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Abstract As the need to model flexibility arose in multibody dynamics, the floating frame
of reference formulation was developed, but this approach can yield inaccurate results when
elastic displacements becomes large. While the use of three-dimensional finite element for-
mulations overcomes this problem, the associated computational cost is overwhelming. Con-
sequently, beam models, which are one-dimensional approximations of three-dimensional
elasticity, have become the workhorse of many flexible multibody dynamics codes. Numer-
ous beam formulations have been proposed, such as the geometrically exact beam formu-
lation or the absolute nodal coordinate formulation, to name just two. New solution strate-
gies have been investigated as well, including the intrinsic beam formulation or the DAE
approach. This paper provides a systematic comparison of these various approaches, which
will be assessed by comparing their predictions for four benchmark problems. The first prob-
lem is the Princeton beam experiment, a study of the static large displacement and rotation
behavior of a simple cantilevered beam under a gravity tip load. The second problem, the
four-bar mechanism, focuses on a flexible mechanism involving beams and revolute joints.
The third problem investigates the behavior of a beam bent in its plane of greatest flexural
rigidity, resulting in lateral buckling when a critical value of the transverse load is reached.
The last problem investigates the dynamic stability of a rotating shaft. The predictions of
eight independent codes are compared for these four benchmark problems and are found to
be in close agreement with each other and with experimental measurements, when available.
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1 Introduction

Multibody dynamics was originally developed to deal with simple tree-like topologies com-
posed of rigid bodies. As the need to model flexibility arose, the floating frame of reference
formulation [1] was proposed. Unfortunately, as the magnitude of the elastic displacements
increases, this formulation becomes increasingly inaccurate, and the multibody dynamics
community began to turn its attention to finite element based formulations. Simo [2] pro-
posed the geometrically exact beam formulation (GEBF), which corrected the shortcomings
of earlier co-rotational formulations [3]. In recent years, the absolute nodal coordinate for-
mulation (ANCF) developed by Shabana et al. [4, 5] has received considerable attention for
the modeling of flexible multibody systems. The GEBF and ANCF are easier to derive than
the floating frame of reference approach and involve fewer assumptions, but little effort has
been devoted to the systematic comparison of these two approaches.

Romero [6] has presented a comparison of both qualitative and quantitative aspects of the
two approaches. He concluded that the ANCF is more straightforward, while GEBF involves
thorny issues, such as the treatment of finite rotation. Unfortunately, the ANCF suffers from
a number of locking mechanisms that must be eliminated to obtain accurate results. As
pointed out by Gerstmayr et al. [7], this can be accomplished in a number of ways, but the
proposed techniques complicate the description of elastic forces, leading to more arduous
implementations and moving away from the simplicity of the initial implementation. In
some of the examples treated by Romero, the ANCF and GEBF did not converge to the same
solution. In all cases, the computational efficiency of the GEBF was found to be superior to
that of the ANCF.

Bauchau et al. [8] further compared the GEBF and ANCF to identify the causes of their
differing computational efficiencies. First, they performed a kinematic analysis in which
the exact nodal displacements were prescribed and the predicted displacement and strain
fields were compared for the two methods. The accuracies of the predicted strain fields were
found to differ markedly: the predictions of the GEBF were more accurate than those of the
ANCF. They attributed this phenomenon to the fact that the curvature field is obtained as
a second derivative of the displacement in the ANCF, but as a first derivative only for the
GEBF. Next, they carried out a static analysis to determine the solution of the problem. For
the GEBF, the predictions of the static analysis are far more accurate than those obtained
from the kinematic solution; in contrast, the same order of accuracy was obtained for the two
solution procedures when using ANCF. In all cases, they reported that the predictions of the
GEBF were more accurate than those of the ANCF. A further study by Bauchau et al. [9]
compared the predictions of the two methodologies against experimental measurements.

Besides these various formulations of beam problems, novel solution strategies have also
been investigated. For instance, Hegemier [10] and Hodges [11] have developed intrinsic
formulations for beams. By eliminating the displacement and rotation fields from the geo-
metrically exact equations of the problem, quadratic equations result and this feature simpli-
fies the solution process. Cardona and Géradin [12] adapted the well known Hilber–Hughes–
Taylor [13] time integration scheme initially developed for the finite element method to the
finite rotation problems found in geometrically exact beams. Betsch and co-workers [14]
proposed the use of the direction cosine matrix to represent the rotation tensor; this led
to differential-algebraic equations (DAE), which they solved using novel integration tech-
niques. Finally, it is worth mentioning the increased application of Lie group techniques in
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Fig. 1 Configuration of the
Princeton beam experiment

rigid and flexible multibody dynamics [15]. The resulting solution techniques aim at pre-
serving the invariant manifolds that characterize multibody systems.

2 The four benchmark problems

This study focuses on four benchmark problems: the Princeton beam experiment, the four-
bar mechanism, the lateral buckling of a beam, and the stability of a rotating shaft described
in Sects. 2.1, 2.2, 2.3, and 2.4, respectively. For each benchmark problem, beam sectional
properties such as bending, shearing, and torsional stiffnesses must be evaluated. In this
effort, these properties were computed from the section’s geometric and stiffness properties
using the procedure developed by Bauchau and Han [16, 17].

2.1 The Princeton beam experiment

The Princeton beam experiment [18, 19] is a study of the large displacement and rotation be-
havior of a simple cantilevered beam under a gravity tip load. A straight aluminum (T 7075)
beam of length L = 0.508 m with a rectangular cross-section of thickness t = 3.175 mm
and height h = 12.7 mm was cantilevered at its root and subjected to a static concentrated
transverse load P at its tip.

Figure 1 shows an end-view of the test set-up. An inertial frame of reference is selected
as F I = [O,I = (ı̄1, ı̄2, ı̄3)] and material frame FB = [O,B = (b̄1, b̄2, b̄3)] is attached at the
beam’s root section, which is cantilevered into a bearing that allows rotation of the beam
about its reference axis by an angle θ , called the “loading angle.” The gravity load applied
at the beam tip is acting in the opposite direction of unit vector ı̄3. Variation of the loading
angle from 0 to 90 degrees yields a range of nonlinear problems where torsion and bending
in two directions are coupled.

Experimental results [18] consist of measurements of the beam’s tip deflection along
the material unit vectors b̄2 and b̄3, denoted u2 and u3, respectively, and called the “flap-
wise” and “chordwise displacements,” respectively. The beam’s tip twist was also mea-
sured. Let RE = {b̄E

1 , b̄E
2 , b̄E

3 } denote the rotation tensor characterizing the orientation of

the beam’s tip cross-section. In the absence of tip load, RE(P = 0) = {b̄E
1 , b̄E

2 , b̄E
3 }, where

b̄ET
3 = {0, sin θ, cos θ}, and it then follows that θ = arctan(RE

23(P = 0)/RE
33(P = 0)), where

the subscripts refer to the corresponding entries of rotation tensor RE . Under tip load P , the
orientation of the tip section is defined as arctan(RE

23(P )/RE
33(P )) and the beam’s tip twist

is defined as

φ = arctan

(
RE

23

RE
33

)
− θ. (1)
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Table 1 Sectional stiffness properties of the Princeton beam

Axial
S [MN]

Shearing
K22 [MN]

Shearing
K33 [MN]

Torsional
H11 [N m2]

Bending
H22 [N m2]

Bending
H33 [N m2]

Beam 2.842 0.6401 0.9039 3.103 36.28 2.429

The procedure used to measure the twist angle experimentally is detailed in the report by
Dowell and Traybar [18].

Data was acquired at loading angles of θ = 0,±15,±30,±45,±60,±75,±90, and 180
degrees. For a perfect system, symmetry implies that the absolute values of the tip displace-
ments and twist should be identical for loading angles ±θ . In the experimental setting, these
measurements differed, providing an estimate of their accuracy. Three loading conditions
were used, P1 = 4.448 N, P2 = 8.896 N, and P3 = 13.345 N.

The linear solution of the problem is found using the shear deformable beam theory
described in structural analysis textbooks [20]. The tip transverse displacements are

uT
2 =

[
PL3

3H33
+ PL

K22

]
sin θ, uT

3 =
[

PL3

3H22
+ PL

K33

]
cos θ, (2)

where H22 and H33 are the bending stiffnesses about material unit vectors b̄2 and b̄3, respec-
tively, and K22 and K33 the shearing stiffnesses along the same unit vectors, respectively. Of
course, for linear theory, the tip twist vanishes.

For θ = 0 or 180 and θ = ±90, the beam undergoes planar deformation and elemen-
tary formulæ of Timoshenko beam theory (2) provide the tip deflection in the linear regime.
Using the Young’s modulus of T 7075 aluminum as E = 71.7 GPa and Poisson’s ratio
ν = 0.31, hand calculations yield uT

2 = 5.004 and uT
3 = 80.034 mm for the chordwise and

flapwise tip displacements, respectively, at loading level P1. This compares favorably with
experimental measurements of uT

2 = 5.3594 and uT
3 = 77.635 mm, respectively, resulting in

−6.6 % and +3.1 % error, respectively. In this effort, the dimensions of the cross-section
were adjusted slightly to achieve good correlation between measurements and predictions of
linear theory in these two cases. The following data was used: L = 0.508 m, t = 3.2024 mm,
h = 12.377 mm, E = 71.7 GPa, ν = 0.31, and G = E/2(1 + ν) = 27.37 GPa. These physi-
cal properties translate to the sectional stiffness properties listed in Table 1 and the sectional
mass properties per unit span is m00 = 0.1062 kg/m.

2.2 The four-bar mechanism

Figure 2 depicts a flexible four-bar mechanism. Bar 1 is of length 0.12 m and is connected to
the ground at point A by means of a revolute joint. Bar 2 is of length 0.24 m and is connected
to bar 1 at point B with a revolute joint. Finally, bar 3 is of length 0.12 m and is connected
to bar 2 and the ground at points C and D, respectively, by means of two revolute joints.

In the reference configuration, the bars of this planar mechanism intersect each other at
90 degree angles and the axes of rotation of the revolute joints at points A, B, and D are
normal to the plane of the mechanism. To simulate an initial defect of the mechanism, the
axis of rotation of the revolute joint at point C is rotated by +5 degrees about unit vector ı̄2

indicated in Fig. 2. The angular velocity of bar 1 at point A is prescribed as Ω = 0.6 rad/s
for the duration of the simulation.

Bars 1 and 2 are of square cross-section of size 16 by 16 mm; bar 3 has a square cross-
section of size 8 by 8 mm. The three bars are made of steel, whose mechanical characteristics
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Fig. 2 Configuration of the
four-bar mechanism

Fig. 3 Configuration of the
crank actuated beam

Table 2 Sectional stiffness properties of the bars

Axial
S [MN]

Shearing
K22 [MN]

Shearing
K33 [MN]

Torsional
H11 [N m2]

Bending
H22 [N m2]

Bending
H33 [N m2]

Bars 1 & 2 52.99 16.88 16.88 733.5 1131 1131

Bar 3 13.25 4.220 4.220 45.84 70.66 70.66

are Young’s modulus E = 207 GPa and Poisson’s ratio ν = 0.3. These physical properties
translate to the sectional stiffness properties listed in Table 2. The sectional mass properties
are as follows: mass per unit span m00 = 1.997 and 0.4992 kg/m, moments of inertia per
unit span m22 = m33 = 42.60 and 2.662 mg m2/m for bars 1 and 2, and bar 3, respectively.

If the bars were infinitely rigid, no motion would be possible because the mechanism
locks. For elastic bars, motion becomes possible, but generates large, rapidly varying inter-
nal forces and moments. If the axes of rotation of the four revolute joints were orthogonal to
the plane of the mechanism, the response of the system would be purely planar, and bars 1
and 3 would rotate at constant angular velocity about points A and D, respectively. The initial
defect in the mechanism causes a markedly different response. Bar 1 rotates at the constant
prescribed angular velocity, but bar 3 now oscillates back and forth, never completing an
entire revolution.

2.3 Lateral buckling of a thin beam

If a beam is bent in its plane of greatest flexural rigidity, lateral buckling will occur when a
critical value of the transverse load is reached. In this benchmark problem, the tip of a beam
is subjected to a transverse load applied through a crank and link mechanism, as depicted in
Fig. 3. The beam is clamped at one end, while the other end is connected to the link through
a spherical joint. The crank and link are modeled by flexible beams connected by revolute
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Fig. 4 Configuration of the
rotating shaft

Table 3 Sectional stiffness properties of the beams

Axial
S [MN]

Shearing
K22 [MN]

Shearing
K33 [MN]

Torsional
H11 [N m2]

Bending
H22 [N m2]

Bending
H33 [N m2]

Beam 73 5.025 23.40 877.2 60,830 608.3

Link 33.02 10.81 10.81 914.5 1189 1189

Crank 132.1 43.22 43.22 14,630 19,020 19,020

joints. As the crank rotates, the beam tip is pushed up. When the buckling load is reached,
the beam snaps laterally and becomes significantly softer in bending due to the pronounced
twisting deformation.

Figure 3 depicts the configuration of the problem. The beam is of length L = 1 m, the
crank and link lengths are Lc = 0.05 m and L� = 0.25 m, respectively. The rotation of
the crank is prescribed as φ = π(1 − cosπt/T )/2, for t ≤ T and φ = π for t > T , where
T = 0.4 s. To simulate an initial imperfection of the system, the tip of the beam is connected
to the spherical joint via a rigid-body connection of length d = 0.1 mm. The plane of the
crank and link mechanism is offset from the plane of the beam by the same distance d .

The beam’s rectangular cross-section is of width b = 10 mm and height h = 100 mm.
The link has a circular cross-section of radius R� = 12 mm. Finally, the crank also features a
circular cross-section, but its radius is Rc = 24 mm. All components are made of aluminum,
whose mechanical characteristics are Young’s modulus E = 73 GPa and Poisson’s ratio
ν = 0.3. These physical properties translate to the sectional stiffness properties listed in
Table 3. The sectional mass properties are as follows: mass per unit span m00 = 2.68, 1.212,
and 4.85 kg/m, moments of inertia per unit span m22 = 2233, 43.65, and 698.3, m33 = 22.33,
43.65, and 698.3 mg m2/m for the beam, link, and crank, respectively.

2.4 Stability of a rotating shaft

A flexible shaft of length L is supported at its ends by bearings, as depicted in Fig. 4. At
point R, the shaft is connected to the ground by means of a revolute joint and the angular
speed of the shaft is a prescribed function of time, Ω(t). At point T, the shaft is connected
to the ground via a cylindrical joint. A rigid disk is attached to the shaft at its mid-span
point M. Initially, the disk’s center of mass is located a distance d above the reference axis
of the shaft, thereby creating an unbalance of the system.
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Table 4 Sectional stiffness properties of the shaft

Axial
S [MN]

Shearing
K22 [MN]

Shearing
K33 [MN]

Torsional
H11 [kN m2]

Bending
H22 [kN m2]

Bending
H33 [kN m2]

313.4 60.5 60.5 272.7 354.5 354.5

At the initial time, the shaft is at rest and deformed under the effect of the gravity loads
acting in the vertical direction, as indicated in the figure. The shaft is set in motion by
prescribing its rotation at point R and lateral oscillations ensue due to the initial imperfection
of the system. As the shaft accelerates, it passes through the first natural bending frequency
of the system and the operation goes from sub- to super-critical. As predicted by linear rotor
dynamics theory, the shaft becomes unstable when operating at the critical speed. In the
present example, the magnitudes of lateral oscillations and corresponding internal forces
rise as the shaft is accelerated through the critical speed.

The shaft has a length L = 6 m and is made of steel (density ρ = 7800 kg/m3, Young’s
modulus E = 210 GPa, and Poisson’s ratio ν = 0.3). The cross-section is annular with in-
ner and outer radii rI = 0.045 and rO = 0.05 m, respectively. The shaft’s sectional stiffness
properties are summarized in Table 4. The mass per unit span is m = 11.64 kg/m, the mo-
ments of inertia per unit span are m22 = m33 = 13.17 g m2/m and the resulting polar moment
of inertia per unit span is m11 = m22 + m33 = 26.34 g m2/m.

The mid-span circular disk is of mass md = 70.573 kg, radius rd = 0.24 m, and thickness
td = 0.05 m. Its inertial tensor computed with respect to the center of mass is diagonal,
diag(2.0325,1.0163,1.0163) g m2. Its center of mass is located a distance d = 0.05 m above
the shaft reference axis. The acceleration of gravity is g = 9.81 m/s2.

The shaft’s rotation at point R is prescribed to be

Ω(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A1ω[1 − cos(πt/T1)]/2, 0 ≤ t ≤ T1,

A1ω, T1 < t ≤ T2,

A1ω + (A2 − A1)ω{1 − cos[π(t − T2)/(T3 − T2)]}/2, T2 < t ≤ T3,

A2ω, t > T3,

(3)

where A1 = 0.8, A2 = 1.2, T1 = 0.5 s, T2 = 1 s, T3 = 1.25 s, and ω = 60 rad/s is close to the
first natural frequency of the shaft in bending (ω1 = 56.7 rad/s).

3 General description of beam formulations

A beam is defined as a structure having one of its dimensions much larger than the other
two, as depicted in Fig. 5. The axis, or reference line, of the beam is defined along that
longer dimension and its cross-section is normal to this axis. The cross-section’s geometric
and physical properties are assumed to vary smoothly along the beam’s span.

Figure 5 depicts an initially curved and twisted beam of length L, with a cross-section
of arbitrary shape and area A. The volume of the beam is generated by sliding the cross-
section along the reference line of the beam, which is defined by an arbitrary curve in space.
Curvilinear coordinate α1 defines the intrinsic parameterization of this curve, i.e., it mea-
sures length along the beam’s reference line. Point B is located at the intersection of the
reference line with the plane of the cross-section.
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Fig. 5 Curved beam in the
reference and deformed
configurations

3.1 Kinematics of the problem

In the reference configuration, an orthonormal basis, B0(α1) = (b̄01, b̄02, b̄03), is defined at
point B. Vector b̄01 is the unit tangent vector to the reference curve at that point, and unit
vectors b̄02 and b̄03 define the plane to the cross-section. An inertial reference frame, FI =
[O,I = (ı̄1, ı̄2, ı̄3)], is defined, and the components of the rotation tensor that brings basis I
to B0, resolved in basis I , are denoted R

0
(α1).

The position vector of point B along the beam’s reference line is denoted u0(α1). The
position vector of material point P of the beam then becomes x(α1, α2, α3) = u0(α1) +
α2 b̄02 +α3 b̄03, where α2 and α3 are the material coordinates along unit vectors b̄02 and b̄03,
respectively. Coordinates α1, α2, and α3 form a natural choice of coordinates to represent
the configuration of the beam.

In the deformed configuration, all material points located on a cross-section of the beam
move to new positions. This motion is decomposed into two parts, a rigid-body motion and
a warping displacement field. The rigid-body motion consists of a translation of the cross-
section, characterized by displacement vector u(α1) of reference point B, and of a rotation of
the cross-section, which brings basis B0 to B(α1) = (b̄1, b̄2, b̄3), see Fig. 5. The components
of the position vector of point B in the deformed configuration are denoted x(α1) and the
components of the rotation tensor that brings basis B0 to B are denoted R(α1); all tensor
components are resolved in basis I .

For shear deformable beams, the deformation is characterized by six sectional strains: the
axial strain, the two transverse shear strains, the twist rate, and the two bending curvatures.

3.2 Definition of the sectional strain

In the GEBF, the geometry of the beam is described by the displacement field of the beam’s
reference axis and by the rotation field of its cross-section. The sectional strains and curva-
tures, denoted ε(α1) and κ(α1), respectively, are expressed [2] as

ε(α1) = u′
0 + u′ − (R R

0
)ı̄1, (4a)

κ(α1) = axial
(
R′RT

)
, (4b)

where u0 is the position vector of the beam’s axis in its reference configuration and notation
(·)′ denotes a derivative with respect to α1. The strain vector is defined as εT = {ε11, γ12, γ13},
where ε11 is the sectional axial strain, and γ12 and γ13 the two components of transverse
shearing strains.
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3.3 The strain energy

The strain energy stored in the beam [20] of length L is expressed as

A = 1

2

∫ L

0
E∗T C∗E∗ dα1, (5)

where array E∗T = {ε∗T , κ∗T } stores the beam’s sectional strain components resolved in
material basis B, i.e., ε∗ = (R R

0
)T ε and κ∗ = (R R

0
)T κ . If the beam’s cross-section is made

of isotropic materials and characterized by double symmetry, the sectional stiffness matrix
referred to the centroid of the section is diagonal, C∗ = diag(S,K22,K33,H11,H22,H33),
where S is the beam’s axial stiffness, K22 and K33 its shear stiffnesses along unit vectors
b̄2 and b̄3, respectively, H11 its torsional stiffness, and H22 and H33 its bending stiffnesses
about unit vectors b̄2 and b̄3, respectively.

3.4 Equilibrium equations

The sectional forces and moments resolved in basis I are denoted N and M , respectively.
When rotated to material basis B, the corresponding quantities are denoted N∗ and M∗, re-
spectively where N∗T = {N∗

1 ,V ∗
2 ,V ∗

3 } and M∗T = {M∗
1 ,M∗

2 ,M∗
3 }. The sectional axial force

is N∗
1 , and V ∗

2 and V ∗
3 are the shear forces along unit vector b̄2 and b̄3, respectively. Finally,

M∗
1 is the torque, and M∗

2 and M∗
3 are the bending moments about unit vector b̄2 and b̄3,

respectively. Array F∗T = {N∗T ,M∗T } stores the six sectional stress resultants and the sec-
tional constitutive laws are F∗ = C∗E∗.

Application of the principle of virtual work then yields the static equilibrium equations
of the problem

N ′ = −f , (6a)

M ′ + (
b̄1 + u′) × N = −m, (6b)

where f and m denote the externally applied forces and moments per unit span of the beam,
respectively.

4 Description of the codes used in this effort

This paper will present the predictions of eight different codes for the four benchmark prob-
lems introduced in Sect. 2. These eight codes are described in the present section in a very
succinct manner. Table 5 lists the eight codes and the references providing details about
them. Clearly, the details of the finite element implementation of each of the formulations
are beyond the scope of this paper.

Description of Dymore Dymore is based on the geometrically exact beam formulation.
The sectional strains are defined by Eqs. (4a), (4b) and the strain energy by Eq. (5). The
results presented in this paper use a four-node element based on cubic Lagrangian shape
functions. Each node features six degrees of freedom (DOFs), three displacement compo-
nents and three rotation components. The Wiener–Milenković [22] parameters are used to
represent finite rotations. A complete description of the formulations is found in [21, 22].
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Table 5 Summary of the codes
used for the numerical
predictions

Code name Symbol References

Dymore ∗ [21, 22]

Hotint © [23]

MBDyn � [24, 25]

Mecano � [12, 26]

MOPEDS � [27, 28]

Oofelie × [29, 30]

SE(3) + [31, 32]

Spacar � [33, 34]

Description of Hotint HOTINT (http://www.hotint.org) is an open source multibody dy-
namics simulation code which has been developed at the Johannes Kepler University Linz
and at the Linz Center of Mechatronics. HOTINT includes various possibilities for the mod-
eling of point masses, rigid bodies, beams, plates, and modally reduced multibody systems.
The beam formulation is based on the ANCF described by Nachbagauer et al. [23]. The
nodal coordinates are given by a displacement vector and two slope vectors, which coin-
cide with the principal axes of the cross-section in the reference configuration. As these two
slope vectors are not necessarily perpendicular (but they are nearly) during deformation of
the beam, a modification of constraints, moments and sensors which are related with the
rotation of the cross-section is performed. Thus, for the computation of the rotation matrix
from the two slope vectors in any point at the beam axis, a Gram–Schmidt projection of the
slope vectors is utilized in order to obtain rotational parameters as provided in the results.
The multibody system is represented by means of a differential algebraic equations of in-
dex 3, which is solved by means of a RadauIIA scheme with two stages (order 3) to provide
numerical damping.

Description of MBDyn The structural DOFs used by MBDyn are the absolute position of
the nodes in reference I and the Cayley–Gibbs–Rodrigues [22] parameters which are used
to represent finite rotations. The approach uses an incremental scheme that resembles an up-
dated Lagrangian approach which has been termed updated–updated [24]. The constrained
dynamics problem is formulated as DAEs that express Newton–Euler’s equations of motion
of rigid bodies connected by deformable components and subjected to kinematic constraints
in form of algebraic equations. It is integrated using an implicit, A/L stable multistep scheme
with tunable algorithmic dissipation [24].

MBDyn supports GEBF elements implemented according to the finite-volume approach
developed by Ghiringhelli et al. [25]. The generalized strains are defined according to
Eqs. (4a), (4b). Integration by parts of the equilibrium equations (6a), (6b), weighted by
piecewise constant test functions centered on the nodes, yields the elastic contribution to
the equilibrium of naturally discrete pieces of beam. When a three-node discretization is
considered, with the interfaces between the mid- and the end-nodes at points corresponding
to the two Gauss quadrature points, an intrinsically shear-locking free discrete element is
obtained, which yields the exact static solution for any end-applied node. Inertia loads are
accounted for using rigid-body elements at the nodes.

Description of Mecano Mecano includes a large rotation nonlinear finite element beam
based on the static equilibrium equations (6a), (6b) resolved in the material frame [12, 26].
Rotations are parameterized using the rotational vector [22] and an updated Lagrangian

http://www.hotint.org
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scheme allows the handling of rotation in excess of 2π in magnitude. The element fields
are interpolated linearly within the element and a single Gauss point is used for integration.
To enable large finite rotations, incremental rotations with respect to the previous converged
configuration are interpolated. This scheme requires tracking of total rotations both at the el-
ement nodes and at the Gauss point. This code, which is part of the LMS Samtech-SAMCEF
software, has been used in industrial applications extensively for the last 20 years.

Description of MOPEDS The beam finite element is based on the GEBF described in
Sects. 3.1 to 3.4. The finite element formulation relies on standard Lagrangian shape func-
tions used for the interpolation of the beam reference line, u0(α1) + u(α1), and the rotation
tensor, R(α1)R0

(α1). The orthogonality of the rotation tensor is relaxed to the nodal points
of the finite element. To this end, either Lagrangian multipliers or three (incremental) ro-
tations are employed. Details of the finite element formulation can be found in Betsch and
Steinmann [27]. The incorporation of the beam finite element formulation into a general
framework for flexible multibody dynamics is described by Leyendecker et al. [28]. It is
worth noting that the present approach makes possible the design of energy–momentum
consistent time integrators. A refined version of the beam finite element formulation ex-
hibiting improved convergence properties has recently been proposed by Eugster et al. [35].

Description of Oofelie A large rotations nonlinear beam finite element model was devel-
oped by Lens and Cardona [29]. The finite element is able to handle large three-dimensional
rotations and displacements but is restricted to small strains. Simplifications are made in the
kinematics that allowed to obtain quite simple compact expressions. The kinematics expres-
sions are based on assuming small relative displacements and rotations within the element.
A single Gauss point is used to compute the strain energy and the expressions of rotations
at the middle point are computed using a multiplicative decomposition of the increment of
rotation from one node to the other. Then, curvatures and strains are obtained by assum-
ing simple approximations for the derivative of the rotation tensor with respect to the axial
coordinate, evaluated at the middle point. Full analytical expressions of the internal forces,
inertia forces, stiffness, and mass matrices can be obtained, allowing an easy implementa-
tion of the element. The element was implemented in the finite element code Oofelie [30],
which is being developed jointly by the University of Liège, the Universidad Nacional del
Litoral and the company Open Engineering S.A.

Description of formulation in the special Euclidean group The kinematics of mechan-
ical systems are described using frame transformations which are treated as elements of the
special Euclidean group SE(3). Brüls et al. [36] used this approach to simulate rigid bodies.
Generalizations to kinematic joints and beam elements were proposed by Sonneville and
Brüls [31] and Sonneville et al. [32]. The constraint equations and the internal and inertia
forces are naturally expressed in terms of unknowns evaluated in the material frame, and
hence, the tangent matrix depends on local relative motions only and remains constant un-
der rigid-body motions. By construction, the formulation is frame invariant. The equations
of motion take the form of second-order differential-algebraic equations on a Lie group and
are solved using a Lie group time integration scheme, the generalized-α method proposed
by Brüls et al. [36].

In the beam formulation, a material frame is attached to each point of the neutral axis of
the beam, accounting for the position of the point and the orientation of the cross-section
at that point with respect to the inertial frame. A two-node element is used and the finite
element interpolation of the nodal frames is based on the exponential map of the special Eu-
clidean group SE(3). The resulting shape functions are helicoidal functions and the coupling
between rotations and translations they introduce yields a naturally locking-free element.
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Description of Spacar Spacar is based on the generalized strain beam formulation of
Besseling [37] (http://www.utwente.nl/ctw/wa/software/spacar). A key point in this formu-
lation is the selection of generalized strains as discrete deformations that are invariant for
rigid-body motions of the element. The deformations are expressed as analytical functions
of the absolute nodal coordinates in a co-rotational framework. The deformation functions
include the specification of rigid body motions as displacements for which the discrete defor-
mations are zero. This avoids the shortcoming of standard co-rotational formulations when
describing rigid bodies. Flexible elements are handled by allowing nonzero deformations
and specifying constitutive relations between the discrete deformations and stress-resultants.
The derivation of the element stiffness matrix is based on a discretization of the elastic line
of a three-dimensional Timoshenko beam model in a co-rotational frame, whereas the in-
ertia properties are derived using a discretization of the elastic line in the inertial frame of
reference.

Geometric nonlinearities arising from changes in geometry involving finite deflections
and pre- an post-buckling, are approximated by additional second-order terms in the expres-
sions for the deformations. These second-order terms are derived from a nonlinear contin-
uum model of the elastic line in the co-rotational frame, including a finite strain description
proposed by Reissner [38]. A Taylor series expansion is used to express the nonlinear cur-
vature and strain displacement equations into a second-order polynomial. Integrating these
equations over the length of the beam and using the second moment–area theorem yields the
additional second-order terms describing the geometric couplings among the axial elonga-
tion, bending, and torsion deformations. A detailed description of the formulation is found
in Jonker et al. [33, 34].

5 Comparison of numerical predictions

In this section, the numerical predictions of the beam formulations described in Sects. 3
and 4 will be compared for the four benchmark problems listed in Sect. 2. The first and
second columns of Table 5 lists the name of the formulations and the symbol that will be
used to identify the numerical predictions of each code.

5.1 The Princeton beam experiment

In this correlation effort, the distributed weight of the beam was neglected. Unit vector b̄3,
see Fig. 1, was left in the vertical orientation and the orientation of the tip load was rotated
from 0 to 90 degrees. While this represents an approximation, its effect on the numerical
predictions is far smaller than the observed scatter in the experimental measurements.

Figures 6, 7, and 8 show the tip flapwise displacement, u2, chordwise displacement, u3,
and twist, φ, respectively. The experimental measurements (average © and error bars) for
each of the three loading cases, labeled P1, P2, and P3, respectively, are shown in the figures.
The numerical predictions of the eight codes presented in Sect. 4 are also shown, using the
symbols listed in Table 5. For reference, the linear solution given by Eqs. (2) is also shown
in Figs. 6 and 7 with dotted lines; the linear solution predicts a vanishing tip twist. The
tip rotation is the quantity most affected by nonlinear behavior. The eight predictions of the
maximum values of the tip rotation for load case P3 were averaged to find μφ = 0.06177 rad
and the coefficient of variation was σφ/μφ = 0.0076, where σφ is the standard deviation of
the distribution. Clearly, the predictions of the eight codes are in very close agreement.

http://www.utwente.nl/ctw/wa/software/spacar
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Fig. 6 Tip flapwise
displacement vs. loading angle
for three loading conditions

Fig. 7 Tip chordwise
displacement vs. loading angle
for three loading conditions

Fig. 8 Tip twist vs. loading
angle for three loading conditions

Note that the Dowell and Traybar report [18] provides no measurements for loading con-
dition P2 at loading angles θ = 75 and 90 degrees and for loading condition P3 at loading
angles θ = 60, 75, and 90 degrees. A cursory look at Fig. 6 reveals that those loading cases
would result in large flapwise deflections, which could generate permanent plastic deforma-
tions in the beam. It is likely that the authors of the study did not want to damage the test
article, and hence did not acquire data at those loading conditions.
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Fig. 9 Axial force, F1, at the
mid-span of bar 1

Fig. 10 Bending moment, M2,
at the mid-span of bar 1

5.2 The four-bar mechanism

For this problem, the simulation was run for three complete revolutions of the crank, starting
from initial conditions at rest. At the beginning of the first revolution, high-frequency oscil-
lations are observed, but due to the algorithmic dissipation, these oscillations have all but
disappeared in the second revolution. The results presented in the sequel are the numerical
predictions for the third revolution. This problem was simulated for a total of 12 s using
3000 time steps of constant size �t = 4 ms.

The components of axial force, F1, and bending moment, M2, along unit vector b̄1 and
about unit vector b̄2, respectively, at the mid-span of bar 1, both resolved in the material
basis are depicted in Figs. 9 and 10, respectively. The component of rotation of bar 2 at
point C, ϕ, is shown in Fig. 11. At point C, the Euler angles (sequence 3-1-2) defining the
orientation of bar 2 in the inertial basis are computed and the first angle of the sequence is
presented in the figure. The relative rotation, θ , at the revolute joint at point D is depicted in
Fig. 12. The predictions of the eight codes are shown using the symbols listed in Table 5.

The four figures show that the predictions of the eight codes are in excellent agreement
with each other. To quantify the quality of the agreement, the eight predictions of the min-
imum values of the axial force shown in Fig. 9 were averaged to find μF1 = −5966 N
and the coefficient of variation was σF1/μF1 = 0.0043, where σF1 is the standard devia-
tion of the distribution. Clearly, the predictions of the eight codes are in very close agree-
ment. Similarly, the average of the eight maximum relative rotations at point D appearing in
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Fig. 11 Rotation, ϕ, at the tip of
bar 2 at point C

Fig. 12 The relative rotation, θ ,
at the revolute joint at point D

Fig. 13 Displacement u2 at the
beam’s mid-span

Fig. 12 was found to be μθ = 1.579 rad and the corresponding coefficient of variation was
σθ/μθ = 0.0032.

5.3 Lateral buckling of a thin beam

For this problem, the simulation was run for a total of 0.5 s. The beam quickly buckles
laterally, generating violent oscillations that continue after the crank has stopped in the 180
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Fig. 14 Angular velocity ω1 at
the beam’s mid-span

Fig. 15 Shear force F3 at the
beam’s mid-span

Fig. 16 Rotation θ at the beam’s
mid-span

degree position at time t = 0.4 s. Figures 13 and 14 show the component of displacement, u2,
along unit vector ı̄2 and angular velocity, ω1, about unit vector ı̄1, respectively, at the beam’s
mid-span. Figure 15 shows the component of transverse shear force, F3, along unit vector ē3,
resolved in the material basis, at the beam’s mid-span. The rotation, θ , at the beam’s mid-
span was also evaluated: the beam’s Euler angles (sequence 3-1-2) in the inertial basis were
computed and the second angle of the sequence is presented in Fig. 16.
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Fig. 17 Trajectory of shaft’s
mid-span viewed by inertial
observer

Fig. 18 Trajectory of shaft’s
mid-span viewed by a rotating
observer

Due to the highly oscillatory nature of the response, the time integration process is more
arduous. Yet, the agreement among the eight predictions remained excellent. For instance,
the eight predictions of the peaks in angular velocity at time t ≈ 0.25 s were averaged to
find μω1 = −27.11 rad/s and the coefficient of variation as σω1/μω1 = 0.066.

5.4 Stability of a rotating shaft

The angular velocity of the shaft was prescribed according to Eq. (3) and the response was
simulated for a total time of 2.5 s with a constant time step �t = 0.1 ms. The shaft’s dynamic
response is best illustrated by the trajectory of its mid-span point as viewed by inertial and
rotating observers, see Figs. 17 and 18, respectively. Because the shaft operates above its
critical speed for time t > 1.25 s, it becomes self-centering, explaining the circular trajectory
of its geometric center observed by a rotating observer, see Fig. 18.

Figures 19 and 20 show the phase plot of shaft’s mid-span for the displacement and ve-
locity components along unit vectors ı̄2 and ı̄3, respectively. Here again, excellent agreement
is observed between the eight codes.

6 Conclusions

This paper has described in details four benchmark problems for the validation of beam
models used in flexible multibody dynamics simulations. For each of the four benchmark
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Fig. 19 The phase plot of shaft’s
mid-span for components along
unit vector ı̄2

Fig. 20 The phase plot of shaft’s
mid-span for components along
unit vectors ı̄3

problems, the numerical predictions of eight independent codes have been presented and the
formulations on which these codes are based have been described succinctly.

Many of the formulations are related closely to the geometrically exact beam formulation
but they differ in their finite element implementation, time integration scheme, treatment of
the constraints and invariants, and solution techniques. The eight formulations have been
implemented by eight researchers independently. Yet, this paper shows that the predictions
obtained by the eight researchers are in very good agreement with each other and with
experimental results, when available.

Because the proposed benchmark problems have been described accurately and have
been run by eight different researchers successfully, they are expected to be useful to other
researchers for the validation of future beam element formulations. All the numerical predic-
tions presented in the paper are available in electronic format at http://www.dymoresolutions.
com/Benchmarks/Benchmarks.html.

The present paper has focused on the consistency of the predictions of eight different
codes. The efficiency of these codes, however, has not been assessed. Indeed, assessment
of computation efficiency would require the eight codes to be run on the same computer
hardware, or at least to evaluate their computational complexity. This difficult issue will
have to be addressed in the future to be able to assess both accuracy and efficiency of the
various formulations.

Conflict of interest The authors declare that they have no conflict of interest. This article does not contain
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