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This paper presents a novel methodology to design wind turbine blades using the Inverse Finite Element
Method (IFEM). IFEM takes as domain of analysis the geometry of the blade after large elastic deforma-
tions caused by given service loads. The deformed shape of the blade is that determined to be efficient
using an aerodynamics analysis. From this analysis, the aerodynamic loads on the blade are known.
Then, we choose the materials to manufacture the blade. As usual, the blade is assumed to be made of

multiple layers of composite materials. After materials selection, the stationary inertial loads on the blade
are known.
Finally, given the desired deformed shape and all the service loads, we use IFEM to compute the

manufacturing shape of the blade. This is a one-step, one-direction strategy where the aerodynamics
analysis feeds the structural (IFEM) analysis, and no further interaction between both solvers is required.
As an application of the proposed strategy, we consider a medium power 40-KW wind turbine blade,

whose whole design is detailed along this work.
� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Energy is a vital element for the economic growth of most coun-
tries. The rising concern about climate change and pollution has
led to the development and improvement of renewable energy
sources. Wind energy is the fastest-growing renewable source,
and the World Energy Council (WEC) [1] has predicted that it will
continue its expansion in any of the given policy scenarios to the
year 2050. The most common device to convert the kinetic energy
of the wind into electrical power is the horizontal axis wind tur-
bine (HAWT), typically having a three-blade rotor, the so-called
Danish concept.

This work introduces the design of the blade of a HAWT such
that it attains a desired shape under service loads. The so-called
desired shape is the aerodynamically efficient shape of the blade
determined from an aerodynamic analysis. A wind turbine blade
is usually a compliant, slender, shell-like structure that undergoes
large displacements and rotations as result of aerodynamic and
stationary inertial forces. These large deformations must lie in
the elastic range, which is usually ensured by manufacturing the
blade of several layers of composite materials. The choice of such
materials is favored by plenty of reasons, including their excellent
strength-to-weight ratio, flexibility to fit complicated shapes, good
fatigue properties [2], resistance to oils and lubricants [3], and
dimensional stability under different environmental conditions
[4,5]. Once the number of layers, their thickness and material are
defined, the stationary inertial forces on the blade are completely
determined.

Known the desired deformed geometry, the materials, and the
service loads (aerodynamic and stationary inertial forces), the
manufacturing shape of the blade has to be determined, Fig. 1.

Bazilevs et al. [6] accomplished this task by solving a sequence
of non-linear equilibrium equations posed on this unknown
configuration. At each step, given an undeformed configuration
(coincident to the known deformed configuration in the first step),
the displacement solution of the equilibrium equation serves to
update the undeformed configuration for the next step, process
that is repeated until convergence. In that work, those authors
modeled the blade using the isogeometric rotation-free Kirch-
hoff–Love shell formulation [7](see Fig. 2).

The undeformed configuration of a body can be also determined
by solving a nonlinear optimization problem where the closeness
to the desired deformed configuration is the cost function to be
minimized. This is done by Chen et al. [8], who proposed the
asymptotic numerical method. This is a multistep iterative method
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Fig. 1. Inverse analysis of wind turbine blades: the efficient aerodynamic geometry
of the blade (in solid color) is the domain of IFEM. The manufacturing shape of the
blade (in color gradient) is the IFEM solution.

Fig. 2. Geometric representation of the undeformed and deformed configurations
of a shell.
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where the equilibrium equation has to be solved at each iteration
of each step.

A third approach for the computation of the undeformed config-
uration of a body is the Inverse Finite Element Method (IFEM)
[9–11]. IFEM solves the equilibrium equation in the deformed
configuration to obtain the undeformed shape. Unlike the just
mentioned multistep strategies, IFEM solves a nonlinear equilib-
rium equation only once. Fachinotti et al. [9] applied IFEM to the
design of an aircraft turbine blade using three-dimensional solid
finite elements. This model is capable of handling anisotropic
materials and could be used in this case. But to model a turbine
blade using standard solid elements is an expensive choice. Later,
IFEM was extended to shell finite elements [11] and applied to
the design of shell structures made of one transversely isotropic
layer. This model is based on the Mindlin-Reissner shell theory,
so that it takes into account the transverse shear deformation
and henceforth is capable of representing thin to moderately thick
shells unlike the models based on the Kirchhoff–Love theory.

In this work, we supply this shell element with the capability of
representing shells made of multiple layers of transversely ortho-
tropic materials, in order to apply it to the design of wind turbine
blades. The implementation of the proposed element is validated
against a benchmark, and two numerical examples with different
composite material layout demonstrate the capabilities and poten-
tialities of the current inverse approach.
This paper is organized as follows: Section 2 presents a brief
overview of the non-linear shell IFEM, a step by step procedure
used to compute the manufacturing shape of the blade, and a fea-
sibility criteria to verify the IFEM solution. Section 3 is concerned
with the input data required for IFEM, and consists in the design
of an efficient aerodynamic shape of the blade, the computation
of the aerodynamic loads with Computational Fluid Dynamics
(CFD), the creation of a shell finite element mesh of the blade
surface, the transfer of data from CFD to the IFEM mesh, and the
selection of proper composite materials. Section 4 includes a vali-
dation benchmark for the multilayer shell IFEM, and the solution of
two numerical examples. The concluding remarks are given in
Section 5. Appendix A includes further information on the aerody-
namic analysis, and a validation benchmark for CFD.

2. IFEM model and procedure

This section introduces the IFEM shell model, and describes the
procedure to compute the manufacturing shape of a the multilayer
wind turbine blade such that it attains the prescribed aerodynamic
configuration under service loads.

2.1. Inverse shell finite element model

Up to this point, the desired aerodynamic shape of the blade,
say B0, as well as the loads that should deform the blade to this
shape, are known. The goal then is to compute the unloaded con-
figuration of the blade, say B, that dictates how to fabricate the
blade such that it attains the desired shape under the given loads.
For the case of blades, which are shell-like structures, let us use the
IFEM for shells [11]. For the sake of completeness, a self-contained
summary of such method is given in this section.

2.1.1. Shell kinematics and deformation
Using shell kinematics, the position of any point X 2 B0 is

expressed as follows:

Xðn1; n2; n3Þ ¼ �Xðn1; n2Þ þ n3
H
2
Tðn1; n2Þ; ð1Þ

where �X lies in the midsurface S0 of B0; T is the material director
vector, H is the thickness, and fn1; n2; n3g is a system of natural coor-
dinates with origin �X, such that n1 and n2 lie in S0.

Let B be the deformed configuration of the shell, with midsur-
face S. After deformation, the point X 2 B0 occupies the position
x 2 B:

xðn1; n2; n3Þ ¼ �xðn1; n2Þ þ n3
h
2
tðn1; n2Þ; ð2Þ

where �x 2 S; t is the unit vector known as spatial director, and
h ¼ hðn1; n2Þ is the thickness of the deformed shell.

We further adopt the Mindlin-Reissner plate theory, which
allows t not being normal to S if T is normal to S0 (and vice versa)
as an effect of shear deformation, and assumes that the strain nor-
mal to the mid-surface is null, so h ¼ H.

Inside a generic isoparametric finite element, x 2 B and X 2 B0

are interpolated as follows:

Xðn1; n2; n3Þ ¼ ui
�Xi þ n3

2
hT i

� �
¼ Uðn1; n2; n3ÞQ ; ð3Þ

xðn1; n2; n3Þ ¼ ui
�xi þ n3

2
hti

� �
¼ Uðn1; n2; n3Þq; ð4Þ

with

U ¼ u1I
n3
2 hu1I � � � uNI

n3
2 huNI

� �
; ð5Þ
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Q ¼

�X1

T1

..

.

�XN

TN

2
66666664

3
77777775
; q ¼

�x1
t1
..
.

�xN
tN

2
66666664

3
77777775
; ð6Þ

where ð�Xi;T iÞ defines the position of the node i ¼ 1;2; . . .N of the
undeformed finite element, ð�xi; tiÞ defines the position of the node
i of the deformed finite element, and ui ¼ uiðn1; n2Þ is the 2-D shape
function associated to node i; I is the 3� 3-identity matrix.

Then, the deformation of the shell is measured using the Green–
Lagrange strain tensor defined as

E ¼ 1
2

ga � gb � Ga � Gb

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ecovab

Ga � Gb; ð7Þ

where Ecov
ab are the so-called covariant components of E; ga ¼ @x=@na

and Ga ¼ @X=@na are the spatial and convective basis vectors,
respectively, and Ga is a vector of the contravariant base reciprocal
to fGag (i.e., Ga � Gb equals either 0 for a– b or 1 for a ¼ b). Using
FEM, it yields

Ecov
ab ¼ 1

2
qTAabq� Q TAabQ

	 

; ð8Þ

where Aab is the 6N � 6N-symmetric matrix defined by

Aab ¼ 1
2

@UT

@na

@U
@nb

þ @UT

@nb

@U
@na

� �
: ð9Þ

Cure for shear locking. The stiffness of low-order finite elements
increases spuriously as the ratio thickness/in-plane dimension of
the element decreases. This is the well-known ‘‘shear locking”
problem, which affects even cubic order elements.

One of the simpler cures for ‘‘shear locking” is the use of the
‘‘assumed-strain” technique. In particular, we use the MITC4
formulation, initially proposed by Dvorkin and Bathe [12].

The MITC4 finite element is a quadrangle with nodes located at
its vertices, and bilinear shape functions /i. Inside this element, the
covariant strain fields Ecov

ij are defined by Eq. (8), except the fields

Ecov
13 and Ecov

23 that are replaced by the respective ‘‘assumed” strain
fields:

~Ecov
13 ðn2; n3Þ �

1þ n2
2

Ecov
13 ð0;1; n3Þ þ

1� n2
2

Ecov
13 ð0;�1; n3Þ; ð10Þ

~Ecov
23 ðn1; n3Þ �

1þ n1
2

Ecov
23 ð1; 0; n3Þ þ

1� n1
2

Ecov
23 ð�1;0; n3Þ ð11Þ

This amounts to replace matrices Aab for ab ¼ 13;23 in Eq. (8)
by

~A13ðn2; n3Þ �
1þ n2

2
A13ð0;1; n3Þ þ

1� n2
2

A13ð0;�1; n3Þ; ð12Þ

~A23ðn1; n3Þ �
1þ n1

2
A23ð1; 0; n3Þ þ

1� n1
2

A23ð�1; 0; n3Þ: ð13Þ

From now on, for ab ¼ 13;23, ‘‘direct” Ecov
ab and Aab are replaced

by ‘‘assumed” ~Ecov
ab and ~Aab respectively, and the superimposed tilde

that identifies the assumed quantities will be obviated in order to
simplify the notation.

2.1.2. Equilibrium equations for shells using FEM
The equilibrium of shells, when modeled as degenerated solids,

is governed by the same variational principle governing the equi-
librium of general solids, whose Lagrangian formulation can be
written as:
Z
B0

SabdEab dV ¼ WextðduÞ; ð14Þ

for all admissible variation of the displacement u, where Sab are the
contravariant components of the second Piola–Kirchhoff stress
tensor S (work-conjugate to E), dEab are the variations of the covari-
ant components of E, and Wext is the work of the external forces
(surface tractions and body forces) on the whole body under a
displacement du. For an elastic solid, the constitutive equation for
S can be generally expressed as a function of E:

S ¼ SðEÞ: ð15Þ
Let us recall that, following the Mindlin-Reissner plate theory, the
normal stress in the direction normal to the midsurface (that
of G3) is assumed to be zero [13].

Regarding the displacement variation, it can be written for
‘‘direct” FEM as follows:

du ¼ dx ¼ Udq: ð16Þ
Being dq made of nodal d�xi and dti, the latter deserves a special

treatment in order to account for the inextensibility of the director
vector. Following Simo et al. [14], the increment of ti is as follows:

dti ¼ ~kid~ti ðno summation over i; Þ ð17Þ
where d~ti is a vector lying in the plane fi; jg of the fixed global Carte-
sian frame fi; j; kg, and ~ki is the 3� 2-matrix made of the first two
columns of the orthogonal matrix ki from the transformation

ti ¼ kik: ð18Þ
Being k ¼ ½0;0;1�T fixed, the above equation defines ki as a func-

tion of ti.
Further details on the current implementation of the nodal

director update are given in our original work on IFEM for shells
[11]. For the purpose of the current discussion, let us just notice
that Eq. (17) involves only two degrees of freedom to update the
nodal director, making the current formulation have five degrees
of freedom per node. Consequently, dq is replaced by

dq ¼

I ~0 � � � 0 ~0
0 ~k1 � � � 0 ~0

..

. ..
. . .

. ..
. ..

.

0 ~0 � � � I ~0
0 ~0 � � � 0 ~kN

2
66666664

3
77777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
KðqÞ

d�x1
d~t1

..

.

d�xN
d~tN

2
66666664

3
77777775

|fflfflfflffl{zfflfflfflffl}
d~q

; ð19Þ

where 0 and ~0 denote the 3� 3- and 3� 2-zero matrices, respec-
tively, and the dependence of K on q can be inferred from Eq. (18).

Now, the variation of the covariant strains (given by Eq. (8)) is

dEab ¼ dqTAabqT ¼ d~qTKTAabqT ð20Þ
Using the above expression for dEab, the l.h.s. of Eq. (14) takes

the formR
B0 SabdEab dV ¼ dqTFintðq;QÞ

¼ d~qT ½KðqÞ�TFintðq;QÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
~Fintðq;QÞ

; ð21Þ

where it is introduced the vector of nodal internal loads:

Fintðq;QÞ ¼
Z
B0ðQÞ

Sabðq;QÞAabqT dV : ð22Þ

The dependence of Sab on q and Q becomes evident by introduc-
ing E as a function of Q and q (as given by Eqs. (7) and (8)) into the
constitutive Eq. (15).
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Analogously, assuming the external loads to be lumped at the
nodes and grouped in the vector Fext, the r.h.s. of Eq. (14) can be
written as

Wextðq;QÞ ¼ dqTFextðq;QÞ
¼ d~qT ½KðqÞ�TFextðq;QÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

~Fextðq;QÞ

; ð23Þ

where it is admitted that the external forces generally depends on Q
(body forces are usually given by unit undeformed volume) and q
(as in the case of wind pressure).

Finally, by introducing Eqs. (21) and (23) in the variational
principle (14) for arbitrary d~q, we obtain

~Rðq;QÞ ¼ ~Fintðq;QÞ � ~Fextðq;QÞ ¼ 0: ð24Þ
that is the equilibrium equation for ‘‘direct” FEM applied to
degenerated-solid shells, which is a nonlinear equation for the
unknown q, with Q given.

2.1.3. Equilibrium equations for shells using IFEM
In inverse finite element analysis, the loaded configuration B, as

well as the external loads responsible of deforming the shell from
B0 to B, are assumed to be known. In our previous works [9,10], we
chose to formulate the variational principle (14) using Eulerian
stress and strain measures. However, we use a different approach
for shells [11] to highlight the close relationship between FEM
and IFEM: both have the identical governing equation, that given
by the discrete equilibrium Eq. (24), differing only in the fact that
knowns and unknowns are interchanged.

Then, Eq. (24) defines also the equilibrium equation for IFEM
applied to degenerated-solid shells, being now a nonlinear equa-
tion for the unknown Q for a given q. This is a nonlinear equation
to be solved using the Newton–Raphson method: at the iteration

kþ 1;Q is updated by solving the linear equation for d~Q:

~Rðq;Q ðkþ1ÞÞ ¼ ~Rðq;Q ðkÞÞ þ @~R

@ ~Q


Q ðkÞ

D~Q ¼ 0: ð25Þ

where @~R=@ ~Q is the tangent stiffness matrix (see [11] for details),
and

D~Q ¼

D�X1

D~T1

..

.

D�XN

D~T�
N

2
66666664

3
77777775

ð26Þ

Once D~Q is computed, the nodal position �Xi 2 S0 is straightfor-
wardly updated:

�Xðkþ1Þ
i ¼ �XðkÞ

i þ D�Xi: ð27Þ
2.1.4. Update of the material director vector
However, the update of the nodal material director Ti 2 R3 from

D~Ti 2 R2 deserves a special treatment. We proceed here in a way
identical to that proposed by Simo et al. [14] for the ‘‘direct” shell

FEM. Starting from the given initial guess T ð0Þ
i , we compute the

orthogonal rotation matrix

vð0Þ
i ¼ ðk � Tð0Þ

i ÞI þ dk� Tð0Þ
i þ ðk� Tð0Þ

i Þ � ðk� Tð0Þ
i Þ

1þ k � Tð0Þ
i

; ð28Þ

where bv is the skew-symmetric matrix whose axial vector is v . Usu-
ally, Tð0Þ

i 	 ti and, in such a case, vð0Þ
i 	 ki is the matrix of Eq. (18).
Known Ti and vi at iteration k, they are updated using D~Ti (solu-
tion of Eq. (25) at iteration kþ 1) following the next steps:

i) Compute

DTi ¼ ~vðkÞ
i D~Ti; ð29Þ

where ~vðkÞ
i is the 3� 2-matrix made of the first two columns of vðkÞ

i .

ii) Update Ti:

Tðkþ1Þ
i ¼ cos kDTikTðkÞ

i þ sin kDTik
kDTik DTi; ð30Þ

iii) Update vi:

vðkþ1Þ
i ¼ Dviv

ðkÞ
i ; ð31Þ

with

Dvi ¼ cos kDTikI3�3 þ sin kDTik
kDTik

dTðkÞ
i � DTi þ 1� cos kDTik

kDTik2

�ðTðkÞ
i � DTiÞ � ðTðkÞ

i � DTiÞ: ð32Þ

The iterative process of solving Eq. (25) and updating Xi and Ti is

repeated until k~Rðq;Q ðkþ1ÞÞk is close enough to zero.

2.1.5. Integration for multilayer shell finite elements
At each shell finite elements, we have to compute integrals like

that defining the vector of internal loads, Eq. (22), generically
written asZ
B0

Fðn1; n2; n3ÞdV : ð33Þ

First, since B is the known domain for IFEM, let us make the
following change in the integration domain:Z
B0

Fðn1; n2; n3ÞdV ¼
Z
B
f ðn1; n2; n3Þdv; ð34Þ

with

f ¼ FJ�1; ð35Þ

where J is the Jacobian determinant of the transformation from B0

to B, given by

J ¼ dv
dV

¼ ðg1 � g2Þ � g3

ðG1 � G2Þ � G3
: ð36Þ

Then, as it a common practice for shells, the integral on B with mid-
surface S is computed as

Z
B
f dv ¼

Z 1

�1

h
2

Z
S
f dsdf; ð37Þ

where f 	 n3 is the natural coordinate across the thickness of the
shell.

Let the shell be made of n layers, and be hi the thickness of layer
i, such that h ¼ P

hi. The points in the layer i are those with natural
coordinates f 2 ðfi�1; fiÞ, with f0 ¼ �1; fn ¼ 1 and fi ¼ fi�1 þ 2hi=h.
Then, the integral (37) is computed as

Z
B
f dv ¼

Xn
i¼1

Z fi

fi�1

h
2

Z
S
f dsdf: ð38Þ
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The line and area integrals involved in the above equations are
numerically computed using Gauss quadrature. Using MITC4 ele-
ments, following the pioneering work of Dvorkin and Bathe [12],
a 2� 2-point rule is used for the area integral, and a 2-point rule
is used for the line integral. In the case of a multilayered shell, 2
points are utilized for the line integral over each layer.

2.2. Inverse design procedure

The procedure to compute the manufacturing shape of the
blade with IFEM is summarized in the following steps, and is
depicted in the flowchart of Fig. 3.

a) The efficient geometry of the wind turbine blade at a given
operation condition is defined by a proper set of airfoils,
and by the use of an appropriate chord and twist distribu-
tion. If the geometry of the blade is already prescribed, the
designer should skip this step.

b) The blade is discretized with an unstructured tetrahedral
mesh to perform the CFD analysis at the prescribed opera-
tion condition. The resultant aerodynamic forces at the
nodes of this unstructured mesh in the three axis directions
(X, Y, and Z) are computed.
Fig. 3. Flowchart of the procedure to compute the manufacturing shape of the
blade with IFEM.
c) For the IFEM analysis, the surface of the blade is discretized
into a structured quadrilateral mesh. Refinement is used in
curved areas such as the leading edge and trailing edge of
the blade. This mesh is the desired geometry after elastic
deformation and constitutes the IFEM domain.

d) The mechanical properties of the composite material are
configured. The elastic modulus in each direction, fiber order
and orientation, Poisson ratio, density, thickness, and ply
drop configuration are defined.

e) The stationary inertial forces about the rotation axis are
computed in each finite element of the quadrilateral mesh
of step c, considering density and thickness of the composite,
turbine rotational velocity, and distance to the rotation axis.
Elemental forces are transformed in nodal forces.

f) The resultant aerodynamic forces at the nodes of the
unstructured discretization of step b, are projected on the
nodes of the structured discretization of step c. This projec-
tion is verified by comparison of the net force on the blade
along the three axis directions (X, Y, and Z), and by compar-
ison of force distribution over the surface in each mesh.

g) The total nodal forces over the blade are computed by add-
ing the nodal stationary inertial forces of step e with the
nodal aerodynamic forces of step f. These total forces are
known data in the IFEM analysis.

h) Given the prescribed aerodynamic geometry of step a and
the total forces of step g as known data, IFEM computes
the manufacturing shape of the wind turbine blade.

i) The solution of IFEM must be verified using topological,
mechanical, and numerical tests. More details on these tests
are presented below.

j) If all the verification tests of step i are successful, the solution
of IFEM computed at step hwill attain the desired prescribed
geometry of step a, when it is subjected to service loads com-
puted at step g.

2.3. Verification of the IFEM solution

The solution computed with IFEMmust pass a series of test that
assures the feasibility of the solution, as detailed by Albanesi et al.
[15,16]. These tests consists in the verification of:

1. Inter-penetrated elements: Concerning the topology, in some
cases IFEM may lead to a useless solution containing
inter-penetrated or intercrossed elements. This verification is
performed to the nodal coordinates and connectivity of the
solution.

2. Validity of the hypothesis of elasticity: the maximal stress in each
material of the laminate must be lower than the yield strength.

3. Uniqueness of the solution, which is lost when an unstable equi-
librium state (or critical point) is met during deformation. The
uniqueness can be formally confirmed by using the spectrum
test [17,18] and becomes evident for an experienced designer.

3. Description of IFEM input data

3.1. Efficient aerodynamic shape and aerodynamic forces

This subsection covers the determination of an efficient shape
for the blades of a medium power, 40 KW three-blade HAWT to
operate in the suburban area of Santa Fe city, Argentina (latitude
31 �38

0
S, longitude 60�42

0
W, mean altitude 25 m.a.s.l.). The turbine

radius was chosen to be R = 6.70 m, and the prescribed operation
conditions are considered to be wind velocity of 7 m/s and
rotational velocity of 72 RPM. An efficient aerodynamic shape is
determined by the selection of airfoils, and by using an appropriate
law for chord and twist distribution. The resultant aerodynamic



Fig. 5. Chord length and twist distribution of the blade.

Fig. 6. Efficient aerodynamic configuration of the blade: desired shape after
deformation due to service loads.

Fig. 7. The CFD computational domain. R is the blade span length.
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forces due to pressure gradients and viscous flow, and the torque
produced by the blades, have been determined using the steady-
state solver for incompressible turbulent flow from OpenFoam
[19], an open-source CFD software.

3.1.1. Selection of airfoils
In the selection of airfoils, consideration has been made with

regards to surface roughness, which is responsible for premature
boundary-layer transition and early turbulent separation which
may lead to a significant reduction of the aerodynamic properties
of the blades [20–23] and erosion of the leading edge [24].

Since contamination is unavoidable due to the exposure to
insects, sand, dust, and rain, preference was given to the SG604X
family of airfoils [25] with low sensitivity to surface roughness
and contamination. These airfoils share a common geometric char-
acteristic: an upper suction side with simple curvature and a lower
pressure side with biconvex curvature, as shown in Fig. 4. The
SG6040 airfoil is used at the root given its larger stiffness to sup-
port the bending moments, and the SG6042 and SG6043 are used
at half the length and tip, respectively. For the sake of clarity, their
lift and glide coefficients, CL and CG respectively, are presented in
Appendix A.

3.1.2. Efficient aerodynamic configuration of the blade
Given the three main airfoils of the SG604X family, intermedi-

ate airfoils with unit chord are created by a linear transition at
every 0.5 m along the span. The chord length C and the twist angle
b at each section of the blade are determined following the Schmitz
theory, see Appendix A. Fig. 5 depicts the chord length and twist
angle distribution along the adimensional blade span. The resul-
tant efficient configuration of the blade is illustrated in Fig. 6,
which is the desired shape of the blade after deformation due to
service loads.

3.1.3. CFD computational domain, boundary conditions and
turbulence model

The problem of air flow around the rotor is assumed to be gov-
erned by the Navier–Stokes equations for incompressible viscous
flow, and it was numerically solved using the Finite Volume
Method (FVM) as implemented into the open-source software
OpenFoam. A benchmark problem to validate the computational
domain, boundary conditions and turbulence model is included
in Appendix A.

Fig. 7 shows the adopted computational domain used to com-
pute the aerodynamic forces. The model comprises the hub and
the three blades rotating at 72 RPM, embedded in a large stationary
domain with diameter 8R and length 12R, being R = 6.70 m the
blade span length. The domain was discretized using an unstruc-
tured mesh of 6.268.947 nodes and 35.791.473 tetrahedral finite
volume elements.

The boundary conditions are prescribed wind velocity at the
inlet, and uniform atmospheric pressure in the lateral surface
Fig. 4. The SG604X airfoil family.
(open boundary) and in the outlet boundary. The surface of the
blades is assumed to be a smooth no-slip wall. The assumed aver-
age environmental conditions are considered to be temperature
T = 28 �C, atmospheric pressure P = 1.01325 � 105 Pa, constant
density q = 1.6808 kg/m3, and kinematic viscosity m = 1.45 � 10�6

m2/s.

3.1.4. CFD results: pressure gradients and aerodynamic forces over the
blade

Fig. 8 depicts the air pressure over the surface of the blade.
The aerodynamic forces due to pressure gradients and viscous

flow are depicted in Fig. 9. The performance curves for the wind
turbine blades are presented Appendix A.



Fig. 10. Quadrilateral finite element mesh over the surface of the blade.

Table 1
Mechanical properties of different E-type glass fibers, epoxy resin and gelcoat.

Mechanical
property

Uniaxial Biaxial

Elast. modul. E1 [Pa] 70 � 109 70 � 109

Elast. modul. E2 [Pa] 1 � 109 70 � 109

Density [Kg=m3] 928.0 906.0
Yield strength [Pa] – –
Poisson ratio 0.2 0.2
Thickness [mm] 0.50 0.50

Fig. 8. Pressure over the blade: view from the upper side (a) and from the lower
side (b).

Fig. 9. Nodal aerodynamic forces on the blade: view from the upper side (a) and
from the lower side (b).
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As mentioned before, there is no feedback or two-way interac-
tion between the aerodynamic and the structural solvers. The
one-way transferring of information from CFD results over
unstructured meshes onto the structured IFEM shell discretization
is achieved using the projection of resultant aerodynamic forces,
see Section 3.3.

3.2. Finite element mesh of the blade surface

The structured quadrilateral mesh for the IFEM analysis consists
of 22000 elements and 22044 nodes and presents refinement in
curved areas of the blade. Fig. 10 depicts the mesh used in the
two examples solved in this paper.

3.3. Transfer from CFD to IFEM

As mentioned before, the CFD analysis was performed over
unstructured tetrahedral meshes while the IFEM analysis was per-
formed over a structured quadrilateral mesh. In this approach, the
areas of refinement on the CFD mesh, e.g. for capturing flow
detachment, are most likely different than the areas of refinement
on the structural mesh, i.e. for capturing high stress. Since the
boundary of the CFD mesh that interfaces with the structural
model is 2D, the one-way transferring of information from the
aerodynamic model to the structure is easily achieved using the
projection of resultant aerodynamic pressure onto the quadrilat-
eral shell discretization, [26]. Other works, such as [27,28], suc-
cessfully combined CFD results over unstructured meshes with
finite element models with structured meshes using similar ideas.

3.4. Composite material configuration for the numerical applications

Two numerical examples with different material layout are
solved in this work, considering reinforcement fabrics made of E-
type glass fibers and an epoxy resin. Uniaxial fibers are oriented
parallel to the longitudinal axis of the blade. Biaxial fabrics are
woven at angles of 0
 and 90
, and the 0
 fibers are oriented paral-
lel to the longitudinal axis of the blade. Double bias fibers are
woven at angles of þ45
 and �45
, and is oriented at þ45
 from
the longitudinal axis of the blade. The epoxy gelcoat is treated as
an isotropic material. Table 1 presents the mechanical properties
of these materials. Perfect bonding is assumed among the plies of
the laminate, and ply waviness or deviation from the alignment
direction [29] that could led to fiber failure is not considered.

The 2D version of the maximum stress failure criterion [30–32]
is used in this work to verify the stresses in each layer of the blade.
Failure will occur in the laminate if any of the normal or shear
stresses in the local axes of a given layer, is equal to or exceeds
the corresponding ultimate strengths of the layer. The laminate
is considered to have failed if any of the following equations is
violated:

�XC < r1 < XT

�YC < r2 < YT

�S < s12 < S

ð39Þ
Double bias Resin Gelcoat

30 � 109 5 � 109 5 � 109

30 � 109 5 � 109 5 � 109

757.0 1150.0 650.0
– 20 � 106 20 � 106

0.2 0.4 0.4
0.35 – 0.25



Fig. 12. Example 1: stationary inertial forces on the blade. View from the upper side
(a) and from the lower side (b).
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where XT is the ultimate longitudinal tensile strength, XC is the
ultimate longitudinal compresssive strength, YT is the ultimate
transverse tensile strength, YC is the ultimate transverse compress-
sive strength, and S is the ultimate shear strength. These values are
given in [30,31] for E-type glass fibers and an epoxy resin.

3.4.1. Example 1: Multilayer laminate blade with a 7 step ply drop
The first numerical example is made of biaxial E-type glass

fibers and an epoxy resin. A ply drop configuration similar to
[33] is adopted, with a monotonic step drop from the root to the
tip of the blade. As depicted in Fig. 11, the span was divided into
seven regions. The number of plies in the root and the tip are eight
and two, respectively.

The mechanical properties of the laminate formed by the biaxial
fibers and epoxy were calculated following the rules of mixtures
for composites using Halpin-Tsai equations [34,35], considering a
volume fraction of 60%. Table 2 presents the resulting properties.

Fig. 12 depicts the stationary inertial forces, computed consid-
ering ply number, density, thickness, rotation velocity, and dis-
tance of each element to the rotation axis of the turbine. The
IFEM solution i.e. the manufacturing shape of this blade is given
in Section 4.2.

3.4.2. Example 2: multilayer laminate blade with a 10 step ply drop
This is a more realistic application that consists of a multi-

laminate blade using double bias, biaxial, and uniaxial fiber glass,
and a layer of epoxy gelcoat with a ten step ply drop configuration,
Fig. 13.

Table 3 presents the mechanical properties of the laminate cal-
culated following the rules of mixtures for composites for a volume
fraction of 60%.

The stationary inertial forces for example 2 are depicted in
Fig. 14. The IFEM solution i.e. the manufacturing shape of this blade
is given in Section 4.3.
Table 2
Example 1: mechanical properties of the laminate for a volume fraction of 60%.

Elasticity modulus E1 = E2 [Pa] 44.0 � 109

Shear modulus [Pa] 35.0 � 109

Tensile strength XT [Pa] 1.06 � 109

Compressive strength XC [Pa] 1.06 � 109

Tensile strength YT [Pa] 1.06 � 109

Compressive strength YC [Pa] 1.06 � 109

Shear strength S [Pa] 7.20 � 107

Density [kg=m3] 1004.0
Poisson ratio 0.36
Thickness [mm] 0.50

Fig. 11. Example 1: ply drop configuration of the blade.

Fig. 13. Example 2: ply drop configuration of the blade.

Table 3
Example 2: mechanical properties of the different laminates for a volume fraction of
60%.

Mechan. propert. Uniaxial Biaxial Double bias

Elast. mod. E1 [Pa] 44.0 � 109 44.0 � 109 31.0 � 109

Elast. mod. E2 [Pa] 12.6 � 109 44.0 � 109 24.7 � 109

Shear mod. [Pa] 16.5 � 109 35.0 � 109 15.0 � 109

Tensil. str. XT [Pa] 1.06 � 109 1.06 � 109 9.20 � 108

Comp. str. XC [Pa] 6.10 � 108 1.06 � 109 9.20 � 108

Tensil. str. YT [Pa] 3.10 � 107 1.06 � 109 9.20 � 108

Comp. str. YC [Pa] 1.18 � 108 1.06 � 109 9.20 � 108

Shear str. S [Pa] 7.20 � 107 7.20 � 107 6.35 � 107

Density [Kg=m3] 1117.0 1004.0 914.0
Poisson ratio 0.36 0.36 0.36
Thickness [mm] 0.50 0.50 0.35
4. Numerical results

This sections presents the numerical examples computed with
IFEM. First, a validation benchmark problem for multilayer shells
is solved. Then, the manufacturing shape of the blades described



Fig. 15. Benchmark problem: pull out of a multilayered orthotropic cylinder. Direct
FEM problem (a), and IFEM solution (b).

Fig. 14. Example 2: stationary inertial forces on the blade. View from the upper side
(a) and the lower side (b).
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in Sections 3.4.1 and 3.4.2 are computed and verified to ensure the
feasibility of the IFEM solution.

4.1. Validation of the inverse shell model for multilayer shells

A benchmark problem for nonlinear shells with multilayered
orthotropic materials is solved to demonstrate the shell IFEM
accuracy. It consists of a cylinder with open ends that is pulled
out by two opposite radial forces P, which has been considered
by Masud et al. [36]. The cylinder has radius R ¼ 4:953 m, length
L ¼ 10:35 m, and thickness h ¼ 0:094 m, as illustrated in Fig. 15,
and P ¼ 2:5e4 N.

Due to the symmetry of the problem, only one-fourth of the
cylinder is modeled using 18 elements along the axis, and 18 along
the periphery.

The shell is made of two layers of composite material with
Young moduli E1 = 30.5 � 106 Pa and E2 = 10.5 � 106 Pa, shear
moduli G12 ¼ G13 ¼ G23 ¼ 4e6 Pa, and Poisson ratii m12 ¼ m13 ¼
m23 ¼ 0:3125. The composite is aligned such that Ez ¼ E1 and
Eh ¼ E2 in the inner layer and Eh ¼ E1 and Ez ¼ E2 in the outer layer.

First, the deformed configuration of the cylinder is determined
using ‘‘direct” FEM, Fig. 15(a). This solution matches the results
of Masud et al. [36]. Afterward, the FEM-computed deformed
mesh is adopted as the mesh for IFEM, as shown in Fig. 15(b).
The loads are the pulling-out forces applied at the same nodes
as those for FEM. As shown in Fig. 16, the IFEM solution is prac-
tically identical to the starting prescribed undeformed mesh
given in Fig. 15(a).

4.2. IFEM Solution for Example 1

The manufacturing shape for the blade with a 7 step ply drop
described in Section 3.4.1, was computed using only twelve
iterations along two load steps, with a residue norm of 1 � 10 �6.
This solution is depicted in Figs. 17 and 18.

4.2.1. Feasibility of the solution

1. Inter-penetrated elements: As depicted in Figs. 17 and 18, the
current solution is free of such defects.

2. Validity of the hypothesis of elasticity: Table 4 summarizes the
verification of the maximum stress criterion for example 1,
and therefore the hypothesis of elasticity holds. The values of
XT, XC, YT, YC and S are listed in Table 2.
3. Uniqueness of the solution: the uniqueness is verified by the
spectrum test.

Having succeeded at all these tests, the IFEM-computed unde-
formed configuration shown in Figs. 17 and 18 represents the man-
ufacturing shape of the wind turbine blade of example 1. As a final
verification, a FEM analysis has been performed to assess that the
manufacturing shape of the blade recovers the aerodynamic opti-
mal configuration under the service loads. Fig. 19 depicts the error
in the nodal position of this analysis.



Fig. 19. Example 1: error in the nodal position of the FEM computed solution to
verify that the manufacturing shape of the blade maps back to the aerodynamic
optimal configuration.

Fig. 20. Example 2: IFEM Solution. View from the leading edge. The prescribed
aerodynamic geometry in wireframe, and manufacturing geometry in the color
surface.

Fig. 16. Benchmark problem: error in the nodal positions in the undeformed
configuration of the pullout cylinder computed with IFEM.

Fig. 17. Example 1: IFEM Solution. View from the leading edge. The prescribed
aerodynamic geometry in wireframe, and manufacturing geometry in color surface.

Fig. 18. Example 1: IFEM Solution. View from the trailing edge. The prescribed
aerodynamic geometry in wireframe, and manufacturing geometry in the color
surface.

Table 4
Example 1: verification of the maximum stress criterion. Stresses are measured in [Pa], and
gelcoat, and therefore the maximum stress criterion at that layer has not been considered

Layer max r1 min r1 max r2 m

1 3.18 � 107 -2.27 � 107 3.40 � 107 �2
2 3.23 � 107 �2.31 � 107 1.91 � 107 �2
3 4.13 � 107 �2.36 � 107 1.19 � 107 �2
4 5.11 � 107 �2.41 � 107 6.68 � 106 �2
5 6.52 � 107 �2.21 � 107 7.88 � 106 �2
6 6.45 � 107 �2.28 � 107 1.12 � 107 �2
7 2.29 � 107 �3.01 � 107 1.63 � 107 �2

Fig. 21. Example 2: IFEM Solution. View from the trailing edge. The prescribed
aerodynamic geometry in wireframe, and manufacturing geometry in color surface.
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4.3. IFEM Solution for Example 2

The manufacturing shape for the laminate blade with a 10 step
ply drop presented in Section 3.4.2, was computed using only four-
teen iterations along two load steps, with a residue norm of
1 � 10�6. This solution is depicted in Figs. 20 and 21.
the values of XT, XC, YT, YC and S are listed in Table 2. Note that the 8th layer is made of
.

in r2 max s12 min s12 �XC< r1 <X T

�YC< r2 <YT

js12j <,S

.24 � 107 5.92 � 106 �4.43 � 106 ok

.28 � 107 6.05 � 106 �4.38 � 106 ok

.36 � 107 6.18 � 106 �4.95 � 106 ok

.41 � 107 6.29 � 106 �4.35 � 106 ok

.21 � 107 5.64 � 106 �4.31 � 106 ok

.28 � 107 6.11 � 106 �4.28 � 106 ok

.98 � 107 6.98 � 106 �4.30 � 106 ok



Table 5
Example 2: verification of the maximum stress criterion. Stresses are measured in [Pa], and the values of XT, XC, YT, YC and S are listed in Table 3. Note that layer 12 is made of
gelcoat, and therefore the maximum stress criterion at that layer has not been considered.

Layer max r1 min r1 max r2 min r2 max s12 min s12 �XC< r1 <XT

�YC< r2 < YT

js12j < S

1 2.16 � 107 �1.54 � 107 3.00 � 107 �1.54 � 107 2.01 � 107 �1.59 � 107 ok
2 2.62 � 107 �1.50 � 107 2.21 � 107 �1.49 � 107 1.62 � 107 �1.59 � 107 ok
3 2.27 � 107 �1.51 � 107 4.78 � 106 �1.51 � 107 2.07 � 106 �1.86 � 106 ok
4 3.09 � 107 �1.58 � 107 3.72 � 106 �1.58 � 107 2.12 � 106 �1.74 � 106 ok
5 3.93 � 107 �1.66 � 107 4.99 � 106 �1.66 � 107 2.47 � 106 �1.62 � 106 ok
6 4.80 � 107 �1.73 � 107 7.40 � 106 �1.73 � 107 2.99 � 106 �1.53 � 106 ok
7 4.39 � 107 �2.34 � 107 4.63 � 107 �2.34 � 107 1.79 � 107 �3.65 � 107 ok
8 6.25 � 107 �1.75 � 107 1.14 � 107 �1.75 � 107 4.22 � 106 �1.54 � 106 ok
9 2.85 � 107 �3.13 � 107 5.63 � 107 �3.13 � 107 3.82 � 107 �1.11 � 107 ok
10 1.43 � 107 �1.45 � 107 8.21 � 106 �1.45 � 107 2.56 � 106 �1.14 � 106 ok
11 1.43 � 107 �1.68 � 107 9.90 � 106 �1.68 � 107 1.55 � 106 �1.06 � 106 ok

Fig. 22. Example 2: error in the nodal position of the FEM computed solution to
verify that the manufacturing shape of the blade maps back to the aerodynamic
optimal configuration.

Fig. 23. Lift (a) and glide (b) coefficients for the SG604X airfoil family.
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4.3.1. Feasibility of the solution

1. Inter-penetrated elements: As depicted in Figs. 20 and 21, the
solution for example 2 is free of such defects.

2. Validity of the hypothesis of elasticity: Table 5 summarizes the
verification of the maximum stress criterion for example 2,
and therefore the hypothesis of elasticity once again holds.
The values of XT, XC, YT, YC and S are listed in Table 3.

3. Uniqueness of the solution: the uniqueness is verified by the
spectrum test.

Since all test have succeeded, the IFEM-solution depicted in
Figs. 20 and 21 represent the manufacturing shape of the wind tur-
bine blade of example 2. Again, a FEM analysis has been performed
to assess that the manufacturing shape of the blade recovers the
aerodynamic optimal configuration under the service loads.
Fig. 22 depicts the error in the nodal position of this analysis.

5. Conclusion

This work presents a novel methodology based on IFEM for non-
linear shells to design wind turbine blades made of composite
materials, such that the blades attain an efficient prescribed aero-
dynamic shape after large elastic deformations. Compared to other
multistep methods that compute the undeformed configuration of
a body, IFEM is efficient from the computational point of view
since it solves the nonlinear equilibrium equation only once.

The proposed IFEM formulation is capable of modeling multi-
layer orthotropic composite shells with high accuracy, as was
shown in the benchmark problem. The capabilities and potentiali-
ties of the proposed approach are shown through two numerical
examples with different composite multilayer materials and ply-
drops along the blade span.

Future work will consist in the implementation of optimization
techniques to automatically determine the stacking sequence, ply
drop configuration and fiber orientation of the composite materials
used to manufacture the blades.



A. Albanesi et al. / Composite Structures 161 (2017) 160–172 171
Acknowledgments

The authors gratefully acknowledge the financial support from
CONICET (Argentine Council for Scientific and Technical Research).
A.E. Albanesi also acknowledges the National Technological
University of Argentina (UTN) for the Grant PID ENUTNFE0002146.

Appendix A. Aerodynamic analysis data

A.1. Lift and glide coefficients of the airfoils

The lift and glide coefficients, CL and CG respectively, of the
SG604X family or airfoils are shown in Fig. 23.

A.2. Chord length and twist angle determined by Schmitz theory

The chord length C and the twist angle b for intermediate airfois
are determined following the Schmitz theory [37–39]:

CðrÞ ¼ 16 p r
B CL

sin2 1
3
arctan

R
k r

� �
ð40Þ

bðrÞ ¼ 2
3
arctan

R
k r

� �
� aD ð41Þ
Fig. 24. Power curve (a) and aerodynamic efficiency (b) of the blade.
where r6R is the distance between the considered section and the
rotation axis of the turbine, R is the turbine radius, B is the number
of blades, k is the tip speed ratio and aD is the angle of attack at the
prescribed operation conditions.

A.3. Wind turbine performance curves

All of the CFD calculation have been performed with a residue
norm of 1 � 10�5, and demanded between 600 and 800 iterations
each. The performance curves were calculated sweeping through
wind velocities in a series of steady state simulations, all with a
rotational speed of 72 RPM. A total of 35 simulations were per-
formed, considering wind velocities V of 2, 4, 6, 8, 10, 12 y 14 m/s.

The power P delivered by the rotor is measured in W, and is
computed as

P ¼ s �x; ð42Þ
where s is the torque generated by the blades measured in Nm, and
x is the angular velocity measured in radians per second. The ratio
of the power delivered by the rotor to the power available in the
wind for the same cross section A, results in the aerodynamic effi-
ciency of the blades

gA ¼ P
1
2qAV

3 : ð43Þ
Fig. 25. Validation of CFD results: NREL CER wind turbine (a), and the comparison
between CFD results with NREL experimental results (b).
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The turbine delivers 12 kW at the prescribed condition with an
aerodynamic efficiency of 42%. Fig. 24 depicts the power versus
wind velocity curve and efficiency versus k curve.

A.4. Validation of CFD model and procedure

The CFD model, turbulence model, mesh refinement and com-
putation procedure were validated with the 20 kW NREL Com-
bined Experimental Rotor (NREL CER), a three-bladed rotor with
a span of 5.03 m and non-linear twist distribution, [40], Fig. 25
(a). It was selected because of the similarity in blade length and
twist distribution.

The computational domain for the NREL CER had the same
relative dimensions to that of Fig. 7 (given that R = 5.03 m), and
following [40], the pitch angle was set to 5� degrees and the rota-
tional velocity was set to 72 rpm (RPM). An unstructured mesh of
35.822.607 tetrahedral elements was created following the proce-
dure described in Section 3.1.3, and the steady-state solver for
incompressible and turbulent flow simpleFoam with the k-SST
turbulence model and the MRF approach has been used.

Validation results are presented in Fig. 25(b), where the numer-
ical results computed with CFD are in excellent agreement with
NREL experimental results of [40], demonstrating that the compu-
tational domain, turbulence model, and mesh refinement are
correctly chosen and configured.
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