law
is equal to LATE (v) = ATT (v) under the intersection model if and
only if it is equal to LATE (v) under our additive model. If this were
not the case, there would be some observed data law functional equal to
LATE (v) under the intersection model but not under our additive model
(the opposite is not possible because our additive model is bigger than
the intersection model). But in such case, there would be a restriction,
specifically the restriction that sets the new functional equal to LATE (v),
that would be satisfied under the intersection model but not under our
additive model, thus contradicting (b).

Result (c) implies that a functional of the observed data law is equal to
ATT (v) under the intersection model if and only if it is equal to ATT (v)
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under the Robins-Tan additive model. If this were not the case, the in-
tersection model would satisfy an equality constraint not satisfied by the
Robins-Tan additive model, namely the constraint that sets a new func-
tional of the observed data law equal to ATT (v) , thus contradicting (c).

Results (a)-(c) then imply that any functional of the observed data
law that is equal to ATT (v) under the Robins-Tan must be equal to
LATE (v) under our additive model and vice versa. This, in turn, proves
that the problem of conducting inference about the parameters � of mod-
els m1 (v;�) for ATT (v) under the Robins-Tan assumptions is formally
the same as the problem of conducting inference about the parameters
� indexing a parametric specification m1 (v;�) for LATE (v) under our
additive model.

A further result (result (d) stated below) implies that IV (v) is indeed
the only functional of the observed data law that is equal to LATE (v)

under our additive model, and consequently, the only observed data func-
tional equal to ATT (v) under the Robins-Tan additive model.

(d) The only restrictions imposed on the observed data law by our addi-
tive model are inequality constraints on certain conditional distribu-
tions.

As indicated, result (d) implies that no functional of the observed data
law other than IV (v) can be equal to LATE (v) under our additive model.
If this were not the case, then the observed data law would satisfy an equal-
ity constraint under our model, namely the equality that sets IV (v) equal
to the other functional that agrees with LATE (v) , thus contradicting (d).

We now demonstrate results (a)-(d). Results (a) and (b) are a conse-
quence of the fact that the intersection model can be equivalently defined
as the model that imposes restrictions (i)-(vi) and the additional restric-
tion

E (Y1 � Y0|T = co,V) = E (Y1 � Y0|T = at,V) (27)

where T denotes compliance type, i.e. T = at iff D1 = D0 = 1 (always
taker), T = nt iff D1 = D0 = 0 (never taker), T = co iff D1 > D0

(complier) and T = de iff D1 < D0 (defier). This equivalence holds because
assumption (v-ATT) is the same as the assumption that

E (Y1 � Y0|T 2 {at, co} ,V) = E (Y1 � Y0|T 2 {at, de} ,V) . (28)

Thus, when no defiers exist, i.e. when assumption (v) holds, (28) is equiv-
alent to (27) .

Result (a) follows because restriction (27) implies that ATT (v) ⌘
E (Y1 � Y0|T 2 {co, at} ,V = v) = E (Y1 � Y0|T = co,V = v) ⌘ LATE (v),
so under the intersection model, LATE (v) is indeed equal to ATT (v).
Result (b) follows because under assumptions (i)-(vi), a test of the intersec-
tion model is a test that restriction (27) holds. No test can be constructed
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with power to detect departures from (27) because E (Y0|T = at,V) is not
identified and the law of the observed data does not bound its range, when,
as we have assumed throughout Y has unbounded support.

Results (c) and (d) are a consequence of the following Lemmas whose
proofs are given in the supplementary Web Appendix.

Lemma 1: The only restrictions on the observed data law encoded by
our additive model are 0 < P (Z = 1|X) < 1 and the following inequality
constraints. For any y < y0,

Pr (y < Y  y0, D = 1|Z = 1,X)� Pr (y < Y  y0, D = 1|Z = 0,X) � 0

(29)

Pr (y < Y  y0, D = 0|Z = 0,X)� Pr (y < Y  y0, D = 0|Z = 1,X) � 0

(30)

E {E (D|Z = 1,X) |V}� E {E (D|Z = 0,X) |V} > 0. (31)
Lemma 2: the only restrictions on the observed data law imposed by

the Robins-Tan additive model are 0 < P (Z = 1|X) < 1 and
E {E (D|Z = 1,X) |V}� E {E (D|Z = 0,X) |V} 6= 0.

It is interesting to contrast the structural interpretation of the func-
tional E (H1|Z,X) under our additive model and the Robins-Tan additive
models. In the supplementary Web Appendix we show that under the
Robins-Tan additive model,

E (H1|Z = z,X) = E (Y0|X)� {ATT (V)�ATT (z,X)}P (D
z

= 1|X)

and under our additive model,

E (H1|Z = z,X) = E (Y0|X) + {E (Y0 � Y1|X, T = at)� LATE (X)}⇥
P (T = at|X) + {LATE (X)� LATE (V)}⇥
{zP (T 2 {at, co} |X) + (1� z)P (T = ne|X)} . (32)

Abadie (2003) has previously derived (32) in the special case V = X

under our additive model. Observe that only under the Robins-Tan addi-
tive model and only for the special case V = X, E (H1|Z,X) has a simple
structural interpretation, namely as E (Y0|X = x) (since by v-ATT implies
ATT (z,X) = ATT (X) when V = X). No simple structural meaning can
be given to E (H1|Z,X) in all other cases. It is this counterintuitive as-
pect of the functional E (H1|Z,X) that we believe may have delayed the
discovery of the doubly robust estimators of � proposed in this article.

Robins (1994) and Tan (2010) also discussed inference about models
for the multiplicative treatment effect on the treated curve MTT (z,v) ⌘
E (Y1|Dz

= 1,V = v) /E (Y0|Dz

= 1,V = v) . Deep connections along the
lines made in this section also exist between the work of these authors
for inference about MTT (z,v) and the proposal for estimation about
MLATE (v) in this paper.



22 Ogburn et al.

5. Data Analysis

We apply the procedures discussed in this paper to estimate the local av-
erage treatment effect of participation in 401(k) programs on household
saving. 401(k) tax-deferred retirement plans were introduced in the 1980s
with the goal of encouraging household saving; they have since grown to be
the most popular retirement plans in the United States. But economists
have hypothesized that 401(k) plans may not represent increased saving,
rather they may replace other modes of saving for those who participate.
Among people who are eligible to participate in 401(k) plans, those who
choose to participate are likely more inclined to save than those who choose
not to participate. Therefore, standard methods for examining the effect
of 401(k) participation on savings based on covariate adjustment are inap-
propriate as underlying saving preference is an unmeasured confounder of
the treatment-outcome relationship. Using 401(k) eligibility as an instru-
ment for 401(k) participation, estimation of the local average treatment
effect of 401(k) participation on savings is feasible.

Poterba et al. (1994, 1995) and Abadie (2003) analyzed data from the
U.S. Census Bureau’s 1991 Survey of Income and Program Participation
(SIPP) to test whether participation in 401(k) plans increases household
savings. Here we reanalyze the data analyzed by Abadie (2003), consisting
of a sample of 9,725 household reference subjects aged 25 to 64 and their
spouses, with annual income between $10,000 and $200,000. In our anal-
ysis as in Abadie’s, the outcome Y is net financial assets, the instrument
Z is an indicator of 401(k) eligibility, the treatment D is an indicator of
401(k) participation, and the vector of covariates is X = (X1, X2, X3, X4)

where X1 is age (approximated to the closest integer year after subtracting
off the minimum age in the sample), X2 is an indicator of marital status
(married or not), X3 is family size, and X4 is annual household income (in
$1000).

In this example, the instrumentation assumption (iv) and monotonicity
assumption (v) hold trivially because it is not possible to choose to partic-
ipate in 401(k) plans if not eligible to do so (D0 = 0 with probability 1).
The exclusion restriction (ii) is very plausible because 401(k) plans are run
through employers with only some employers granting eligibility to their
employees; evidence suggests that the effect of an employer’s offer of 401(k)
eligibility on an employee’s saving behavior operates only through the em-
ployee’s choice to participate or not in the program (Poterba et al., 1995).
Finally, the randomization assumption is also likely to hold when we in-
clude in X the measured predictors income, age, marital status, and family
size of eligibility and savings. Because D0 = 0 there can be no defiers or
always takers and the complier subpopulation is comprised of all eligible
subjects who chose to participate; consequently LATE (·) = ATT (·) is
estimable with the SIPP data.
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To illustrate our methodology we considered estimation of the param-
eters indexing models for LATE (V) for two choices of V, namely V =X4

(income) and V = null. We will see that the analysis when V = X4 showed
that income was a significant determinant of LATE. This gave us the op-
portunity to explore the behavior of the proposed estimators under mis-
specification of the model for the LATE (·) curve. Specifically, we applied
the procedures in this paper to estimate a scalar parameter � under the
specification m(X;�) = �, i.e. under a, likely misspecified, model that
assumes that LATE (X) does not depend on income or any of the other
covariates in X. This specification was also used to analyze this data in
Abadie (2003).

Table 1 reports the estimators of � with their bootstrap standard er-
rors in parenthesis in the case V = X4 under the specification m(X4;�) =
�0 + �1X4. The table reports results for eight estimators: five doubly
robust estimators b�

dr

, two IPW estimators b�
ipw

and one outcome regres-
sion estimator b�

reg

. The estimator b�
reg

was computed using the function
l (Z,X;�, ⌘, �) given in (16) . Three of the doubly robust estimators, de-
noted with b�opt

dr

, b�opt

dr,⇡�fixed

, b�opt

dr,h�fixed

, used q (V) equal to bq
opt,1 (V) as

defined in section 3.3. In the calculation of bq
opt,1 (V),

log [e1(V; �)/ {1� e1(V; �)}] and log {t1(V;!)} were linear functions of
income and income2. [Note that when, as in this dataset, Z = 0 implies
D = 0, e1(V; �) is a model for E {E (D|X,Z = 1) |V}]. The fourth dou-
bly robust estimator, denoted with b�ineff

dr

, used q (V) = @m (V;�) /@� =

(1, X4)
T and the last doubly robust estimator, denoted with b�ineff,stable

dr

used
q (V) = (1, X4)

T
⇢

expit
⇣

b⇣0 + b⇣1X4

⌘

� expit
⇣

b⇣0 + b⇣1X4

⌘2
�

where expit
⇣

b⇣0 + b⇣1X4

⌘

was the fitted value from a logistic regression of Z on X4.

These latter two choices of q (V) were also used to construct the two IPW
estimators, denoted with b�ineff

ipw

and b�ineff,stable

ipw

respectively.
In the calculation of the doubly robust and IPW estimators we used the

propensity score model Pk

⇡ which assumed that log[⇡ (x;↵) / {1� ⇡ (x;↵)}]
was linear in indicator variables of the combined levels of marital status
and age as well as in all powers of income up to the power k

⇡

. As in Abadie,
2003, we did not include family size because it did not significantly pre-
dict Z. Also, the outcome regression model in the calculation of the doubly
robust estimators and of b�

reg

, denoted in the sequel with Hk

h

v

, assumed
that E {H1(�0)|Z,X} = k (X; ⌫) + ⇢T

�

' (X)� � (V; �)
 

Z. The function
k (x; ⌫) was linear in powers of income up to power k

h

and in indicators of
the combined levels of age, marital status, and family size (dichotomized at
its mean). The function ' (x) was a vector of indicators of combined levels
of age, marital status and family size; each entry of � (v; �) was a linear
logistic regression model for the corresponding entry of ' (x) with covari-
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ates being income, income2, ...,incomekh . The estimators b�opt

dr

, b�ineff

dr

and
b�ineff,stable

dr

were computed using models Pk

⇡ and Hk

h

v

with k
⇡

= k
h

⌘ k.
In Table 1 the first three rows report these estimators using k as indicated
by the column labels. The estimator b�opt

dr,⇡�fixed

had k
⇡

fixed at 4 and
k
h

as indicated by the column labels. Likewise the estimator b�opt

dr,h�fixed

had k
h

fixed at 4 and k
⇡

as indicated by the column labels. The esti-
mators b�ineff

ipw

and b�ineff,stable

ipw

had k
⇡

as indicated by the column labels.
Finally, the estimator b�

reg

had k
h

as indicated by the column labels. In
the dataset as well as in each bootstrap replication we first estimated the
propensity scores, then threw out the data from subjects in the bottom
and top one percent of the estimated values of ⇡ (X; b↵), and finally carried
through the entire procedure for arriving at the estimators of � using the
remaining data. In the dataset, this pruning did not noticeably change the
values of our estimators, suggesting that the data pruning did not result in
substantial bias, but it had a dramatic effect on stabilizing the bootstrap
standard error estimators.

According to the theory presented in this paper, b�opt

dr

with k
⇡

= k
h

sufficiently large should result in optimal inference about �. We therefore
first examine the rows corresponding to b�opt

dr

and the columns with k
⇡

=

k
h

equal 4, 5 and 8 in Table 1. We note that the coefficient of income
is roughly 330 with a standard error around 80 suggesting that 401(k)
plans have more impact on the savings of families of higher income. For
example, for k

⇡

= k
h

= 4, the estimated effect of 401(k) participation for
an eligible person with annual income $50,000 who chooses to participate
in the program is to increase her family’s net financial assets by $14,910
whereas the increase for a person with an income of $100,000 is $31,310.

Unlike the slope coefficient, the intercept does not appear to be signif-
icantly different from 0; a 95% confidence interval for the intercept would
include 0 as the point estimate is roughly half its standard error. For this
reason, we henceforth focus attention on the behavior of the remaining
estimators of the income coefficient. Since the three doubly robust esti-
mators b�opt

dr

, b�ineff

dr

and b�ineff,stable

dr

with k
⇡

= k
h

greater than or equal to
4 are all approximately equal to 330, we conclude that it is likely that the
linear model for LATE (X4) is approximately correct. If it were not, the
estimators estimators b�opt

dr

, b�ineff

dr

and b�ineff,stable

dr

would not be expected
to exhibit similar values as they would have different probability limits
because they use different functions q (V). Therefore, in what follows,
we will refer to an estimator of the slope coefficient as "unbiased" if it is
roughly equal to 330. Observe that, as predicted by theory, the doubly
robust estimators that use bq

opt,1 (V) are more efficient than the IPW or
any of the other doubly robust estimators. [In fact, these doubly robust
estimators are even more efficient than the estimator b�

reg

; presumably this
reflects the fact that the choice (16) we recommended for ease of calcula-
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tion is not optimal]. Comparison of the IPW estimators with the estimator
b�opt

dr,h�fixed

and of the outcome regression estimator with b�opt

dr,⇡�fixed

illus-
trates the advantage of doubly robust estimation over IPW and outcome
regression estimation. These comparisons reveal that doubly robust esti-
mators only require one of the two models to be nearly correct and the
analyst does not need to know which one is correct. Note that whereas
the IPW estimators are severely "biased" if k

⇡

is 1 or 2, the doubly robust
estimator b�opt

dr,h�fixed

that uses the same model for the propensity score
but a model Hk

h

v

with k
h

equal to 4 is roughly "unbiased". Likewise, the
outcome regression estimator that has k

h

equal 1 or 2 is "biased" but the
"bias" is corrected by the estimator b�opt

dr,⇡�fixed

.

Turn now to estimation of � under a model m (X;�) for LATE (X)

that assumes that m (X;�) = �. This model is presumably wrong because,
as we have already seen from the previous analysis, income modifies the
effect of treatment D among the compliers. Additional evidence for mis-
specification is presented in Figure 1. This figure displays the values of
three different doubly robust estimators b�

dr

, denoted with b�opt

dr

, b�ineff

dr

and
b�ineff,stable

dr

which used respectively q (X) = e1(X;

b�)t1(X; b!), q (X) =

@m (X;�) /@� = 1 and q (X) = ⇡ (X,b↵)� ⇡ (X,b↵)2 , where
log [e1(X; �)/ {1� e1(X; �)}] and log {t1(X;!)} were linear functions of
family size, income, income2 and indicators of age and marital status.
The estimators assumed model Pk

⇡ for the propensity score and an out-
come regression model Hk

h

x

that specifies that E {H1(�0)|Z,X} = k (x; ⌫)
where k (x; ⌫) is the same function as defined earlier. [Recall that un-
der the assumption that the model m (X;�) is correct, E {H1(�0)|Z,X}
does not depend on Z]. The plot displays the values of b�opt

dr

, b�ineff

dr

and
b�ineff,stable

dr

as k
h

= k
⇡

⌘ k varies from 1 to 8. Each estimator stabi-
lizes for k greater than or equal to 3; however each stabilizes to a dif-
ferent value. This is as predicted by the theory of section 3.4 accord-
ing to which, when model m (X;�) is incorrect and model Pk

⇡ is cor-
rect each estimator converges in probability to a distinct weighted least
squares approximation �0,w with a weight that depends on the choice of
function q (X). Specifically, when Pk

⇡ is correct and the model m (X;�)

for LATE (X) is misspecified, b�ineff

dr

, b�ineff,stable

dr

and b�opt

dr

converge in
probability to distinct values �0,w

ineff

, �0,w
ineff,stable

and �0,w
opt

where
w

ineff

(X) = 1, w
ineff,stable

(X) = ⇡ (X,↵0) � ⇡ (X,↵0)
2 and w

opt

(X) =

e1(X; �⇤)t1(X;!⇤
) with �⇤ and !⇤ the probability limits of b� and b!.

The parameter �0,w
ineff

is of particular interest as an easy calcula-
tion shows that �0,w

ineff

is equal to the marginal LATE, i.e. to �
null

⌘
LATE (V) when V = null. Thus, the estimator b�ineff

dr

converges to �
null

when the model Pk

⇡ is correct. In fact, the IPW estimator b�ineff

ipw

that
uses the same q (X) as b�ineff

dr

and the same model Pk

⇡ also converges



26 Ogburn et al.

to �
null

when model Pk

⇡ is correct. This is so because b�
dr

and b�
ipw

have the same probability limits when they use the same correctly spec-
ified propensity score model regardless of whether or not the paramet-
ric specification for LATE (·) is correct. These theoretical results are
confirmed in Figure 2. The figure displays the estimators b�ineff

ipw

and
b�ineff

dr

computed under model Pk

⇡ and model Hk

h

x

with k
h

= k
⇡

= k.
In addition, the figure displays the doubly robust estimator b�

null,dr

of
�
null

, i.e. of the marginal LATE. This estimator is computed under
model Pk

⇡ and a model Hk

h

null

that assumes that E {H1(�null

)|Z,X} =

k (X; ⌫) + ⇢T
⇥

' (X)� E
�

' (X)

 ⇤

Z with k (x; ⌫) as defined earlier and
' (x) a vector function of indicators of the combined levels of age, marital
status, family size (dichotomized at its mean) and powers of income up
to power k

h

. Note that in Figure 2 b�ineff

ipw

and b�ineff

dr

are both close to
b�
null,dr

for k
⇡

greater than or equal 4.

If model Pk

⇡ is wrong and m (X;�) = � is an incorrect specification for
LATE (X) both b�ineff

ipw

and b�ineff

dr

are inconsistent for �0,w
ineff

= �
null

.
This occurs because, as discussed in section 3.4, b�ineff

dr

is not doubly robust
for �0,w

ineff

under incorrect specification of the model for the LATE (·)
curve. In contrast, b�

null,dr

is double robust for �
null

, i.e. it is consistent
either if model Pk

⇡ is correct or if model Hk

h

null

is correct. In fact, b�
null,dr

is

a member of the class of estimators b

b�
dr

described in section 3.4; it is
algebraically equal to the estimator bb�

dr

that uses q
w

(V) = 1 with V = X.
Recall that, unlike b�

dr

, the estimator bb�
dr

that uses a given q
w

(V) is doubly
robust for �0,w. Table 2 illustrates these points. The row labeled "Model
Pk

⇡

” lists estimators computed under model Pk

⇡ with k
⇡

= 4. The row
labeled "Model Pwrong

” lists estimators computed under the model Pwrong

that incorrectly sets P (Z = 1|X) to be equal to the constant 1/2. For
estimators b�

null,dr

and b�ineff

dr

, k
h

was chosen to be 4. All the estimators
in the first row are approximately equal. However, a column by column
comparison of the two rows reveals that of the three estimators only b�

null,dr

remains approximately unchanged when it is computed under Pwrong. This
is as predicted by theory (provided that the model Hk

h

null

with k
h

=4 is
approximately correct). To confirm that these findings were unlikely due
to chance , we computed for each column the ratio bT =

b

�/dSE where b

� is
the difference between the first and second row, and dSE is the bootstrap
standard error of b�. Under the null hypothesis that the probability limits
of the estimators in the two rows are the same, T should approximately
have a standard normal distribution. For b�

null,dr

, bT was 0.51 whereas for
b�ineff

dr

and b�ineff

ipw

,

bT was -1.91 and -3.14 respectively.



Table 1. Estimators of (�0,�1) and their bootstrap standard errors under model LATE(income) = �0 + �1income.

Power k of income in the outcome regression and propensity score models

1 2 3 4 5 8

Intercept

b
�

opt

dr

-4640 (2940) -1845 (3220) -1888 (2940) -1490 (2900) -1623 (2907) -1566 (2896)

b
�

ineff

dr

1774 (5720) -12860 (10720) -3846 (5797) -14201 (11244) -3877 (7061) -1578 (7009)

b
�

ineff, stable

dr

-418 (4827) -4958 (5547) -2049 (4385) -1814 (4527) -2448 (4465) -1590 (4543)

b
�

opt

dr,h�fixed

-1572 (3292) -1411 (3146) -1285 (2873) -1490 (2900) -1592 (2989) -1674 (2914)

b
�

opt

dr,⇡�fixed

-2093 (2961) -1421 (2947) -1911 (2816) -1490 (2900) -1650 (2826) -1517 (2920)

b
�

ineff

ipw

17075 (7870) -18515 (11587) -4905 (6487) -858 (6841) -1980 (6732) -593 (7655)

b
�

ineff, stable

ipw

12331 (6076) -3489 (5632) -2775 (4101) -1478 (4019) -1537 (4202) -1179 (4409)

b
�

reg

-6992 (7019) 1929 (7665) -2652 (6886) -1266 (6796) -1721 (6702) -1494 (7004)

Income

b
�

opt

dr

382 (88) 337 (92) 338 (83) 328 (82) 330 (83) 328 (83)

b
�

ineff

dr

205 (171) 634 (290) 390 (165) 351 (197) 392 (197) 329 (196)

b
�

ineff, stable

dr

272 (128) 425 (149) 345 (115) 340 (123) 354 (122) 331 (120)

b
�

opt

dr,h�fixed

319 (96) 323 (90) 326 (80) 328 (82) 329 (82) 332 (84)

b
�

opt

dr,⇡�fixed

342 (84) 328 (82) 340 (84) 328 (82) 332 (82) 328 (79)

b
�

ineff

ipw

-139 (218) 785 (306) 425 (178) 320 (181) 347 (181) 311 (201)

b
�

ineff, stable

ipw

14 (161) 385 (154) 368 (119) 339 (117) 336 (114) 329 (123)

b
�

reg

510 (187) 272 (210) 361 (181) 345 (183) 357 (180) 353 (194)

Table 2. Estimation of the marginal LATE effect.

Point estimators

⇤

b
�

null,dr

=
bb
�

dr

b
�

ineff

dr

b
�

ineff

ipw

Model Pk⇡=4
12213 12179 12434

Model Pwrong

11859 13140 17651

Test statistic

⇤⇤

0.51 -1.91 -3.14

⇤ bb�dr is the estimator of section 3.4 that uses qw(V ) = 1.
⇤⇤

Test statistic is the difference of the estimators in the

first and second rows divided by the bootstrap standard

error of the difference.
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Figure 1: Estimation of the marginal LATE based on incorrectly assuming that LATE(X) = LATE.

Figure 2: Doubly robust estimation of the marginal LATE vs estimation based on incorrectly assuming that LATE(X) = LATE.
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6. Conclusion

In this paper we introduced a new class of estimators for parametric forms
for additive and multiplicative local average treatment effect curves as
functions of covariates V, where V may be a subset of the covariates X

required for the candidate instrument to be a valid instrumental variable.
Our estimators are doubly robust, i.e. they are consistent and asymptot-
ically normal if either one of two dimension reducing models is correctly
specified. Unlike other proposals, these dimension reducing models are
always compatible with the assumed parametric functional form for the
local average treatment effect on the additive scale if Y has unbounded
support, and with the assumed parametric functional form for the effect
on the multiplicative scale if Y has support in the positive real line and
is unbounded. We discussed the connection between our model for the
local average treatment effects and the Robins-Tan model for the effect
of treatment on the treated, and argued that the correspondence between
the two models is unsurprising because the restrictions on the observed
data law imposed by the two models differ only in inequality constraints,
and because under an untestable assumption about the distribution of
the counterfactual outcomes the two estimands are identified by the same
functional of the observed data.

Future work is needed to explore the performance of our estimators
for weak instruments in finite samples. Another potential topic for future
work arises from the fact that, when Y is binary, the outcome regression
model and the model for MLATE(·) are not variation independent. Thus,
the model m2(·;�) could conflict with a proposed model for E (H2|Z,X).
If the propensity score model is correctly specified the resulting estimator
of �0 will still be consistent, however this variation dependence implies
that we may not have two independent opportunities for valid inference
about �0. In forthcoming work, we reparameterize the model for MLATE
when Y is binary to recover doubly robustness.
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