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a b s t r a c t 

A multi-scale model, based on the concept of Representative Volume Element (RVE), is proposed linking 

a classical continuum at RVE level to a macro-scale strain-gradient theory. The multi-scale model ac- 

counts for the effect of body forces and inertia phenomena occurring at the micro-scale. The Method of 

Multiscale Virtual Power recently proposed by the authors drives the construction of the model. In this 

context, the coupling between the macro- and micro-scale kinematical descriptors is defined by means of 

kinematical insertion and homogenisation operators, carefully postulated to ensure kinematical conserva- 

tion in the scale transition. Micro-scale equilibrium equations as well as formulae for the homogenised 

(macro-scale) force- and stress-like quantities are naturally derived from the Principle of Multiscale Vir- 

tual Power – a variational extension of the Hill-Mandel Principle that enforces the balance of the virtual 

powers of both scales. As an additional contribution, further insight into the theory is gained with the 

enforcement of the RVE kinematical constraints by means of Lagrange multipliers. This approach unveils 

the reactive nature of homogenised force- and stress-like quantities and allows the characterisation of 

the homogenised stress-like quantities exclusively in terms of RVE boundary data in a straightforward 

manner. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

The development of second gradient theories has long been an

ctive field of research aimed at the improvement of the predic-

ive capabilities of mechanical models, beyond classical continuum

echanics. Such theories are developed through the enrichment

f the kinematical description of continua which, in turn, yields a

ore complex structure of dual stress-like entities, requiring more

omplex constitutive models to describe the phenomenological be-

avior of more complex materials. 

The literature in the field is vast and it is not the goal of the

resent work to discuss every aspect of the theory itself. The inter-

sted reader can refer to de Borst and Mühlhaus (1992) ; de Borst

t al. (1995) ; Mühlhaus and Aifantis (1991) ; Nguyen and Andrieux

2005) ; Nguyen (2010) ; Peerlings et al. (1996) ; Polizzotto et al.
∗ Corresponding author. 
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1997) ; Sunyk and Steinmann (2003) , which address various the-

retical and practical aspects of such formulations. 

In recent years, multi-scale theories have been evolving to deal

ith increasingly complex materials, by linking micro-continuum

echanisms with macro-continuum theories in a myriad of con-

exts and applications. Particularly in the field of second gradient

heories, the works by Kouznetsova et al. (20 02, 20 04) have pro-

ided a first link between classical micro-scale mechanics and sec-

nd gradient macro-scale mechanics by means of the concept of

epresentative Volume Element (RVE). Similar work was later re-

orted by Larson et al. ( Larsson and Diebels, 2007; Larsson and

hang, 2007 ), and also by Luscher et al. ( Luscher et al., 2010, 2012 ).

he present contribution is placed in the context of these works. 

Despite such significant developments, there is still plenty of

oom to assess the real capabilities of muti-scale models, as well as

o better understand the underlying fundamental model hypothe-

es and their associated consequences. Such an understanding can

e achieved with the help of an appropriate variational framework.

n fact, a suitable variational structure should allow a rational anal-

sis of the model by means of a purely kinematical approach. That
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is, the definition of the kinematics at both (macro- and micro-)

scales and the way in which they are coupled have a well-defined

effect on the micro-scale (RVE) equilibrium problem, as well as on

the homogenisation rules for the dual (force- and stress-like) quan-

tities conjugated to the adopted kinematical descriptors. This issue

deserves further discussions at present. For example, the kinemat-

ical constraints for the micro-scale fluctuation fields proposed in

Kouznetsova et al. (2002) differ from that of Luscher et al. (2010) .

Therefore, a question naturally arises as to the possible equivalence

and consistency of these boundary conditions. 

Our goal in this paper, and its major novelty, is to provide a ra-

tional justification for and a rigorous derivation of the multi-scale

formulation of a finite strain second-gradient macro-continuum

mechanical theory arising from a classical first-order continuum

theory at the micro-scale featuring body forces and inertia phe-

nomena. In this context, the formulation is theoretically examined

in detail and the consequences of the adopted kinematical assump-

tions are fully explored in the light of the so-called Method of Mul-

tiscale Virtual Power (MMVP) recently proposed by the authors in

Blanco et al. (2016) . 

The MMVP can be seen as an extension, to multi-scale prob-

lems, of the Method of Virtual Power developed in Germain (1973) ,

and provides a well-defined, structured framework to set the me-

chanical foundations of the multi-scale model addressed in the

present paper. The MMVP requires firstly the definition of the kine-

matics of the macro- and micro-scales, as well as the way in which

the two kinematics are linked. Then, through mathematical dual-

ity arguments, it is possible to identify the force- and stress-like

quantities dual to the kinematical descriptors at both scales. Sub-

sequently, the Principle of Multiscale Virtual Power (PMVP) also pro-

posed in Blanco et al. (2016) is used as a generalisation of the Hill-

Mandel Principle ( Hill, 1965; Mandel, 1971 ) to provide the physical

coupling between the two scales. As a variational extension of the

classical Hill-Mandel principle, the PMVP postulates that the to-

tal virtual powers produced by duality pairings at both scales are

balanced. As described in Blanco et al. (2016) in a rather general

context, and demonstrated here in the formulation of the present

higher-order multi-scale formulation, the PMVP yields a complete

characterisation of the model, comprising (i) the RVE equilibrium

problem with consistent boundary conditions for the micro-scale

fluctuation fields, and (ii) the homogenisation formulae for body

force- and stress-like quantities dual to the macro-scale kinemat-

ical descriptors. In addition, as a complementary novel aspect for

the multi-scale analysis, an augmented Lagrange multiplier formu-

lation of the PMVP allows a straightforward characterisation of the

homogenised macro-scale generalised stresses which can be ex-

pressed in terms RVE boundary data alone – in line with the idea

postulated by Hill in his landmark work ( Hill, 1965 ). 

Fundamentally, the theoretical framework based on the MMVP

employed in the present work yields a multi-scale model that in

some aspects differs from, and in many cases generalises, those

available in previous contributions, such as ( Kouznetsova et al.,

20 02, 20 04; Luscher et al., 2010, 2012 ). The specific differences

between the present approach and the existing literature will be

highlighted throughout the manuscript, and we should stress that

the definition of the micro-scale kinematics in the present paper

leads to different kinematical constraints for the micro-scale fluc-

tuation fields. Since the RVE mechanical equilibrium is subordi-

nated to these constraints, homogenisation of dual quantities will

ultimately differ. These issues are essential for a deeper under-

standing of the resulting multi-scale model and will be discussed

in detail throughout the text. 

The paper is organised as follows. Section 2 presents fundamen-

tal aspects of the methodology and basic ingredients of the multi-

scale problem. The macro-scale second gradient mechanical model

is reviewed in Section 3 . Kinematical relations coupling both scales
re presented in Section 4 , and the corresponding Principle of Mul-

iscale Virtual Power is formulated in Section 5 . In Section 6 , the

VE equilibrium equations as well as the homogenisation formu-

ae for the macro-scale force- and stress-like quantities are derived

rom the PMVP by means of straightforward variational arguments.

 discussion on the reactive nature of such homogenised quanti-

ies is also presented. Tangent operators for the present model are

erived in Section 7 . The paper closes in Section 8 , where a dis-

ussion on the model hypotheses and their corresponding conse-

uences is presented together with some concluding remarks. 

. Preliminaries 

.1. Method of Multiscale Virtual Power (MMVP) 

In this work we employ the so-called Method of Multiscale Vir-

ual Power (MMVP) proposed in Blanco et al. (2016) . The method

elies on three fundamental principles: 

• Principle of kinematical admissibility : whereby the macro- and

micro-kinematics are properly defined and the link between

them is established by means of suitable assumptions concern-

ing the procedures of kinematical insertion (i.e. how macro-scale

kinematical quantities contribute to the micro-scale kinemat-

ics) and kinematical homogenisation (i.e. how micro-scale kine-

matical quantities are averaged in some sense to produce cor-

responding macro-scale counterparts). 
• Mathematical duality : which allows a straightforward identi-

fication of force- and stress-like quantities compatible with

the theory as power-conjugates of the kinematical descriptors

adopted in each scale. 
• The Principle of Multiscale Virtual Power (PMVP) : a variational

generalisation of the Hill-Mandel Principle of Macrohomogene-

ity, from which the micro-scale equilibrium problem, as well as

the homogenisation formulae for macro-scale force- and stress-

like quantities, can be univocally derived by means of straight-

forward variational arguments. 

.2. Notation 

The indices M and μ are used to denote quantities belonging

o the macro- and micro-scale, respectively. Then, the macro- and

icro-scale reference domains (open sets in R 

3 ) are denoted, re-

pectively, �M 

and �μ, with corresponding boundaries ∂�M 

and

�μ. Macro- and micro-scale reference coordinates are denoted

 M 

and x μ. Let u M 

and u μ be the macro- and micro-scale dis-

lacement vector fields, respectively. The reference gradient opera-

ors are denoted ∇ M 

in the macro-scale and ∇ μ in the micro-scale,

ith corresponding divergence operators div M 

and div μ. 

Second-order kinematics is adopted at the macro-scale. Hence,

he kinematical descriptors that play a role in the characterisa-

ion of the macro-scale problem are u M 

, ∇ M 

u M 

and ∇ M 

∇ M 

u M 

.

ach point x M 

of the macro-scale is associated to a Representa-

ive Volume Element (RVE) at the micro-scale. Within the micro-

cale, only a first-order (classical) kinematics is considered. Hence,

he kinematical descriptors of the micro-scale are simply u μ and

 μu μ. 

Finally, a super-imposed hat ˆ (·) is used in variational equations

o denote kinematically admissible virtual actions in both scales.

ensor algebra operations (some of them non-conventional) are

sed throughout the paper and are represented using intrinsic ten-

or notation. These are defined in Appendix A . 

Inertia effects will be considered throughout the manuscript,

nd 

¨(·) will be used to denote the second time derivative. It is im-

ortant to remark that the multi-scale analysis considers that the

ime-scale is the same for both spatial scales. In addition, and for
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Fig. 1. Problem setting for the multi-scale model. 
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he sake of brevity, hereafter it will be assumed that the variational

quations are valid ∀ t ∈ [0, T ], and that proper initial conditions

re defined at t = 0 . 

. Macro-scale high-order formulation 

At the macro-scale, a high-order model of the continuum body

ncluding inertia effects is formulated by means of the following

equilibrium) variational problem: find a displacement field u M 

∈
 M 

such that 
 

�M 

[
a M 

· ˆ u M 

+ A M 

· ∇ M ̂

 u M 

+ A M 

· ∇ M 

∇ M ̂

 u M 

]
d�M 

+ 

∫ 
�M 

[
S M 

· ∇ M ̂

 u M 

+ R M 

· ∇ M 

∇ M ̂

 u M 

− b M 

· ˆ u M 

]
d�M 

= 

∫ 
∂�N 

M 

t M 

· ˆ u M 

d∂�N 
M 

+ 

∫ 
∂�N 

M 

r M 

· ∂ ̂  u M 

∂n 

d∂�N 
M 

+ 

∫ 
�N 

M 

s M 

· ˆ u M 

d�N 
M 

∀ ̂

 u M 

∈ V M 

, (1) 

here S M 

is a second order non-symmetric stress tensor, dual to

he first gradient of the displacement and R M 

is a third order stress

ensor (momentum tensor) dual to the second gradient of the dis-

lacement and b M 

is a non-inertial force per unit volume. Notice

hat we have taken into account the virtual power exerted by the

nertia vector a M 

and by the inertia high order tensors A M 

and A M 

.

n the context of a mono-scale mechanics with second order iner-

ia, these objects take the form a M 

= ρM ̈

u M 

, A M 

= ρM 

l 2 
M1 

∇ M ̈

u M 

and

 M 

= ρM 

l 4 M2 ∇ M 

∇ M ̈

u M 

, where ρM 

is the material density and l M 1 

nd l M 2 are length scale parameters for high order inertia effects

 Polizzotto, 2012, 2013 ). We can understand a M 

as being an iner-

ial force per unit volume, and A M 

and inertial stress tensor. Also,

he linear manifold U M 

, of kinematically admissible displacement

elds, is defined as 

 M 

= 

{ 

v ∈ H 

2 (�M 

) , v | ∂�D 
M 

= ū M 

, 
∂v 

∂n 

∣∣∣
∂�D 

M 

= w̄ M 

, v | �D 
M 

= ŭ M 

} 

, 

(2) 

nd, therefore, the space of kinematically admissible virtual actions

ˆ 
 M 

is 

 M 

= 

{ 

v ∈ H 

2 (�M 

) , v | ∂�D 
M 

= 0 , 
∂v 

∂n 

∣∣∣
∂�D 

M 

= 0 , v | �D 
M 

= 0 

} 

. (3)

ere we have considered a Dirichlet boundary ∂�D 
M 

and a Neu-

ann ∂�N 
M 

in which there is, for simplicity, a unique edge �M 

,

hich is divided into Neumann and Dirichlet counterparts �N 
M 

and
D (lines in 3D, points in 2D), respectively (see Fig. 1 ). Essential

M 
oundary conditions are given by the displacement ū M 

, the rota-

ion w̄ M 

and the displacement ŭ M 

at the edge �D 
M 

. For simplicity,

e have assumed that all kinematic variables are prescribed on

he Dirichlet boundary ( ̄u M 

and w̄ M 

over ∂�D 
M 

and ŭ M 

over �D 
M 

),

nd the Neumann boundary is the complementary part. Clearly,

 �M 

= ∂ �N 
M 

∪ ∂ �D 
M 

and �M 

= �D 
M 

∪ �N 
M 

⊂ ∂�M 

. The operator ∂ 
∂n 

enotes the derivative in the direction of the outward unit vector

 M 

normal to ∂�M 

. The problem setting is schematically illustrated

n Fig. 1 . 

The variational Eq. (1) can be solved once the non-inertial force

er unit volume b M 

, the force per unit surface t M 

, the moment per

nit surface r M 

and the force per unit length s M 

are specified, and

ppropriate constitutive relations for S M 

and R M 

are given, i.e. 

 M 

= S M 

(∇ M 

u M 

, ∇ M 

∇ M 

u M 

) , (4) 

 M 

= R M 

(∇ M 

u M 

, ∇ M 

∇ M 

u M 

) . (5) 

here, for the sake of notational simplicity, we shall focus on

istory-independent materials, with S M 

and R M 

denoting consti-

utive functionals for S M 

and R M 

, respectively. We remark, how-

ver, that the developments presented here can be extended in a

traightforward manner to consider history-dependent behavior. 

In the context of multi-scale analysis, the variational problem

1) can be written simply as follows: find a displacement field

 M 

∈ U M 

such that 
 

�M 

[
P M 

· ∇ M ̂

 u M 

+ Q M 

· ∇ M 

∇ M ̂

 u M 

− f M 

· ˆ u M 

]
d�M 

= 

∫ 
∂�N 

M 

t M 

· ˆ u M 

d∂�N 
M 

+ 

∫ 
∂�N 

M 

r M 

· ∂ ̂  u M 

∂n 

d∂�N 
M 

+ 

∫ 
�N 

M 

s M 

· ˆ u M 

d�N 
M 

∀ ̂

 u M 

∈ V M 

, (6) 

here we have grouped the power exerted by quantities of the

ame nature introducing equivalent objects, which for the classical

igh order theory ( Polizzotto, 2012, 2013 ) results 

 M 

= b M 

− ρM ̈

u M 

, (7) 

 M 

= S M 

+ ρM 

l 2 M1 ∇ M ̈

u M 

, (8) 

 M 

= R M 

+ ρM 

l 4 M2 ∇ M 

∇ M ̈

u M 

. (9) 

hat is, the vector f M 

and the tensors P M 

and Q M 

, have inertial and

on-inertial attributes. 

emark 1. In contrast to the classical phenomenological constitu-

ive setting, in the context of the present multi-scale formulation
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the force f M 

, as well as the functionals for the stress-like quanti-

ties P M 

and Q M 

, will be defined by means of homogenisation for-

mulae involving fields defined over the micro-scale domain. Thus,

the multi-scale model will naturally account for contributions from

micro-scale level inertia effects. 

The Euler-Lagrange equations associated to the variational

Eq. (6) are obtained by means of the following procedure. First,

integration by parts in (6) is required 

∫ 
�M 

[ − div M 

P M 

· ˆ u M 

+ div M 

div M 

Q M 

· ˆ u M 

− f M 

· ˆ u M 

] d�M 

+ 

∫ 
∂�N 

M 

P M 

n M 

· ˆ u M 

d∂�N 
M 

−
∫ 
∂�M 

( div M 

Q M 

) n M 

· ˆ u M 

d∂�N 
M 

+ 

∫ 
∂�N 

M 

Q M 

n M 

· ∇ M ̂

 u M 

d∂�N 
M 

= 

∫ 
∂�N 

M 

t M 

· ˆ u M 

d∂�N 
M 

+ 

∫ 
∂�N 

M 

r M 

· ∂ ̂  u M 

∂n 

d∂�N 
M 

+ 

∫ 
�N 

M 

s M 

· ˆ u M 

d�N 
M 

∀ ̂

 u M 

∈ V M 

. (10)

Eq. (10) can be reorganised, yielding 

∫ 
�M 

[ − div M 

P M 

+ div M 

div M 

Q M 

− f M 

] · ˆ u M 

d�M 

+ 

∫ 
∂�N 

M 

([ P M 

− div M 

Q M 

] n M 

− t M 

) · ˆ u M 

d∂�N 
M 

+ 

∫ 
∂�N 

M 

Q M 

n M 

· ∇ M ̂

 u M 

d∂�N 
M 

−
∫ 
∂�N 

M 

r M 

· ∂ ̂  u M 

∂n 

d∂�N 
M 

−
∫ 
�N 

M 

s M 

· ˆ u M 

d�N 
M 

= 0 ∀ 

ˆ u M 

∈ V M 

. (11)

Now note that, given a vector v and the surface ∂�N 
M 

with normal

n M 

, we can decompose the gradient ∇ M 

v as 

∇ M 

v = (∇ 

∂ 
M 

v ) �M 

+ 

∂v 

∂n 

� n M 

, (12)

where �M 

= I − n M 

� n M 

is the orthogonal projection operator

onto the tangent plane at the considered point of the surface ∂�N 
M 

,

and ∇ 

∂ 
M 

stands for the surface gradient operator (partial derivative

operator with respect to the surface coordinates). Then, the prod-

uct Q M 

n M 

· ∇ M ̂

 u M 

is equivalently written as 

Q M 

n M 

· ∇ M ̂

 u M 

= Q M 

n M 

·
[ 
(∇ 

∂ 
M ̂

 u M 

) �M 

+ 

∂ ̂  u M 

∂n 

� n M 

] 

= ( Q M 

n M 

) �M 

· ∇ 

∂ 
M ̂

 u M 

+ ( Q M 

n M 

) n M 

· ∂ ̂  u M 

∂n 

. (13)

Integrating by parts over the surface ∂�N 
M 

the third term on the

left hand side of (11) , we obtain 

∫ 
∂�N 

M 

Q M 

n M 

· ∇ M ̂

 u M 

d∂�N 
M 

= 

∫ 
∂�N 

M 

( Q M 

n M 

) �M 

· ∇ 

∂ 
M ̂

 u M 

d∂�N 
M 

+ 

∫ 
∂�N 

M 

( Q M 

n M 

) n M 

· ∂ ̂  u M 

∂n 

d∂�N 
M 

= −
∫ 
∂�N 

M 

div 
∂ 
M 

[
( Q M 

n M 

) �M 

]
· ˆ u M 

d∂�N 
M 

+ 

∫ 
�N 

M 

� ( Q M 

n M 

) m M 

� · ˆ u M 

d�N 
M 

+ 

∫ 
∂�N 

( Q M 

n M 

) n M 

· ∂ ̂  u M 

∂n 

d∂�N 
M 

, (14)

M 
here m M 

= τM 

× n M 

, τM 

is the unit vector tangent to the edge
N 
M 

, div 
∂ 
M 

is the surface divergence operator and � •� denotes the

ump of •. 

Replacing (14) into (11) yields 
 

�M 

[
− div M 

P M 

+ div M 

div M 

Q M 

− f M 

]
· ˆ u M 

d�M 

+ 

∫ 
∂�N 

M 

([
P M 

− div M 

Q M 

]
n M 

− t M 

)
· ˆ u M 

d∂�N 
M 

−
∫ 
∂�N 

M 

div 
∂ 
M 

[
( Q M 

n M 

) �M 

]
· ˆ u M 

d∂�N 
M 

+ 

∫ 
�N 

M 

(
� ( Q M 

n M 

) m M 

� − s M 

)
· ˆ u M 

d�N 
M 

+ 

∫ 
∂�N 

M 

[
( Q M 

n M 

) n M 

− r M 

]
· ∂ ̂  u M 

∂n 

d∂�N 
M 

= 0 

∀ ̂

 u M 

∈ V M 

. (15)

inally, by using standard variational arguments we obtain the

uler-Lagrange equations associated to the variational Eq. (6) 

div M 

P M 

+ div M 

div M 

Q M 

= f M 

in �M 

, (16)

P M 

− div M 

Q M 

]
n M 

− div 
∂ 
M 

[
( Q M 

n M 

) �M 

]
= t M 

on ∂�N 
M 

, (17)

( Q M 

n M 

) n M 

= r M 

on ∂�N 
M 

, (18)

 ( Q M 

n M 

) m M 

� = s M 

on �N 
M 

, (19)

hich, together with the following essential boundary conditions,

 M 

= ū M 

on ∂�D 
M 

, (20)

∂u M 

∂n 

= w̄ M 

on ∂�D 
M 

, (21)

 M 

= ŭ M 

on �D 
M 

, (22)

ully characterise the boundary value problem associated to the

ariational principle (6) . 

Note that by introducing (7), (8) and (9) in (16), (17), (18) and

19) , the equilibrium equations for high order continua with inertia

ffects are recovered. The reader is referred to Polizzotto (2013) for

urther details. 

In what follows, we denote G M 

= ∇ M 

u M 

, G M 

= ∇ M 

∇ M 

u M 

and,

ccordingly, we define ˆ G M 

= ∇ M ̂

 u M 

and 

ˆ G M 

= ∇ M 

∇ M ̂

 u M 

. Note that

he third-order tensor G M 

is such that G M 

= G 

T 
M 

(symmetric in the

ast two indices, see Appendix A for details). 

. Multi-scale kinematics 

In the context of the Method of Multiscale Virtual Power pro-

osed in Blanco et al. (2016) , the definition of the kinematics of

he macro- and micro-scales, as well as how they are linked, is the

nly degree of arbitrariness one has in developing a multi-scale

odel. Once such kinematical relations are postulated, mathemat-

cal duality will define the associated force- and stress-like quan-

ities compatible with each scale of the model, and the Principle

f Multiscale Virtual Power will univocally lead to the RVE equilib-

ium equations as well as to the homogenisation relations linking

he micro- and macro-scale force- and stress-like quantities. The

inematics of the macro-continuum has already been established

n Section 3 . Here we shall proceed to postulate the kinematics

f the micro-scale as well as the operations of kinematical inser-

ion and kinematical homogenisation , that link the kinematics of the

wo scales. These will completely characterise the kinematical de-

cription of the proposed multi-scale model. 
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.1. Kinematical insertion 

Without loss of generality, we consider the origin of the coordi-

ate system of an RVE associated to a point x M 

of the macro-scale

o be located at the geometric center of the micro-scale domain

μ, that is 
 

�μ

x μ d�μ = 0 . (23) 

Kinematical insertion ( Blanco et al., 2016 ) defines how the

acro-scale kinematics at a given point of the macro-continuum

ontributes to the kinematics of the micro-scale. In the present

ase, the operation of insertion of the macro-scale kinematical de-

criptors – the triad (u M 

, G M 

, G M 

) – into the micro-scale kinemat-

cs is postulated as follows: 

 μ = u M 

+ G M 

x μ + 

1 

2 

G M 

[(x μ � x μ) − J ] + 

˜ u μ, (24)

here J is the RVE second-order moment of volume tensor defined

y 

 = 

1 

| �μ| 
∫ 
�μ

x μ � x μ d�μ, (25)

nd 

˜ u μ is named the micro-scale displacement fluctuation field. 

Note that, by construction, J is an invertible second-order ten-

or. The reason for the tensor J to take part in expression (24) will

e clear later. For the moment, we anticipate that the macro-scale

inematics inserted this way allows (along with the kinematically

dmissibility concept of Section 4.3 ) the conservation of kinemati-

al quantities in the multi-scale transition process. 

It is important to highlight that in expansion (24) the triad

(u M 

, G M 

, G M 

) represents the value of the macro-scale fields u M 

,

 M 

u M 

and ∇ M 

∇ M 

u M 

at a point x M 

of the macro-scale, associ-

ted to a given RVE, that is to say (u M 

, ∇ M 

u M 

, ∇ M 

∇ M 

u M 

) | x M =
(u M 

, G M 

, G M 

) . Thus, (u M 

, G M 

, G M 

) ∈ R 

3 × R 

3 ×3 × (R 

3 ×3 ×3 ) S , where

(R 

3 ×3 ×3 ) S denotes the set of third order matrices satisfying A 

T = A

n the sense defined in Appendix A . 

emark 2. The decomposition of the micro-scale displacement

eld u μ considered in (24) differs from the ones proposed in

ouznetsova et al. (20 02, 20 04) ; Luscher et al. (2010, 2012) since in

he present work the contribution of the macro-scale displacement

 M 

is added as it will be fundamental for the characterisation of

he external power exerted per unit volume that must be consid-

red at the RVE level when general micro-scale body and inertia

orces are present. This was actually not required in Kouznetsova

t al. (20 02, 20 04) because external body forces were not con-

idered in the micro-scale analysis presented by these authors. In

uscher et al. (2010, 2012) , however, such forces were incorporated

n the analysis, but the macro-scale displacement contribution to

he micro-scale displacement was not accounted for. Another dif-

erence between the present paper and these contributions is the

orm of the second-order term. While in Kouznetsova et al. (2002,

004) ; Luscher et al. (2010, 2012) the second-order term features

he form 

1 
2 G M 

(x μ � x μ) , in (24) we have incorporated the term
1 
2 G M 

J (not present in previous contributions) which is fundamen-

al for a correct characterisation of the homogenised part of the

icro-scale external power per unit volume. In fact, this contribu-

ion to the homogenisation is obtained in duality with the constant

omponent of the micro-scale displacement field u μ. 

.2. Kinematical homogenisation 

The operations of kinematical homogenisation define how macro-

cale kinematical descriptors are related to averages (in some

ense) of micro-scale kinematical descriptors. In the present con-

ext, we postulate that the homogenisation of the micro-scale kine-

atical fields is given by the following formulae: 
• Homogenisation related to the macro-scale displacement vector

u M 

= 

1 

| �μ| 
∫ 
�μ

u μ d�μ. (26) 

• Homogenisation related to the first gradient of the macro-scale

displacement vector 

G M 

= 

1 

| �μ| 
∫ 
�μ

∇ μu μ d�μ. (27)

• Homogenisation related to the second gradient of the macro-

scale displacement vector 

G M 

= 

1 

| �μ| 
∫ 
�μ

[(∇ μu μ � x μ) ◦ J −1 ] S d�μ, (28)

where the (·) S and ( · ◦ ·) operations are defined in Appendix A .

We remark that the postulated averaging relations (26),

27) and (28) guarantee the conservation of kinematical quantities.

n the case that the micro-scale kinematics is exclusively described

n terms of the macro-scale quantities, i.e. ˜ u μ = 0 in (24) , it is a

imple exercise to prove that (26), (27) and (28) hold trivially. This

ense of kinematical conservation implies that if a certain macro-

cale kinematical quantity is inserted into the micro-scale domain,

he same quantity must be retrieved by the homogenisation pro-

ess. As a result, we shall see that the fluctuation of the micro-

cale displacement field can in general be non-zero, but cannot

e entirely arbitrary. That is, additional constraints must be im-

osed upon displacement fluctuation fields in order to preserve the

acro-scale kinematics in the homogenisation process. This moti-

ates the introduction of the so-called kinematical admissibility re-

uirement, explained below. 

emark 3. The conservation of kinematical quantities is a novel

oncept introduced in the present framework that establishes the

eed for homogenisation rules connecting u M 

, G M 

and G M 

to the

icro-scale field u μ. While averaging relation (27) is standard and

as been employed in Kouznetsova et al. (20 02, 20 04) ; Luscher

t al. (2010, 2012) , (26) and (28) are postulated here in order to

stablish such a connection between macro- and micro-scale kine-

atical fields. Differently from the aforementioned papers, in the

resent approach the resulting kinematical micro-scale level con-

traints are entirely dependent on the definition of these averaging

elations. 

.3. Kinematical admissibility 

Following the above discussion, we class as kinematically admis-

ible all micro-scale displacement fields u μ ∈ V μ, where 

 μ = 

{ 

v ∈ H 

1 (�μ) , 
1 

| �μ| 
∫ 
�μ

v d�μ = u M 

, 

1 

| �μ| 
∫ 
�μ

∇ μv d�μ = G M 

, 

1 

| �μ| 
∫ 
�μ

[
(∇ μv � x μ) ◦ J −1 

]S 
d�μ = G M 

} 

, (29) 

s the linear manifold of kinematically admissible micro-scale

isplacements. The kinematical admissibility concept can be ex-

ressed equivalently in terms of the fluctuation of the micro-scale

isplacement field 

˜ u μ as follows. 
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First, by introducing (24) into the right hand side of (26) , and

using (23) , we readily obtain 

u M 

= 

1 

| �μ| 
∫ 
�μ

[ 
u M 

+ G M 

x μ + 

1 

2 

G M 

[(x μ � x μ) − J ] + 

˜ u μ

] 
d�μ

= u M 

+ 

1 

| �μ| 
∫ 
�μ

˜ u μ d�μ. (30)

Then, (26) is satisfied provided that ∫ 
�μ

˜ u μ d�μ = 0 . (31)

Next, by replacing (24) in (27) , we get 

G M 

= 

1 

| �μ| 
∫ 
�μ

[
G M 

+ G M 

x μ + ∇ μ ˜ u μ

]
d�μ

= G M 

+ 

1 

| �μ| 
∫ 
�μ

∇ μ ˜ u μ d�μ. (32)

Then, (27) is satisfied provided that ∫ 
�μ

∇ μ ˜ u μ d�μ = 0 , (33)

or, equivalently, ∫ 
∂�μ

˜ u μ � n μ d∂�μ = 0 , (34)

where n μ is the outward unit vector normal to ∂�μ. Further, by

introducing (24) into (28) , and using (23) and (25) , we obtain 

G M 

= 

1 

| �μ| 
∫ 
�μ

[
((G M 

+ G M 

x μ + ∇ μ ˜ u μ) � x μ) ◦ J −1 
]S 

d�μ

= G M 

+ 

1 

| �μ| 
∫ 
�μ

[
(∇ μ ˜ u μ � x μ) ◦ J −1 

]S 
d�μ. (35)

Then, (28) is satisfied provided that ∫ 
�μ

[
(∇ μ ˜ u μ � x μ) ◦ J −1 

]S 
d�μ = 0 . (36)

For any vector v , and recalling that J −1 is symmetric, the following

holds 

(∇ μv � x μ) ◦ J −1 = (∇ μv � (J −1 x μ)) 

= (∇ μ((J −1 x μ) � v )) t − v � (J −1 ∇ μx μ) T 

= (∇ μ((J −1 x μ) � v )) t − v � J −1 . (37)

Hence, from (36) , and bearing in mind that (31) must hold, we

obtain ∫ 
�μ

[
(∇ μ ˜ u μ � x μ) ◦ J −1 

]S 
d�μ

= 

∫ 
�μ

[
(∇ μ((J −1 x μ) � ˜ u μ)) 

t − ˜ u μ � J −1 
]S 

d�μ

= 

∫ 
�μ

[
(∇ μ((J −1 x μ) � ˜ u μ)) t 

]S 
d�μ −

[ (∫ 
�μ

˜ u μ d�μ

)
� J −1 

] S 

= 

∫ 
�μ

[
(∇ μ((J −1 x μ) � ˜ u μ)) t 

]S 
d�μ

= 

∫ 
∂�μ

[
((J −1 x μ) � ˜ u μ � n μ)) 

t ]S 
d∂�μ

= 

∫ 
∂�μ

[ ̃  u μ � n μ � (J −1 x μ)] 
S 

d∂�μ = 0 , (38)

where (·) t is a transpose operation defined in Appendix A . 

Then, (36) can be equivalently expressed as a boundary con-

straint as follows: ∫ 
∂�μ

[
( ̃  u μ � n μ � x μ) ◦ J −1 

]S 
d∂�μ = 0 . (39)
t is important to highlight that in the derivation of (39) we have

ade use of the fact that (31) is satisfied. That is, constraint

36) can be written as a boundary constraint only if the field 

˜ u μ

as zero mean value over the entire micro-scale domain. 

emark 4. It is important to point out that the derivation of the

oundary conditions comes naturally as a consequence of the con-

ervation of homogenised kinematic quantities in the transition

etween scales. A different approach to obtain boundary condi-

ions for a high-order model is proposed in Luscher et al. (2010,

012) , where orthogonality conditions are postulated to derive in-

ependent boundary constraints at the RVE level. 

emark 5. Comparing to previous works, the kinematical con-

traint given by (31) was not considered in Kouznetsova et al.

20 02, 20 04) ; but it was acknowledged in Luscher et al. (2010,

012) for the displacement fluctuation field. Nonetheless, it is not

lear in the latter works whether the constraint (31) is effectively

onsidered for the admissible variations of the fluctuation field

n the principle of virtual power. In turn, constraint (36) , which

eads to (39) , is completely new. Specifically, constraint (31) al-

ows a correct characterisation, through duality, of homogenised

orces; and, constraint (39) provides a general form to ensure the

onservation of second-order kinematics in the transition between

cales. In Kouznetsova et al. (20 02, 20 04) the argument to con-

truct a boundary condition resembling (39) is similar to the one

mployed here; however, it is not the same, because for the deriva-

ion of boundary conditions from these constraints it is necessary

o make use of (31) , which, as already mentioned, is not consid-

red in Kouznetsova et al. (20 02, 20 04) . Differently, the criterion

o construct boundary conditions in Luscher et al. (2010, 2012) is

ased on orthogonality arguments, which yield different kinemati-

al constraints. 

Hence, the micro-scale displacement u μ, given by (24) , is kine-

atically admissible for a given triad (u M 

, G M 

, G M 

) , if it satisfies

31), (34) and (39) , that is if ˜ u μ ∈ 

˜ V μ, where 

˜ 
 μ = 

{ 

v ∈ H 

1 (�μ) , 

∫ 
�μ

v d�μ = 0 , 

∫ 
∂�μ

v � n μ d∂�μ = 0 , 

∫ 
∂�μ

[
(v � n μ � x μ) ◦ J −1 

]S 
d∂�μ = 0 

} 

. (40)

ote that space ˜ V μ can be equivalently defined using only volume

onstraints: 

˜ 
 μ = 

{ 

v ∈ H 

1 (�μ) , 

∫ 
�μ

v d�μ = 0 , 

∫ 
�μ

∇ μv d�μ = 0 , 

∫ 
�μ

[
(∇ μv � x μ) ◦ J −1 

]S 
d�μ = 0 

} 

. (41)

learly, the set of constraints (31), (34) and (39) that defines ˜ V μ
n (40) is equivalent to the set (31), (33) and (36) that defines ˜ V μ
n (41) . In fact, these two sets of constraints over the fluctuation

eld 

˜ u μ are equivalent to the original relations between macro-

cale and micro-scale kinematical descriptors given by the set of

q. (26) , (27) and (28) which define the linear manifold V μ in (29) .

hat is, assuming that u μ is expanded as in (24) , then u μ ∈ V μ if

nd only if ˜ u μ ∈ 

˜ V μ. 

emark 6. The complete characterisation of the space of admis-

ible displacement fluctuation fields, ˜ V μ, provides the kinemat-

cal foundation upon which the principle of multi-scale virtual

ower is to be regarded. That is, the constraints that play a role

n (40) (or, equivalently, in (41) ) inevitably affect the micro-scale

echanical equilibrium problem. Therefore, since novel kinemati-

al constraints are derived in the present work, they will result in

 novel multi-scale model. 
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emark 7. The space ˜ V μ introduced above is the space of mini-

ally constrained displacement fluctuations such that the kinemat-

cal relations between both scales are satisfied. Any subspace,
˜ 
 

∗
μ ⊂ ˜ V μ can be adopted as a kinematically admissible space of dis-

lacement fluctuations and should serve, in this sense, to derive

ore kinematically constrained multi-scale submodels (e.g. models

ased on the assumption of null RVE kinematical boundary con-

itions for the displacement fluctuation field, or on suitable gen-

ralisations to this high order setting of periodic boundary con-

traints). This choice of “working” space of kinematically admissi-

le displacement fluctuations is rather arbitrary and, if a realistic

odel is to be derived, should be made so as to capture the real

inematics of the physical problem in question as closely as possi-

le. 

Finally, it should be noted that, since all the kinematical con-

traints on 

˜ u μ are homogeneous, it follows that the corresponding

irtual actions, denoted 

ˆ ˜ u μ, satisfy ˆ ˜ u μ ∈ 

˜ V μ. 

. Principle of Multiscale Virtual Power (PMVP) 

Having completely characterised the kinematics of the multi-

cale model in question, we shall now proceed to state the Prin-

iple of Multiscale Virtual Power – one of the pillars of the multi-

cale variational framework developed in Blanco et al. (2016) . This

rinciple effectively postulates that the total virtual power is con-

erved across scales and, by means of standard variational argu-

ents, leads univocally to the homogenisation formulae for the

elevant force- and stress-like quantities, as well as to the micro-

cale equilibrium equations appropriate for the present model. 

For the sake of completeness, and to gain further insight

nto the theory, two equivalent forms of this principle are dis-

ussed here, namely the Primal Variational Statement and the La-

range Multiplier Variational Statement , presented respectively in

ections 5.1 and 5.2 . 

.1. Primal variational statement 

This version of the Principle of Multiscale Virtual Power is es-

ablished by considering that the kinematical constraints, discussed

n Section 4 , are embedded in the definition of the kinematical

unctional space ˜ V μ defined by (40) or (41) . 

Let us firstly introduce the total virtual power at a macro-scale

oint x M 

, according to the macro-scale problem (1) . The total vir-

ual power is a linear functional of the triad ( ̂  u M 

, ̂  G M 

, ̂  G M 

) whose

orm is 

 

tot 
M, x M 

( ̂  u M 

, ̂  G M 

, ̂  G M 

) = | �μ| (P M 

· ˆ G M 

+ Q M 

· ˆ G M 

− f M 

· ˆ u M 

) . (42)

ince our aim here is to describe the micro-scale mechanics by

eans of the classical continuum theory with inertia effects, the

otal virtual power of the RVE is, in turn, a linear functional of only

he virtual micro-scale displacement field, ˆ u μ, and its first gradi-

nt, ∇ μ ˆ u μ. Its classical form is 

 

tot 
μ ( ̂  u μ, ∇ μ ˆ u μ) = 

∫ 
�μ

(P μ · ∇ μ ˆ u μ − (f μ − ρμü μ) · ˆ u μ) d�μ, (43)

here P μ is the first Piola-Kirchhoff stress tensor, f μ and ρμ are,

espectively, the micro-scale body force and mass density fields. 

The Principle of Multiscale Virtual Power for the present case

tates that the total virtual power at a given point x M 

of the

acro-scale must equal the total virtual power produced at the

ssociated micro-scale domain �μ, for all kinematically admissi-

le virtual fields. That is, the following variational equation must

e satisfied, 

 �μ| (P M 

· ˆ G M 

+ Q M 

· ˆ G M 

− f M 

· ˆ u M 

)

= 

∫ 
�μ

(P μ · ∇ μ ˆ u μ − (f μ − ρμü μ) · ˆ u μ) d�μ

∀ ( ̂  u M 

, ̂  G M 

, ̂  G M 

) and ∀ ̂

 u μ kinematically admissible . (44) 

r, equivalently, by introducing (24) in the above, the Principle of

ultiscale Virtual Power can be expressed as 

 M 

· ˆ G M 

+ Q M 

· ˆ G M 

− f M 

· ˆ u M 

= 

1 

| �μ| 
∫ 
�μ

P μ · ( ̂  G M 

+ 

ˆ G M 

x μ + ∇ μ
ˆ ˜ u μ) d�μ

− 1 

| �μ| 
∫ 
�μ

(f μ − ρμü μ) 

·
(

ˆ u M 

+ 

ˆ G M 

x μ + 

1 

2 

ˆ G M 

[(x μ � x μ) − J ] + 

ˆ ˜ u μ

)
d�μ

∀ ( ̂  u M 

, ̂  G M 

, ̂  G M 

) ∈ R 

3 × R 

3 ×3 × (R 

3 ×3 ×3 ) S , ∀ ̂

 ˜ u μ ∈ 

˜ V μ. (45) 

emark 8. For further comparison with previous contributions in

he field, note that PMVP (45) takes into account the effect of

icro-scale body forces (including micro-scale inertia) in the phys-

cal coupling between scales. This effect was accounted for in

ouznetsova et al. (20 02, 20 04) . In turn, although body forces were

ncorporated in the multi-scale formulation proposed in Luscher

t al. (2010, 2012) , recall that the model developed here is based

n a different expansion of the micro-scale fluctuation field (kine-

atical insertion operation), resulting in a different expansion of

he admissible variations ˆ ˜ u μ that, as a consequence, characterises

 different space ˜ V μ. This affects the way in which the kine-

atical descriptors (displacement and deformation gradient) ex-

rt power against dual counterparts (force and stress). Therefore,

he mechanical equilibrium is modified, and so are all subsequent

omogenisation procedures derived from the PMVP. This will be

learly shown in the homogenised formulae derived in what fol-

ows. 

.2. Lagrange multiplier variational statement 

The main reason for using this alternative Lagrange multiplier-

ased form of the PMVP is that it naturally unveils the reactive

orces and stresses resulting from the kinematical constraints in-

orporated in the definition of the space ˜ V μ, that takes part in

45) . As we shall see later, such reactions add significant insight

nto the fundamental link that exists between the postulated kine-

atical constraints of the RVE and the homogenised force- and

tress-like quantities that appear at the macro-scale. 

For the present model, the Lagrange multiplier variational state-

ent is obtained by simply removing the kinematical constraints

f the space ˜ V μ defined by (40) or (41) and then enforcing these

onstraints by means of appropriate Lagrange multipliers in the

MVP. For convenience, we shall enforce these constraints explic-

tly in their volume integral format. i.e., we will work with (31),

33) and (36) (as in definition (41) ). These constraints will be asso-

iated with the Lagrange multipliers denoted c , T and M , respec-

ively. Accordingly, the Principle of Multiscale Virtual Power (45) is

ewritten as 

 M 

· ˆ G M 

+ Q M 

· ˆ G M 

− f M 

· ˆ u M 

= 

1 

| �μ| 
∫ 
�μ

P μ · ( ̂  G M 

+ 

ˆ G M 

x μ + ∇ μ
ˆ ˜ u μ) d�μ

− 1 

| �μ| 
∫ 
�μ

(f μ − ρμü μ) 

·
(

ˆ u M 

+ 

ˆ G M 

x μ + 

1 

2 

ˆ G M 

[(x μ � x μ) − J ] + 

ˆ ˜ u μ

)
d�μ

+ 

ˆ c ·
(

1 

| �μ| 
∫ 
�μ

˜ u μ d�μ

)
+ c ·

(
1 

| �μ| 
∫ 
�μ

ˆ ˜ u μ d�μ

)
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∫
 

∫
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i  

v  

P

− ˆ T ·
(

1 

| �μ| 
∫ 
�μ

∇ μ ˜ u μ d�μ

)
− T ·

(
1 

| �μ| 
∫ 
�μ

∇ μ
ˆ ˜ u μ d�μ

)

− ˆ M ·
(

1 

| �μ| 
∫ 
�μ

[(∇ μ ˜ u μ � x μ) ◦ J −1 ] S d�μ

)

− M ·
(

1 

| �μ| 
∫ 
�μ

[(∇ μ
ˆ ˜ u μ � x μ) ◦ J −1 ] S d�μ

)

∀ ( ̂  u M 

, ̂  G M 

, ̂  G M 

) ∈ R 

3 × R 

3 ×3 × (R 

3 ×3 ×3 ) S , ∀ ̂

 ˜ u μ ∈ H 

1 (�μ) , 

∀ ( ̂ c , ̂  T , ˆ M ) ∈ R 

3 × R 

3 ×3 × (R 

3 ×3 ×3 ) S , (46)

where the signs of the terms containing the Lagrange multiplier

have been chosen for convenience. 

It should be noted that the volume constraints (33) and

(36) were used to derive boundary conditions (34) and (39) in

Section 4 . However, it must be observed that in order to obtain

(39) the restriction (31) has been used. Thus, the boundary con-

straint (39) is not independent from (31) . In the Primal Variational

Statement this fact has no consequences because fields in 

˜ V μ au-

tomatically satisfy (31) . However, in the Lagrange Multiplier Vari-

ational Statement restriction (39) can not be used, and it requires

the enforcement of the original (volume) constraint (36) . 

Remark 9. Clearly, variational formulation (46) is valid for the case

of the minimally constrained space of admissible fluctuation fields,

that is ˜ V μ. If an RVE model with additional boundary constraints is

considered, it is necessary to replace the terms associated to con-

straints (33) and (36) , that is, the terms corresponding to the La-

grange multipliers T and M , and their variations ˆ T and 

ˆ M , by terms

with the following form 

−
∫ 
∂�μ

ˆ r μ · ˜ u μ d∂�μ −
∫ 
∂�μ

r μ · ˆ ˜ u μ d∂�μ r μ, ̂  r μ ∈ L , (47)

where L is an appropriate space that characterises the structure

of the Lagrange multiplier r μ and its variation. In other words,

this space characterises the nature of the constraint. For exam-

ple, in the case of zero fluctuation 

˜ u μ imposed over ∂�μ we have

L = H 

−1 / 2 (∂�μ) . For the sake of clarity, in the forthcoming de-

velopments the minimally constrained model (variational formula-

tion (46) ) is considered, and the connection with other (more con-

strained) models will be made as appropriate. 

6. RVE equilibrium problem and homogenisation formulae 

Within the framework of the Method of Multiscale Virtual

Power of Blanco et al. (2016) , the RVE equilibrium problem as

well as the homogenisation formulae for the force- and stress-like

quantities are derived from the PMVP, by means of straightforward

variational arguments. The variational Eq. (45) is perfectly suited

to this end, as it includes all the ingredients needed to complete

the characterisation of the multi-scale model. Here, however, we

shall opt to use the equivalent Lagrange multiplier formulation

(46) instead. Since our main aim in this paper is to look deeper

into the second-gradient multi-scale formulation, the adoption of

(46) will be very useful in providing a clear insight into the role

played by the reactive forces caused by postulated RVE kinematical

constraints. 

6.1. Micro-scale equilibrium problem 

We start by deriving the RVE equilibrium equation. To this

end, we simply set ˆ u M 

= 0 , ˆ G M 

= 0 and 

ˆ G M 

= 0 in (46) , which

leads to the following RVE variational equilibrium problem: find

˜ u μ ∈ H 

1 (�μ) and the triad (c , T , M ) ∈ R 

3 × R 

3 ×3 × (R 

3 ×3 ×3 ) S such

that 

1 

| �μ| 
∫ 
�μ

[
(P μ − (T + M (J −1 x μ))) · ∇ μ

ˆ ˜ u μ

− ((f μ − ρμü μ) − c ) · ˆ ˜ u μ

]
d�μ
+ ̂

 c ·
(

1 

| �μ| 
∫ 
�μ

˜ u μ d �μ

)
− ˆ T ·

(
1 

| �μ| 
∫ 
�μ

∇ μ ˜ u μ d �μ

)

− ˆ M ·
(

1 

| �μ| 
∫ 
�μ

[(∇ μ ˜ u μ � x μ) ◦ J −1 ] S d�μ

)
= 0 

∀ ̂

 ˜ u μ ∈ H 

1 (�μ) , ∀ ( ̂ c , ̂  T , ˆ M ) ∈ R 

3 × R 

3 ×3 × (R 

3 ×3 ×3 ) S . (48)

ext, we set ˆ c = 0 , ˆ T = 0 and 

ˆ M = 0 in (48) to obtain 

 

�μ

[
(P μ − (T + M (J −1 x μ))) · ∇ μ

ˆ ˜ u μ

− ((f μ − ρμü μ) − c ) · ˆ ˜ u μ

]
d�μ = 0 

∀ ̂

 ˜ u μ ∈ H 

1 (�μ) . (49)

ntegrating by parts the first term in (49) gives ∫ 
�μ

[ div μ(P μ − (T + M (J −1 x μ))) + (f μ − ρμü μ) − c ] · ˆ ˜ u μ d�μ

+ 

∫ 
∂�μ

(P μ − (T + M (J −1 x μ))) n μ · ˆ ˜ u μ d∂�μ = 0 

∀ ̂

 ˜ u μ ∈ H 

1 (�μ) . (50)

ince T and M are constant tensors, the previous expression is

quivalent to ∫ 
�μ

[ div μ P μ − M J −1 + (f μ − ρμü μ) − c ] · ˆ ˜ u μ d�μ

+ 

∫ 
∂�μ

(P μ − (T + M (J −1 x μ))) n μ · ˆ ˜ u μ d∂�μ = 0 

∀ ̂

 ˜ u μ ∈ H 

1 (�μ) , (51)

hich, by means of a trivial variational argument, leads to the

trong form of the RVE equilibrium: 

μü μ − div μ P μ = f μ − (c + M J −1 ) in �μ, (52)

 μn μ = (T + M (J −1 x μ)) n μ on ∂�μ. (53)

emark 10. If a model with more boundary constraints is consid-

red (see Remark 9 ) then Eqs. (52) and (53) read 

μü μ − div μ P μ = f μ − c in �μ, (54)

 μn μ = r μ on ∂�μ. (55)

hat is, the traction over the boundary is fully defined by the La-

range multiplier r μ. 

This, together with the following equations naturally derived

rom (48) , 
 

�μ

˜ u μ d�μ = 0 , (56)

 

�μ

∇ μ ˜ u μ d∂�μ = 0 , (57)

 

�μ

[(∇ μ ˜ u μ � x μ) ◦ J −1 ] S d�μ = 0 , (58)

omprise the subset of Euler-Lagrange equations that characterises

he RVE (or micro-scale) equilibrium problem. Obviously, from pre-

ious developments we have that Eqs. (56) , (57) and (58) are

quivalent to (31), (34) and (39) , respectively. 

Finally, we remark that the micro-scale equilibrium problem

s completely characterised when the micro-scale force per unit

olume f μ is given, together with a constitutive relation P μ =
 μ(∇ μu μ) for the micro-scale Piola-Kirchhoff stress. 
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.2. Body force homogenisation formula 

The homogenisation formula for the body force can be obtained

y simply setting ˆ c = 0 , ˆ T = 0 , ˆ M = 0 , ˆ G M 

= 0 , ˆ G M 

= 0 and 

ˆ ˜ u μ = 0

n (46) . This gives 

 M 

= 

1 

| �μ| 
∫ 
�μ

(f μ − ρμü μ) d�μ. (59)

oreover, we could decompose it into inertial and non-inertial

ontributions to the macro-scale body force f M 

, which allows us

o arrive at the following expressions (see (1) ) 

 M 

= 

1 

| �μ| 
∫ 
�μ

ρμü μ d�μ, (60) 

 M 

= 

1 

| �μ| 
∫ 
�μ

f μ d�μ. (61) 

emark 11. While the homogenisation formula (59) has been nat-

rally derived within the present framework as the dual object

hat exerts power against the constant (uniform in space) compo-

ent of the micro-scale displacement field, i.e. u M 

, (see (24) ), no

omogenisation formula of this kind was derived in Luscher et al.

2010, 2012) from the balance of virtual power between scales. 

.3. Generalised stresses homogenisation formulae 

Seeting ˆ c = 0 , ˆ T = 0 , ˆ M = 0 , ˆ u M 

= 0 , ˆ G M 

= 0 and 

ˆ ˜ u μ = 0 in

46) leads to the homogenisation formula for P M 

: 

 M 

= 

1 

| �μ| 
∫ 
�μ

(P μ − (f μ − ρμü μ) � x μ) d�μ. (62)

s already anticipated, the tensor P M 

possesses inertial and a non-

nertial components, the former being a consequence of the inertia

orces in the micro-scale. In the context of expression (1) , putting

 M 

= A M 

+ S M 

, we could arrive here at the following identities 

 M 

= 

1 

| �μ| 
∫ 
�μ

ρμü μ � x μ d�μ, (63) 

 M 

= 

1 

| �μ| 
∫ 
�μ

(P μ − f μ � x μ) d�μ. (64) 

emark 12. From expression (62) it is seen that P M 

depends on

¨
 μ both explicit and implicitly. The explicit dependence is eas-

ly seen from the decomposition P M 

= A M 

+ S M 

introduced above,

here A M 

accounts for such explicit dependence. However, it is

mportant to notice that there is still the implicit dependence in

he tensor P μ, which, through the equilibrium problem (49) , also

epends on ü μ. This implies that there exists an implicit depen-

ence of S M 

on ü μ. 

A fundamental homogenisation formula equivalent to (62) is

roved in Appendix B . It expresses the macro-scale stress tensor

 M 

as a function of RVE boundary data alone as 

 M 

= 

1 

| �μ| 
∫ 
∂�μ

t μ � x μ d∂�μ, (65)

here t μ = P μn μ. 

While expression (62) can be seen as a weak homogenisation

ormula, the equivalent formula (65) is understood as a strong

omogenisation formula, as its derivation requires the use of the

trong form of the equilibrium equations. 

emark 13. For models with more boundary constraints, for which

54) and (55) hold, following the same procedure that led to
65) (see Appendix B ), the same formula remains valid, and in this

articular case reads 

 M 

= 

1 

| �μ| 
∫ 
∂�μ

r μ � x μ d∂�μ, (66)

ith r μ the corresponding Lagrange multiplier (see Remark 9 ). 

Finally, by setting ˆ c = 0 , ˆ T = 0 , ˆ M = 0 , ˆ u M 

= 0 , ˆ G M 

= 0 and
ˆ ˜ 
 μ = 0 , Eq. (46) gives 

 M 

= 

1 

| �μ| 
∫ 
�μ

(
(P μ � x μ) S 

− 1 

2 

(f μ − ρμü μ) � (x μ � x μ − J ) 
)

d�μ. (67) 

s with P M 

, we can understand the tensor Q M 

as having inertial

nd a non-inertial components, that is, we can write Q M 

= A M 

+
 M 

, where 

 M 

= 

1 

| �μ| 
∫ 
�μ

1 

2 

ρμü μ � (x μ � x μ − J ) d�μ, (68) 

 M 

= 

1 

| �μ| 
∫ 
�μ

(
(P μ � x μ) S − 1 

2 

f μ � (x μ � x μ − J ) 
)

d�μ. (69) 

emark 14. Similar to Remark 12 , from expression (67) it follows

hat Q M 

depends explicitly and implicitly on ü μ, the latter through

he relation between P μ and ü μ established by the equilibrium

roblem (49) . 

In Appendix C it is proved that, like P M 

, Q M 

can also be ex-

ressed as a function of RVE boundary data alone 

 M 

+ 

1 

2 

( Q M 

J −1 ) � J = 

1 

| �μ| 
∫ 
∂�μ

1 

2 

t μ � x μ � x μ d∂�μ. (70)

Analogously, expression (67) could be understood as a weak ho-

ogenisation formula, while formula (70) can be seen as a strong

omogenisation formula. 

emark 15. For models with more boundary constraints (54) and

55) hold. In such case, the Lagrange multiplier M is not present

n the formulation, and following the same procedure that led to

70) (see Appendix C ), it is easy to show that instead of (70) , the

ollowing formula holds 

 M 

= 

1 

| �μ| 
∫ 
∂�μ

1 

2 

r μ � x μ � x μ d∂�μ, (71)

ith r μ the corresponding Lagrange multiplier (see Remark 9 ).

gain, a formula depending solely on boundary data has been re-

overed. 

emark 16. In the absence of forces per unit volume ( f μ = 0 )

nd inertia effects ( ̈u μ = 0 ), the homogenisation formulae (62) and

67) coincide with those derived in Kouznetsova et al. (2002,

004) ; Luscher et al. (2010, 2012) . Nonetheless, the formulae

62) and (67) , which have been shown to be equivalent to (65) and 

70) , have striking differences when compared to the results re-

orted in Luscher et al. (2010, 2012) . In contrast to the present

esults, the homogenised stresses in such contributions cannot

e expressed as a function of boundary data alone. The present

aper extends our previous findings for the first-order theory

 de Souza Neto et al., 2015 ) to second-order models with body

orces, and highlights the fact that macro-scale stresses must

ecessarily remain identifiable in terms of RVE boundary data

lone. This is a fundamental property in the definition of macro-

cale variables, pointed out by Hill in ( Hill, 1972 ). A further dif-

erence with respect to Luscher et al. (2010, 2012) is that the
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contribution of the body forces f μ to the high-order macro-scale

stress tensor Q M 

is generated here by the tensorial product with

(x μ � x μ − J ) . 

6.4. Reactions to RVE constraints and homogenised forces and 

stresses 

In kinematically-based mechanical variational settings, Lagrange

multipliers typically used to enforce kinematical constraints are re-

actions to the constraints they are meant to enforce. In the context

of the Principle of Multiscale Virtual Power (46) , c is the reactive

force required to enforce constraint (31) , T is the reactive stress to

constraint (33) , and M a higher-order stress reactive to (36) . 

Further to the above comment, we prove in Appendix D that

these reactive force- and stress-like quantities in fact satisfy 

c = f M 

, (72)

T = P M 

, (73)

M = Q M 

. (74)

That is, the homogenised body force f M 

is simply the reaction to

the kinematical constraint (31) . The homogenised stress P M 

is the

reaction to (33) and the homogenised higher-order stress Q M 

is a

reaction to constraint (36) . 

Remark 17. The characterisation of Lagrange multipliers given by

(72) –(74) has been obtained under the assumption of minimal con-

straints for the RVE kinematics (see variational Eq. (46) ). For mod-

els with further boundary constraints, expression (72) turns into

the following 

c = f M 

− 1 

| �μ| 
∫ 
∂�μ

r μ d∂�μ. (75)

while the characterisation of the Lagrange multiplier r μ depends

on the definition of the space L (see also Remark 9 ). 

Remark 18. Now that the meaning of the Lagrange multipliers is

fully understood, the RVE equilibrium problem (49) reveals that

the virtual power exerted by the fluctuation of the stress state

given by ˜ P μ = P μ − (P M 

+ Q M 

(J −1 x μ)) equals the external virtual

power exerted by the fluctuation of the force per unit volume
 f M 

= (f μ − ρμü μ) − f M 

, for all ˆ ˜ u μ ∈ H 

1 (�) . 

These findings provide a very significant insight into the na-

ture of homogenised force- and stress-like quantities in RVE-based

multi-scale theories which, to our knowledge, has not been re-

ported in the literature. Their identification as reactions required to

enforce the postulated RVE kinematical constraints provide a very

clear link between the kinematics of the RVE and the resulting ho-

mogenised force- and stress-like quantities “visible” at the macro-

scale level. Obviously, this implies that RVE kinematical constraints

and homogenisation formulae for force- and stress-like quantities

cannot be postulated independently and that, if ignored, may lead

to inconsistencies in the resulting theory. 

Finally, we remark that for the sake of completeness, we

present in Appendix E an alternative, yet equivalent, variational

formulation in which the constraints (26), (27) and (28) are di-

rectly enforced, and from which the same physical interpretation

of Lagrange multipliers is obtained. 

6.5. Generalised “uniform” boundary traction formula 

Under the assumption of minimal RVE kinematical constraints

(31), (33) and (36) , the tractions on the RVE boundary were found

to be given by (53) , in terms of the Lagrange multipliers T and M .
n light of the identities (73) and (74) , the RVE boundary traction

eld in this case (minimal constraints) reads 

 μn μ = (P M 

+ Q M 

(J −1 x μ)) n μ on ∂�μ. (76)

his identity generalises, to the present second-gradient multi-

cale model, the concept of uniform RVE boundary tractions associ-

ted with minimal constraints in the classical (first-gradient) RVE-

ased mechanical theory. In the classical theory, this reads simply

e Souza Neto et al. (2010) 

 μn μ = P M 

n μ on ∂�μ. (77)

emark 19. It should be noted that, if further constraints are

ncorporated into the RVE kinematics (e.g. properly generalised

oundary periodicity, homogeneous kinematical boundary condi-

ions), then (76) no longer holds in general. However, all other

ndings concerning the reactive nature of homogenised forces and

tresses remain valid, regardless of the particular set of constraints

hosen to describe the kinematics of the RVE. 

. Tangent operators 

For the sake of simplicity we shall assume in the present sec-

ion that the mechanical problem is quasi-static. We shall also as-

ume that the micro-scale constitutive behavior is defined through

 standard constitutive functional of the form P μ = P μ(∇ μu μ) ,

hich, in view of (24) , can be written as 

 μ = P μ(G M 

+ G M 

x μ + ∇ μ ˜ u μ) . (78)

n addition, we have a relation 

˜ u μ = 

˜ u μ(G M 

, G M 

) established

hrough the micro-scale equilibrium problem, which is repeated

ere in the quasi-static case for the sake of readability 
 

�μ

[ P μ(G M 

+ G M 

x μ + ∇ μ ˜ u μ) · ∇ μ
ˆ ˜ u μ − f μ · ˆ ˜ u μ] d�μ = 0 

∀ ̂

 ˜ u μ ∈ 

˜ V μ. (79)

In such case, expressions (62) and (67) state that the ho-

ogenised objects P M 

and Q M 

are (multi-scale) functionals of the

orm 

 M 

= P M 

(G M 

, G M 

) , (80)

 M 

= Q M 

(G M 

, G M 

) . (81)

ow, we are interested in calculating the following tangent opera-

ors (tensor order is also shown for clarity) 

 th order D G P M 

[ δG M 

] = 

d 

dτ
P M 

(G M 

+ τδG M 

, G M 

) 

∣∣∣
τ=0 

, (82)

 th order D G P M 

[ δG M 

] = 

d 

dτ
P M 

(G M 

, G M 

+ τδG M 

) 

∣∣∣
τ=0 

, (83)

 th order D G Q M 

[ δG M 

] = 

d 

dτ
Q M 

(G M 

+ τδG M 

, G M 

) 

∣∣∣
τ=0 

, (84)

 th order D G Q M 

[ δG M 

] = 

d 

dτ
Q M 

(G M 

, G M 

+ τδG M 

) 

∣∣∣
τ=0 

. (85)

t can be readily verified that these tangent operators are com-

osed of a Taylor-like component (explicit dependence with re-

pect to G M 

and G M 

, which ignores the contribution of fluctua-

ions) and a fluctuation component (implicit dependence through

he fluctuation displacement field 

˜ u μ). For example, for the tan-

ent operator D G P M 

, the Taylor component, denoted by D 

T P M 

, is

G 
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asily obtained as follows 

 

T 
G P M 

[ δG M 

] 

 

1 

| �μ| 
∫ 
�μ

d 

dτ
P μ(G M 

+τδG M 

+ G M 

x μ+∇ μ ˜ u μ(G M 

, G M 

)) 

∣∣∣
τ=0 

d�μ

 

1 

| �μ| 
∫ 
�μ

C μ(G M 

+ G M 

x μ + ∇ μ ˜ u μ(G M 

, G M 

)) δG M 

d�μ

 

[ 
1 

| �μ| 
∫ 
�μ

C μ d�μ

] 
δG M 

, (86) 

here C μ is the classical fourth order tangent constitutive operator

f the material in the micro-scale. Therefore, we have 

 

T 
G P M 

= 

1 

| �μ| 
∫ 
�μ

C μ d�μ. (87)

imilarly, the fluctuation contribution to the tangent operator, de-

oted 

˜ D G P M 

, is obtained as follows: 

˜ 
 G P M 

[ δG M 

] 

 

1 

| �μ| 
∫ 
�μ

d 

dτ
P μ(G M 

+ G M 

x μ+∇ μ ˜ u μ(G M 

+τδG M 

, G M 

)) 

∣∣∣
τ=0 

d�μ

 

1 

| �μ| 
∫ 
�μ

C μ[ S μδG M 

] d�μ = 

[ 
1 

| �μ| 
∫ 
�μ

C μ ◦ S μ d�μ

] 
δG M 

, 

(88) 

hat is (see Appendix A for the definition of operations) 

˜ 
 G P M 

= 

1 

| �μ| 
∫ 
�μ

C μ ◦ S μ d�μ. (89)

n the above, the fourth order tensor S μ represents the tangent

elation between ∇ μ ˜ u μ and G M 

, i.e. ∇ μδ ˜ u μ = S μδG M 

, and is ob-

ained by linearizing problem (79) . That is, S μ is characterised by

he following linear problem: 
 

�μ

C μ∇ μδ ˜ u μ · ∇ μ
ˆ ˜ u μ d�μ = −

∫ 
�μ

C μδG M 

· ∇ μ
ˆ ˜ u μ d�μ

∀ ̂

 ˜ u μ ∈ 

˜ V μ. (90) 

n this manner, the fluctuation component of the tangent operator

esults 

˜ 
 G P M 

= 

1 

| �μ| 
∫ 
�μ

C μ ◦ S μ d�μ. (91)

hen, we have the complete characterisation of this tangent oper-

tor 

 G P M 

= D 

T 
G P M 

+ 

˜ D G P M 

= 

1 

| �μ| 
∫ 
�μ

(C μ + C μ ◦ S μ) d�μ. (92)

In a completely analogous manner, we have that the Taylor con-

ribution to the operator D G P M 

, denoted by D 

T 
G P M 

, is obtained as

ollows: 

 

T 
G P M 

[ δG M 

] 

 

1 

| �μ| 
∫ 
�μ

d 

dτ
P μ(G M 

+( G M 

+τδG M 

) x μ+∇ μ ˜ u μ(G M 

, G M 

)) 

∣∣∣
τ=0 

d�

 

1 

| �μ| 
∫ 
�μ

C μ(G M 

+ G M 

x μ + ∇ μ ˜ u μ(G M 

, G M 

))(δG M 

x μ) d�μ

 

[ 
1 

| �μ| 
∫ 
�μ

C μ � x μ d�μ

] 
δG M 

. (93

ence, we obtain 

 

T 
G P M 

= 

1 

| �μ| 
∫ 
�μ

C μ � x μ d�μ. (94)
he fluctuation component of this tangent operator, denoted
˜ 
 G P M 

, is 

˜ 
 G P M 

[ δG M 

] 

 

1 

| �μ| 
∫ 
�μ

d 

dτ
P μ(G M 

+ G M 

x μ+∇ μ ˜ u μ(G M 

, G M 

+τδG M 

)) 

∣∣∣
τ=0 

d�μ

 

1 

| �μ| 
∫ 
�μ

C μ[ S μ(δG M 

x μ)] d�μ

 

[ 
1 

| �μ| 
∫ 
�μ

(C μ ◦ S μ) � x μ d�μ

] 
δG M 

, (95) 

hat is 

˜ 
 G P M 

= 

1 

| �μ| 
∫ 
�μ

(C μ ◦ S μ) � x μ d�μ. (96)

hen, the complete fifth-order tangent operator reads 

 G P M 

= D 

T 
G P M 

+ 

˜ D G P M 

= 

1 

| �μ| 
∫ 
�μ

(C μ + C μ ◦ S μ) � x μ d�μ. 

(97) 

Following the same procedure, it is straightforward to obtain

he characterisation of the fifth- and sixth-order tangent operators

 G Q M 

and D G Q M 

, given by 

 G Q M 

[ δG M 

] = D 

T 
G Q M 

[ δG M 

] + 

˜ D G Q M 

[ δG M 

] 

= 

1 

| �μ| 
∫ 
�μ

([(C μ + C μ ◦ S μ) δG M 

] � x μ) S d�μ, (98) 

 G Q M 

[ δG M 

] = D 

T 
G Q M 

[ δG M 

] + 

˜ D G Q M 

[ δG M 

] 

= 

1 

| �μ| 
∫ 
�μ

([((C μ+ C μ ◦ S μ) �x μ) δG M 

] � x μ) S d�μ. 

(99) 

. Summary and concluding remarks 

An RVE-based multi-scale model featuring a macro-scale

econd-gradient theory linked to a first-order classical continuum

escription at the micro-scale level has been derived and exam-

ned in detail within the general framework of the Method of Mul-

iscale Virtual Power recently proposed by the authors in Blanco

t al. (2016) . 

The MMVP has been shown here to provide a robust frame-

ork, whereby multi-scale models can be rationally derived in a

inematically-driven fashion by means of the following clear and

ell-defined steps: 

i) Postulation of the kinematics of the macro- and micro-

scales, i.e., definition of the kinematical descriptors of each

scale of the model. In the present case we have the triad

(u M 

, ∇ M 

u M 

, ∇ M 

∇ M 

u M 

) = (u M 

, G M 

, G M 

) at the generic point x M 

of the macro-scale, and the pair ( u μ, ∇ μu μ) of kinematical

fields over the RVE domain; 

ii) Postulation of kinematical insertion and kinematical homogeni-

sation such that kinematical quantities are preserved in the

scale transition. Here, kinematical insertion is defined by

(24) and kinematical homogenisation by (26) –(28) . This leads to

the idea of kinematical admissibility, which automatically de-

fines the minimally constrained functional space of of kinemat-

ically admissible fluctuation fields of the RVE; 

ii) Mathematical duality then allows straightforward identifica-

tion of the force- and stress-like quantities compatible with

the kinematical assumptions at both scales, namely, the triad

(f M 

, P M 

, Q M 

) at x M 

, and (trivially) the pair (f μ − ρμü μ, P μ) of

body force and first Piola-Kirchhoff stress fields over the RVE; 
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∫

 

C

v) Statement of the corresponding Principle of Multiscale Virtual

Power, (45) (or (46) ), based on the duality pairings identified

in steps (i) and (iii), whereby the total virtual power of the

macro- and micro-scales are balanced. This principle leads nat-

urally, by means of straightforward variational arguments, to

the equations of equilibrium of the RVE as well as to the ho-

mogenisation formulae for the force- and stress-like quantities

of the model, and completes the characterisation of the multi-

scale model. 

In addition, due to its variational basis, the MMVP naturally

provides insight into the foundations of the model. For example,

by re-writing the PMVP in the equivalent form (46) , using Lagrange

multipliers, the impact of the kinematical hypotheses upon the re-

sulting model was made very clear, as the homogenised force- and

stress-like quantities of the macro-scale are identified as reactions

to kinematical constraints imposed upon the RVE. Also, the equiv-

alent representation of such quantities exclusively in terms of RVE

boundary data has been obtained in a straightforward manner. 

Moreover, the present multi-scale model was developed in the

context of transient problems, also featuring relations that describe

the contribution of micro-scale inertia effects to the high-order

macro-scale continuum formulation. In this regard, the MMVP

allowed these inertia effects to be naturally incorporated in a

straightforward manner in the analysis. 

Throughout the paper, conceptual differences and similarities to

existing theories have been highlighted, facilitating the analysis of

the contributions made by present approach. 

In summary, we believe the MMVP to be a powerful tool to ad-

dress the development of new multi-scale models in a manner that

avoids potential inconsistencies. This appears to be particularly

true for models exhibiting distinct kinematics at the macro- and

micro-scales, such as the second-gradient model presented in this

paper. The method can be also very useful in analysing existing

multi-scale models, as the links between kinematics, equilibrium

and homogenisation rules are made clear, allowing an easy detec-

tion of possible inconsistencies. We also remark that the method

is by no means restricted to classical mechanical problems. Any

class of problems where a Principle of Multiscale Virtual Power

makes sense can be addressed by the MMVP. This encompasses the

multi-scale description of a wide range of phenomena, including

the formulation of RVE-based models of multi-scale fluid mechan-

ics, micro-scale strain localisation ( Sánchez et al., 2013 ), micro- and

macro-scale fracturing ( Toro et al., 2016 ), multi-scale solid dynam-

ics ( de Souza Neto et al., 2015 ), transient heat transfer, particulate

media, among others. Some of these will be addressed by the au-

thors in forthcoming publications. 
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Appendix A. Tensor algebra 

Let a , b , c , . . . be vectors, A , B , C , . . . second order tensors and

A , B , C , . . . third order tensors. We introduce the following opera-

tions, most of them defined in terms of the standard internal prod-

uct between two vectors denoted by a · b : 
• given A = a 1 � a 2 and b , then Ab = (a 2 · b ) a 1 ; 
• given A = a 1 � a 2 , then A 

T = a 2 � a 1 ; 
• given A = a 1 � a 2 and B = b 1 � b 2 , then A · B = (a 1 · b 1 )(a 2 ·

b 2 ) ; 
• given A = a 1 � a 2 and B = b 1 � b 2 , then AB = (a 2 · b 1 )(a 1 �

b 2 ) ; 
• given A = a 1 � a 2 � a 3 and b , then A b = (a 3 · b )(a 1 � a 2 ) ; 
• given A = a 1 � a 2 � a 3 and B = b 1 � b 2 � b 3 , then A · B = (a 1 ·

b 1 )(a 2 · b 2 )(a 3 · b 3 ) ; 
• given A = a 1 � a 2 � a 3 and B = b 1 � b 2 , then A B =

(a 2 · b 1 )(a 3 · b 2 ) a 1 ; 
• given A = a 1 � a 2 � a 3 and B = b 1 � b 2 , then A ◦ B = (a 3 ·

b 1 )(a 1 � a 2 � b 2 ) ; 
• given A = a 1 � a 2 � a 3 , then A 

T = a 1 � a 3 � a 2 , and A 

S =
1 
2 ( A + A 

T ) ; 
• given A = a 1 � a 2 � a 3 , then A 

t = a 3 � a 1 � a 2 ; 
• given A = a 1 � a 2 � a 3 � a 4 and B = b 1 � b 2 � b 3 � b 4 , then

A ◦ B = (a 3 · b 1 )(a 4 · b 2 )(a 1 � a 2 � b 3 � b 4 ) ; 
• given A = a 1 � a 2 � a 3 � a 4 and B = b 1 � b 2 , then A B = (a 3 ·

b 1 )(a 4 · b 2 )(a 1 � a 2 ) ; 
• given A = a 1 � a 2 � a 3 � a 4 � a 5 and B = b 1 � b 2 � b 3 , then

A B = (a 3 · b 1 )(a 4 · b 2 )(a 5 · b 3 )(a 1 � a 2 ) . 

ppendix B. Homogenisation of P M 

from boundary data 

Let us find a homogenisation formula equivalent to (62) that ex-

lusively depends on boundary information. To do this we write 

 

�μ

P μ d�μ = 

∫ 
�μ

P μ∇ μx μ d�μ

= −
∫ 
�μ

div μ P μ � x μ d�μ + 

∫ 
∂�μ

P μn μ � x μ d∂�μ. 

(B.1)

sing (B.1) and the equilibrium form (52) into (62) yields 

 M 

= 

1 

| �μ| 
[ ∫ 

�μ

(− div μ P μ � x μ − (f μ − ρμü μ) � x μ) d�μ

+ 

∫ 
∂�μ

P μn μ � x μ d∂�μ

] 

= 

1 

| �μ| 
[ 

−
∫ 
�μ

(c + M J −1 ) � x μ d�μ + 

∫ 
∂�μ

t μ � x μ d∂�μ

] 

= 

1 

| �μ| 
∫ 
∂�μ

t μ � x μ d∂�μ, (B.2)

here we denoted P μn μ = t μ the traction over the boundary ∂�μ,

nd where we have used the assumption (23) and the fact that c ,

 and J are constant entities. Thus 

 M 

= 

1 

| �μ| 
∫ 
∂�μ

t μ � x μ d∂�μ. (B.3)

ppendix C. Homogenisation of Q M 

from boundary data 

Let us again find a homogenisation formula for Q M 

depending

xclusively upon boundary data. Firstly, in Appendix F it is proved

hat the following relation holds 

 

�μ

(P μ � x μ) S d�μ = −1 

2 

∫ 
�μ

div μ P μ � x μ � x μ d�μ

+ 

1 

2 

∫ 
∂�μ

P μn μ � x μ � x μ d∂�μ. (C.1)

onsidering (C.1) and the equilibrium (52) into (67) results 

http://dx.doi.org/10.13039/501100000781
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2 2 2 
 M 

= 

1 

| �μ| 
∫ 
�μ

[ 
1 

2 

(− div μ P μ − (f μ − ρμü μ)) 

� (x μ � x μ) + 

1 

2 

((f μ − ρμü μ) � J ) 
] 

d�μ

+ 

1 

| �μ| 
∫ 
∂�μ

1 

2 

P μn μ � x μ � x μ d∂�μ

= − 1 

| �μ| 
∫ 
�μ

1 

2 

(c + M J −1 ) � x μ � x μ d�μ

+ 

1 

| �μ| 
1 

2 

(∫ 
�μ

(f μ − ρμü μ) d�μ

)
� J 

+ 

1 

| �μ| 
∫ 
∂�μ

1 

2 

t μ � x μ � x μ d∂�μ

= −1 

2 

(
c + M J −1 − 1 

| �μ| 
∫ 
�μ

(f μ − ρμü μ) d�μ

)
� J 

+ 

1 

| �μ| 
∫ 
∂�μ

1 

2 

t μ � x μ � x μ d∂�μ. (C.2) 

ence, using (59) , we have 

 M 

+ 

1 

2 

(c + M J −1 − f M 

) � J = 

1 

| �μ| 
∫ 
∂�μ

1 

2 

t μ � x μ � x μ d∂�μ. 

(C.3) 

n view of the results given by identities (D.3) and (D.9) , obtained

n Appendix D , we finally arrive at the following equation 

 M 

+ 

1 

2 

( Q M 

J −1 ) � J = 

1 

| �μ| 
∫ 
∂�μ

1 

2 

t μ � x μ � x μ d∂�μ. (C.4)

ppendix D. Physical meaning of the Lagrange multipliers 

Let us explore the meaning of the Lagrange multipliers in the

ariational formulation (46) , that is, for the case of minimally con-

trained fluctuations. 

Consider that ˆ ˜ u μ is the constant vector function in the varia-

ional Eq. (49) . Then, we arrive at the following relation 

 

�μ

((f μ − ρμü μ) − c ) d�μ = 0 . (D.1)

ince the Lagrange multiplier c is itself a constant, we have 

 = 

1 

| �μ| 
∫ 
�μ

(f μ − ρμü μ) d�μ, (D.2)

r, in view of (59) 

 = f M 

. (D.3) 

Consider the homogenisation formula for P M 

derived in (B.3) .

ow, introducing the expression for the traction t μ = P μn μ ob-

ained in (53) into (B.3) , yields 

 M 

= 

1 

| �μ| 
∫ 
∂�μ

(T + M (J −1 x μ)) n μ � x μ d∂�μ. (D.4)

or simplicity, consider Cartesian coordinates and, recalling

23) and that T , M and J are constant tensors, let us develop the

ight hand side in the expression above 

 P M 

] i j = 

1 

| �μ| 
∫ 
∂�μ

([ T ] ik + [ M ] ikm 

[ J −1 ] mn [ x μ] n )[ n μ] k [ x μ] j d∂�μ

= [ T ] ik 
1 

| �μ| 
∫ 
∂�μ

[ n μ] k [ x μ] j d∂�μ

+ [ M ] ikm 

[ J −1 ] mn 
1 

| �μ| 
∫ 
∂�μ

[ x μ] n [ n μ] k [ x μ] j d∂�μ

= [ T ] ik 
1 

| �μ| 
∫ 
�μ

∂[ x μ] j 

∂[ x μ] k 
d�μ
+ [ M ] ikm 

[ J −1 ] mn 
1 

| �μ| 
∫ 
�μ

∂ 

∂[ x μ] k 
([ x μ] n [ x μ] j ) d�μ

= [ T ] ik 
1 

| �μ| 
∫ 
�μ

[ I ] jk d�μ

+ [ M ] ikm 

[ J −1 ] mn 
1 

| �μ| 
∫ 
�μ

([ I ] nk [ x μ] j + [ I ] jk [ x μ] n ) d�μ

= [ T ] i j + [ M ] ikm 

[ J −1 ] mk 

1 

| �μ| 
∫ 
�μ

[ x μ] j d�μ

+ [ M ] i jm 

[ J −1 ] mn 
1 

| �μ| 
∫ 
�μ

[ x μ] n d�μ

= [ T ] i j . (D.5) 

ence, we obtain 

 = P M 

. (D.6) 

Consider now the homogenisation formula for Q M 

obtained in

C.3) . Using the result derived in (D.3) and the expression for the

raction t μ = P μn μ given by (53) into (C.3) , leads to 

 M 

+ 

1 

2 

( M J −1 ) � J 

= 

1 

| �μ| 
∫ 
∂�μ

1 

2 

(T + M (J −1 x μ)) n μ � x μ � x μ d∂�μ. (D.7) 

nalogous to the previous development, let us consider Cartesian

oordinates, recall (23) , take into account that T , M and J are con-

tant tensors and that M 

T = M and J = J T . Then, the development

f the right hand side in expression (D.7) gives 

 Q M 

] i jk + 

1 

2 

[ M ] imn [ J 
−1 ] mn [ J ] jk 

= 

1 

| �μ| 
∫ 
∂�μ

1 

2 

([ T ] il + [ M ] ilm 

[ J −1 ] mn [ x μ] n )[ n μ] l [ x μ] j [ x μ] k d∂�μ

= [ T ] il 
1 

2 

1 

| �μ| 
∫ 
∂�μ

[ n μ] l [ x μ] j [ x μ] k d∂�μ

+ [ M ] ilm 

[ J −1 ] mn 
1 

2 

1 

| �μ| 
∫ 
∂�μ

[ x μ] n [ n μ] l [ x μ] j [ x μ] k d∂�μ

= [ T ] il 
1 

2 

1 

| �μ| 
∫ 
�μ

∂ 

∂[ x μ] l 
([ x μ] j [ x μ] k ) d�μ

+ [ M ] ilm 

[ J −1 ] mn 
1 

2 

1 

| �μ| 
∫ 
�μ

∂ 

∂[ x μ] l 
([ x μ] n [ x μ] j [ x μ] k ) d�μ

= [ T ] il 
1 

2 

1 

| �μ| 
∫ 
�μ

([ I ] jl [ x μ] k + [ I ] kl [ x μ] j ) d�μ

+ [ M ] ilm 

[ J −1 ] mn 
1 

2 

1 

| �μ| 
∫ 
�μ

([ I ] nl [ x μ] j [ x μ] k 

+ [ I ] jl [ x μ] n [ x μ] k + [ I ] kl [ x μ] n [ x μ] j ) d�μ

= [ T ] i j 

1 

2 

1 

| �μ| 
∫ 
�μ

[ x μ] k d�μ + [ T ] ik 
1 

2 

1 

| �μ| 
∫ 
�μ

[ x μ] j d�μ

+ [ M ] ilm 

[ J −1 ] ml 

1 

2 

1 

| �μ| 
∫ 
�μ

[ x μ] j [ x μ] k d�μ

+ [ M ] i jm 

[ J −1 ] mn 
1 

2 

1 

| �μ| 
∫ 
�μ

[ x μ] n [ x μ] k d�μ

+ [ M ] ikm 

[ J −1 ] mn 
1 

2 

1 

| �μ| 
∫ 
�μ

[ x μ] n [ x μ] j d�μ

= 

1 

2 

[ M ] ilm 

[ J −1 ] ml [ J ] jk + 

1 

2 

[ M ] i jm 

[ J −1 ] mn [ J ] nk + 

1 

2 

[ M ] ikm 

[ J −1 ] mn [ J ] n j 

= 

1 

[ M ] ilm 

[ J −1 ] lm 

[ J ] jk + 

1 

[ M ] i jm 

[ I ] mk + 

1 

[ M ] ikm 

[ I ] m j 
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∫

 

t

2

=  
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r

2

 

= 

1 

2 

[ M ] ilm 

[ J −1 ] lm 

[ J ] jk + 

1 

2 

[ M ] i jk + 

1 

2 

[ M ] ik j 

= 

1 

2 

[ M ] ilm 

[ J −1 ] lm 

[ J ] jk + [ M ] i jk . (D.8)

Now note that the second term in the left hand side is identical

to the first term in the right hand side, therefore we arrive at the

following result 

M = Q M 

. (D.9)

Appendix E. Alternative analysis of the Lagrange multipliers 

Alternatively to the variational formulation (46) , let us enforce

kinematical constraints (26), (27) and (28) through Lagrange multi-

pliers, which are denoted by c ∗, T ∗ and M 

∗, respectively. The Prin-

ciple of Multiscale Virtual Power (45) is then rewritten as follows 

P M 

· ˆ G M 

+ Q M 

· ˆ G M 

− f M 

· ˆ u M 

= 

1 

| �μ| 
∫ 
�μ

(P μ · ∇ μ ˆ u μ − (f μ − ρμü μ) · ˆ u μ) d�μ

− ˆ c ∗ ·
(

u M 

− 1 

| �μ| 
∫ 
�μ

u μ d�μ

)

− c ∗ ·
(

ˆ u M 

− 1 

| �μ| 
∫ 
�μ

ˆ u μ d�μ

)

+ 

ˆ T 

∗ ·
(

G M 

− 1 

| �μ| 
∫ 
�μ

∇ μu μ d�μ

)

+ T 

∗ ·
(

ˆ G M 

− 1 

| �μ| 
∫ 
�μ

∇ μ ˆ u μ d�μ

)

+ 

ˆ M 

∗ ·
(
G M 

− 1 

| �μ| 
∫ 
�μ

[(∇ μu μ � x μ) ◦ J −1 ] S d�μ

)

+ M 

∗ ·
(

ˆ G M 

− 1 

| �μ| 
∫ 
�μ

[(∇ μ ˆ u μ � x μ) ◦ J −1 ] S d�μ

)

∀ ( ̂  u M 

, ̂  G M 

, ̂  G M 

) ∈ R 

3 × R 

3 ×3 × (R 

3 ×3 ×3 ) S , ∀ ̂

 u μ ∈ H 

1 (�μ) , 

∀ ( ̂ c ∗, ̂  T 

∗, ˆ M 

∗
) ∈ R 

3 × R 

3 ×3 × (R 

3 ×3 ×3 ) S . (E.1)

Rearranging terms in (E.1) leads to 

(P M 

− T 

∗) · ˆ G M 

+ ( Q M 

− M 

∗) · ˆ G M 

− (f M 

− c ∗) · ˆ u M 

= 

1 

| �μ| 
∫ 
�μ

[
(P μ − (T 

∗ + M 

∗(J −1 x μ))) · ∇ μ ˆ u μ

− ((f μ − ρμü μ) − c ∗) · ˆ u μ

]
d�μ

− ˆ c ∗ ·
(

u M 

− 1 

| �μ| 
∫ 
�μ

u μ d�μ

)

+ ̂

 T 

∗ ·
(

G M 

− 1 

| �μ| 
∫ 
�μ

∇ μu μ d�μ

)

+ 

ˆ M 

∗ ·
(
G M 

− 1 

| �μ| 
∫ 
�μ

[(∇ μu μ � x μ) ◦ J −1 ] S d�μ

)

∀ ( ̂  u M 

, ̂  G M 

, ̂  G M 

) ∈ R 

3 × R 

3 ×3 × (R 

3 ×3 ×3 ) S , ∀ ̂

 u μ ∈ H 

1 (�μ) , 

∀ ( ̂ c ∗, ̂  T 

∗, ˆ M 

∗
) ∈ R 

3 × R 

3 ×3 × (R 

3 ×3 ×3 ) S . (E.2)

Clearly, restrictions (26), (27) and (28) are now natural conditions

that follow as Euler-Lagrange equations from (E.2) . Moreover, note

that (24) is no longer taken into consideration. Thus, we readily

obtain the physical interpretation of the Lagrange multipliers 

c ∗ = f M 

, (E.3)

T 

∗ = P M 

, (E.4)

M 

∗ = Q M 

. (E.5)

Comparing, respectively, (E.3), (E.4) and (E.5) to (D.3), (D.6) and

(D.9) , we obtain that the Lagrange multipliers from variational
q. (46) are the same as those from variational formulation (E.2) ,

hat is c ∗ = c , T ∗ = T and M 

∗ = M . This implies that both varia-

ional formulations, (46) and (E.2) are equivalent. In other words,

he enforcement of constraints (26), (27) and (28) leads to the

ame result as when the enforcement of constraints (31), (33) and

36) is considered. 

ppendix F. Auxiliary calculations 

For simplicity let us consider Cartesian coordinates to see that 

(P μ � x μ) S ] i jk 

= 

1 

2 

(
[ P μ] i j [ x μ] k + [ P μ] ik [ x μ] j 

)

= 

1 

2 

(
[ P μ] il 

∂[ x μ] j 

∂[ x μ] l 
[ x μ] k + [ P μ] il 

∂[ x μ] k 
∂[ x μ] l 

[ x μ] j 

)

= 

1 

2 

(
∂ 

∂[ x μ] l 
([ P μ] il [ x μ] j [ x μ] k ) −

∂[ P μ] il 
∂[ x μ] l 

[ x μ] j [ x μ] k 

− [ P μ] il [ x μ] j 
∂[ x μ] k 
∂[ x μ] l 

)

+ 

1 

2 

(
∂ 

∂[ x μ] l 
([ P μ] il [ x μ] k [ x μ] j ) −

∂[ P μ] il 
∂[ x μ] l 

[ x μ] k [ x μ] j 

− [ P μ] il [ x μ] k 
∂[ x μ] j 

∂[ x μ] l 

)

= 

∂ 

∂[ x μ] l 
([ P μ] il [ x μ] j [ x μ] k ) −

∂[ P μ] il 
∂[ x μ] l 

[ x μ] j [ x μ] k 

− 1 

2 

(
[ P μ] il [ x μ] j δkl + [ P μ] il [ x μ] k δ jl 

)

= 

∂ 

∂[ x μ] l 
([ P μ] il [ x μ] j [ x μ] k ) −

∂[ P μ] il 
∂[ x μ] l 

[ x μ] j [ x μ] k 

− 1 

2 

(
[ P μ] ik [ x μ] j + [ P μ] i j [ x μ] k 

)

= 

∂ 

∂[ x μ] l 
([ P μ] il [ x μ] j [ x μ] k ) 

− ∂[ P μ] il 
∂[ x μ] l 

[ x μ] j [ x μ] k − [(P μ � x μ) S ] i jk . (F.1)

hus, integrating over the micro-scale domain �μ, it results 

 

�μ

[(P μ � x μ) S ] i jk d�μ

= 

∫ 
�μ

[ 
∂ 

∂[ x μ] l 
([ P μ] il [ x μ] j [ x μ] k ) 

− ∂[ P μ] il 
∂[ x μ] l 

[ x μ] j [ x μ] k − [(P μ � x μ) S ] i jk 

] 
d�μ, (F.2)

hat is 

 

∫ 
�μ

[(P μ � x μ) S ] i jk d�μ

 

∫ 
�μ

[ 
∂ 

∂[ x μ] l 
([ P μ] il [ x μ] j [ x μ] k ) −

∂[ P μ] il 
∂[ x μ] l 

[ x μ] j [ x μ] k 

] 
d�μ, (F.3)

nd taking the first term in the right hand side to the boundary

esults 

 

∫ 
�μ

[(P μ � x μ) S ] i jk d�μ

= 

∫ 
∂�μ

[ P μ] il [ n μ] l [ x μ] j [ x μ] k d∂�μ

−
∫ 
�μ

∂[ P μ] il 
∂[ x μ] l 

[ x μ] j [ x μ] k d�μ. (F.4)
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herefore, this finally implies 
 

�μ

(P μ � x μ) S d�μ = −1 

2 

∫ 
�μ

div μ P μ � x μ � x μ d�μ

+ 

1 

2 

∫ 
∂�μ

P μn μ � x μ � x μ d∂�μ. (F.5) 
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