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Abstract A unified variational theory is proposed for a
general class of multiscale models based on the concept of
Representative Volume Element. The entire theory lies on
three fundamental principles: (1) kinematical admissibility,
whereby the macro- and micro-scale kinematics are defined
and linked in a physically meaningful way; (2) duality,
through which the natures of the force- and stress-like quan-
tities are uniquely identified as the duals (power-conjugates)
of the adopted kinematical variables; and (3) the Principle
of Multiscale Virtual Power, a generalization of the well-
known Hill-Mandel Principle of Macrohomogeneity, from
which equilibrium equations and homogenization relations
for the force- and stress-like quantities are unequivocally
obtained by straightforward variational arguments. The pro-
posed theory provides a clear, logically-structured frame-
work within which existing formulations can be rationally
justified and new, more general multiscale models can be
rigorously derived in well-defined steps. Its generality allows
the treatment of problems involving phenomena as diverse
as dynamics, higher order strain effects, material failure
with kinematical discontinuities, fluid mechanics and cou-
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pled multi-physics. This is illustrated in a number of exam-
pleswhere a range ofmodels is systematically derived by fol-
lowing the same steps. Due to the variational basis of the the-
ory, the format in which derived models are presented is nat-
urally well suited for discretization by finite element-based
or related methods of numerical approximation. Numerical
examples illustrate the use of resulting models, including a
non-conventional failure-oriented model with discontinuous
kinematics, in practical computations.

1 Introduction

1.1 RVE-Based Multiscale Methods: A Brief Review

Multiscale theories, i.e. theories that link the macroscopic
behaviour of continua to phenomena occurring at smaller
spatial scales, date back at least to the mid-twentieth cen-
tury. Fundamental early contributions are found in the sem-
inal series of papers by Kirkwood and co-workers [52,55–
57], where continuum governing equations are derived from
statistical molecular mechanics arguments in the context of
transport phenomena. In solidmechanics, significant theoret-
ical developments in the estimation of macroscopic proper-
ties of heterogeneous materials began with the pioneering
work of Hashin and Shtrikman [41], Hill [42–45], Budi-
ansky [17], Mandel [73] and Gurson [40], among others.
A further stream of significant developments in this direc-
tion took place beginning in the mid- to late 1970’s, based
on the asymptotic analysis of partial differential equations
with periodic coefficients in themodelling of periodicmedia.
Fundamental contributions in this context are the books by
Bensoussan et al. [10] and Sanchez-Palencia [105]. Com-
mon across the range of different approaches is the fact
that macroscopic continuum quantities (often referred to as
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homogenized quantities) are invariably linked to their micro-
scale counterpart fields by means of some kind of averaging
process.

Over the last two decades or so, a surge in the use of mul-
tiscale theories has been seen especially within the context
of computational mechanics. Attention has been focused on
theories that rely on the concept of Representative Volume
Element (RVE) where stresses and strains at the macro-scale
are obtained as volume averages of theirmicro-scale counter-
parts over the RVE. The RVE itself is usually modelled as a
continuum, but may also be described in terms of discrete
interactions. The use of RVE-based theories in situations
of practical interest relies almost exclusively on techniques
of computational homogenization, based on finite element
methods [30,53,58,65,78–83,115,121]. In solid mechanics,
reported applications encompass at present the modelling of
a wide range of phenomena, including plasticity, thermome-
chanical coupling, size effects, material failure and dynam-
ics, among others.

In plasticity, for example, the recent review by McDowell
[77] presents a comprehensive account of the use of mul-
tiscale theories not only in the continuum setting, but also
at the molecular and atomistic scales. The literature in this
area provides clear evidence of the ability of the multiscale
approach to overcome several challenges in the modeling of
the plastic response resulting from complex phenomena such
as dislocation dynamics, crystal plasticity and phase trans-
formation under complex strain histories. However, many
fundamental problems, related both to the understanding and
modeling ofmicro-scalemechanisms and to the development
of suitable multiscale theories, remain open, even in this rel-
atively classical field of research (see [77] and references
therein).

Multiscale formulations have proved useful also in deriv-
ing higher order constitutive models [59,60,66,67,114].
These formulations are suitable formodelingmaterial behav-
ior when the scales are not sufficiently separated and size-
dependent behaviour becomes relevant. An appealing aspect
of RVE-based strategies in this case is that they are capa-
ble of endowing the macro-scale with higher order consti-
tutive models that are retrieved from conventional micro-
scale descriptions with first-order kinematics. The associ-
ated length-scale here arises as a natural consequence of the
kinematical transfer between scales, which includes a con-
tribution of the second-order macro-scale gradient to the first
order micro-scale deformation gradient field. This approach
was shown to be an interesting alternative to phenomenologi-
calmodels in addressing problems such as strain localization,
as a length-scale parameter does not need to be artificially
introduced.

In the field of thermoelasticity, the use of thermo-
mechanically coupled multiscale formulations has led to the
development of more refined constitutive descriptions. Early

work exploring RVE-based theories in this case embraced
the standard scales separation assumption, which is typ-
ical of the asymptotic analysis approach to the problem
[10,25,33,106]. For example, in [92,93,107,118] the prob-
lem is addressed under the hypothesis of scales separation,
requiring the use of a uniform temperature field in the micro-
scale mechanical problem. This is consistent with a stan-
dard thermodynamics setting at the macro-scale. Alterna-
tively, in [15], a thermomechanical multiscale formulation
is proposed to account for temperature fluctuations in the
micro-scale mechanical problem. This approach is based on
purely variational arguments to define the kinematic transfer
between scales and to naturally derive homogenization rules
for the flux quantities (stress and heat flux in this case). The
formulation proposed in [15] is in line with [31,51,84,85]
in the sense that the continuum model at the macro-scale
features a higher order thermal behavior, with the stress
depending on the temperature gradient. This is consistent
with an extended thermodynamics framework at the macro-
scale.

Another interesting area where multiscale theories have
a clear potential to promote significant advances in mod-
eling, is failure mechanics. Macro-scale failure, i.e. loss
of load carrying capacity leading to eventual fracturing of
the material, is the result of a number of complex inter-
acting micro-scale mechanisms whose nature depends cru-
cially on the specific material in question. One of the
main challenges here is the formulation of objective mod-
els, i.e. models for which the energy dissipated by the
failure mechanisms is well-defined—unaffected by RVE
size and convergent with mesh refinement. Classical, stan-
dard RVE-based formulations are inherently non-objective
in this sense as the inherent size-effect associated with
strain localization [6] at the micro-scale translates into
a lack of objectivity of the macro-scale response with
respect to RVE size [37]. To circumvent this problem
several strategies have been developed. For instance, in
[8,9,109] a specific stress homogenization procedure has
been proposed which excludes strain localization zones
from the stress averaging domain. In addition, a depen-
dence of numerical parameters (such as finite element size)
on RVE domain size has been introduced. In [19,20] a
second-order framework has been adapted to model mate-
rial failure, with classical boundary conditions partially
modified to account for strain localization, but without a
strict direct relation between the macro-scale strain and the
localized strain. Verhoosel et al. [125] proposed a method
for deriving a homogenized macro-scale cohesive model
from micro-structures with possible nucleation of micro-
cohesive cracks and adhesive micro-interfaces. In [88] this
approach was extended to include RVEs with a gradient-
enhanced regularized damage material model (see also
[86,87,89]).
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1.2 Current Trends and Perspectives

It is clear from the above that the range of applications of
RVE-based formulations is very wide. It should be added
here that, at present, the interest in such approaches is grow-
ing at a faster pace than ever. This is confirmed by the shear
number of papers published on the subject over the last few
years as well as on the number of conferences and confer-
ence sessions organized on the topic. One of themain driving
forces behind the advancement of multiscale techniques is
the pressing need for more accurate computational tools for
predictionofmaterial response in situationswhere themacro-
scale effects of complex micro-scale mechanisms cannot be
easily captured by the conventional phenomenological mod-
elling approach. In this context, computational RVE-based
methods can be used either in the simulation of macroscopic
structures by a coupled multiscale approach (often referred
to as FE2) or as a basis for the development of new phenom-
enological models, or calibration of material parameters of
existing models, by means of so-called numerical material
testing [32,38,94,113,119,120,129]. An interesting applica-
tion in this context is the development of constitutive laws for
micromorphic materials [27,28,31,50,51]. In this field, the
lack of practicality lies in the development of experiments to
aid the identification of constitutive laws. Multiscale formu-
lations can be employed to create the link between high-order
(or generalized) continua at macro-scale and classical con-
tinua at micro-scale.

Another key reason for the growing interest in RVE-
based multiscale methods is the need to better understand
how micro-scale mechanisms affect macro-scale behavior
[122,126]. This understanding, together with the ability to
numerically predict their impact on macro-scale behaviour,
is crucial to optimize the use of existingmaterials aswell as to
assist the design of newmaterials in a rational, scientifically-
based manner.

The design of new materials, in particular, is an area of
research where significant resources have been injected in
recent years. The wider availability of equipment at rela-
tively low cost, allied to recent advances in sophisticated
manufacturing processes, such as additive layer manufactur-
ing, are creating great expectations for the development of
materials with bespoke mecanical, thermal, optical, chemi-
cal and electromagnetic properties. This includes the promis-
ing development of new alloys, composites in general, bio-
inspired and bio-compatible materials. Of particular inter-
est are the so-called metamaterials—materials with useful
exotic behavior [26]. Auxetic materials—materials with neg-
ative Poisson’s ratio [63,64,128]—are a typical example. But
exotic, counterintuitive behavior, can be associatedwith ther-
modynamical, electromagnetic [11–13] and other mechan-
ical properties [18,29,68,69,71,130]. The unusual behav-
ior displayed by such materials is a consequence of their

micro-structural arrangement. Del Vescovo and Giorgio [23]
provide an interesting overview covering a range of exotic
materials and the tools currently available to model them.
The ability to design micro-scale architectures that produce
a specific material behaviour is of utmost importance in this
context [39,76,108]. RVE-based computational multiscale
methods aiming, for instance, the optimization of certain
material properties [3,54,124] have shown to offer a solid
tool to assist the material design process.

In summary, the track record of RVE-based computational
multiscale methodologies in dealing with complex phenom-
ena, allied to the current trends in the development and design
of new materials, makes it reasonable to expect that the
demand formore general, refined and accurate computational
multiscale methods will only increase in the years to come.

1.3 Critical Appraisal of the State-of-the-Art

Despite the widespread use of RVE-based multiscale theo-
ries, a general unified framework for the development and
treatment of theories of this class appears to be lacking at
present. In fact, the RVE-based approach to classical multi-
scale solid mechanics—with both macro- and micro-scales
described in terms of conventional kinematics—is very well
understood and lies on the solid theoretical grounds set in the
works ofHill [45] andMandel [73]. However, any attempts to
extend this approach beyond the classical scenario is likely
to face challenges. This is due mainly to the fact that the
classical theory (and existing extensions) evolved without
a clear distinction being highlighted between fundamental
assumptions and their consequences. Hence, it is not straight-
forward in general to ascertain precisely what changes will
be required to the classical theory if, for instance, dissimilar
physical regimes are to be linked across the scales or, in the
case of the purely mechanical theory, more complex loading
systems become relevant or more sofisticated kinematical
descriptions are adopted to model phenomena such as strain
localization, fracturing or higher order strain effects.

In the treatment of higher order strain effects, for exam-
ple, the homogenization formulae for stress-like quantities is
derived from a modified Hill-Mandel principle in [59,60].
More recently, in [72], a similar approach was adopted
with kinematical conditions based on orthogonality restric-
tions proposed to construct a consistent kinematical trans-
fer between scales. The resulting boundary conditions in the
latter work are slightly different from those of the former,
raising questions about the validity range and limitations of
each formulation, and about what ultimately drives the kine-
matical transfer between the two scales. As they stand, it is
not easy to compare these two theories and find a definite
answer to these questions.

A rather blurred scenario emerges in the multiscale mod-
eling of material failure—possibly one of the most challeng-
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ing applications of RVE-based theories. An interesting point
to observe here is that failure kinematics differs consider-
ably from the classical case due to the inherent discontinu-
ities that characterize the phenomenon. Hence, an appropri-
ate extension of classical principles of kinematical transfer
across scales requires very careful consideration and may
not be easily established correctly on the basis of physical
intuition alone. Note that this is a determining factor in the
definition of RVE boundary conditions. Like the kinematical
transfer (or the RVE boundary conditions), the homogeniza-
tion formulae for the stress-like quantities are also gener-
ally postulated [8,9,109], without an underlying fundamen-
tal principle. More recently, in [104,123] a failure-oriented
multiscale theory has been proposed where, rather than pos-
tulated, the RVE boundary conditions are derived from a
robust kinematical principle and homogenization formulae
for stress-like quantities (including the traction vector asso-
ciated with the macro-scale displacement jump) are, in turn,
derived from solid variational arguments based on a suitably
extendedHill-Mandel Principle. Thismodel extends the clas-
sical theory by accommodating a non-uniform insertion of
macro-scale strain into the micro-scale under a strain local-
ization regime in a way that the magnitude of the kinematical
quantities involved are preserved in the micro-macro transi-
tion. Thiswas shown to offer a possible solution to open prob-
lems, such as the construction of objective formulations, even
when the process evolves from initially continuous media to
domains featuring strong macro-scale discontinuities caused
by micro-scale strain localization. At a closer look, this the-
ory reveals an emerging pattern containing all the necessary
ingredients that allow the problem to be dealt with using a
minimumset of fundamental assumptions. This structurewill
be explored and generalized in the present paper.

The study of multiscale dynamics is of particular rele-
vance to the development of a range of materials (including
metamaterials), as well as to the analysis of multiscale prob-
lems involving high impact loads. Curiously, this topic has so
far received relatively little attention in the context of RVE-
based formulations and it is only recently that contributions
to this area began to appear in the literature [70,98]. Sim-
ilarly to multiscale material failure theories, a robust theo-
retical framework for the treatment of RVE-based multiscale
dynamics appears to be missing at present. This becomes
clear when we observe some potential shortcommings in
the (currently scarce) available literature. For example, in
[98] a split of the micro-scale displacement fluctuation into
a steady-sate and a dynamic contribution is proposed, with
each component subjected to a different kinematical con-
straint. Interesting numerical results are reported in this con-
tribution, but the variational consequences of such constraints
to the corresponding equilibrium equations are not easy to
ascertain within the framework the theory is presented. Nei-
ther is the range of validity of the adopted micro-macro kine-

matical transferwhich, in principle, should preserve themag-
nitude of the displacements involved. A related problem is
briefly discussed in [100] where body forces (which could
also be seen as arising from micro-scale inertia effects) are
added to the classical formulation and then the correspond-
ing macro-scale force is shown to vanish as a consequence
of variational considerations. The conclusions in this case
are reached in a variationally consistent manner, but the lack
of a clear principle of kinematical transfer beween scales
appears to lead to an erroneous conclusion. Inconsistencies
of this type are obviously quite understandable, given that
such theories are just starting to spring. With the above com-
ments we only wish to emphasize that the modeling of multi-
scale dynamics can also benefit significantly if a framework is
established, based on clear fundamental principles, whereby
multiscale theories of this type can be more easily derived in
a systematic manner, free from potential inconsistencies.

Fluid mechanics is an area where, to the authors’ knowl-
edge, RVE-based theories have not been reported so far in
the modeling of multiscale phenomena. This is probably a
consequence of the natural difficulties in identifying an RVE
in fluid flow. Depending on the description, the RVE could
be understood as a representative volume of flowing particles
(Lagrangian description) or as a representative volume win-
dow through which particles flow (Eulerian description). To
date, multiscale fluidmechanics has been approachedmainly
from two points of view: (1) the celebrated two-scale conver-
gence method, based on asymptotic expansions [2]; and (2)
the variational multiscale method [47]. The first approach
is largely associated with the development of multiscale for-
mulations for flow through porous media (see [117]). In [1]
a basis was set to analyze, using the two-scale convergence
method, the limit of Navier-Stokes equations in the presence
of obstacles in the micro-scale. A very recent contribution
[46] addressed the problem of multiscale modeling in turbu-
lence based on asymptotic expansions for the Navier-Stokes
equations. The interesting result is that, bymodeling the con-
vection of additional quantities at macro-scale (proper con-
vection of small-scale information), it is possible to achieve
a closed-form representation of the Reynolds stress for arbi-
trary geometries. The variationalmultiscalemethod, has also
been successfully employed to model turbulence [7,48,49].
This approach proposes a direct link between the role of the
micro-scale (called subgrid scale) and the discretization of
the equations at themacro-scale. Despite their success, a lim-
iting factor of both the two-scale convergence and the vari-
ational multiscale method is that they assume the problem
to be governed by the same phenomenology at both scales.
Distinct physical models at macro- and micro-scale, such as,
for example, a macro-scale high-order formulation linked
to a first-order micro-scale formulation—an approach that
has been successfully employed in solid mechanics [59]—
cannot in principle be treated by such methods. In this sense,
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an RVE-based framework could provide an interesting alter-
native, with a rather general setting, particularly for problems
in which complete scale separation cannot be assumed.

1.4 Contribution of the Present Work

In response to the issues highlighted above—the current lack
of a general framework and the pressing need for develop-
ment of more sophisticated multiscale models—the present
paper proposes a unified variational theory for a very broad
class of RVE-based multiscale models. Our main purpose
is to create a sufficiently general framework within which
newmultiscale models, incorporating more general mechan-
ical settings and capable of accounting for more complex
micro-scale phenomena, can be developed in clear, system-
atic steps. The proposed theory should be capable of handling
multi-physics problems, material failure due to micro-scale
strain localization or fracturing, dynamical effects and fluid
mechanics, among other phenomena, and we shall limit our-
selves to the use of a single temporal scale common to both
spatial scales.

The work reported here builds on the authors’ past expe-
rience in the axiomatization of the classical theory [97,110–
112] and in the treatment of problems involving kinemat-
ical discontinuities at both micro- and macro-scales [104].
Within the proposed framework, namedmethod of multiscale
virtual power, the entire theory sits on the three fundamen-
tal axioms/principles of: (1) kinematical admissibility1; (2)
mathematical duality, and (3) multiscale virtual power. The
idea of kinematical admissibility establishes a link between
the macro- and micro-scale kinematics by means of two
operators named the insertion operator and the kinemati-
cal homogenization operator, respectively. These effectively
define the kinematical transfer between the scales and must
impose constraints on admissible kinematical fields so as
to ensure that, in some sense, their magnitude is preserved
in the micro-macro transition. In addition, these kinemat-
ical constraints automatically prescribe the functional sets
within which the solution of the associated equilibrium prob-
lems is to be sought. The concept of duality, in turn, plays
a fundamental role in the correct definition of the general-
ized external force-like and generalized internal stress-like
(or flux) quantities compatible with a given model. That is,
force- and stress-like quantities cannot be defined a priori,

1 Within the generalized setting of the present paper, the term kinemat-
ics (and corresponding kinematical variables etc) should be understood,
in a broader sense, as relating to the primal variables of a given formu-
lation. That is, we refer to kinematical variables as those whose rates
produce power with the corresponding fluxes (stress- or force-like vari-
ables). In mechanical problems—the main motivation of our work—it
has obviously the conventional meaning of generalized displacements
and strains and their rates. In thermal problems, it refers to temperature,
temperature gradient, and so on.

independently of the underlying kinematics. Rather, they
are seen here as consequences of the adopted kinematics.
Once the kinematics is defined by postulating a sound prin-
ciple of kinematical admissibility for a particular problem
at hand, the corresponding force- and stress-like quantities
emerge unequivocally as a result of considerations based on
their mathematical duality (power-conjugacy) with respect
to the adopted kinematical variables. Finally, the principle
of multiscale virtual power is a generalization of the clas-
sical Hill-Mandel Principle of Macrohomogeneity [45,73],
here extended and stated in variational form in terms of
the total virtual power at the micro- and macro-scales. As
we shall see, once this principle is applied to a particular
problem in question, all equations of the theory, including
equilibrium and homogenization relations for the relevant
force- and stress-like variables are naturally derived in a
straighforward manner by means of simple variational argu-
ments. This is in contrast with the usual approach, where
such relations are often postulated instead, and makes the
causal relations between the fundamental assumptions and
their consequences very clear. This, in our view, endows the
proposed framework with a logical structure and a degree
flexibility that, not only provides a rational justification for
many existing models but, more importantly, significantly
facilitates the rigorous development of a wide range of new,
more refined, multiscale theories in systematic, well-defined
steps.

A crucial consequence of this rational structure is that, in
developing any particular model within the present frame-
work, the only degree of arbitrariness one has lies in the
definition of: (a) the kinematical variables adopted at macro-
andmicro-scales; and (b) how these kinematical variables are
linked (subject to the condition that their magnitudes are pre-
served in the micro-macro kinematical transfer). Once these
have been postulated—ideally, so as to capture the kinemat-
ics of the corresponding real physical phenomena in the best
possible way—the remainder of the model equations will be
unequivocally derived on the basis of duality and multiscale
virtual power. Also crucial is the fact that, as a result of the
Principle of Multiscale Virtual Power any derived RVE equi-
librium equations are presented in a variational format that
is naturally well-suited for discretization by finite element or
related methods of numerical approximation. Through this,
a clear separation and differentiation between the fundamen-
tal theoretical aspects of the formulation and its numerical
approximation is well-established, something which is con-
fusing in many scientific publications.

1.5 Article Overview

In presenting the proposed theory we have opted to follow
a format where all derivations are first presented in a very
general setting. For this purpose, a rather abstract notation is
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adopted. The need for an abstract notation is justified by the
fact that, as mentioned in the preceding text, our intention
here is to show a very general framework, capable of deal-
ing with a wide range of problem descriptions—including,
among others, conventional solid mechanics formulations,
higher order strain theories, generalized stresses and strains,
structural elements, discrete formulations in general, poten-
tial problems, and so on. To avoid an excessive level of
abstraction, as the building blocks of the theory are presented,
the meaning of the adopted notations is made clearer by
showing how they specialize in the case of the classical infin-
itesimal solid mechanics. Once the complete theory is set, a
number of examples of specializations are presented. These
include existing theories— casting them within this frame-
work gives, in our view, an interesting insight—as well as
the derivation of new models, including problems involving
solid dynamics, distinct physical models across the scales,
fluid mechanics and thermo-mechanics.

The paper is organized as follows. As the proposed the-
ory relies heavily on the concept of virtual power, a brief
historical account of the Method of Virtual Power (MVP) is
presented in Sect. 2 together with a review of its use in the
modelling of general (single-scale) physical systems. The
main purpose here is to emphasize that the modelling by
means of the MVP is a three-step procedure consisting of:
(1) definition of kinematics; (2) the use ofmathematical dual-
ity to characterize the virtual power functionals and the cor-
responding flux (force- and stress-like) variables consistent
with the theory in question; and (3) a statement of the Princi-
ple of Virtual Power (PVP) for the problem in question. With
an appropriate PVP at hand, the Euler-Lagrange form of the
equilibrium equations for the system under consideration can
be derived straightaway.

Our main contribution—the proposed general unified
RVE-based multiscale theory—is presented in Sect. 3. The
proposed theory is an extension of the PVP-based model-
ing approach of Sect. 2 to problems involving two spatial
scales. This extension is devised, effectively, by generalizing
the three-step procedure of the MVP to problems involving
two scales. This extension is named the Method of Multi-
scale Virtual Power (MMVP). It requires the definition of the
kinematics at each of the two scales as well as of how the
micro- and macro-scale kinematics are linked in a physically
consistent manner. Another essential feature is the Princi-
ple of Multiscale Virtual Power (PMVP)—an extension of
PVP—linking the virtual power of the macro-scale to that of
the micro-scale. The PMVP proposed here generalizes the
well-known Hill Mandel Principle, upon which the classical
RVE-based multiscale theory lies.

In Sect. 4, the general model of Sect. 3 is specialized to
the case where only the internal (macro- and micro-) virtual
powers are accounted for in the MMVP. Most standard mul-
tiscale models available in the current literature fit within this

class. In particular,multiscale descriptions of this class define
macro-scale constitutive functionals relating themacro-scale
flux (stress-like) variables to the history of the associated
kinematical variables alone.

Section 5 presents an abstract derivation of tangent oper-
ators for the general framework developed in Sect. 4. Such
operators are fundamental in the computational implemen-
tation of the associated theories. For instance, in the case
of non linear multiscale problems discretized by finite ele-
ment methods, they provide the tangential stiffness matrices
required by Newton-type iterative schemes for solution of
the associated equilibrium problems.

In Sect. 6 several specializations of the general theory
of Sect. 3 are presented, involving solid mechanics, fluid
dynamics and thermomechanical problems. These illustrate
the suitability of the proposedmultiscale framework tomodel
a wide range of physical phenomena. In addition, they show
that the theory provides a rigorous justification to some oth-
erwise intuitive postulates and can highlight inconsistencies
present in some existing RVE-based models.

Computational application of the theory is illustrated in
Sect. 7 where two finite element-based numerical examples
are presented—one describing the use of a finite plasticity-
based phase change model for polycrystals and another one
describing material failure. In particular, the latter example
illustrates how the present theory can be used with confi-
dence in situations where the usual, unstructured approach
to multiscale problems has failed to provide a consistent and
clearly justified formulation.

The paper ends in Sect. 8, where some concluding remarks
are made.

2 Method of Virtual Power

This section presents a method of primal (kinematical) varia-
tional modeling of a general physical system (of single scale)
based on the Principle of Virtual Power. Our main aim is
to review all essential definitions, mathematical operators,
functional spaces and principles required to formulate mod-
els of physical systems by means of the PVP. The concepts
reviewed here will be generalized in Sect. 3, where we pro-
pose amultiscale extension of the virtual power-based frame-
work. We remark that a rather general, abstract notation will
be adopted throughout the text. To avoid an excessive level
of abstraction in the presentation, as the concepts and the
corresponding abstract notation are introduced, their special-
ization to the well-established case of classical infinitesimal
continuumsolidmechanics is also presented.Webegin below
with a brief historical review of the Method of Virtual Power
and thenmove on to the actual presentation of the PVP-based
framework for general physical systems.
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2.1 Brief Historical Review

With origins dating back to ancient Greece, the Principle of
Virtual Power appears to have been formalized only in the
eighteenth century in the work of d’Alembert [22]. In more
modern times, the method of virtual power (or, equivalently,
method of virtual work) has been acknowledged as a system-
atic, rational and intuitive approach to formulate models of
continua [35,75]. It can be argued that the concept of virtual
velocity or virtual power itself is a very intuitive one to most
people. For example, to estimate the weight of a suitcase, one
usually tries to lift it up instinctively and assess the “work”
required to do so. That is, we intuitively estimate a force
(the weight of the suitcase) by means the “work” or “power”
expended when it is subjected to a kinematical action (lifting
motion in this case). In this sense, the concept of work- or
power-duality between forces and displacement or velocities
appears to be somewhat ingrained in human mind.

On one hand, the application of this method to contin-
uumphysicsmodeling ismoremathematically elaborate than
the more classical approach deriving from vectorial rational
mechanics—an approach largely followed in the undergrad-
uate teaching of mechanics at present. On the other hand, the
method of virtual power has an extremely appealing aspect
in that it provides, in a most natural axiomatic way, all the
fundamental ingredients required in the formulation of a
given problem, such as natural boundary conditions, jump
conditions and the variational form of the equilibrium equa-
tions, regardless of the constitutive behavior of the underly-
ing continuum. These advantages become more pronounced
as the physical system under study increases in complexity
and this, in our view, significantly outweighs the seemingly
greater mathematical demands of the method. For example,
themethod completely avoids any ambiguities that could oth-
erwise be present in the definition of force- and stress-like
quantities compatible with a given physical system. In fact,
the nature of force- and stress-like quantities associated with
a system is not a fundamental assumption of the method but,
rather, a derived concept resulting from mathematical dual-
ity. That is, forces are representations of the so-called exter-
nal virtual power functional and stresses are representations
of the so-called internal virtual power functional—they are
fully characterized by the virtual power (or work they exert)
and emerge unequivocally as a result of this duality once the
kinematics of the system in question has been defined.

We remark that, in the context of the present paper, the
terms force and stress should be understood in a generalized
sense. This lack of potential ambiguity in the derivation of
force- and stress-like variables is particularly welcome in
the development of new, more complex continuum models.
In addition, it should be noted that the PVP naturally leads
to governing equations stated in a variational format that is
particularly well-suited for discretization by means of finite

element (in the case of continuummodels) or relatedmethods
of numerical approximation.

Some interesting fundamental developments based on the
method of virtual power are particularly worth of mention.
The method was used, for example, in [36] in the derivation
of high order models of continua, making the role of kine-
matics in the modeling of force- and stress-like quantities
very clear. These dual quantities were introduced exclusively
through the characterization of virtual power functionals in
the context of an extended kinematics of higher order. In the
same spirit, the method of virtual power was employed in
[75] to derive governing equations for electromagnetic high
order continua.The axiomatic framework adopted in this case
had the same goal: the modeling of forces by means of the
mathematical duality between the functional spaces of forces
and velocities. Similarly, in [21] the method of virtual power
was used to deal with the presence of singular interfaces in
continuum media. More recently, the same approach had its
applicability extended to the field of thermomechanics [99]
and thermodynamics [101]. These are further examples of
the success and enormous potential of the method in dealing
with the modeling of a wide range of physical phenomena.

However, to the authors’ knowledge, the concepts of vir-
tual power and duality have not been fully explored yet in
the formulation of RVE-based multiscale theories. Given the
current interest in RVE-based approaches and the demand
for more complex models, it seems to us that it is high time
now for the PVP to be explored in this context. However,
before we proceed to do so, we shall review below the use
of this concept to general physical systems in a conventional
(single scale) setting. These ideas will form the basis for the
multiscale extension of the PVP proposed in Sect. 3.

2.2 Kinematics

The main kinematical concepts required to formulate mod-
els of physical systems in the context of the method of vir-
tual power are reviewed here. For simplicity, we shall focus
the presentation on continuummodels. We remark, however,
that the same concepts can be easily adapted for use in the
modeling of discrete systems. Let B be a body occupying
a domain Ω with sufficiently smooth boundary Γ and let
x ∈ Ω denote any point in this domain. The set of gen-
eralized displacements that characterize the kinematics of
the physical model describing B, belongs to a functional
space U . Elements u ∈ U are n-tuples of tensor fields, regu-
lar enough to yield mathematically well-posed formulations.
Components of the n-tuple of an element u ∈ U are denoted
ui , i = 1, . . . , n, so that u = (u1, . . . , un). Each compo-
nent ui can be a zeroth-, first-, second-order (and so on) ten-
sor field. Each component ui is described through r i scalar
fields. Thus, the total number of scalar descriptors for an ele-
ment u is R = ∑n

i=1 r
i . Each ui has a domain of definition
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ΩUi := Dom(Ui ), i = 1, . . . , n, i.e.

ui : ΩUi → Ui

x �→ ui (x), (1)

with ΩUi ⊆ Ω . Each domain ΩUi can be a set of points,
surfaces or volumes. In compact form, we write

u : ΩU → U
x �→ u(x), (2)

where ΩU := Dom(U) = (Dom(U1), . . . ,Dom(Un)), or
ΩU = (ΩU1, . . . ,ΩUn ).

Classical solid mechanics In this case, the domain Ω is
a region of the Euclidean space, the generalized displace-
ment contains one single field—the conventional displace-
ment vector field of the solid, u = u (a tensor field
of order 1), and U is an appropriate Sobolev space of func-
tions defined in Ω . Usually, it is considered that such space
is U = H1(Ω) of vector functions with square integrable
gradient in Ω . Hereafter we take put all the examples and
functional spaces in this standard setting. Here we have
ΩU = Ω . A more elaborate case arises when multi-physics
interactions are considered. In electro-mechanically cou-
pled problems the generalized kinematics is characterized
as u = (u, φ), comprising the displacement vector field u
of the solid—a tensor field of order 1—and the electrostatic
potential field φ—a tensor field of order 0 (see [24]). For
a general class of micromorphic fluids, the generalized dis-
placement u = (v, ν) contains the velocity vector field v, a
tensor field of order 1, and the rate of deformation tensor field
ν, a tensor field of order 2 (see [27,28]). Further examples
will be given in Sect. 6. ��

Next, we define the set Kinu ⊂ U of kinematically admis-
sible generalized displacements. Elements u ∈ Kinu sat-
isfy some kinematical constraint (for example, prescribed
boundary conditions or possible distributed constraints). A
schematic diagram of the functional sets and relevant oper-
ators is shown in Fig. 1. It is within Kinu that we shall look
for the solution of the equilibrium problem (to be defined
later) associated with the physical system under considera-
tion. For simplicity we assume Kinu to be a linear manifold
(translation of a subspace). As a consequence, it is possible to
characterize the subspace Varu of kinematically admissible
generalized virtual displacements or velocities as

Varu = {
v̂ ∈ U , v̂ = v1 − v2, v1, v2 ∈ Kinu

}
. (3)

Classical solid mechanics For a body occupying a region
Ω , with boundary Γ subject to the kinematical constraint
u = u∗ on Γu ⊆ Γ , for a given u∗, we have Kinu = {u ∈
H1(Ω), u|Γu = u∗}, and Varu = {u ∈ H1(Ω), u|Γu = 0}.

��

Kinu Varu

D

U

E

û

D

D′

U ′

E′

f

Σ

P ext = 〈f, û〉U′×U

P int = 〈Σ, D(û)〉E′×E

Fig. 1 Virtual PowerMethod for physical systems. Schematic diagram
of basic functional sets and operators

Another kinematical concept fundamental to the statement
of the PVP is that of generalized strain action. Generalized
virtual strain rate fields belong to the space of generalized
strain actions, denoted E . In general, any field D ∈ E is
an m-tuple of tensor fields. That is, D = (D1, . . . , Dm),
where each component Di can be a scalar, a first-order, a
second-order tensor field, and so on. Each component Di ,
i = 1, . . . ,m, is described by si scalar fields, so that the
total number of scalar descriptors of D is S = ∑m

i=1 s
i . Each

components Di has a domain of definitionΩEi := Dom(Ei ),
i.e.

Di : ΩEi → Ei
x �→ Di (x). (4)

Each ΩEi ⊆ Ω can be a set of points, surfaces or volumes.
In compact notation, we have

D : ΩE → E
x �→ D(x), (5)

and ΩE := Dom(E) = (Dom(E1), . . . ,Dom(Em)), that is
ΩE = (ΩE1, . . . ,ΩEm ).

The spaces U and E are related by a linear operator,
denoted D,

D : U → E
u �→ D = D(u), (6)

that characterizes the concept of generalized strain actions
(and generalized virtual strain rates). This operator plays a
fundamental role in the definition of duality.

Classical solid mechanics In this case, D is the symmetric
gradient operator, so that D(u) = ∇Su, n = 1, R = 3,
m = 1 and S = 6. The field ∇Su is defined over the entire
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body, so that ΩE = Ω , and belongs to the function space
E = L2

sym(Ω) = {ε ∈ L2(Ω), ε = εT } (recall we are in
a standard mathematical setting). It is worth showing here
more general examples in addition to the solid mechanics
case. For eletro-mechanical coupled problems the general-
ized strain action is given byD((u, φ)) = (∇Su,∇φ), where
u and φ are the displacement (a vector) and the electrostatic
potential (a scalar), respectively. Then, in this case,

D =
(∇S 0

0 ∇
)

,

n = 2, R = 4, m = 2 and S = 9. For micromorphic
fluids (see [36]), the generalized strain action is given by the
triadD((v, ν)) = (∇v,∇v− ν,∇ν), where v is the velocity
(vector) and ν the micro-velocity gradient (a second-order
tensor). Then,

D =
⎛

⎝
∇ 0
∇ −I
0 ∇

⎞

⎠ ,

n = 2, R = 12, m = 3 and S = 45. It should be noted
that the meaning of ∇ depends on the configuration chosen
to describe the problem. In micromorphic fluids, the adopted
configuration is a spatial configuration. Hence, ∇ is the gra-
dient relative to the spatial coordinates. ��

An element D ∈ E is said to be a kinematically compati-
ble generalized strain action if there exists an element u ∈ U
such that D = D(u). The domain of definition of kinemati-
cally compatible generalized strain actions is ΩE and can be
expressed as ΩE = Dom(D(U)).

Remark 1 Since D is linear, it has a well-defined (rectangu-
lar) matrix representation of the form

D =

⎛

⎜
⎜
⎜
⎝

D11 D12 . . . D1n

D21 D22 . . . D2n

...
...

. . .
...

Dm1 Dm2 . . . Dmn

⎞

⎟
⎟
⎟
⎠

. (7)

With this representation, we have ΩEi = Dom(Di1(u1)) =
. . . = Dom(Din(un)), i = 1, . . . ,m.

Another important subspace of U is the kernel of the oper-
ator D, denoted N(D) ⊂ U , defined as

N(D) = {u ∈ U , D(u) = 0}. (8)

That is, the subspace with null generalized strain action.

Classical solid mechanics The kernel ofD—the symmetric
gradient operator—is the space of all rigid infinitesimal dis-
placements, i.e. displacements that admit the representation
u(x) = uo +W(x− xo), with uo a uniform field,W a skew-
symmetric second-order tensor and xo a point. ��

Also important is the image,D(Varu) ⊂ E , of Varu under
the operatorD. This is the space of kinematically compatible
generalized virtual strain actions.

2.3 First Hypothesis: Mathematical Duality

Thefirst hypothesisof theMVP-basedmodeling approach is
that the generalized (external) forces and generalized (inter-
nal) stresses admissible by a given physical system are duals
of the kinematical variables chosen to describe that system.
This allows the nature of admissible generalized stresses,
denoted Σ , and forces, denoted f , to be determined solely
as a consequence of duality arguments. That is, the nature of
force- and stress-like variables cannot be postulated a priori.
They are, rather, direct consequences of the adopted kinemat-
ics. With E ′ and U ′ denoting, respectively, the dual spaces of
E and U , the first hypothesis is stated as follows:

– The nature of the admissible generalized internal stresses
Σ ∈ E ′ is characterized through a linear (and continuous)
functional in E , defined by the duality pairing denoted
〈〈Σ, D〉〉E ′×E .

– Similarly, the nature of the admissible generalized exter-
nal forces f ∈ U ′ is characterized through a linear (and
continuous) functional in U , defined by the duality pair-
ing denoted 〈〈 f, u〉〉U ′×U .

These duality products must satisfy the well-known proper-
ties:

– 〈〈Σ, D〉〉E ′×E = 0 ∀D ∈ E ⇒ Σ = 0,
– 〈〈Σ, D〉〉E ′×E = 0 ∀Σ ∈ E ′ ⇒ D = 0,
– 〈〈 f, u〉〉U ′×U = 0 ∀u ∈ U ⇒ f = 0,
– 〈〈 f, u〉〉U ′×U = 0 ∀ f ∈ U ′ ⇒ u = 0.

The first step in the characterization of the model of a real
physical system is the definition of an appropriate duality
pairing 〈〈·, ·〉〉E ′×E . Obviously, the definition of this duality
pairing will depend on the physical nature of the phenom-
ena described by the model. Besides, it will also play a fun-
damental role in the characterization of the duality pairing
〈〈·, ·〉〉U ′×U . With the notation introduced in the previous sec-
tion for the duality pairing between generalized stresses and
strain actions, we have

〈Σ,D(u)〉E ′×E =
m∑

i=1

〈Σ i , (D(u))i 〉E ′
i×Ei

, (9)

or, equivalently, by using (7),

〈Σ,D(u)〉E ′×E =
m∑

i=1

n∑

j=1

〈Σ i ,Di j (u j )〉E ′
i×Ei

, (10)
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where 〈·, ·〉E ′
i×Ei

denotes a generalized internal product over

the domain of definition of component i . For example, ifΩEi

is a surface or a volume in Euclidean space, we could have

〈Σ i , (D(u))i 〉E ′
i×Ei

=
∫

ΩEi
Σ i · (D(u))i dΩEi , (11)

whereas, if ΩEi is a set of points, it could be

〈Σ i , (D(u))i 〉E ′
i×Ei

=
NEi∑

i=1

Σ i · (D(u))i , (12)

with NEi denoting the cardinality of the set ΩEi . Once this
pairing is defined one should be able to promptly identify the
nature of Σ , as in the following example.

Classical solid mechanics In this case, this duality pairing
reads 〈Σ,D(u)〉E ′×E = ∫

Ω
σ ·∇Su dΩ . The stress σ here is

the dual object of the considered strain action—the symmet-
ric gradient of u—and, hence, can be identified as a symmet-
ric second-order tensor, readily recognized as the Cauchy
stress. ��

In the PVP-based formulation, the product 〈〈·, ·〉〉E ′×E is
restricted to the reduced set D(Varu) of kinematically com-
patible generalized virtual strain actions and is known as the
internal virtual power, denoted P int. That is,

P int(D(û)) = 〈Σ,D(û)〉E ′×E û ∈ Varu . (13)

In summary, once the kinematics of a particular physical
systemmodel is defined, together with a corresponding dual-
ity pairing, the internal virtual power functional is defined and
the nature of the generalized stresses admissible by the sys-
tem in question is univocally identified. It should be noted
that the internal virtual power functional must be defined
such as to be invariant under changes in observer (superim-
posed rigid kinematical actions). We shall now see that the
adoption of a specific form of duality pairing between gener-
alized stresses and strain actions also defines the generalized
external forces, f ∈ U ′, admissible by themodel and the cor-
responding external virtual work functional. Indeed, from the
definition of the adjoint operator [90] (also referred to as the
equilibrium operator), we have

D′ : E ′ → U ′,
Σ �→ f = D′(Σ), (14)

where D′ is the adjoint of D, i.e. the operator that satisfies

〈Σ,D(u)〉E ′×E = 〈D′(Σ), u〉U ′×U . (15)

The above functional form characterizes the nature of the
external load f , admissible by the adopted kinematical

model. That is, (15) implies that

f has the structure of D′(Σ) ∈ U ′. (16)

The form 〈D′(Σ), û〉U ′×U has the expanded representation

〈D′(Σ), û〉U ′×U =
n∑

i=1

〈(D′(Σ))i , ûi 〉U ′
i×Ui

, (17)

or, equivalently, by using (7),

〈D′(Σ), û〉U ′×U =
n∑

i=1

m∑

j=1

〈D′i j (Σ j ), ûi 〉U ′
i×Ui

. (18)

As in the identification of Σ , the actual nature of f for a
specific model can be identified promptly once the adjoint
operator D′ has been obtained for the model in question, as
in the following.

Classical solid mechanics In this case, the adjoint oper-
ator D′ follows from integration by parts of the stress–
strain action duality pairing, i.e. 〈Σ,D(u)〉E ′×E = ∫

Ω
σ ·

∇Su dΩ = − ∫
Ω
div σ · u dΩ + ∫

Γ
σn · u dΓ = ∫

Ω
b ·

u dΩ + ∫
Γ
t · u dΓ , where n is the outward unit normal to

Γ . The admissible forces identified in this case are: a vector
field, denoted b, of force per unit volume acting in Ω and a
vector field, denoted t, of force per unit area acting on the
boundary Γ . ��

Having identified the nature of f ∈ U ′, whose structure
is prescribed by (15), we can now introduce the external
virtual power functional by restricting the evaluation of the
corresponding duality pairing to the reduced spaceVaru . That
is, we define

Pext(û) = 〈 f, û〉U ′×U û ∈ Varu, (19)

or, equivalently

Pext(û) =
n∑

i=1

〈 f i , ûi 〉U ′
i×Ui

û ∈ Varu . (20)

The functional Pext must also be defined such that it is invari-
ant under changes in observer.

Finally, with the above definitions we introduce the total
virtual power functional, defined as

P tot(û,D(û)) = P int(D(û)) − Pext(û) û ∈ Varu . (21)

2.4 Second Hypothesis: The Principle of Virtual Power

The second hypothesis in the variational formulation—the
Principle of Virtual Power—establishes the condition under
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which a system of admissible generalized stresses and a sys-
tem of admissible generalized external forces are in equilib-
rium. This is stated in the following.

Principle of Virtual Power The generalized stress Σ ∈ E ′
and the generalized external force f ∈ U ′ are in equilibrium
if and only if the following variational equation is satisfied:2

P tot(û,D(û)) = 0 ∀û kinematically admissible. (22)

Equivalently, we may write

P int(D(û)) = Pext(û) ∀û ∈ Varu, (23)

or

〈Σ,D(û)〉E ′×E = 〈 f, û〉U ′×U ∀û ∈ Varu . (24)

Further, from (22), we have that f must also satisfy

〈 f, û〉U ′×U = 0 ∀û ∈ Varu ∩ N(D). (25)

Application of the PVP is illustrated in the following
example.

Classical solid mechanics A Cauchy stress field σ and an
external load system (b, t) are said to be in equilibrium if and
only if

∫
Ω

σ · ∇S û dΩ = ∫
Ω
b · û dΩ + ∫

Γ
t · û dΓ ∀û ∈

Varu. Obviously, this equation expresses dynamic equilib-
rium if, for example, b is an inertia force field, b = −ρü,
withρ themass density and ü the acceleration field. Also note
that, in the present context, (25) implies that any system of
balanced external forces (surface tractions andbody forces—
including inertia forces, if dynamical effects are considered)
produces no virtual power under rigid virtual velocities. ��

2.5 The Equilibrium Problem

To complete the description of the physical system model,
a constitutive law must be introduced that determines Σ as
a function of the history of the kinematical variables of the
system. In a rather general constitutive setting, we consider
the generalized stress to be a function of the history, denoted
ut , of the generalized displacement field to which the body
was subjected up to the present time, t . Then, we write

Σ = Σ(ut ). (26)

For all instants τ ∈ [0, t] the corresponding displacement
u(τ ) is kinematically admissible, i.e. u(τ ) ∈ Kinu . We shall

2 The term equilibrium here is not limited to static equilibrium. If the
force system f includes generalized inertia forces associated to the
physical problem at hand, then dynamic equilibrium is automatically
accounted for by the Principle of Virtual Power.

use the notation ut ∈ Kinu to denote a history of displace-
ments of B kinematically admissible at all instants in [0, t].

With the above at hand, we can now state the equilibrium
problem for the physical system in question as follows.

Problem 1 (The equilibrium problem) For a given consti-
tutive law of the type (26) and a given history of admissible
generalized external force, f t , find the history ut ∈ Kinu of
kinematically admissible displacements such that

〈Σ(uτ ),D(û)〉E ′×E = 〈 f (τ ), û〉U ′×U
∀û ∈ Varu,∀τ ∈ [0, t]. (27)

3 Method of Multiscale Virtual Power

In this section we propose a unified variational framework,
namedMethod of Multiscale Virtual Power, for the develop-
ment of RVE-based multiscale models of physical systems.
This is the main contribution of the present paper. The family
of multiscale theories addressed here is based on the idea that
any point of a macro-scale body occupying a domain ΩM is
associated with a representative volume element (RVE) with
domain Ωμ of characteristic length �μ much smaller than
the characteristic length �M of ΩM (refer to Fig. 2). The
domains ΩM and Ωμ are referred to as the macro-scale and
micro-scale, respectively. Points or coordinates of themacro-
scale are denoted x ∈ ΩM , while points or coordinates of the
micro-scale are denoted y ∈ Ωμ. Here and in what follows
we shall use the subscripts M and μ to denote, respectively,
macro- and micro-scale entities.

Within the proposed framework, multiscale models are
derived by following steps analogous to those described of
Sect. 2 in the conventional (single-scale) setting. In particular,
the concepts of duality and virtual power are explored and
extended so that a principle of virtual power involving more
than one scale—the Principle of Multiscale Virtual Power—
can be formulated. The method lies on three fundamental
principles:

1. Principle of Kinematical Admissibility, whereby the
macro- and micro-scale kinematics are defined and the
associated variables linked across the scales. The scale-
transition link is defined through appropriate defini-
tions of insertion (macro-to-micro) and homogenization
(micro-to-macro) operators, andmust ensure a physically
meaningful transfer of the relevant kinematical variables
across the scales;

2. Mathematical duality, through which the nature of the
force- and stress-like quantities are uniquely identified as
the duals (power-conjugates) of the adopted kinematical
variables. This concept has been used in Sect. 2. Here it
is applied individually to each of the two scales involved;
and
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Fig. 2 RVE-based multiscale
modeling. The RVE concept Macro-scale

Zoom

(RVE)
Micro-scale

Insertion of macro-scale
kinematical quantities

Homogenization of dual
(power-conjugate) quantities

3. Principle of Multiscale Virtual Power (PMVP), a gen-
eralization of the well-known Hill-Mandel Principle of
Macrohomogeneity, from which equilibrium equations
and homogenization relations for the force- and stress-
like quantities are unequivocally obtained by straightfor-
ward variational arguments.

As we shall see, the proposed theory provides a clearly and
logically structured framework within which existing for-
mulations can be rationally justified and new, more general
multiscale models can be rigorously derived in well-defined
steps. The rationality of the proposed approach is entirely
akin to that of the Method of Virtual Power, reviewed in
Sect. 2, in the derivation of single-scale physical system
models. In particular, we shall see that, once the kinemat-
ical variables at the two scales are postulated, kinemati-
cal admissibility is established for the system under con-
sideration, and the corresponding generalized force- and
stress-like quantities are identified by means of duality
arguments, all relevant equations of the model are derived
from the PMVP following standard variational considera-
tions.

Similiarly to the format adopted in Sect. 2, as the the-
ory is presented in this section we shall show, in parallel,
its specialization to the case of classical RVE-based multi-
scale infinitesimal solid mechanics. This should help make
the newly-introduced concepts clearer.

3.1 Multiscale Kinematics: Kinematical Admissibility

In considering a two-scale physical system, we assume at the
outset that the kinematics describing the relevant phenomena
at themacro-scalemay, in general, differ from the kinematics
of the micro-scale. However, the ideas and definitions pre-
sented in Sect. 2.2 remain applicable individually to each of

the two scales and analogous steps will be followed. In pos-
tulating the kinematics of a given two-scale physical system,
one will, ultimately, establish a functional set of kinemat-
ically admissible micro-scale displacement fields, denoted
Kinuμ , which is itself dependent upon the kinematical vari-
ables of the macro-scale.

This process of establishing Kinuμ is what we refer to
as the Principle of Kinematical Admissibility and comprises
four steps: (1) Definition the governing kinematics at the
macro- and micro-scales; (2) Definition of insertion opera-
tors that prescribe how themacro-scale kinematical variables
are inserted into the micro-scale; (3) Definition of homoge-
nization operators that specify how themicro-scale kinemat-
ical fields are averaged to yield the macro-scale kinematical
quantities. The kinematical homogenization process must be
defined so as to ensure that the magnitude of the kinemat-
ical variables involved are, in some sense, preserved in the
scale transition; and (4) Kinematical admissibility. Finally,
obtain the functional set Kinuμ of kinematically admissible
micro-scale displacement fields.

It should be noted here that steps (1)–(3) above are rather
arbitrary with the only constraint being that the postulated
kinematical transfer must ensure that the magnitude of the
variables involved are preserved. The definition of the kine-
matical variables themselves will depend fundamentally on
what phenomena (and level of detail) one is trying to cap-
ture with the model and will, also, be largely influenced by
the preferences and background of the investigator. Here lies
the only degree of arbitrariness of the proposed theory. Once
kinematical admissibility has been established, the nature of
the associated stress- and force-like variables at both scales
will be determined frommathematical duality considerations
and their homogenization relations together with the micro-
scale equilibrium equations will be derived from the Princi-
ple of Multiscale Virtual Power

123



Variational Foundations and Generalized Unified Theory 203

3.1.1 Macro-scale Kinematics

Following the material presented in Sect. 2, the kinematics
of the macro-scale is characterized by the generalized dis-
placement uM ∈ UM , an nM -tuple of tensor fields, with each
component uiM described by r iM scalar fields (the total num-
ber of scalar fields describing uM is RM = ∑nM

i=1 r
i
M ). These

components have a domain of definitionΩ
Ui
M := Dom(UMi ),

i = 1, . . . , nM , i.e.

uiM : Ω
Ui
M → UMi

x �→ uiM (x), (28)

where Ω
Ui
M ⊆ ΩM , with Ω

Ui
M being a set of points, surfaces

or volumes, accordingly. In compact form, we write

uM : ΩU
M → UM

x �→ uM (x), (29)

and, as in Sect. 2, we have ΩU
M := Dom(UM ) =

(Dom(UM 1), . . . ,Dom(UMnM )), or equivalently, ΩU
M =

(Ω
U1
M , . . . ,Ω

UnM
M )

The set of kinematically admissible generalized displace-
ments is KinuM and the associated space of kinematically
admissible generalized virtual actions is VaruM . The space of
generalized macro-scale strain actions is denoted EM . Each
element DM ∈ EM is amM -tuple of tensor fields where each
component Di

M is described by siM scalar fields (the total
number of scalar fields describing DM is SM = ∑mM

i=1 s
i
M ).

The domain of definition of these components is Ω
Ei
M :=

Dom(EMi ), i = 1, . . . ,mM , that is

Di
M : Ω

Ei
M → EMi

x �→ Di
M (x), (30)

whereΩ
Ei
M ⊆ ΩM can be a set of points, surfaces or volumes.

In compact form, we write

DM : ΩE
M → EM
x �→ DM (x), (31)

and ΩE
M := Dom(EM ) = (Dom(EM 1), . . . ,Dom(EMmM )),

or equivalently ΩE
M = (Ω

E1
M , . . . , Ω

EmM
M ).

The macro-scale kinematically compatible generalized
strain actions (and generalized virtual strain rates) are char-
acterized by the linear operator

DM : UM → EM
uM �→ DM = DM (uM ). (32)

The domain of definition of the kinematically compatible
strain actions is denoted ΩE

M = Dom(DM (uM )).

Remark 2 As in (7), since DM is linear, we have the repre-
sentation

DM =

⎛

⎜
⎜
⎜
⎜
⎝

D11
M D12

M . . . D1nM
M

D21
M D22

M . . . D2nM
M

...
...

. . .
...

DmM1
M DmM2

M . . . DmMnM
M

⎞

⎟
⎟
⎟
⎟
⎠

, (33)

and Ω
Ei
M = Dom(Di1

M (u1M )) = . . . = Dom(DinM
M (unMM )),

i = 1, . . . ,mM .

Figure 3 is the counterpart of Fig. 1 showing the macro-
scale entities in a multiscale setting. It should be noted that
additional sets and operations are introduced in themultiscale
setting which relate to individual points of the macro-scale
domain. The value of any entity (·) at an arbitrary point x of
the macro-scale is denoted (·)|x. As we shall see later, point
values of relevantmacro-scale entitieswill be associatedwith
the problem defined at the micro-scale level (the RVE).

3.1.2 Micro-scale Kinematics

As already said, the fundamental assumption in RVE-based
theories is that each point x of the macro-scale body is asso-
ciated with a micro-scale domain (an RVE). Here we shall
define the kinematics of one such general RVE. The domain
of the RVE is denoted Ωμ and points of the RVE will be
denoted y ∈ Ωμ. The space of generalized micro-scale dis-
placements is denoted Uμ, with each element uμ ∈ Uμ an
nμ-tuple of tensor fields, and each component uiμ described
by r iμ scalar fields (the total number of scalar fields describ-

ing uμ is Rμ = ∑nμ

i=1 r
i
μ). The domain of definition of each

field is Ω
Ui
μ := Dom(Uμi ), i = 1, . . . , nμ, that is

uiμ : ΩUi
μ → Uμi

y �→ uiμ(y), (34)

with each Ω
Ui
μ ⊆ Ωμ a set of points, surfaces or volumes. In

compact notation,

uμ : ΩU
μ → Uμ

y �→ uμ(y), (35)

and ΩU
μ := Dom(Uμ) = (Dom(Uμ1), . . . ,Dom(Uμnμ

)), or

alternatively, ΩU
μ = (Ω

U1
μ , . . . ,Ω

Unμ
μ ).

Without loss of generality, it is convenient to split the
generalized micro-scale displacements uμ ∈ Uμ as a sum,

uμ = ūμ + ũμ, (36)

of a field ūμ, that depends on the macro-scale kinematics at
point x, and a field ũμ, named the generalized displacement
fluctuation. The field ūμ is generally a non-uniform field (it
may depend on y). The collection of all generalized displace-
ments ūμ at micro-level, forms a subspace which we will
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Fig. 3 Method of Multiscale
Virtual Power. Basic sets and
operations at the macro-scale
level

denote Ūμ, and the collection of all ũμ forms the subspace
Ũμ, of generalized displacement fluctuations.

We also define the space Eμ of micro-scale generalized
strain actions. Each Dμ ∈ Eμ is a mμ-tuple of tensor
fields with components denoted by Di

μ. Each component is
described by siμ scalar fields (the total number of scalar fields

describing Dμ is Sμ = ∑mμ

i=1 s
i
μ). The components have a

domain of definition Ω
Ei
μ := Dom(Eμi ), i = 1, . . . ,mμ, i.e.

Di
μ : ΩEi

μ → Eμi

y �→ Di
μ(y), (37)

whereΩ
Ei
μ ⊆ Ωμ can be a set of points, surfaces or volumes.

In compact form,

Dμ : ΩE
μ → Eμ

y �→ Dμ(y), (38)

so ΩE
μ := Dom(Eμ) = (Dom(Eμ1), . . . ,Dom(Eμmμ

)), or

ΩE
μ = (Ω

E1
μ , . . . ,Ω

Emμ
μ ).

Further, we define the (linear) micro-scale generalized
strain action operator,

Dμ : Uμ → Eμ

uμ �→ Dμ = Dμ(uμ). (39)

Its domain of definition is ΩE
μ = Dom(Dμ(uμ)).

Remark 3 Analogously to (33) we have the following repre-
sentation for Dμ:

Dμ =

⎛

⎜
⎜
⎜
⎜
⎝

D11
μ D12

μ . . . D1nμ
μ

D21
μ D22

μ . . . D2nμ
μ

...
...

. . .
...

Dmμ1
μ Dmμ2

μ . . . Dmμnμ
μ

⎞

⎟
⎟
⎟
⎟
⎠

, (40)

and Ω
Ei
μ = Dom(Di1

μ (u1μ)) = . . . = Dom(Dinμ
μ (u

nμ
μ )), i =

1, . . . ,mμ.

3.1.3 Insertion Operators

As mentioned at the beginning of this section, the kine-
matics of an RVE (micro-scale kinematics) associated with
an arbitrary point x ∈ ΩM of the macro-scale is linked
to the kinematics at the macro-scale by means of insertion
operators, defining the macro-to-micro kinematical transfer,
and homogenization operators, defining the micro-to-macro
kinematical transfer. These two operators are linear in their
arguments andmust be adequately constructed to account for
a consistent mechanical/physical transfer of generalized dis-
placements and strain actions between the scales. The defin-
ition of such operators will depend on the particular physical
system in question.
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Remark 4 For simplicity, we shall assume in what follows
that all macro-scale kinematical variables take part in the
kinematical transfer between scales. In a more general sce-
nario, we could have only a subset of the set of macro-scale
kinematical variables involved in this transfer.

Then, let us define the set R
x
UM

of elements of UM evalu-
ated at a given point x ∈ ΩM ,

R
x
UM

= {w = (w1, . . . , wnM ), wi ∈ R
r iM , i = 1, . . . , nM ,

w = u|x, u ∈ UM }, (41)

where R
r iM =

r iM
︷ ︸︸ ︷
R × · · · × R, with r iM the number of scalar

descriptors in the i th tensor field within the nM -tuple. Note
that dim(Rx

UM
) = RM . We will refer to R

x
UM

as the set of
point-valued generalized macro-displacements of x.

Similiarly, we define the set of point-valued generalized
macro-strain actions as the set of elements of EM evaluated
at point x ∈ ΩM ,

R
x
EM

= {V = (V 1, . . . , VmM ), V i ∈ R
siM , i = 1, . . . ,mM ,

V = D|x, D ∈ EM }, (42)

where R
siM =

siM
︷ ︸︸ ︷
R × · · · × R, with siM the number of scalar

descriptors of the i th tensor field in the mM -tuple. Note that
dim(Rx

EM
) = SM .

Further,within the sets of point-valued generalizedmacro-
displacements and macro-strain actions we can distin-
guish the sets of point-valued virtual generalized macro-
displacements, ŵ, and virtual macro-strain rates, V̂ . We

denote these two sets as R̂
x
UM

and R̂
x
EM

, respectively. It is
interesting to note that, depending on the final application
of the present multiscale theory, components of such virtual
macro-displacements and virtual macro-strain actions may
be taken as the null element, even though the real kinematics
at point x is not necessarily null.

Classical multiscale solid mechanics The set of point-
valued macro-displacements is defined here as R

x
UM

= {w ∈
R
3, w = uM |x, uM ∈ H1(ΩM )}, while the set of point-

valued macro-strain actions is R
x
EM

= {ε ∈ R
3×3, ε =

εM |x, εM ∈ L2
sym(ΩM )}. ��

At this point we introduce the concept of insertion oper-
ator. In the present theory, insertion operators are funda-
mental in that they define the way in which the point-valued
macro-scale kinematical quantities contribute to the micro-
scale kinematics, i.e. they define how the macro-scale kine-
matics is inserted into the micro-scale. Two insertion opera-
tors are defined:

– The uM-insertion operator,

J U
μ : R

x
UM

→ Ūμ

uM |x �→ ūμ = J U
μ (uM |x), (43)

whichmaps the point-value uM |x of themacro-scale gen-
eralized displacement into a field ūμ that contributes to
the micro-scale generalized displacement field according
to (36); and

– The DM-insertion operator,

J E
μ : R

x
EM

→ Ūμ

DM |x �→ ūμ = J E
μ (DM |x), (44)

which maps the point-value DM |x of the generalized
macro-strain action into another field contributing to the
micro-scale generalized displacement according to (36).

Both operators are linear in their respective arguments.

Classical multiscale solid mechanics The uM-insertion op
erator in this case is postulated as J U

μ (uM |x) = uM |x, i.e. it
maps uM |x into a uniform field over Ωμ. The DM-insertion
operator, in turn, is postulated asJ E

μ (εM |x) = εM |x(y−yo),
where yo = 1

|Ωμ|
∫
Ωμ

y dΩμ, i.e. it maps the macro-scale
strain action (in this case, the infinitesimal strain measure)
at point x into a linear displacement distributed over Ωμ. ��
Remark 5 The choice of operatorsJ U

μ andJ E
μ is not entirely

arbitrary. This lack arbitrariness stems from the fact that
these operators must preserve the magnitude of the macro-
scale generalized displacements/strain actions when inserted
into the micro-scale. This issue will be addressed with the
enforcement of an additional constraint on eachoperator (see,
for example, (59) and (60) below).

From (43)–(44), the kinematical variables uM |x and DM |x
can be combined to deliver a non-uniform generalized dis-
placement field which depends on y. Particularly, we point
out that the domain Ω

Ui
μ , i = 1, . . . , nμ is the domain of

insertion in which component i of the image of the insertion
operators J U

μ and J E
μ is defined.

Classical multiscale solid mechanics The point-valued kin
ematical variables of the macro-scale, uM |x and εM |x, con-
tribute to the micro-scale displacement field ūμ, which is
contructed as follows:

ūμ = J U
μ (uM |x) + J E

μ (εM |x) = uM |x + εM |x(y − yo).

The domain of insertion at the micro-scale in this case is,
obviously, the whole Ωμ. ��
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Remark 6 The present theory allows for insertion operations
far more general than those found in most existing formula-
tions. The vast majority of existing formulations only con-
sider an affine mapping of the macro-scale generalized strain
action into the micro-scale generalized displacement field
(such as in the classical multiscale solid mechanics case
referred to above). For example, in failure multiscale analy-
sis, a more complex insertion operation can be used [104]
to account for progressive strain localization, nucleation and
evolution of cracks at the macro-scale level, caused by shear
bands, damage or any other possible failuremechanism at the
micro-level. In this case, themicro-scale subdomain inwhich
strain localization is taking place is embedded in the defin-
ition of the insertion operator. As shown in Sect. 3.4, these
insertion operators are functionally essential in the charac-
terization of the homogenization of generalized stress and
body forces at macro level.

Remark 7 Since J U
μ and J E

μ are linear, we have the repre-
sentations

J U
μ =

⎛

⎜
⎜
⎜
⎜
⎝

J U
μ

11 J U
μ

12
. . . J U

μ

1nM

J U
μ

21 J U
μ

22
. . . J U

μ

2nM

...
...

. . .
...

J U
μ

nμ1 J U
μ

nμ2
. . . J U

μ

nμnM

⎞

⎟
⎟
⎟
⎟
⎠

, (45)

and

J E
μ =

⎛

⎜
⎜
⎜
⎜
⎝

J E
μ

11 J E
μ

12
. . . J E

μ

1mM

J E
μ

21 J E
μ

22
. . . J E

μ

2mM

...
...

. . .
...

J E
μ

nμ1 J E
μ

nμ2
. . . J E

μ

nμmM

⎞

⎟
⎟
⎟
⎟
⎠

, (46)

We now introduce the following definition. We say that
uμ ∈ Uμ is linked to the macro-kinematics at point x ∈ ΩM

if there exist a uM |x ∈ R
x
UM

and a DM |x ∈ R
x
EM

such that

uμ = ūμ + ũμ = J U
μ (uM |x) + J E

μ (DM |x) + ũμ. (47)

Then, for anymicro-scale generalizeddisplacement,uμ ∈ Uμ,
linked to the macro-kinematics, the corresponding kinemat-
ically compatible micro-scale generalized strain action is
given by

Dμ = Dμ(uμ) = Dμ(ūμ) + Dμ(ũμ)

= Dμ(J U
μ (uM |x)) + Dμ(J E

μ (DM |x)) + Dμ(ũμ). (48)

On physical grounds, we impose the following constraint
on the operatorJ U

μ to prevent the insertion of uM from caus-
ing generalized straining actions at the micro-scale,

Dμ(J U
μ (uM |x)) = 0 ∀uM |x ∈ R

x
UM

. (49)

From the mechanical point of view, this constraint infers that
the inserted generalized displacement from the macro scale
must belong to the kernel of Dμ, N(Dμ), i.e. the image of
the operator J U

μ is in the space of rigid generalized micro-
displacements fields.

Classical multiscale solid mechanics Bywritinguμ=uM |x
+ εM |x(y − yo) + ũμ, we ensure that the micro-scale dis-
placement,uμ, is linkedwith themacro-kinematics at point x.
Then, since J U

μ (uM |x) = uM |x is a uniform field, the corre-

spondingmicro-scale strain action isεμ = ∇S
y (uM |x + εM |x

(y − yo) + ũμ) = εM |x + ∇S
y ũμ. Note here that we have

Dμ = ∇S
y , the symmetric gradient operator in the micro-

scale. ��
Remark 8 From (48), the generalized micro-scale strain
action can be written as

Dμ = D̄μ + D̃μ, (50)

where D̄μ is a contribution from the macro-scale kinemat-
ics to the micro-scale strain action, and D̃μ, the micro-scale
strain action fluctuation, depends only on micro-scale enti-
ties, that is

D̄μ = Dμ(J E
μ (DM |x)),

D̃μ = Dμ(ũμ). (51)

Remark 9 The contribution of the macro-scale generalized
strain action to its micro-scale counterpart field can be
obtained directly by applying the combined insertion oper-
ator, defined as Iμ = DμJ E

μ , to the point-value DM |x, i.e.
we may write

Iμ : R
x
EM

→ Eμ

DM |x �→ Dμ = Iμ(DM |x). (52)

3.1.4 Kinematical Homogenization Operators

Kinematical homogenization operators also play a funda-
mental role in the present multiscale theory. These opera-
tors must be postulated when devising an RVE-based model,
according to the physical nature of the system/model in ques-
tion. They define how the micro-scale kinematical fields are
homogenized (averaged) to yield the corresponding macro-
scale point-valued kinematical variables. There are two such
operators. The uμ-homogenization operator, mapping the
micro-scale generalized displacement field into the point-
value of the macro-scale generalized displacement,

HU
μ : Uμ → R

x
UM

uμ �→ HU
μ (uμ) ∈ R

x
UM

, (53)

and the Dμ-homogenization operator, that maps the micro-
scale generalized strain action field into the point-value of
the macro-scale generalized strain action,
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HE
μ : Eμ → R

x
EM

Dμ �→ HE
μ(Dμ) ∈ R

x
EM

. (54)

Both operators are linear and involve average measures over
the corresponding domains of insertion,ΩUi

μ , i = 1, . . . , nμ,

and Ω
Ei
μ , i = 1, . . . ,mμ.

Classical multiscale solid mechanics The uμ-homogeni
zation operator is defined as HU

μ (uμ) = 1
|Ωμ|

∫
Ωμ

uμ dΩμ,

while the Dμ-homogenization operator is defined asHE
μ(εμ)

= 1
|Ωμ|

∫
Ωμ

εμ dΩμ. That is, uM |x and εM |x are simple vol-
ume averages of their micro-scale counterpart fields over the
RVE. ��

Remark 10 From the linearity of operatorHU
μ , the following

matrix representations hold

HU
μ =

⎛

⎜
⎜
⎜
⎜
⎝

HU
μ

11 HU
μ

12
. . . HU

μ

1nμ

HU
μ

21 HU
μ

22
. . . HU

μ

2nμ

...
...

. . .
...

HU
μ

nM1 HU
μ

nM2
. . . HU

μ

nMnμ

⎞

⎟
⎟
⎟
⎟
⎠

, (55)

and

HE
μ =

⎛

⎜
⎜
⎜
⎜
⎝

HE
μ

11 HE
μ

12
. . . HE

μ

1mμ

HE
μ

21 HE
μ

22
. . . HE

μ

2mμ

...
...

. . .
...

HE
μ

mM1 HE
μ

mM2
. . . HE

μ

mMmμ

⎞

⎟
⎟
⎟
⎟
⎠

. (56)

Now, let us go back to the issue posed in Remark 5 about
the constraints on the insertion operatorsJ U

μ andJ E
μ , defined

in (43) and (44), respectively. On physical grounds, we must
require that these operators are defined such that the mag-
nitude of the kinematical variables involved in the transfer
across the scales are, in some sense, preserved. This can be
understood as a principle of conservation ofmacro-scale gen-
eralized displacements and conservation ofmacro-scale gen-
eralized strain actions. Effectively, wewant to ensure that the
homogenization of the insertion of each component uiM |x of
uM |x results in uiM |x itself. The same applying to the com-
ponents Di

M |x. To formally state this requirement, we define

u{i}
M ∈ R

x
UM

and D{i}
M ∈ R

x
EM

such that

(u{i}
M ) j =

{
uiM |x if j = i
0 if j �= i,

(57)

(D{i}
M ) j =

{
Di

M |x if j = i
0 if j �= i.

(58)

Then, the postulated kinematics conservation principle holds
if J U

μ and J E
μ satisfy the constraints

HU
μ (J U

μ (u{i}
M )) = u{i}

M , i = 1, . . . , nM , (59)

HE
μ(Dμ(J E

μ (D{i}
M ))) = D{i}

M , i = 1, . . . ,mM . (60)

Remark 11 If not all macro-scale kinematical variables are
inserted into the micro-scale (refer to Remark 4), then the
constraints (59) and (60) must hold only for the inserted vari-
ables.

Classical multiscale solid mechanics In this case,HU
μ (J U

μ

(uM |x)) = 1
|Ωμ|

∫
Ωμ

uM |x dΩμ = uM |x. Also, HE
μ(Dμ(J E

μ

(εM |x))) = 1
|Ωμ|

∫
Ωμ

∇S
y (εM |x(y − yo)) dΩμ = εM |x.

Hence, constraints (59) and (60) are satisfied in the context
of the classical theory. ��
Remark 12 From (59) we observe that the compound oper-
ationHU

μJ U
μ is the identity map in R

x
UM

. Similarly, the com-

pound operation HE
μDμJ E

μ is the identity map in R
x
EM

.

3.1.5 Kinematical Admissibility

Let us now introduce the fundamental concept of kinemati-
cal admissibility of the kinematical transfer between scales.
A micro-scale generalized displacement uμ ∈ Uμ, linked
to the macro-kinematics, and its generalized strain action
Dμ(uμ) ∈ Eμ are kinematically admissible with respect to
uM |x ∈ R

x
UM

and DM |x ∈ R
x
EM

if the following relations are
satisfied

HU
μ (uμ) = HU

μ (J U
μ (uM |x)), (61)

HE
μ(Dμ(uμ)) = HE

μ(Dμ(J E
μ (DM |x))). (62)

The above definition implies additional constraints. Since
uμ ∈ Uμ is linked to the macro-scale kinematics, (47) holds
and, therefore, the left hand side of (61) yields

HU
μ (uμ) = HU

μ (J U
μ (uM |x))

+HU
μ (J E

μ (DM |x)) + HU
μ (ũμ). (63)

Here, we shall impose the following further constraint on the
operator J E

μ :

HU
μ (J E

μ (DM |x)) = 0. (64)

As consequence of (61), (63) and (64), ũμ must satisfy the
following kinematical constraint:

HU
μ (ũμ) = 0. (65)

Since HU
μ represents an averaging operation involving the

measure of the domain related to each component of the
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insertion operators, then equations (59) and (61) establish a
relation between uM |x and the homogenization of the micro-
displacements uμ. In addition, equation (65) embodies nM
tensorial constraints (i.e. RM scalar constraints) that must be
satisfied by the generalized displacement fluctuation ũμ to
link the micro-kinematics to the macro-kinematics.

Classical multiscale solid mechanics With the definition of
the uμ-homogenization operator, the kinematical admissi-
bility of uμ implies that HU

μ (uμ) = HU
μ (J U

μ (uM |x)) =
uM |x. Since, by construction, the operator J E

μ is such

that 1
|Ωμ|

∫
Ωμ

εM |x(y − yo) dΩμ = εM |x
( 1

|Ωμ|
∫
Ωμ

(y −
yo) dΩμ

) = 0, we have 1
|Ωμ|

∫
Ωμ

(uM |x + εM |x(y − yo) +
ũμ) dΩμ = uM |x + 1

|Ωμ|
∫
Ωμ

ũμ dΩμ = uM |x. This is sat-
isfied if

∫
Ωμ

ũμ dΩμ = 0. ��
We can proceed in an analogous manner with equation

(62). By taking equation (49) into account, we have

HE
μ(Dμ(uμ))

= HE
μ(Dμ(J U

μ (uM |x))
︸ ︷︷ ︸

=0

) + HE
μ(Dμ(J E

μ (DM |x)))

+HE
μ(Dμ(ũμ)) = HE

μ(Dμ(J E
μ (DM |x))). (66)

This yields

HE
μ(Dμ(ũμ)) = 0. (67)

Then, equations (60) and (62) determine a relation between
DM |x and the homogenization of the micro-scale strain
action Dμ.

In summary, any kinematically admissible generalized
micro-scale displacement field uμ must be such that its fluc-
tuation component, ũμ, satisfies the kinematical constraints
(65) and (67). This motivates the definition of the space of
kinematically admissible generalized micro-scale displace-
ment fluctuations:

Kinũμ
= {ũμ ∈ Uμ, HU

μ (ũμ) = 0, HE
μ(Dμ(ũμ)) = 0}.

(68)

Elements ũμ ∈ Kinũμ
satisfy the minimal kinematical con-

straints that render the kinematical transfer between scales
admissible. Further kinematical constraints may be added
leading, in general, to different multiscale models. Also note
that, since the constraints over ũμ are linear and homoge-
neous, it follows that the space of kinematically admissible
virtual micro-scale generalized fluctuation displacements is
given by

Varũμ
= Kinũμ

. (69)

Classical multiscale solid mechanics With the definition of
the Dμ-homogenization operator, the kinematical admissi-
bility of Dμ implies that HE

μ(∇S
y uμ) = HE

μ(∇S
y (uM |x +

εM |x(y − yo) + ũμ)) = HE
μ(εM |x + ∇S

y ũμ) = εM |x. Then,
1

|Ωμ|
∫
Ωμ

(εM |x+∇S
y ũμ) dΩμ = εM |x+ 1

|Ωμ|
∫
Ωμ

∇S
y ũμ dΩμ

= εM |x, which is satisfied if
∫
Ωμ

∇S
y ũμ dΩμ = 0. Equiva-

lently, after integration by parts,
∫
Γμ

ũμ ⊗S nμ dΓμ = 0,
with nμ the unit outward normal to the boundary Γμ of Ωμ.
Therefore, the space of kinematically admissible fluctuation
displacements at micro scale and the associated space of
admissible virtual variations are Kinũμ

= Varũμ
= {ũμ ∈

H1(Ωμ),
∫
Ωμ

ũμ dΩμ = 0,
∫
Γμ

ũμ ⊗S nμ dΓμ = 0}. ��
Remark 13 The constraints imposed by the kinematical
admissibility between macro- and micro-scales reduces to
nM tensorial constraints given by (65) plus mM tensorial
constraints given by (67). Note that, since the kinematics at
the two scales are allowed to be different, the kinematical
fields at micro-scale may not be properly controlled. That is,
some micro-scale kinematical descriptors may not be visible
to the macro-scale. In such cases, further constraints over ũμ

will be required to ensure the mathematical well-posedness
of the micro-scale problem. Such extra constraints must be
homogeneous and depend on the modeling hypotheses based
on physical considerations for the micro-scale problem.

Remark 14 As we will show later, the space Kinũμ
plays a

fundamental role in the definition of the micro-scale equi-
librium state. If further kinematical constraints are added
to Kinũμ

, the response produced by the multiscale model
will change in general. An easy way to construct a more
constrained space of admissible generalized micro-scale dis-
placement fluctuations is to force ũ ≡ 0. This leads to the
model known as Taylor Model (or rule of mixtures) in classi-
cal multiscale solid mechanics. Thus, in the general context
of the present paper, we shall refer to the space so constrained
as the Taylor Fluctuations Space. It contains only the zero
element of Kinũμ

:

KinTaylorũμ
=
{
ũμ ∈ Uμ, ũμ = 0 ∀y ∈ ΩU

μ

}
= {0}. (70)

This is obviously the maximally constrained space of kine-
matically admissible generalized micro-scale fluctuations. It
is possible to adopt other (less constrained) subspaces of
Kinũμ

, each choice delivering, in general, a different model
behaviour as illustrated in the following example.

Classical multiscale solid mechanics In addition to
KinTaylorũμ

, other choices of subspaces of Kinũμ
can be con-

sidered. For example, null boundary condition subspace,
denoted by Kinnbcũμ

, which is obtained prescribing ũμ =
0, ∀y ∈ Γμ. Another subspace, Kin

pbc
ũμ

, could be easily con-

structed for RVEswith periodic geometry (typical of periodic
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media). Periodic RVEs have anti-periodic unit normal vector
field nμ to the boundary Γμ. In this case, any y ∈ Γμ has
a one-to-one correspondance a point y∗ ∈ Γμ lying on the
opposite side of Γμ and such that nμ(y) = −nμ(y∗). Kine-
matical admissibility is guaranteed if the fluctuation field ũμ

is periodic on Γμ, i.e. ũμ(y) = ũμ(y∗). It is easy to ver-

ify that KinTaylorũμ
⊂ Kinnbcũμ

⊂ Kinpbc
ũμ

⊂ Kinũμ
. From a

mechanical viewpoint, this means that the RVE-based model
produces the stiffest behavior for the choice KinTaylorũμ

and

the most compliant behavior with the choice Kinũμ
. ��

It is now possible to characterize the subset Kinuμ of kine-
matically admissible generalizedmicro-scale displacements.
This subset is formed by all generalized displacements,
uμ ∈ Uμ, linked to the macro-kinematics at point x ∈ ΩM

and kinematically admissible with respect to uM |x ∈ R
x
UM

and DM |x ∈ R
x
EM

, i.e.

Kinuμ =
{
uμ ∈ Uμ, uμ = J U

μ (uM |x) + J E
μ (DM |x) + ũμ,

uM |x ∈ R
x
UM

, DM |x ∈ R
x
EM

, ũμ ∈ Kinũμ

}
. (71)

The corresponding space of kinematically admissible gen-
eralized micro-scale virtual displacements, Varuμ , is given
by

Varuμ =
{
ûμ ∈Uμ; ûμ = u1μ−u2μ, u1μ, u2μ ∈ Kinuμ

}
. (72)

3.2 Multiscale Duality

In this section we proceed to explore the duality concepts
reviewed in Sect. 2.3 in each of the two scales. In the
present multiscale setting, particular attention is focused on
the assessment of the virtual power at a generic point x
of the macro-scale. At the micro-scale, special attention is
given the identification of admissible generalized forces and
stresses.

3.2.1 Macro-scale Virtual Power

Following Sect. 2, the macro-scale internal virtual power is
given by

P int
M (DM (ûM )) = 〈ΣM ,DM (ûM )〉E ′

M×EM

ûM ∈ VaruM , (73)

or

P int
M (DM (ûM )) =

mM∑

k=1

〈
Σk

M , (DM (ûM ))k
〉

E ′
Mk×EMk

ûM ∈ VaruM . (74)

In the present context, we are interested in evaluating the
virtual power associated with a generic point x of the macro-
scale, so that it can be related to the virtual power of the corre-

spondingRVEbymeansof thePrinciple ofMultiscaleVirtual
Power that will be established later. Then, note that at a point
x ∈ ΩM , the kinematical quantity associated with internal
power isDM (ûM )|x. With the notation D̂M |x = DM (ûM )|x,
the macro-scale internal virtual power, P int

M,x(D̂M |x), at a
point x can be expressed as

P int
M,x(D̂M |x) =

mM∑

k=1

ωk(ΣM |x)k · (D̂M |x)k =: ΣM |x • D̂M |x

D̂M |x ∈ R̂
x
EM

, (75)

where ωk , k = 1, . . . ,mM , are dimensional scalars (see
Remark 18) that guarantee the dimensional compatibility
of the products (ΣM |x)k · (D̂M |x)k , k = 1, . . . ,mM , tak-
ing part in the summation of internal power contributions
above. It should be noted here that (75) has unit of power,
whereas each product (ΣM |x)k · (D̂M |x)k is a power density,
i.e. power per unit measure of a corresponding RVE subset
whose measure is ωk . Each such subset may be of a dif-
ferent dimensionality (e.g. a volume, surface or point). We
remark that this level of generality is crucial to model phys-
ical systems that feature simultaneously phenomena defined
over distinct RVE subdomains, such as continuum straining,
strain localization, cohesive cracks or even discrete phenom-
ena. The operation denoted (·) • (·) above is then a duality
product defined as

(·) • (·) : (Rx
EM

)′ × R
x
EM

→ R

(ΣM |x, DM |x) �→ ΣM |x • DM |x
=

mM∑

k=1

ωk (ΣM |x)k · (DM |x)k . (76)

Classical multiscale solid mechanics The internal macro-
scale virtual power is, as usual, given by the product between
the virtual strain action (a virtual strain rate in this case) and
the Cauchy stress fields: P int

M = ∫
ΩM

σ M · ∇S
x ûM dΩM. The

virtual power of a point x (which is to be linked to an RVE)
is P int

M,x = σ M |x • ε̂M |x = ω1σ M |x · ε̂M |x, ω1 to be defined
later. ��

Similarly, we define the macro-scale external virtual
power as

Pext
M (ûM ) = 〈 fM , ûM 〉U ′

M×UM
ûM ∈ VaruM , (77)

where fM has the structure ofD′
M (ΣM ). The external virtual

power at point x is expressed by

Pext
M,x

(
ûM |x

) =
nM∑

k=1

γk ( fM |x)k · (ûM |x
)k =: fM |x • ûM |x

ûM |x ∈ R̂
x
UM

. (78)
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The dimensional parameters γk , k = 1, . . . , nM , are entirely
analogous to the parameters ωk of (75). Note that in (78) we
haveused the samepairingproduct notation, (·)•(·), as in (75)
but the exact meaning of the product will be dictated by the
context. In this case, the duality product (·)• (·) is defined as

(·) • (·) : (Rx
UM

)′ × R
x
UM

→ R

( fM |x, uM |x) �→ fM |x • uM |x
=

nM∑

k=1

γk ( fM |x)k · (uM |x)k . (79)

Classical multiscale solid mechanics The external macro-
scale virtual power is Pext

M = ∫
ΩM

fM · ûM dΩM + ∫
ΓM

tM ·
ûM dΓM. The external virtual power of a point x ∈ ΩM is
Pext
M,x = fM |x • ûM |x = γ1fM |x · ûM |x, γ1 to be defined later.

��

With the above definitions at hand, we can now define the
total macro-scale virtual power at point x. Using (75) and
(78), we define

P tot
M,x(ûM |x, D̂M |x) = ΣM |x • D̂M |x − fM |x • ûM |x

ûM |x ∈ R̂
x
UM

, D̂M |x ∈ R̂
x
EM

. (80)

The schematic diagram of Fig. 3 shows a representation
of the various concepts used in the definition of the macro-
scale variational setting that is part of the present multiscale
theory.

Remark 15 Point x is a point belonging to some geometrical
object of the macro-scale body. In general, it can be a point
in a volume, a point on a surface or simply a point on its
own. Thus, the external virtual power, Pext

M,x, of that point
is associated to generalized external forces defined over the
geometric object the point belongs to, and is characterized
by means of duality. In the case of a point in the bulk of
a three-dimensional solid body, we will have the notion of
generalized body forces. This notion includes generalized
passive body forces per unit volume (e.g. force due to grav-
ity in classicalmechanics) and generalized inertia forces (e.g.
due to acceleration in classical mechanics). The term gener-
alized body forcewill be used here to refer to these two kinds
of generalized forces (passive and inertia). Hence, dynamic
phenomena are automatically taken into account within
the present framework. Note, however, that in the present
theory the macro- and micro-scale share the same time
scale.

3.2.2 Micro-scale Virtual Power

With the duality concepts already presented in Sect. 2, the
internal micro-scale virtual power can be expressed as

P int
μ

(Dμ

(
ûμ

)) = 〈Σμ,Dμ

(
ûμ

)〉E ′
μ×Eμ

ûμ ∈ Varuμ. (81)

By considering (47) and (49), and with a slight abuse of
notation, we obtain the equivalent expression

P int
μ (D̂M |x,Dμ( ˆ̃uμ))

= 〈Σμ,Dμ(J E
μ (D̂M |x) + ˆ̃uμ)〉E ′

μ×Eμ

D̂M |x ∈ R̂
x
EM

, ˆ̃uμ ∈ Varũμ
, (82)

in terms of virtual macro-scale strain actions, D̂M |x, and vir-
tual micro-scale displacement fluctuations, ˆ̃uμ. The macro-
scale virtual strain action is mapped into the micro-scale by
the insertion operator J E

μ .

Classical multiscale solid mechanics By taking into acco-
unt the split of themicro-scale virtual strain action, themicro-
scale virtual power can be expressed as P int

μ = ∫
Ωμ

σμ ·
∇S
y ûμ dΩμ = ∫

Ωμ
σμ · (ε̂M |x + ∇S

y
ˆ̃uμ) dΩμ = ∫

Ωμ
σμ ·

ε̂M |x dΩμ + ∫
Ωμ

σμ · ∇S
y

ˆ̃uμ dΩμ. ��

The external micro-scale virtual power is defined as a
linear functional on the subspace Varuμ :

Pext
μ

(
ûμ

) = 〈 fμ, ûμ〉U ′
μ×Uμ

ûμ ∈ Varuμ. (83)

From (81) and the definition of the adjoint operator D′
μ we

can fully characterize the nature of the admissible generalized
micro-scale external force fμ ∈ U ′

μ. Indeed, we have

〈Σμ,Dμ(ûμ)〉E ′
μ×Eμ

= 〈D′
μ(Σμ), ûμ〉U ′

μ×Uμ

= 〈 fμ,J U
μ (ûM |x) + J E

μ (D̂M |x) + ˆ̃uμ〉U ′
μ×Uμ

ûμ ∈ Varuμ , (84)

that is,

Pext
μ (ûM |x, D̂M |x, ˆ̃uμ)

= 〈 fμ,J U
μ (ûM |x) + J E

μ (D̂M |x) + ˆ̃uμ〉U ′
μ×Uμ

ûM |x ∈ R̂
x
UM

, D̂M |x ∈ R̂
x
EM

, ˆ̃uμ ∈ Varũμ
. (85)

Again, note the contributions from kinematical entities
defined at the macro-scale and kinematical entities of the
micro-scale to the micro-scale external virtual power.

Classical multiscale solid mechanics The micro-scale ext-
ernal virtual power in this case reads Pext

μ = ∫
Ωμ

fμ ·
ûμ dΩμ = ∫

Ωμ
fμ · (ûM |x + ε̂M |x(y − yo) + ˆ̃uμ) dΩμ =

∫
Ωμ

fμ · ûM |x dΩμ + ∫
Ωμ

(fμ ⊗S (y − yo)) · ε̂M |x dΩμ

+ ∫
Ωμ

fμ · ˆ̃uμ dΩμ. ��

123



Variational Foundations and Generalized Unified Theory 211

Fig. 4 Method of Multiscale
Virtual Power. Basic sets and
operations at the micro-scale
level

With the above at hand, we can now define the total micro-
scale virtual power,

P tot
μ (ûM |x, D̂M |x, ˆ̃uμ)

= P int
μ (D̂M |x,Dμ( ˆ̃uμ)) − Pext

μ (ûM |x, D̂M |x, ˆ̃uμ)

ûM |x ∈ R̂
x
UM

, D̂M |x ∈ R̂
x
EM

, ˆ̃uμ ∈ Varũμ
, (86)

given as a sum of (linear) functionals in Varuμ .
The schematic diagram of Fig. 4 illustrates the basic con-

cepts of the variational formulation at the micro-level, which
are fundamental within the proposed unified variational mul-
tiscale formulation.

The contribution of the macro-scale virtual quantities,
ûM |x and D̂M |x, to the micro-scale total virtual power (86)
has fundamental implications to the present theory. To see
this, we begin by evaluating P tot

μ for ˆ̃uμ = 0,

P tot
μ (ûM |x, D̂M |x, 0)

= P int
μ (D̂M |x, 0) − Pext

μ (ûM |x, D̂M |x, 0)
= 〈Σμ,Dμ(J E

μ (D̂M |x))〉E ′
μ×Eμ

−〈 fμ,J U
μ (ûM |x) + J E

μ (D̂M |x)〉U ′
μ×Uμ

= 〈(D′
μΣμ − fμ),J E

μ (D̂M |x)〉U ′
μ×Uμ

−〈 fμ,J U
μ (ûM |x)〉U ′

μ×Uμ
. (87)

From this expression, dual (stress- and force-like) entities,
which we shall denote Σ

μ
M |x ∈ (Rx

EM
)′ and f μ

M |x ∈ (Rx
UM

)′,
associated respectively with the macro-scale virtual actions
D̂M |x and ûM |x, can be promptly identified as follows. By
making use of the adjoint operators (J E

μ )′ : U ′
μ → (Rx

EM
)′

and (J U
μ )′ : U ′

μ → (Rx
UM

)′, from (87) we obtain

Σ
μ
M |x • D̂M |x =

mM∑

k=1

ωk (Σ
μ
M |x)k · (D̂M |x)k

:= 〈(D′
μΣμ − fμ),J E

μ (D̂M |x)〉U ′
μ×Uμ

= 〈(J E
μ )′(D′

μΣμ− fμ), D̂M |x〉(Rx
EM )′×R

x
EM

,

(88)

f μ
M |x • ûM |x =

nM∑

k=1

γk ( f μ
M |x)k · (ûM |x)k

:= 〈 fμ,J U
μ (ûM |x)〉U ′

μ×Uμ

= 〈(J U
μ )′ fμ, ûM |x〉(Rx

UM
)′×R

x
UM

. (89)

Then, by substituting expressions (88) and (89) into (87) we
have

P tot
μ (ûM |x, D̂M |x, 0)
= Σ

μ
M |x • D̂M |x − f μ

M |x • ûM |x. (90)

In summary, bymeans of duality considerations it has been
shown in the above that as a result of the kinematical admissi-
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bility link postulated between the macro- and micro-scales,
the micro-scale total virtual power has contributions from
the macro-scale virtual actions. Comparison between (90)
and (80) suggests that a further link—between the macro-
and micro-scale virtual powers—can be postulated. This is
addressed in the following.

3.3 Principle of Multiscale Virtual Power

The Principle of Multiscale Virtual Power, stated in this sec-
tion, establishes a consistency link between the total macro-
and micro-scale virtual powers. This principle lies at the
heart of the Method of Multiscale Virtual Power proposed
in this paper and, as we shall see, yields the following
consequences:

– Micro-scale variational equilibrium equation (nμ varia-
tional equations);

– Homogenization formulae for the macro-scale internal
generalized stresses (mM homogenization formulae);
and

– Homogenization formulae for the macro-scale external
generalized forces (nM homogenization formulae).

The principle itself can be regarded as a variational statement
of an extended version of the well-known Hill-Mandel Prin-
ciple of Macrohomogeneity [45,73]. It is postulated in the
following.

Principle of Multiscale Virtual Power The total macro-
scale virtual power at a point x must be equal to the total
micro-scale virtual power at the corresponding RVE for
all kinematically admissible macro- and micro-scale virtual
actions. That is,

P tot
M,x(ûM |x, D̂M |x) = P tot

μ (ûM |x, D̂M |x, ˆ̃uμ)

∀(ûM |x, D̂M |x, ˆ̃uμ) kinematically admissible, (91)

or, equivalently, in a more explicit form

ΣM |x • D̂M |x − fM |x • ûM |x
= 〈Σμ,Dμ(J E

μ (D̂M |x) + ˆ̃uμ)〉E ′
μ×Eμ

−〈 fμ,J U
μ (ûM |x) + J E

μ (D̂M |x) + ˆ̃uμ〉U ′
μ×Uμ

∀(ûM |x, D̂M |x, ˆ̃uμ) ∈ R̂
x
UM

× R̂
x
EM

× Varũμ
. (92)

At variance with the classical Hill-Mandel Principle,
where only internal powers are considered, the PMVP
implies a balance of both the internal and external virtual
powers at a point x of the macro-scale with the total virtual
power of the associated RVE.

Classical multiscale solid mechanics ThePrinciple ofMul-
tiscale Virtual Power in this case states that: Themacro-scale

stress and body force (σ M |x, fM |x) and their micro-scale
counterpart fields (σμ, fμ) satisfy the Principle ofMultiscale
Virtual Power if and only if the following variational equation
holds: σ M |x • ε̂M |x − fM |x • ûM |x = ∫

Ωμ
σμ · ε̂M |x dΩμ +

∫
Ωμ

σμ ·∇S
y

ˆ̃uμ dΩμ −∫
Ωμ

fμ · ûM |x dΩμ −∫
Ωμ

(fμ ⊗S (y−
yo)) · ε̂M |x dΩμ − ∫

Ωμ
fμ · ˆ̃uμ dΩμ ∀(ûM |x, ε̂M |x, ˆ̃uμ) ∈

R̂
x
UM

× R̂
x
EM

× Varũμ
. ��

Remark 16 The Principle of Multiscale Virtual Power will
also provide the definition of the scalars ωk, k = 1, . . . ,mM

and γk, k = 1, . . . , nM , which appear in the left hand side of
(92) (following the identities (76) and (79)).

3.4 Dual Homogenization Operators and Micro-scale
Equilibrium

The dual homogenization operators (for themacro-scale gen-
eralized stress- and force-like quantities) and the micro-scale
equilibrium equations are derived here as natural conse-
quences of the Principle of Multiscale Virtual Power. As we
shall see, they are the Euler-Lagrange equations associated
with the variational statement (92).

3.4.1 Micro-scale Equilibrium

By setting D̂M |x = 0 and ûM |x = 0 in (92), we obtain the
variational form of the micro-scale equilibrium equation:

〈Σμ,Dμ( ˆ̃uμ)〉E ′
μ×Eμ

− 〈 fμ, ˆ̃uμ〉U ′
μ×Uμ

= 0

∀ ˆ̃uμ ∈ Varũμ
. (93)

Obviously, this equation has the same format as the stan-
dard equilibrium of a general physical system written as the
Principle of Virtual Power, here applied to an RVE with the
corresponding generalized applied external forces and kine-
matical constraints embedded in the definition of Varũμ

.

Classical multiscale solid mechanics In this case,whenwe
choose ûM |x = 0 and ε̂M |x = 0 in the corresponding PMVP,
the RVE equilibrium is obtained as the following variational
equation:

∫
Ωμ

σμ ·∇S
y

ˆ̃uμ dΩμ−∫
Ωμ

fμ · ˆ̃uμ dΩμ = 0 ∀ ˆ̃uμ ∈
Varũμ

. ��

By making use of the adjoint operator D′
μ in (93), we

obtain the alternative form

〈D′
μ(Σμ) − fμ, ˆ̃uμ〉U ′

μ×Uμ
= 0 ∀ ˆ̃uμ ∈ Varũμ

, (94)

or, equivalently,

D′
μ(Σμ) − fμ ∈ (Varũμ

)⊥ ⊂ Uμ
′. (95)
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Further, we recall that fμ must satisfy (25), i.e.

〈 fμ, ˆ̃uμ〉U ′
μ×Uμ

= 0 ∀ ˆ̃uμ ∈ Varũμ

⋂
N(Dμ), (96)

which implies

fμ ∈ (Varũμ

⋂
N(Dμ))⊥, (97)

where (·)⊥ denotes the orthogonal complement of (·). That is,
the system fμ of generalized forces is orthogonal to micro-
scale rigid kinematically admissible virtual fluctuations of
the RVE.

Classical multiscale solid mechanics If we decompose fμ
= f̄μ + f̃μ, where f̄μ = 1

|Ωμ|
∫
Ωμ

fμ dΩμ, and f̃μ = fμ − f̄μ,

we have that
∫
Ωμ

fμ· ˆ̃uμ dΩμ = ∫
Ωμ

f̃μ· ˆ̃uμ dΩμ. Hence, only

fluctuations of the body force, f̃μ, which are not orthogonal
toVarũμ

, play a role in the micro-scale equilibrium problem.
��

Finally, we remark that themicro-scale equilibrium prob-
lem is completely defined by the variational equation (93)
once the external load fμ is known (a given datum) and a
constitutive law Σμ = Σμ(utμ), expressing the stress Σμ as
a function of the history utμ of the field uμ, is assigned to each
point of the RVE. The problem is stated in the following.

Problem 2 (Micro-scale equilibrium) For a given consti-
tutive law Σμ = Σμ(utμ), a given history utM |x and Dt

M |x,
of macro-scale generalized displacement and strain actions,
and a given history of micro-scale admissible generalized
external force, f tμ, find the history utμ ∈ Kinuμ of kinemati-
cally admissible generalized micro-scale displacements such
that

〈Σμ(uτ
μ),Dμ(ûμ)〉E ′×E = 〈 f (τ ), ûμ〉U ′×U

∀ûμ ∈ Varuμ,∀τ ∈ [0, t]. (98)

3.4.2 Generalized Stress Homogenization Formulae

Now, we set ûM |x = 0 and ˆ̃uμ = 0 in (92) (see also (88))
and obtain

ΣM |x • D̂M |x = 〈Σμ,Dμ(J E
μ (D̂M |x))〉E ′

μ×Eμ

−〈 fμ,J E
μ (D̂M |x)〉U ′

μ×Uμ

= 〈D′
μΣμ − fμ,J E

μ (D̂M |x)〉U ′
μ×Uμ

= 〈(J E
μ )′(D′

μΣμ − fμ), D̂M |x〉(Rx
EM )′×R

x
EM

= Σ
μ
M |x • D̂M |x ∀D̂M |x ∈ R̂

x
EM

. (99)

From the above, we can promptly identify the general (linear)
ΣM-homogenization operator as

HΣ : U ′
μ → (Rx

EM
)′

(D′
μΣμ − fμ) �→ Σ

μ
M |x = HΣ(D′

μΣμ − fμ), (100)

such that

〈(J E
μ )′(D′

μΣμ − fμ), D̂M |x〉(Rx
EM )′×R

x
EM

= HΣ(D′
μΣμ − fμ) • D̂M |x ∀D̂M |x ∈ R̂

x
EM

. (101)

From (99) and the above definition, we have

(ΣM |x − HΣ(D′
μΣμ − fμ)) • D̂M |x = 0

∀D̂M |x ∈ R̂
x
EM

. (102)

This gives the homogenization formula for the macro-scale
generalized stress:

ΣM |x − HΣ(D′
μΣμ − fμ) ∈ (R̂x

EM
)⊥ ⊆ (Rx

EM
)′. (103)

Remark 17 The ΣM -homogenization operator and the cor-
responding homogenization formula for stress-like quantities
is consistently derived here as a consequence of the proposed
PMVP. This is in contrast with most of the existing literature
in the field, where stress homogenization formulae are pos-
tulated a priori instead.

Classical multiscale solid mechanics In this case, by set-
ting ûM |x = 0 and ˆ̃uμ = 0 in the PMVP, we obtain:
σ M |x • ε̂M |x = ∫

Ωμ
σμ · ε̂M |x dΩμ − ∫

Ωμ
(fμ ⊗S (y− yo)) ·

ε̂M |x dΩμ ∀ε̂M |x ∈ R̂
x
EM

. The homogenization formula is
obtained by first identifyingσ M |x•ε̂M |x = |Ωμ| σ M |x·ε̂M |x,
which results inσ M |x = 1

|Ωμ|
∫
Ωμ

σμ−(fμ⊗S(y−yo)) dΩμ.
In this case, we have identified ω1 = |Ωμ| so that the stress
homogenization is physically consistent. Note that this is the
ΣM-homogenization formula that naturally results from the
formulation. This was found using a shortcut. To see this
the long way, we consider the operator Dμ = ∇S

y explic-

itly as follows: σ M |x • ε̂M |x = ∫
Ωμ

σμ · ∇S
y (ε̂M |x(y −

yo)) dΩμ −∫
Ωμ

(fμ ⊗S (y−yo)) · ε̂M |x dΩμ ∀ε̂M |x ∈ R̂
x
EM

.
Then, integration by parts of the first term on the right hand
side gives σ M |x • ε̂M |x = ∫

Ωμ
[− divy σμ ⊗S (y − yo)] ·

ε̂M |x dΩμ+∫
Γμ

[σμnμ⊗S (y−yo)]· ε̂M |x dΓμ−∫
Ωμ

[fμ⊗S

(y − yo)] · ε̂M |x dΩμ ∀ε̂M |x ∈ R̂
x
EM

. Now, by using the
strong form of the micro-scale equilibrium, we have that
σ M |x•ε̂M |x = ( ∫

Γμ
σμnμ⊗S (y−yo) dΓμ

)·ε̂M |x ∀ε̂M |x ∈
R̂
x
EM

. Then, by proceeding in the sameway as before, we con-
clude that the ΣM-homogenization formula reads σ M |x =
1

|Ωμ|
∫
Γμ

σμnμ ⊗S (y − yo) dΩμ. This form is completely
analogous to the previous one. The advantage of the latter
formula over the former is that the homogenized variable
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depends only on RVE boundary fields—something that has
been pointed out by Hill [45] as of fundamental practical
importance in RVE-based theories. However, note that the
former formula requires less regularity of the fields involved
and, as such, is better suited for problems tackled in weak
form at all levels. ��
Remark 18 According to expression (99), the coefficients
ωk , k = 1. . . . ,mM , appearing on its left hand side (refer
to (76)), are identified from the homogenization procedure
given by operator HΣ so as to render the homogenization
operation physically consistent (refer to the above example
of classical multiscale solid mechanics). In Sect. 6 this is
illustrated in further practical examples.

3.4.3 Generalized Force Homogenization Formulae

Now, we specialize (92) by choosing D̂M |x = 0 and ˆ̃uμ = 0
(see also (89)). This gives

fM |x • ûM |x = 〈 fμ,J U
μ (ûM |x)〉U ′

μ×Uμ

= 〈(J U
μ )′( fμ), ûM |x〉(Rx

UM
)′×R

x
UM

= f μ
M |x • ûM |x ∀ûM |x ∈ R̂

x
UM

. (104)

Similarly to the derivation of the stress homogenization oper-
ator, from the above variational equation we identify the fM-
homogenization operator,

H f : U ′
μ → (Rx

UM
)′

fμ �→ f μ
M |x = H f ( fμ), (105)

such that

〈(J U
μ )′( fμ), ûM |x〉(Rx

UM
)′×R

x
UM

= H f ( fμ) • ûM |x ∀ûM |x ∈ R̂
x
UM

. (106)

With the above defined H f , (104) gives

( fM |x − H f ( fμ)) • ûM |x = 0 ∀ûM |x ∈ R̂
x
UM

. (107)

Then, we arrive at the homogenization formula for the gen-
eralized macro-scale force:

fM |x − H f ( fμ) ∈ (R̂x
UM

)⊥ ⊆ (Rx
UM

)′. (108)

Classical multiscale solid mechanics Byconsidering ε̂M |x
= 0 and ˆ̃uμ = 0 in the corresponding PMVP, we get

fM |x • ûM |x = ∫
Ωμ

fμ · ûM |x dΩμ ∀ûM |x ∈ R̂
x
UM

. Here

we identify: fM |x • ûM |x = |Ωμ| fM |x · ûM |x, so that
we have fM |x = 1

|Ωμ|
∫
Ωμ

fμ dΩμ. This defines the fM-
homogenization operator. Note that γ1 has been identified
here as γ1 = |Ωμ| so as to guarantee the physical consis-
tency of the homogenization operation. ��

Remark 19 According to (104), the coefficients γk , k =
1. . . . , nM , taking part in its left hand side (refer to(79)), are
identified from the homogenization process defined by H f

so as to make the operation physically consistent (refer to
the above example on classical multiscale solid mechanics).
This will be further illustrated in other examples presented
in Sect. 6.

3.5 Summary and Discussion

In summary, we have established in the above a complete
variational theory of RVE-based multiscale modeling of
physical systems. Within the proposed theory, RVE-based
models are devised in a systematic way by means of well-
defined steps according to the proposedMethod ofMultiscale
Virtual Power.

Once the kinematics at both macro- and micro-scales
are established, and the link between kinematical variables
across the scales is defined, the nature of stress- and force-like
quantities at both scales is identified through mathematical
duality and themicro-scale equilibrium equation and homog-
enization relations for the stress- and force-like quantities are
univocally derived from the Principle of Multiscale Virtual
Power entirely by means of straightforward variational argu-
ments.

An interesting point to note, made clear when the theory
is presented within the proposed framework, is that the con-
cepts of internal and external virtual powers are not entirely
distinct from each other as in the conventional single-scale
theory. That is, in general, the macro-scale internal stress,
ΣM , which produces macro-scale internal virtual power, has
contributions from both the micro-scale internal stress Σμ

(that produces micro-scale internal virtual power), and the
micro-scale external force fμ (that produces externalmicro-
scale virtual power). The effects of Σμ and fμ on ΣM are
combined in a non-linear way, through the micro-scale equi-
librium problem defined by (91). These interactions alter the
standard notion of constitutiveness of the material behav-
ior in that external forces (e.g. micro-scale inertia forces
in dynamical problems) may contribute to the macro-scale
stress. However, one situation where the standard notion of
constitutiveness of the RVE-based model is retained is when
the physical transfer between scales involves only the bal-
ance of internal virtual power. That is, when only P int

M,x
and P int

μ are considered in the Principle of Multiscale Vir-
tual Power and the macro- and micro-scale external vir-
tual powers are disregarded. In this case, a purely consti-
tutive modeling framework is obtained. This is the case of
all multiscale models based on the Hill-Mandel Principle
of Macrohomogeneity [45,73]. The interesting aspect in this
case is that the generalizedmacro-scale stress,ΣM |x, derives
only from micro-scale constitutive and mechanical interac-
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tions, for which only the generalized micro-scale stress Σμ

is responsible. While fμ can exist, it is orthogonal to the
corresponding space of admissible virtual generalized dis-
placements and hence does not generate virtual power. That
is, fμ in this case is a reactive force to the kinematical con-
straints embedded in the definition of Varũμ

[112]. As such,
fμ cannot be arbitrarily modeled. This particular case will
be considered in detail in Sect. 4.

4 Multiscale Constitutive Modeling

Following the above discussion, we present here the spe-
cialization of the general MMVP to the case where only the
virtual powers of the macro- and micro-scale generalized
stresses are accounted for in the PMVP. The motivation to
present this specialization in detail is that the vast majority
of publications on multiscale modeling falls into this cate-
gory of RVE-based theories. For example, the classical RVE-
based theories in continuum solid mechanics do fall into this
category. In this case, the multiscale model defines a macro-
scale constitutive model where the macro-scale stress ΣM |x
is a function (implicitly defined bymeans of the operations of
kinematical insertion, micro-scale equilibrium solution and
stress homogenization) of the history Dt

M |x of the macro-
strain actions. That is, ΣM |x = ΣM |x(Dt

M |x).

4.1 On the Insertion Operators

As in the general case of Sect. 3, the insertion of elements
uM |x ∈ R

x
UM

into the micro-scale Uμ is performed by the

insertion operator J U
μ defined in (43).

For the present case, where external virtual powers play
no role, the insertion of elements DM |x ∈ R

x
EM

into the
micro-scale is understood to be directly performed into Eμ,
by means of the linear operator

Iμ = DμJ E
μ : R

x
EM

→ Eμ

DM |x �→ D̄μ = Iμ(DM |x) (109)

which is the composition DμJ E
μ of operators (defined by

(39) and (44), respectively), as highlighted in Remark 9 (see
(52)). The mapping of DM |x through Iμ may result in a non-
uniform field (dependent on y) in the micro-scale.

From the developments of Sect. 3 we observe that in the
present case micro-scale generalized strain actions are the
sumof amacro-scale contribution inserted through the opera-
tor Iμ and a strain action fluctuation field intrinsically related
to the kinematics and equilibrium of the micro-scale. That is,

Dμ = Iμ(DM |x) + Dμ(ũμ). (110)

Remark 20 The linearity of operator Iμ allows matrix the
representation

Iμ =

⎛

⎜
⎜
⎜
⎜
⎝

I11
μ I12

μ . . . I1mM
μ

I21
μ I22

μ . . . I2mM
μ

...
...

. . .
...

Imμ1
μ Imμ2

μ . . . ImμmM
μ

⎞

⎟
⎟
⎟
⎟
⎠

, (111)

where
⎛

⎜
⎜
⎜
⎜
⎝

I11
μ I12

μ . . . I1mM
μ

I21
μ I22

μ . . . I2mM
μ

...
...

. . .
...

Imμ1
μ Imμ2

μ . . . ImμmM
μ

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

D11
μ D12

μ . . . D1nμ
μ

D21
μ D22

μ . . . D2nμ
μ

...
...

. . .
...

Dmμ1
μ Dmμ2

μ . . . Dmμnμ
μ

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

J E
μ

11 J E
μ

12
. . . J E

μ

1mM

J E
μ

21 J E
μ

22
. . . J E

μ

2mM

...
...

. . .
...

J E
μ

nμ1 J E
μ

nμ2
. . . J E

μ

nμmM

⎞

⎟
⎟
⎟
⎟
⎠

. (112)

The concepts involved in thekinematical transitionbetween
scales (i.e. the kinematical admissibility concept) follow
those presented in the general context of Sect. 3.

4.2 Multiscale Duality

The internal virtual powers at macro- and micro-scales are
exactly as defined in Sect. 3.2. For the macro-scale we then
have

P int
M (DM (ûM )) = 〈ΣM ,DM (ûM )〉E ′

M×EM

ûM ∈ VaruM . (113)

At point x ∈ ΩM , we have

P int
M,x(D̂M |x) =

mM∑

k=1

ωk(ΣM |x)k · (D̂M |x)k = ΣM |x • D̂M |x

D̂M |x ∈ R̂
x
EM

. (114)

For the micro-scale, the internal virtual power is given by

P int
μ (D̂μ) = 〈Σμ, D̂μ〉E ′

μ×Eμ
D̂μ given by (111), (115)

or, equivalently, with a slight abuse of notation, we write

P int
μ (D̂M |x,Dμ( ˆ̃uμ)) = 〈Σμ, Iμ(D̂M |x) + Dμ( ˆ̃uμ)〉E ′

μ×Eμ

D̂M |x ∈ R̂
x
EM

, ˆ̃uμ ∈ Varũμ
. (116)

As in Sect. 3.2.2, we now set ˆ̃uμ = 0 in the above formula
to assess the contribution of the macro-scale quantity D̂M |x
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to the micro-scale internal virtual power. Then, we obtain

P int
μ (D̂M |x, 0) = 〈Σμ, Iμ(D̂M |x)〉E ′

μ×Eμ
. (117)

Further, by making use of the adjoint operator (Iμ)′ : E ′
μ →

(Rx
EM

)′ we obtain (see also (76))

Σ
μ
M |x • D̂M |x =

mM∑

k=1

ωk (Σ
μ
M |x)k · (D̂M |x)k

:= 〈Σμ, Iμ(D̂M |x)〉E ′
μ×Eμ

= 〈(Iμ)′(Σμ), D̂M |x〉(Rx
EM )′×R

x
EM

. (118)

Finally, by substituting (118) into (117) we arrive at the par-
ticularization of expression (90) for the purely constitutive
multiscale formulation, in which external forces play no role
in the scale transition,

P int
μ (D̂M |x, 0) = Σ

μ
M |x • D̂M |x. (119)

4.3 Principle of Constitutive Multiscale Virtual Power

In the present case we state a Principle of Constitutive Mul-
tiscale Virtual Power, whose consequences will be:

– Micro-scale variational equilibrium problem (nμ varia-
tional equations); and

– Homogenization formulae for the macro-scale internal
generalized stresses (mM homogenization formulae).

Principle of Constitutive Multiscale Virtual Power The
internal macro-scale virtual power at a point xmust be equal
to the internal micro-scale virtual power at the correspond-
ing RVE for all kinematically admissible macro- and micro-
scale virtual actions. That is,

P int
M,x(D̂M |x) = P int

μ (D̂M |x,Dμ( ˆ̃uμ))

∀(D̂M |x, ˆ̃uμ) kinematically admissible, (120)

or, equivalently, in a more explicit form,

ΣM |x • D̂M |x = 〈Σμ, Iμ(D̂M |x) + Dμ( ˆ̃uμ)〉E ′
μ×Eμ

∀(D̂M |x, ˆ̃uμ) ∈ R̂
x
EM

× Varũμ
. (121)

The above principle is a generalized form of the Hill-
Mandel Principle of Macro-Homogeneity which preserves
the idea that only internal virtual powers are to be balanced
in the scale transition.

Classical multiscale solid mechanics The PMVP in this
case is stated as follows: The macro-scale stress σ M |x and
the micro-scale stress field σμ satisfy the Principle of Mul-

tiscale Virtual Power if and only if the following variational
equationholds:σ M |x•ε̂M |x = ∫

Ωμ
σμ·ε̂M |x dΩμ+∫

Ωμ
σμ·

∇S
y

ˆ̃uμ dΩμ ∀(ε̂M |x, ˆ̃uμ) ∈ R̂
x
EM

× Varũμ
. This is the vari-

ational statement of the classical Hill-Mandel Principle for
RVE-basedmultiscale solid mechanics, widely invoked in the
current literature on the subject. ��

4.4 Stress Homogenization and Micro-scale Equilibrium

Analogously to Sect. 3.4, the stress homogenization relation
and themicro-scale equilibrium are derived here as the Euler-
Lagrange equations associated to the variational statement
(121).

4.4.1 Micro-scale Equilibrium

By setting, in particular, D̂M |x = 0 in (121), we obtain the
micro-scale variational equilibrium equation:

〈Σμ,Dμ( ˆ̃uμ)〉E ′
μ×Eμ

= 0 ∀ ˆ̃uμ ∈ Varũμ
. (122)

This equation is a particular case of (93) when fμ is orthog-
onal to the space Varũμ

. Equivalently, by using the adjoint
operator D′

μ we have

〈D′
μ(Σμ), ˆ̃uμ〉U ′

μ×Uμ
= 0 ∀ ˆ̃uμ ∈ Varũμ

, (123)

which implies

D′
μ

(
Σμ

) ∈ (
Varũμ

)⊥ ⊂ Uμ
′. (124)

The micro-scale external forces, fμ, can be identified from
the above as having the structure of D′

μ(Σμ), as usual. It
should be noted, however, that, in the present case, they must
be purely reactive forces (they do not generate virtual power)
as they are orthogonal to Varũμ

. That is,

〈 fμ, ˆ̃uμ〉U ′
μ×Uμ

= 0 ∀ ˆ̃uμ ∈ Varũμ
. (125)

Themicro-scale equilibriumproblem is completely defined
by the variational equation (122) once a constitutive law
Σμ = Σμ(utμ), expressing the generalizedmicro-scale stress
Σμ as a function of the history utμ of the field uμ, is assigned
to each point of the RVE. The problem is analogous to Prob-
lem 2.

4.4.2 Generalized Stress Homogenization Formula

If we choose ˆ̃uμ = 0 in (121), we obtain (see also (118))

ΣM |x • D̂M |x = 〈Σμ, Iμ(D̂M |x)〉E ′
μ×Eμ

= 〈(Iμ)′(Σμ), D̂M |x〉(Rx
EM )′×R

x
EM

= Σ
μ
M |x • D̂M |x ∀D̂M |x ∈ R̂

x
EM

. (126)
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The (linear) constitutive ΣM-homogenization operator is
identified from the above variational equation as

Hc
Σ : E ′

μ → (Rx
EM

)′

Σμ �→ Σ
μ
M |x = Hc

Σ(Σμ), (127)

such that

〈Hc
Σ(Σμ), D̂M |x〉(Rx

EM )′×R
x
EM

= Σ
μ
M |x • D̂M |x
∀D̂M |x ∈ R̂

x
EM

. (128)

With the above defined operatorHc
Σ , equation (126) gives

(ΣM |x − Hc
Σ(Σμ)) • D̂M |x = 0 ∀D̂M |x ∈ R̂

x
EM

. (129)

This yields the homogenization formula for the macro-scale
generalized stress,

ΣM |x − Hc
Σ(Σμ) ∈ (R̂x

EM
)⊥ ⊆ (Rx

EM
)′. (130)

Remark 21 When the given micro-scale constitutive func-
tion is of the type Σμ(y) = Σμ(Dt

μ(y))—a standard local
constitutive law (in the strict sense of the word), where
the stress depends solely on the local history of the gen-
eralized strain actions—the multiscale model above defines
a macro-scale constitutive function of the same type, i.e.
ΣM |x = ΣM |x(Dt

M |x). That this is indeed true can be estab-
lished as follows. According to (110), micro-scale strain
actions are a sum of a contribution from the macro-scale
strain actions (inserted by the operator Iμ) and a contribu-
tion from the micro-scale generalized displacement fluctu-
ation ũμ (the solution of the micro-scale equilibrium prob-
lem). Once the micro-equilibrium problem is solved (for the
history utμ), with the micro-scale stress field delivered by
the given micro-scale constitutive equation, the macro-scale
stress ΣM |x is obtained by means of the homogenization
operation (130).

5 Multiscale Tangent Constitutive Operators

The linearization of non-linear problems plays an impor-
tant role both in theoretical and computational continuum
mechanics. This issue is particulary relevant in non-linear
solid mechanics [74]. In the theoretical context, lineariza-
tion can be essential in the determination of crucial prop-
erties, such as the stability of solutions, for instance. In
the computational setting, linearization becomes especially
important in the solution of approximate (discretized) non-
linear problems—typically undertaken by iterative numeri-
cal methods relying on the sequential solution of linearized
problems. In particular, the widely used Newton-Raphson
iterative algorithm, whose key advantage is the quadratic rate

of asymptotic convergence, requires the exact linearization
of the problem at each iteration.

Our main concern here is the derivation of an exact canon-
ical form for the constitutive tangent operators arising inmul-
tiscale theories of the type discussed in Sect. 4, i.e. theories
classed here as purely constitutive, forwhich only the internal
virtual powers play a role in the scale transition.More specif-
ically, the formulae derived here will be restricted to the case
alluded in Remark 21, where themicro-scale constitutive law
is such that the micro-scale generalized stresses at each point
of the RVE are functions of the history of the corresponding
generalized strain actions at that point. The tangent operators
will be derived by consistently linearizing the corresponding
problems in the continuum setting, i.e. before any temporal
or spatial discretization is introduced. The specific format
taken by the tangent operators under different discretization
schemes can be determined by simply introducing the rele-
vant numerical aproximations into the continuum canonical
expressions.

Firstly, let us briefly review the notion of tangent opera-
tor. To this end, consider a generic functional F which, for
example, depends on a field D and consider the perturbation

Dε = D + ε ΔD, (131)

given by a scalar factor ε, in the direction of an admissible
perturbation ΔD. Then, for sufficiently smooth functionals,
the value of F at Dε can be expressed as

F(Dε) = F(D) + ε DF(D)ΔD + o(ε), (132)

where

DF(D)ΔD ≡ d

dε
F(Dε)

∣
∣
∣
∣
ε=0

, (133)

denotes the directional derivative of the functional F at D in
the direction of ΔD and o(·) denotes a term such that, for
any scalar a,

lim
a→0

o(a)

a
= 0. (134)

The first two terms on the right hand side of (132) define the
linearizationof functionalF atD in the directionofΔD. If the
representation (132) is valid for any ΔD, then the functional
F is said to be differentiable at D and the operatorDF defined
by (133) is the gradient—or tangent operator—of F at D.

5.1 Homogenized Macro-scale Constitutive Functional

To start with let us recall that the generalized strain actions
Dμ are related to macro-scale generalized strain actions
DM |x and micro-scale generalized displacement fields uμ
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by means of (110). Also, in the present case (alluded to in
Remark 21), we shall limit ourselves to local micro-scale
constitutive descriptions, represented by constitutive func-
tions Fμ such that

Σμ(y) = Fμ(Dt
μ(y)), (135)

or, in view of (110), with an obvious notation,

Σμ = Fμ(Iμ(Dt
M |x) + D(ũtμ)). (136)

With the above considerations, the micro-scale equilib-
rium problem (Problem 2), reduces in the present case to the
following: Given a constitutive function Fμ, of the above
type, and a history Dt

M |x of the macro-scale generalized
strain actions at point x, find the history ũtμ ∈ Kinũμ

of kine-
matically admissible micro-scale generalized displacement
fluctuations such that

〈Fμ(Iμ(Dτ
M |x) + D(ũτ

μ)),Dμ( ˆ̃uμ)〉E ′
μ×Eμ

= 0

∀ ˆ̃uμ ∈Varũμ
,∀τ ∈ [0, t]. (137)

Clearly, the solution of the above problem defines a mapping
between histories of generalized macro-scale point-valued
strain actions Dt

M |x and histories ũtμ of generalized micro-
scale displacement fluctuations. This will be represented by
a (generally non-linear) operator, Cμ, i.e.

ũtμ = Cμ(Iμ(Dt
M |x)). (138)

By replacing this definition into (136), we have

Σμ = Fμ(Iμ(Dt
M |x) + Dμ(Cμ(Iμ(Dt

M |x)))). (139)

Further, by taking into account the generalized stress homog-
enization operator Hc

Σ introduced in (127), we obtain

Σ
μ
M |x = Hc

Σ(Fμ(Iμ(Dt
M |x) + Dμ(Cμ(Iμ(Dt

M |x))))
=: Fhom(Dt

M |x), (140)

where we have defined the homogenized constitutive func-
tional, Fhom , that maps the history of the macro-scale gener-
alized strain actions at point x into Σ

μ
M |x.

5.2 Homogenized Macro-scale Constitutive Tangent

The homogenized (macro-scale) constitutive tangent opera-
tor is a tangent operator associated with the functional Fhom .
To derive it, we first apply the directional derivative formula
(133) to (140), noting that, except forFμ andCμ, all operators

involved in the definition of Fhom are linear. This gives,

DFhom (
Dt

M |x
) [ΔDM |x]

= d

dε
Fhom(Dt

M |x + εΔDM |x)
∣
∣
∣
∣
ε=0

= Hc
Σ {DFμ(Dt

μ)(Iμ(ΔDM |x)
+Dμ(DCμ(Iμ(Dt

M |x))Iμ(ΔDM |x)))}, (141)

or, due to the linearity of all operators involved in the above
linearized expression,

DFhom (
Dt

M |x
) [ΔDM |x]

= Hc
Σ

{
DFμ(Dt

μ)Iμ(ΔDM |x)
}

+Hc
Σ

{
DFμ(Dt

μ)Dμ(DCμ(Iμ(Dt
M |x))Iμ(ΔDM |x))

}
.

(142)

The first term on the right hand side of the above expres-
sion is the contribution to the directional derivative when
ũμ is held fixed. This corresponds to the linearization of the
macro-scale generalized stress response under the assump-
tion of generalized Taylor kinematical constraint (referred to
in Remark 14). This motivates the following definition:

DFTaylor (Dt
M |x

) [ΔDM |x]
= Hc

Σ {DFμ(Dt
μ)Iμ(ΔDM |x)}. (143)

With this notation we re-write expression (142) as

DFhom (
Dt

M |x
) [ΔDM |x]

= DFTaylor (Dt
M |x

) [ΔDM |x] + L
(
Dt

M |x
) [ΔDM |x],

(144)

where L(Dt
M |x) is the linear operator defined by

L
(
Dt

M |x
) [ΔDM |x]

= Hc
Σ

{
DFμ(Dt

μ)Dμ(DCμ(Iμ(Dt
M |x))Iμ(ΔDM |x))

}
.

(145)

This term is the contribution to the directional derivative
stemming from the linearization of the (generally non-linear)
operator Cμ, defined by (138) and associated with the solu-
tion of the (generally non-linear) variational equation (137).
Further insight into this contribution can be gained by look-
ing into the linearization of (137) about an RVE equilib-
rium state with given macro-scale generalized strain actions
history Dt

M |x. The linearized problem reads: Given a field
ΔDM |x, find the field Δũμ ∈ Varũμ

that solves the follow-
ing linear variational equation:

〈DFμ(Dt
μ)Dμ(Δũμ),Dμ( ˆ̃uμ)〉E ′

μ×Eμ

= −〈DFμ

(
Dt

μ

) Iμ(ΔDM |x),Dμ( ˆ̃uμ)〉E ′
μ×Eμ

∀ ˆ̃uμ ∈ Varũμ
. (146)
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The above equation defines the linear (tangent) operator
DCμ(Dt

M |x) associated to the operator introduced in equa-
tion (138). Clearly,DCμ(Dt

M |x) also depends on the choice
of the space Varũμ

, i.e. on the chosen kinematical constraints
imposed on the RVE-based model. In the case of the gen-
eralized Taylor constraint (ũμ ≡ 0), the tangent operator
DCμ(Dt

M |x) is the null operator. Moreover, the above equa-
tion has an appealing interpretation. In fact, its right hand
side can be seen as a virtual power associated to a reactive
body force field brμ defined by

〈brμ, ˆ̃uμ〉U ′
μ×Uμ

= −〈D′
μDFμ(Dt

μ)Iμ(ΔDM |x), ˆ̃uμ〉U ′
μ×Uμ

∀ ˆ̃uμ ∈ Varũμ
, (147)

which would result if the RVE (with linearized constitu-
tive equation) were subjected to a prescribed generalized
strain action Iμ(ΔDM |x).With use of a generalized tensorial
canonical basis Ei , i = 1, . . . ,mM , of R

x
EM

, ΔDM |x can be
expressed as

ΔDM |x = (ΔDM |x)i Ei , (148)

with implied summation on the repeated index. Then, the
solution Δũμ of the linear variational equation (146) can be
expressed as

Δũμ = (ΔDM |x)iΔũiμ, (149)

where Δũiμ, here referred to as tangential generalized dis-
placement fluctuations, are the solutions of the linear varia-
tional problems

〈DFμ(Dt
μ)Dμ(Δũiμ),Dμ( ˆ̃uμ)〉E ′

μ×Eμ

= −〈DFμ(Dt
μ)Iμ(Ei ),Dμ( ˆ̃uμ)〉E ′

μ×Eμ

∀ ˆ̃uμ ∈ Varũμ
, (150)

for i = 1, . . . ,mM .
Now, note that the linearization of (138) gives

Δũμ = DCμ

(Iμ

(
Dt

M |x
)) Iμ(ΔDM |x). (151)

Then, with the solutions of (150) at hand, the contribu-
tion L(Dt

M |x)[ΔDM |x] to (144) can now be easily evaluated
through the expression

L
(
Dt

M |x
) [ΔDM |x] = Hc

Σ

{
DFμ

(
Dt

μ

)Dμ(Δũμ)
}
, (152)

with Δũμ given by (149). The linearized operator DFhom

can be assembled according to (144).
Finally, by linearizing (129) we find that the homogenized

tangent constitutive operator at the macro-scale point x, is
the operator DΣM |x that satisfies

(DΣM |x − DFhom (
Dt

M |x
)
)[ΔDM |x] • D̂M |x = 0

∀ΔDM |x, D̂M |x ∈ R̂
x
EM

. (153)

Remark 22 The derivation of the tangent operator has been
limited here to what we refer to as the purely constitutive
case, i.e. when the macro-scale generalized stress response
functional obeys a standard local constitutive law. This has
beenmotivated by the fact that the vast majority ofmultiscale
theories reported in the literature falls into this category. We
remark, however, that the derivation of more general tangent
stress-response operators, within the broader setting of the
theory proposed in Sect. 3, can be carried out by following
the same steps.

6 Applications

In this section, the Method of Multiscale Virtual Power is
applied to formulate a wide range of multiscale models. In
this context, some existing models already reported in the
literature are cast within the proposed framework and new
multiscale models, incorporating more complex phenomena,
are derived for the first time. Our main aim here is to demon-
strate by means of practical examples that the methodology
proposed in the present paper offers indeed a very robust the-
oretical framework whereby existing multiscale models can
be rigorously justified and newmodels can be systematically
devised in a clear manner. In particular, it becomes obvious
in the examples presented here that RVE boundary condi-
tions as well as the dual homogenization operators (for the
stress- and force-like quantities)—issues that may easily lead
to theoretical inconsistencies if not addressed properly—can
be derived in a natural way as a result of duality consider-
ations and the Principle of Multiscale Virtual Power. Each
of the multiscale models is discussed in an individual sub-
section and models are derived by following identical steps:
We start with a brief description of the underlying micro-
and macro-scale kinematics, followed by the definition of
kinematical admissibility and application of the Principle of
Multiscale Virtual Power.

At last, themathematical setting employed in the presenta-
tion of themechanicalmodels throughout this section follows
the standard choice of Sobolev function spaces.

6.1 Classical Finite Strain Solid Mechanics with Dynamic
Effects

This section derives a multiscale model of a classical solid
undergoing finite straining, subjected to dynamic forces.
At variance with the vast majority of published articles
on multiscale solid mechanics, we shall consider here the
presence of dynamic forces at the micro-scale and their
link to their macro-scale counterpart (assumed to share the
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same time scale). In the context of the framework proposed
in this paper, this will require that the virtual power of
dynamic forces at bothmacro- andmicro-scales be accounted
for in the definition of the Principle of Multiscale Virtual
Power.

The model will be formulated in terms of the reference
configurations (taken as the initial configurations) both at
macro- and micro-scales. To start with, let the open subset
ΩM ⊂ R

3 be the reference domain occupied by the macro-
scale solid body, with smooth boundaryΓM and outward unit
boundary normal NM . Points of the body will be described
by their reference coordinates X. The set of generalized dis-
placements in the present case contains only the displacement
vector field: uM = UM . The space of generalized displace-
ments in this case is UM = H1(ΩM ). The strain action oper-
ator here is the reference gradient operator, DM (·) = ∇X(·),
so that the generalized strain action is the displacement gra-
dient, that is, DM = GM (UM ) = ∇XUM . Hence, the space
of generalized strain actions reads EM = L2(ΩM ). In this
case, we have nM = 1 (RM = 3) and mM = 1 (SM = 9).

At the micro-scale the finite strain regime also holds, and
the RVE domain is Ωμ ⊂ R

3, with smooth boundary Γμ

(outward unit normal Nμ), and coordinates Y. The general-
ized displacements are the micro-scale displacement vector
field uμ = Uμ = Ūμ + Ũμ. The corresponding function
space is Uμ = H1(Ωμ). Analogously to the macro-scale we
have Dμ(·) = ∇Y(·), so that Dμ = Gμ(Uμ) = ∇YUμ,
and Gμ ∈ Eμ = L2(Ωμ). The strain action and displace-
ment are also defined over the entire RVE domain so that
nμ = 1 (Rμ = 3) and mμ = 1 (Sμ = 9).

The space of point-valued macro-scale displacements is
given by R

X
UM

= {W ∈ R
3, W = UM |X, UM ∈ UM },

and the space of point-valued macro-scale strain actions is
R
X
EM

= {H ∈ R
3×3, H = GM |X, GM ∈ EM }. In this case

we have ̂
R
X
UM

= R
X
UM

and ̂
R
X
EM

= R
X
EM

.
The displacement insertion operator here is defined as

J U
μ (UM |X) = UM |X, (154)

while the macro-scale strain action is inserted into the micro-
scale according to

J E
μ (GM |X) = GM |X(Y − Yo), (155)

with Yo the geometrical center of the RVE, i.e. Yo =
1

Ωμ

∫
Ωμ

YΩμ. Having defined the above kinematical inser-
tion operations, we then have for the micro-scale displace-
ment field:

Uμ = UM |x + GM |X(Y − Yo) + Ũμ. (156)

Since Dμ(J U
μ (UM |X)) = ∇YUM |x = 0, it follows that

Gμ = GM |X + ∇YŨμ. (157)

In addition, we have trivially,

Dμ(J E
μ (GM |X)) = GM |X. (158)

Wenowproceed to postulate the kinematical homogeniza-
tion operators. For the displacement, we define

HU
μ (Uμ) = 1

|Ωμ|
∫

Ωμ

Uμ dΩμ, (159)

and, for the strain action,

HE
μ(Gμ) = 1

|Ωμ|
∫

Ωμ

Gμ dΩμ. (160)

Note that, by construction of the above operators, the prin-
ciple of conservation of macro-scale displacements (59) is
automatically satisfied, that is, we have

HU
μ (J U

μ (UM |X))

= 1

|Ωμ|
∫

Ωμ

J U
μ (UM |X) dΩμ = UM |X. (161)

In order to define kinematical admissibility in the present
case, we begin by specializing (61) with the above operators.
Then, a micro-scale displacement field is said to be admissi-
ble if

1

|Ωμ|
∫

Ωμ

Uμ dΩμ = 1

|Ωμ|
∫

Ωμ

J U
μ (UM |X) dΩμ. (162)

Further, by observing (156), the above definition of J U
μ and

the fact that

1

|Ωμ|
∫

Ωμ

GM |X(Y − Yo) dΩμ = 0, (163)

we find that kinematically admissible micro-scale displace-
ment fields must satisfy

1

|Ωμ|
∫

Ωμ

Ũμ dΩμ = 0. (164)

Theprinciple of conservation ofmacro-scale strain actions
(60) is, in turn, guaranteed here by the definition of the above
strain action insertion and homogenization operators. Indeed,
we have

HE
μ(Dμ(J E

μ (GM |X)))

= 1

|Ωμ|
∫

Ωμ

Dμ(J E
μ (GM |X)) dΩμ = GM |X. (165)
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The strain action is linked between scales by considering (see
(62))

1

|Ωμ|
∫

Ωμ

Gμ dΩμ

= 1

|Ωμ|
∫

Ωμ

Dμ(J E
μ (GM |X)) dΩμ, (166)

which is met by imposing

1

|Ωμ|
∫

Ωμ

∇YŨμ dΩμ = 0, (167)

or, after integrating by parts,

1

|Ωμ|
∫

Γμ

Ũμ ⊗ Nμ dΓμ = 0. (168)

Hence, the space of kinematically admissible displacement
fields at micro scale is defined as

KinŨμ
= VarŨμ

=
{

Ũμ ∈ H1(Ωμ),

∫

Ωμ

Ũμ dΩμ = 0,

∫

Γμ

Ũμ ⊗ Nμ dΓμ = 0
}

. (169)

The internal virtual power at macro scale is the product
between the virtual strain rate and the first Piola-Kirchhoff
stress tensor, that is P int

M = ∫
ΩM

PM · ∇XÛM dΩM . The
internal power at point X (to be later linked with an RVE)
is P int

M,X = PM |X • ĜM |X, still to be defined. The external

virtual power is Pext
M = ∫

ΩM
fM · ÛM dΩM , and at point X,

Pext
M,X = fM |X • ÛM |X. We note that fM can be formed by a

passive external load f pM (e.g. due to the gravity) and/or by
an active dynamic load faM . We can write fM = f pM − faM .

In turn, the internal virtual power at micro scale results

P int
μ =

∫

Ωμ

Pμ · ∇YÛμ dΩμ

=
∫

Ωμ

Pμ · (ĜM |X + ∇Y
ˆ̃Uμ) dΩμ

=
∫

Ωμ

Pμ · ĜM |X dΩμ +
∫

Ωμ

Pμ · ∇Y
ˆ̃Uμ dΩμ. (170)

Dynamic phenomena is considered through the classical
characterization of acceleration forces faμ = ρμAμ. Then,
we can write

faμ = ρμAμ = ρμÜμ

= ρμ(ÜM |X + F̈M |X(Y − Yo) + ¨̃Uμ). (171)

Passive forces are also considered in the model and denoted
by f pμ . Thus, the external virtual power can be expressed as

Pext
μ =

∫

Ωμ

f pμ · Ûμ dΩμ −
∫

Ωμ

ρμÜμ · Ûμ dΩμ

=
∫

Ωμ

f pμ · (ÛM |X + ĜM |X(Y − Yo) + ˆ̃Uμ) dΩμ

−
∫

Ωμ

ρμÜμ · (ÛM |X + ĜM |X(Y−Yo) + ˆ̃Uμ) dΩμ

=
∫

Ωμ

f pμ · ÛM |X dΩμ

+
∫

Ωμ

(f pμ ⊗ (Y − Yo)) · ĜM |X dΩμ

+
∫

Ωμ

f pμ · ˆ̃Uμ dΩμ −
∫

Ωμ

ρμÜμ · ÛM |X dΩμ

−
∫

Ωμ

ρμ(Üμ ⊗ (Y − Yo)) · ĜM |X dΩμ

−
∫

Ωμ

ρμÜμ · ˆ̃Uμ dΩμ. (172)

The Principle of Multiscale Virtual Power for the present
case is stated next. In the remaining of this section recall that

Üμ = ÜM |X + F̈M |X(Y − Yo) + ¨̃Uμ.

PMVP. It is said that (PM |X, fM |X) and (Pμ, fμ) satisfy the
Principle of Multiscale Virtual Power if and only if the fol-
lowing variational equation holds

PM |X • ĜM |X − fM |X • ÛM |X
=
∫

Ωμ

Pμ · ĜM |X dΩμ +
∫

Ωμ

Pμ · ∇Y
ˆ̃Uμ dΩμ

−
∫

Ωμ

f pμ · ÛM |X dΩμ

−
∫

Ωμ

(f pμ ⊗ (Y − Yo)) · ĜM |X dΩμ

−
∫

Ωμ

f pμ · ˆ̃Uμ dΩμ +
∫

Ωμ

ρμÜμ · ÛM |X dΩμ

+
∫

Ωμ

ρμ(Üμ ⊗ (Y − Yo)) · ĜM |x dΩμ

+
∫

Ωμ

ρμÜμ · ˆ̃Uμ dΩμ

∀(ÛM |x, ĜM |x, ˆ̃Uμ) ∈ ̂
R
X
UM

× ̂
R
X
EM

× VarŨμ
. (173)

��
The consequences of the principle formulated above are

the following.

Equilibrium problem at micro scale. Take ÛM |X
= 0 and ĜM |X = 0. The equilibrium problem at
the micro scale can be stated as follows
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∫

Ωμ

Pμ · ∇Y
ˆ̃Uμ dΩμ −

∫

Ωμ

f pμ · ˆ̃Uμ dΩμ

+
∫

Ωμ

ρμÜμ · ˆ̃Uμ dΩμ = 0

∀ ˆ̃Uμ ∈ VarŨμ
. (174)

Stress homogenization at macro scale. Let now

ÛM |X = 0 and ˆ̃Uμ = 0. Then

PM |X • ĜM |X =
∫

Ωμ

Pμ · ĜM |X dΩμ

−
∫

Ωμ

(f pμ ⊗ (Y − Yo)) · ĜM |X dΩμ

+
∫

Ωμ

ρμ(Üμ ⊗ (Y − Yo)) · ĜM |X dΩμ

∀ĜM |X ∈ ̂
R
X
EM

. (175)

Therefore, the homogenization formula is

PM |X = 1

|Ωμ|
∫

Ωμ

Pμ − (f pμ ⊗ (Y − Yo)) dΩμ

+ 1

|Ωμ|
∫

Ωμ

ρμ(Üμ ⊗ (Y − Yo)) dΩμ.

(176)

Here, we have identified the operation PM |X •
ĜM |X = |Ωμ|PM |X · ĜM |X, from which, ω1 =
|Ωμ|.
Body force homogenization atmacro scale.Now,

consider ĜM |X = 0 and ˆ̃Uμ = 0, then

fM |X • ÛM |X =
∫

Ωμ

f pμ · ÛM |X dΩμ

−
∫

Ωμ

ρμÜμ · ÛM |X dΩμ

∀ÛM |X ∈ ̂
R
X
UM

, (177)

and then

fM |X = 1

|Ωμ|
∫

Ωμ

(f pμ − ρμÜμ) dΩμ. (178)

Here, also the operation is identified as fM |X •
ÛM |X = |Ωμ| fM |X·ÛM |X, resulting in γ1 = |Ωμ|.

Remark 23 This model considers continuum media at both
scales. A fully analogous development could be carried out
for amicro scale includingmolecular dynamics or even atom-
isticmodels. In such cases, the present theory leads tomodels
similar to those presented in [4,5,131].

6.2 Bar Model at Macro Scale and Classical Micro
Mechanics

This section presents a very simple mechanical model at
the macro scale consisting of a bar (one dimensional)
model for which constitutive multiscale information is to
be obtained from a micro-scale model consisting of a full
(three-dimensional)model. For simplicitywe consider infini-
tesimal strain hypothesis at both scales. Notice that themodel
at micro scale is kinematically richer than the model at the
macro scale. Thus, this example illustrates a typical case of
a multiscale formulation having dimensional heterogeneity
in the kinematical description at macro and micro scales.

The domain in themacro scale is an open subsetΩM ⊂ R,
that is, a straight segment representing the configuration of
the bar, for which axial coordinates are x , being ex the unit
vector in R

3 in the axial direction. The generalized displace-
ments is a scalar field uM = uM , standing for the displace-
ment in the axial direction of the bar. Then the structure of the
underlying space is UM = H1(ΩM ). The strain action oper-
ator is simply DM (·) = d

dx (·), so DM = dM (uM ) = duM
dx ,

and therefore DM ∈ EM = L2(ΩM ). All fields are defined in
ΩM . Then, we have nM = 1 (RM = 1) and mM = 1 (SM =
1).

At the micro-scale we have full three-dimensional kine-
matics, so the RVE domain is Ωμ ⊂ R

3, with smooth
boundary Γμ (outward unit normal nμ). Coordinates in the
micro-scale are y. In this case, generalized displacements
at micro scale are displacements vector fields, expressed as
uμ = uμ = ūμ + ũμ, with an underlying structure given
by Uμ = H1(Ωμ). The strain action operator is the clas-
sical symmetric gradient Dμ(·) = ∇S

y (·), so it is Dμ =
εμ(uμ) = ∇S

y uμ, and then Eμ = {εμ ∈ L2(Ωμ), εμ = εTμ}.
All fields are defined in Ωμ. Here nμ = 1 (Rμ = 3) and
mμ = 1 (Sμ = 6).

The space of point-valued displacements at macro scale is
R
x
UM

= {w ∈ R, w = uM |x , uM ∈ UM }, and for the strain
actions we have R

x
EM

= {g ∈ R, g = dM |x , dM ∈ EM }. In
this case it is R̂

x
UM

= R
x
UM

and R̂
x
EM

= R
x
EM

. The operator
that inserts the displacement into the RVE domain is

J U
μ (uM |x ) = uM |xex , (179)

resulting in a constant vector field over the entire RVE point-
ing in the axial direction of the bar. In turn, the strain rate
from the macro scale is inserted into the micro scale as

J E
μ (dM |x ) = dM |x (ex ⊗ ex )(y − yo), (180)

with yo the geometrical center of the RVE, i.e. yo =
1

Ωμ

∫
Ωμ

yΩμ. Then, the composition of the displacement
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field at micro scale is

uμ = uM |xex + dM |x (ex ⊗ ex )(y − yo) + ũμ. (181)

Since Dμ(J U
μ (uM |x )) = ∇S

y (uM |xex ) = 0, it results

εμ = dM |x (ex ⊗ ex ) + ∇S
y ũμ, (182)

and also

Dμ(J E
μ (dM |x )) = dM |x (ex ⊗ ex ). (183)

The homogenization operator for the displacement field is
defined as follows

HU
μ (uμ) = 1

|Ωμ|
∫

Ωμ

uμ · ex dΩμ, (184)

and for the strain rate field the homogenization operator is

HE
μ(εμ) = 1

|Ωμ|
∫

Ωμ

εμ · (ex ⊗ ex ) dΩμ. (185)

By construction, the insertion operator satisfies (i.e. equa-
tion (59) is satisfied)

HU
μ (J U

μ (uM |x ))
= 1

|Ωμ|
∫

Ωμ

J U
μ (uM |x ) · ex dΩμ = uM |x . (186)

Then, the kinematical admissibility for the displacement field
(see (61)) states that

1

|Ωμ|
∫

Ωμ

uμ · ex dΩμ

= 1

|Ωμ|
∫

Ωμ

J U
μ (uM |x ) · ex dΩμ. (187)

Since it is

1

|Ωμ|
∫

Ωμ

dM |x (ex ⊗ ex )(y − yo) dΩμ = 0, (188)

we have that the condition (187) is satisfied by requiring

1

|Ωμ|
∫

Ωμ

ũμ · ex dΩμ = 0. (189)

However, this condition is not enough to control all the kine-
matic fields at the micro scale. Observe that components on
the direction of y and z of the fluctuation field are not con-
troled from the macro scale. In this case, further constraints
are necessary to have a mathematically well-posed problem.

This can be accomplished by incorporating the following
constraints

1

|Ωμ|
∫

Ωμ

ũμ · ey dΩμ = 0, (190)

1

|Ωμ|
∫

Ωμ

ũμ · ez dΩμ = 0. (191)

Regarding strain actions, the insertion operator by definition
satisfies the following identity (i.e. equation (60) is satisfied)

HE
μ(Dμ(J E

μ (dM |x )))
= 1

|Ωμ|
∫

Ωμ

Dμ(J E
μ (dM |x )) · (ex ⊗ ex ) dΩμ = dM |x .

(192)

Hence, the kinematical admissibility is met if we have (see
(62))

1

|Ωμ|
∫

Ωμ

εμ · (ex ⊗ ex ) dΩμ

= 1

|Ωμ|
∫

Ωμ

Dμ(J E
μ (dM |x )) · (ex ⊗ ex ) dΩμ, (193)

which is fulfilled by enforcing

1

|Ωμ|
∫

Ωμ

∇S
y ũμ · (ex ⊗ ex ) dΩμ = 0. (194)

Or, integrating by parts,

1

|Ωμ|
∫

Γμ

(ũμ ⊗S nμ) · (ex ⊗ ex ) dΓμ = 0. (195)

Then, the space of kinematically admissible displacement
fields at micro scale is

Kinũμ
= Varũμ

=
{

ũμ ∈ H1(Ωμ),

∫

Ωμ

ũμ dΩμ = 0,

∫

Γμ

(ũμ ⊗S nμ) · (ex ⊗ ex ) dΓμ = 0

}

. (196)

In this case the internal virtual power at macro scale is
given by the product P int

M = ∫
ΩM

AMσM
dûM
dx dΩM , where

recall that ΩM is the one-dimensional domain of the bar,
and AM is the cross sectional area of the bar. In addition
we called σM to the uniaxial stress in the bar, that is σM =
1
AM

∫
AM

σM dAM . The internal power at any macro scale

point (which is to be linkedwith aRVE) is denotedby P int
M,x =

σM |x • d̂M |x . In turn, the external virtual power is Pext
M =∫

ΩM
AM fM · ûM dΩM , where fM is the uniaxial load, and

at a point in the macro scale is Pext
M,x = fM |x • ûM |x .
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At the micro scale, the internal virtual power results

P int
μ =

∫

Ωμ

σμ · ∇S
y ûμ dΩμ

=
∫

Ωμ

σμ · (d̂M |x (ex ⊗ ex ) + ∇S
y

ˆ̃uμ) dΩμ

=
∫

Ωμ

σμ · (ex ⊗ ex )d̂M |x dΩμ

+
∫

Ωμ

σμ · ∇S
y

ˆ̃uμ dΩμ, (197)

and, the external virtual power is written as

Pext
μ =

∫

Ωμ

fμ · ûμ dΩμ

=
∫

Ωμ

fμ · (ûM |xex+d̂M |x (ex⊗ ex )(y−yo)+ ˆ̃uμ) dΩμ

=
∫

Ωμ

(fμ · ex )ûM |x dΩμ

+
∫

Ωμ

(fμ · ex )((y − yo) · ex )d̂M |x dΩμ

+
∫

Ωμ

fμ · ˆ̃uμ dΩμ. (198)

Therefore, the Principle of Multiscale Virtual Power is given
by the following statement.

PMVP. It is said that (σM |x , fM |x ) and (σμ, fμ) satisfy the
Principle of Multiscale Virtual Power if and only if the fol-
lowing variational equation holds

σM |x • d̂M |x − fM |x • ûM |x
=
∫

Ωμ

σμ · (ex ⊗ ex )d̂M |x dΩμ +
∫

Ωμ

σμ · ∇S
y

ˆ̃uμ dΩμ

−
∫

Ωμ

(fμ · ex )ûM |x dΩμ

−
∫

Ωμ

(fμ · ex )((y − yo) · ex )d̂M |x dΩμ

−
∫

Ωμ

fμ · ˆ̃uμ dΩμ

∀(ûM |x , d̂M |x , ˆ̃uμ) ∈ R̂
x
UM

× R̂
x
EM

× Varũμ
. (199)

��
The consequences of the principle stated above are listed

below.

Equilibrium problem at micro scale. Now, con-
sider ûM |x = 0 and d̂M |x = 0. The equilibrium
problem at the micro scale is defined by the follow-
ing variational equation
∫

Ωμ

σμ · ∇S
y

ˆ̃uμ dΩμ −
∫

Ωμ

fμ · ˆ̃uμ dΩμ = 0

∀ ˆ̃uμ ∈ Varũμ
. (200)

Stress homogenization at macro scale. Let ûM |x
= 0 and ˆ̃uμ = 0, then

σM |x • d̂M |x
=
∫

Ωμ

σμ · (ex ⊗ ex )d̂M |x dΩμ

−
∫

Ωμ

(fμ · ex )((y − yo) · ex )d̂M |x dΩμ

∀d̂M |x ∈ R̂
x
EM

. (201)

And the homogenization formula results

σM |x = 1

|Ωμ|
∫

Ωμ

σμ · (ex ⊗ ex ) dΩμ

− 1

|Ωμ|
∫

Ωμ

(fμ · ex )((y − yo) · ex ) dΩμ.

(202)

As before, the duality operation is identified to be
σM |x • d̂M |x = |Ωμ| σM |x d̂M |x , and ω1 = |Ωμ|.
Body force homogenization atmacro scale.Now,
consider d̂M |x = 0 and ˆ̃uμ = 0, which yields

fM |x • ûM |x =
∫

Ωμ

fμ · ex ûM |x dΩμ

∀ûM |x ∈ R̂
x
UM

, (203)

and then

fM |x = 1

|Ωμ|
∫

Ωμ

fμ · ex dΩμ. (204)

Here the duality operation is defined to be fM |x •
ûM |x = |Ωμ| fM |x ûM |x , and γ1 = |Ωμ|.

Remark 24 Other models can be derived from the very same
framework presented here. In fact, the model derived from
considering the kinematical constrain (195) results in amodel
with null traction over the boundary of the micro scale
domain in many of the components. Suppose that additional
constraints are considered inspired in (195), i.e.

1

|Ωμ|
∫

Γμ

(ũμ ⊗S nμ) dΓμ = 0. (205)

Such model is kinematically more constrained, and results
in a model with uniform traction over the entire boundary of
the RVE, part of which is purely reactive.

6.3 High Order Macro Mechanics: Classical Micro
Mechanics

In this section we work with the multiscale modeling in solid
mechanics applied to higher order continua at the macro
scale, while keeping the classical first order continuum in
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the micro scale. That is, in contrast with the previous sec-
tion, here the model at macro scale is kinematically richer
than the model at the micro scale. At both scales we consider
the finite strain mechanical regime.

The domain at macro scale (reference or material con-
figuration) is an open subset ΩM ⊂ R

3, with smooth
boundary ΓM (outward unit normal NM ), and coordinates
X. Like in the classical setting, the generalized displace-
ment is the displacement vector field described in the mater-
ial configuration uM = UM (structure given by the space
UM = H1(ΩM )). The strain action operator is given
by DM (·) = (∇X(·), 1

2∇X∇X(·)). Thus, the structure of
the strain action results DM = (GM (UM ),GM (UM )) =
(∇XUM , 1

2∇X∇XUM ). All fields are defined in ΩM . The
kinematics in the macro scale is such that nM = 1 (RM = 3)
and mM = 2 (s1M = 9, s2M = 18 and SM = 27).

Further, given a third order tensorH, we define a transpose
operation as follows (Hm)n = (HTn)m. Such transpose
operation T can be more clearly written: withH = a⊗b⊗c,
we have (Hm)n = ((a ⊗ b ⊗ c)m)n = (c · m)(b · n)a. It
follows that (HTn)m = ((a ⊗ c ⊗ b)n)m = (b · n)(c ·m)a.
Hence, it results HT = a ⊗ c ⊗ b. Finally, a symmetrization
operation can be defined as HS = 1

2 (H + HT). Therefore,

EM = {(GM ,GM ) ∈ L2(ΩM ) × L2(ΩM ), GM = GT
M }.

At the micro-scale we adopt classic kinematical descrip-
tion. The RVE domain is Ωμ ⊂ R

3, with smooth bound-
ary Γμ (outward unit normal Nμ) and coordinates Y. The
generalized displacements are displacements in the mate-
rial configuration uμ = Uμ = Ūμ + Ũμ, with structure
Uμ = H1(Ωμ). The strain action operator isDμ(·) = ∇Y(·),
so Dμ = Gμ(Uμ) = ∇YUμ, from which Dμ ∈ Eμ =
L2(Ωμ). Here, the fields are defined in the entire RVE. So,
nμ = 1 (Rμ = 3) and mμ = 1 (Sμ = 9).

The space of point-valued displacements at macro scale
is given by R

X
UM

= {W ∈ R
3, W = UM |X, UM ∈ UM },

and for the strain actions R
X
EM

= {(H,H) ∈ R
3×3 ×

R
3×3×3, (H,H) = (GM |X,GM |X), (GM ,GM ) ∈ EM }.

As in previous sections, here we have ̂
R
X
UM

= R
X
UM

and

̂
R
X
EM

= R
X
EM

. The insertion of the displacement field is given
by the following operator

J U
μ (UM |X) = UM |X, (206)

and the insertion of the strain action results that

J E
μ ((GM |X,GM |X)) = GM |X(Y − Yo)

+1

2
GM |X

[
(Y − Yo) ⊗ (Y − Yo) − J

]
, (207)

where Yo is the geometrical center of the RVE, that is Yo =
1

Ωμ

∫
Ωμ

Y dΩμ, and J is defined as

J = 1

|Ωμ|
∫

Ωμ

(Y − Yo) ⊗ (Y − Yo) dΩμ. (208)

As a consequence, at micro scale it results

Uμ = UM |x + GM |X(Y − Yo)

+1

2
GM |X

[
(Y − Yo) ⊗ (Y − Yo) − J

] + Ũμ. (209)

Since Dμ(J U
μ (UM |X)) = ∇YUM |x = 0 and J is constant,

we have

Gμ = GM |X + GM |X(Y − Yo) + ∇YŨμ, (210)

where

Dμ(J E
μ (GM |X,GM |X))

= GM |X + GM |X(Y − Yo). (211)

Regarding the homogenization of the displacement field we
define

HU
μ (Uμ) = 1

|Ωμ|
∫

Ωμ

Uμ dΩμ. (212)

The homogenization of the strain action is a more sensi-
ble step, but equally treated within the current framework.
Observe that the homogenization operator maps the strain
action from micro scale into the macro scale. So, the present
homogenization procedure is represented by a rectangular
matrix operation (two rows, one column, see Remark 10).
These two rows are

HE
μ

11
(Gμ) = 1

|Ωμ|
∫

Ωμ

Gμ dΩμ, (213)

HE
μ

21
(Gμ) = 1

|Ωμ|
([∫

Ωμ

Gμ ⊗ (Y − Yo) dΩμ

]

J−1
)S

,

(214)

where the (·)S operation implies the symmetrization opera-
tion as introduced at the beginning of the section.

By construction, the insertion operator satisfies (equation
(59) is verified)

HU
μ (J U

μ (UM |X))

= 1

|Ωμ|
∫

Ωμ

J U
μ (UM |X) dΩμ = UM |X. (215)

In addition, we must satisfy (see constraint (61))

1

|Ωμ|
∫

Ωμ

Uμ dΩμ = 1

|Ωμ|
∫

Ωμ

J U
μ (UM |X) dΩμ. (216)
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Trivially, we have

1

|Ωμ|
∫

Ωμ

GM |X(Y − Yo) dΩμ = 0, (217)

and also

1

2|Ωμ|
∫

Ωμ

GM |X
[
(Y−Yo)⊗(Y−Yo)−J

]
dΩμ = 0. (218)

Therefore, by forcing

1

|Ωμ|
∫

Ωμ

Ũμ dΩμ = 0, (219)

it is possible to guarantee the kinematical admissibility in
(216) in terms of displacements. The operator which inserts
the strain action in this case satisfies by definition (expression
(60) is verified)

HE
μ(Dμ(J E

μ ((GM |X, 0))))

= 1

|Ωμ|
∫

Ωμ

Dμ(J E
μ ((GM |X, 0))) dΩμ = GM |X, (220)

and it also satisfies

HE
μ(Dμ(J E

μ ((0,GM |X))))

= 1

|Ωμ|
([∫

Ωμ

Dμ(J E
μ ((0,GM |X)))

⊗(Y − Yo) dΩμ

]

J−1
)S

= GM |X. (221)

In turn, the kinematical admissibility concept concerning the
strain action is satisfied if (see (62))

1

|Ωμ|
∫

Ωμ

Gμ dΩμ

= 1

|Ωμ|
∫

Ωμ

Dμ(J E
μ ((GM |X,GM |X))) dΩμ, (222)

1

|Ωμ|
([∫

Ωμ

Gμ ⊗ (Y − Yo) dΩμ

]

J−1
)S

= 1

|Ωμ|
([∫

Ωμ

Dμ(J E
μ (GM |X,GM |X))

⊗(Y − Yo) dΩμ

]

J−1
)S

. (223)

Observe that (222) is met by imposing

1

|Ωμ|
∫

Ωμ

∇YŨμ dΩμ = 0, (224)

which after integration by parts gives

1

|Ωμ|
∫

Γμ

Ũμ ⊗ Nμ dΓμ = 0. (225)

By exploiting the form of Gμ we have that (223) is satisfied
if

1

|Ωμ|
([∫

Ωμ

∇YŨμ ⊗ (Y − Yo) dΩμ

]

J−1
)S

= 0, (226)

which after integration by parts gives

1

|Ωμ|
([∫

Γμ

Ũμ ⊗Nμ ⊗ (Y−Yo) dΓμ

]

J−1
)S

= 0. (227)

Thus, the space of kinematically admissible displacement
fields at micro scale is therefore defined as

KinŨμ
= VarŨμ

=
{

Ũμ ∈ H1(Ωμ),

∫

Ωμ

Ũμ dΩμ = 0,
∫

Γμ

Ũμ ⊗ Nμ dΓμ = 0,

([∫

Γμ

Ũμ ⊗ Nμ ⊗ (Y − Yo) dΓμ

]

J−1
)S

= 0
}

. (228)

Remark 25 In the case of a square geometry (in two dimen-
sional space) representing the micro scale domain, with
length �μ, we have J = �μ

12 I. Then, (227) simplifies to

1

|Ωμ|
∫

Γμ

Ũμ ⊗ Nμ ⊗S (Y − Yo) dΓμ = 0, (229)

which is consistent with the boundary condition postulated
in [59], and slightly different to that one postulated in [72].
However, boundary condition (227) has been derived sys-
tematically within the present multiscale framework, and
provides a robust justification for boundary conditions pre-
viously proposed in the literature.

The internal virtual power at macro scale is the product
between the generalized virtual strain action and the dual
stresses, which in the present case turns out to be P int

M =
∫
ΩM

[PM · ∇XÛM + QM · ∇X∇XÛM ] dΩM . This internal

virtual power at a given point X is P int
M,X = (PM |X,QM ) •

(ĜM |X, ĜM |X), which is specified later on. As before, the
external virtual power results as Pext

M = ∫
ΩM

fM · ÛM dΩM ,

and at a point X is Pext
M,X = fM |X • ÛM |X.

Differently, for the micro scale, the internal virtual power
is

P int
μ =

∫

Ωμ

Pμ · ∇YÛμ dΩμ

=
∫

Ωμ

Pμ · (ĜM |X + ĜM |X(Y − Yo) + ∇Y
ˆ̃Uμ) dΩμ

=
∫

Ωμ

Pμ · ĜM |X dΩμ
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+
∫

Ωμ

(Pμ ⊗ (Y − Yo)) · ĜM |X dΩμ

+
∫

Ωμ

Pμ · ∇Y
ˆ̃Uμ dΩμ. (230)

And the external virtual power is expressed as

Pext
μ =

∫

Ωμ

fμ · Ûμ dΩμ

=
∫

Ωμ

fμ ·
(

ÛM |X + ĜM |X(Y − Yo)

+1

2
ĜM |X[(Y − Yo) ⊗ (Y − Yo) − J] + ˆ̃Uμ

)

dΩμ

=
∫

Ωμ

fμ · ÛM |X dΩμ +
∫

Ωμ

(fμ ⊗ (Y − Yo)) · ĜM |X dΩμ

+1

2

∫

Ωμ

(
fμ ⊗ [(Y − Yo) ⊗ (Y − Yo) − J]) · ĜM |X dΩμ

+
∫

Ωμ

fμ · ˆ̃Uμ dΩμ. (231)

Then, the Principle of Multiscale Virtual Power for the
present case is formulated as follows.

PMVP. It is said that (PM |X,QM |X, fM |X)and (Pμ, fμ) sat-
isfy the Principle of Multiscale Virtual Power if and only if
the following variational equation holds

(PM |X,QM |X) • (ĜM |X, ĜM |X) − fM |X • ÛM |X
=
∫

Ωμ

Pμ · ĜM |X dΩμ +
∫

Ωμ

(Pμ ⊗ (Y − Yo)) · ĜM |X dΩμ

+
∫

Ωμ

Pμ · ∇Y
ˆ̃Uμ dΩμ

−
∫

Ωμ

fμ · ÛM |X dΩμ −
∫

Ωμ

(fμ ⊗ (Y − Yo)) · ĜM |X dΩμ

−1

2

∫

Ωμ

(
fμ ⊗ [(Y − Yo) ⊗ (Y − Yo) − J]) · ĜM |X dΩμ

−
∫

Ωμ

fμ · ˆ̃Uμ dΩμ

∀(ÛM |x, (F̂M |x, ĜM |x), ˆ̃Uμ)∈̂
R
X
UM

×̂
R
X
EM

×VarŨμ
. (232)

��
The consequences of the principle formulated above are

the following.

Equilibriumproblem atmicro scale.At first, take
ÛM |X = 0 and (ĜM |X, ĜM |X) = (0, 0). The equi-
librium problem at the micro scale is formulated as
follows
∫

Ωμ

Pμ · ∇Y
ˆ̃Uμ dΩμ −

∫

Ωμ

fμ · ˆ̃Uμ dΩμ = 0

∀ ˆ̃Uμ ∈ VarŨμ
. (233)

Stress homogenization at macro scale. Consider

ÛM |X = 0 and ˆ̃Uμ = 0. Then

(PM |X,QM |X) • (ĜM |X, ĜM |X)

=
∫

Ωμ

Pμ · ĜM |X dΩμ

+
∫

Ωμ

(Pμ ⊗ (Y − Yo)) · ĜM |X dΩμ

−
∫

Ωμ

(fμ ⊗ (Y − Yo)) · ĜM |X dΩμ

−1

2

∫

Ωμ

(
fμ ⊗ [(Y − Yo)

⊗(Y − Yo) − J]) · ĜM |X dΩμ

∀(ĜM |X, ĜM |X) ∈ ̂
R
X
EM

. (234)

Considering now (ĜM |X, 0)weobtain the homoge-
nization formula for the Piola-Kirchhoff stress ten-
sor

PM |x
= 1

|Ωμ|
∫

Ωμ

Pμ − (fμ ⊗ (Y − Yo)) dΩμ. (235)

In turn, taking (0, ĜM |X) we obtain the homoge-
nization formula for the third order stress tensor

QM |x
= 1

|Ωμ|
∫

Ωμ

(Pμ ⊗ (Y − Yo))
S dΩμ

−1

2

∫

Ωμ

fμ ⊗ [(Y − Yo) ⊗ (Y − Yo) − J] dΩμ.

(236)

The symmetrization operation acting on the first
term above derives from the orthogonality con-
dition with respect to the symmetric third order

tensor ĜM |X (see definition of ̂
R
X
EM

). For this
case, the duality operation is (PM |X,QM |X) •
(ĜM |X, ĜM |X) = |Ωμ|PM |X·ĜM |X+|Ωμ|QM |X·
ĜM |X following that ω1 = ω2 = |Ωμ|.
Body force homogenization atmacro scale.Now,

let us consider (ĜM |X, ĜM |X) = (0, 0) and ˆ̃Uμ =
0, then

fM |X • ÛM |X =
∫

Ωμ

fμ · ÛM |X dΩμ

∀ÛM |X ∈ ̂
R
X
UM

, (237)

therefore

fM |X = 1

|Ωμ|
∫

Ωμ

fμ dΩμ. (238)
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The duality operation for the external power results
fM |X • ÛM |X = |Ωμ| fM |X · ÛM |X, following that
γ1 = |Ωμ|.

6.4 Cohesive Macro Cracks-Strain Localization at Micro

In this sectionwepresent amultiscalemodel that accounts for
nucleation and evolution of cohesive surfaces at the macro-
scale level as a way to characterize the degradation phe-
nomena taking place at the micro-scale. In the RVE, some
mechanical processes can lead to the material failure, such as
strain localization, damage, shear band formation, and so on.
For simplicity, the model is developed considering infinites-
imal strain hypothesis at both scales, however its extension
to finite strain theory is straightforward. Body force effects
are also neglected for the sake of simplicity. Furthermore,
the application of the present multiscale model is restricted
to a point x after the nucleation of a macro-cohesive crack
SM . The interested reader can follow [104,123] for a detailed
description of a very simmilar to that presented here. In such
contributions this approach has been called Failure-Oriented
Multiscale Formulation (FOMF).

The domain at macro scale is ΩM ∈ R
3, with boundary

ΓM (outward unit normal nM ) and coordinates x. At such
scale, a crack has been nucleated due tomaterial degradation,
generating a surface SM (with normal nM

S ). The kinematics
at point x in the macro scale but not on the surface SM is
given by a displacement field uM = uM which is continuous,
while on the surface SM it is characterized by the pair uM =
(uM ,βM ), where βM is the displacement jump on the sur-
face at the macro scale. So, the structure of the kinematics at
the such scale isUM = H1(ΩM )×L2(SM ). The strain action
operator isDM (·) = (∇S

x (·), ·). So, over the surface the strain
is given by the pair DM = (εM (uM ),βM ) = (∇S

x uM ,βM ).
Thus, it is EM = {(εM ,βM ) ∈ L2(ΩM ) × L2(SM ), εM =
εTM }. Observe that while the continuous displacement and
strain action are defined in ΩM , the displacement jump
is defined in SM . Hence, at macro scale we have nM =
2 (RM = 6) and mM = 2 (s1M = 6, s2M = 3 and SM = 9).

At the micro scale, the RVE is denoted as Ωμ ∈ R
3

(boundary Γμ, unit normal nμ, coordinates y). Due to mate-
rial degradation mechanisms, a failure zone (where strain
localization takes place) is identified, and denoted by ΩL

μ ⊆
Ωμ (boundary Γ L

μ , unit normal nL
μ). This domain can be

regarded as constructed by the product of a middle sur-
face Sμ (generally tortuous at the micro scale, with coordi-
nates y0 and normal nμ

S(y0)) and a length lμ(y0) represent-
ing the thickness of the strain localization zone. Note that
nμ

S(y) = nμ

S(y0) and lμ(y) = lμ(y0) because of the prop-
erty which states that Π

μ

S y = y0, being Π
μ

S the orthogonal
projection operator over the middle surface Sμ. At this scale,
the displacement is characterized by the pair uμ = (uμ,βμ),

where uμ is defined in Ωμ and is a continuous component of
the displacement field, and βμ is a displacement field defined
in ΩL

μ . Then the structure of the kinematics at this scale is

Uμ = H1(Ωμ) × L2(ΩL
μ). (239)

The strain action operator at this scale is given by

Dμ(·) =
(

∇S
y (·), φL

μ(y)
(·) ⊗S nμ

S(y0)

lμ(y0)

)

, (240)

where

φL
μ(y) =

{
1 if y ∈ ΩL

μ

0 otherwise
(241)

Then, we have

Dμ((uμ,βμ)) = ∇S
y uμ + φL

μ(y)
βμ ⊗S nμ

S(y0)

lμ(y0)
, (242)

from which it is Eμ = {εμ ∈ L2(Ωμ), εμ = εTμ}. With this
structure we have nμ = 2 (r1μ = 3, r2μ = 3 and Rμ = 6) and
mμ = 1 (Sμ = 6).

For the point-valued spaces we have R
x
UM

= {w ∈
R
3, w = uM |x, uM ∈ UM } and R

x
EM

= {(ε,b) ∈ R
3×3 ×

R
3, (ε,b) = (εM |x,βM |x), (εM ,βM ) ∈ EM }. Note here

that not all the kinematic fields from the macro scale play a
role in the kinematic transfer, i.e. field βM is not considered
as part of the generalized displacement to be inserted into
the micro scale, but it is considered as a generalized strain

action. For this case it is R̂
x
UM

= R
x
UM

and, unlike previous

examples, we have now R̂
x
EM

= {(ε,b) ∈ R
x
EM

, ε = 0}.
The insertion operator for the generalizedmacro displace-

ment is

J U
μ (uM |x) = (uM |x, 0), (243)

i.e only uM |x is uniformly inserted in the entire domain Ωμ.
The generalized strain actions provided from themacro scale
is inserted as follows

J E
μ ((εM |x,βM |x)) =

(

εM |x(y − yo),
βM |x

θ

)

, (244)

where the first component is the displacement at micro scale
obtained through an affine insertion of the macro defor-
mation (εM |x) over the entire RVE, and the second com-
ponent is a displacement field (βμ) obtained from a uni-
form insertion over ΩL

μ of the jump displacement at macro
scale βM |x, which is also a component of the generalized
strain action at point x of the macro crack SM . In addition,
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yo = 1
|Ωμ|

∫
Ωμ

y dΩμ (the geometric center of the RVE), and
θ is a non-dimensional parameter given by

θ = 1

|Sμ|

∥
∥
∥
∥
∥

∫

ΩL
μ

nμ

S(y0)

lμ(y0)
dΩL

μ

∥
∥
∥
∥
∥

, (245)

where |Sμ|means themeasure of themiddle surfaceSμ. Tak-
ing into account the above definitions and that lμ(y0) mea-
sures the thickness of the localization domain ΩL

μ at point
y0, the parameter θ could be rewritten as follows

θ = 1

|Sμ|

∥
∥
∥
∥
∥

∫

ΩL
μ

nμ

S(y0)

lμ(y0)
dΩL

μ

∥
∥
∥
∥
∥

= 1

|Sμ|

∥
∥
∥
∥
∥

∫

Sμ

nμ

S(y0) dSμ

∥
∥
∥
∥
∥

. (246)

Hence, θ can be interpreted as a tortuosity index of the sur-
face Sμ. In fact, if Sμ is a plane we have θ = 1, see [104]
where this approach was adopted. With the introduction of
the tortuosity index the model in [104] is extended to take
into account more complex situations. The need to introduce
the factor θ has a strict kinematical justification in order to
preserve the magnitude of the inserted macro-displacement
jump βM |x, which becomes evident later (see (259)).

Besides, it is defined nμ

S as a unit vector given by

nμ

S =
∫
Sμ

nμ

S(y0) dSμ
∥
∥
∥
∫
Sμ

nμ

S(y0) dSμ

∥
∥
∥
. (247)

Moreover, we assume that the fluctuation related to the
field βμ, denoted by β̃μ is null. Then, at micro scale we have

(uμ,βμ) =
(

uM |x + εM |x(y − yo) + ũμ,
βM |x

θ

)

. (248)

And the strain action at micro scale results

εμ = Dμ((uμ,βμ))

= εM |x + ∇S
y ũμ + φL

μ(y)
βM |x ⊗S nμ

S(y0)

θ lμ(y0)
. (249)

In view of the characteristics of space R̂
x
EM

, we have that
the virtual strain action (or kinematically admissible varia-
tions of the strain) becomes

ε̂μ = ∇S
y

ˆ̃uμ + φL
μ(y)

β̂M |x ⊗S nμ

S(y0)

θ lμ(y0)
. (250)

Here, it is verified that

Dμ(J U
μ (uM |x)) = 0, (251)

and

Dμ(J E
μ ((εM |x,βM |x))) = εM |x

+φL
μ(y)

βM |x ⊗S nμ

S(y0)

θ lμ(y0)
. (252)

We now define the homogenization of the generalized micro
displacement fields. This linear aplication maps generalized
displacements from Uμ to R

x
UM

, so the operator can be rep-
resented by a 2 × 1 rectangular matrix where the only com-
ponent to be characterized is

HU
μ

11
((uμ,βμ)) = 1

|Ωμ|
∫

Ωμ

uμ dΩμ, (253)

while the remainder component is zero, since only uM |x was
inserted, see (243).

In turn, the homogenization of the strain action is per-
formed through a linear rectangular operator (represented by
a 2 × 1 matrix). We postulate the following block homoge-
nization operators

HE
μ

11
(εμ) = 1

|Ωμ|
∫

Ωμ

εμ dΩμ,

for J E
μ ((εM |x, 0)), (254)

HE
μ

21
(εμ) = 1

|Sμ|Π(nμ

S)

[ ∫

ΩL
μ

εμ dΩL
μ

]

,

for J E
μ ((0,βM |x)), (255)

where Π(·)[·] is a projection defined through the following
operation

Π(c)[a ⊗S b] = (b · c)a for any a,b, c. (256)

Observe that, as stated by (59), the insertion operator J U
μ

satisfies

HU
μ

11
(J U

μ (uM |x)) = HU
μ

11
((uM |x, 0))

= 1

|Ωμ|
∫

Ωμ

uM |xdΩμ = uM |x. (257)

Now we show that expression (60) (which constraints the
choice of J E

μ ) also holds. First note that applying (254) to

(252), the definition of J E
μ satisfies

HE
μ

11
(Dμ(J E

μ ((εM |x, 0))))
= 1

|Ωμ|
∫

Ωμ

εM |x dΩμ = εM |x. (258)
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Second, applying (255) to (252), and using the definitions
(246)-(247), J E

μ satisfies

HE
μ

21
(Dμ(J E

μ ((0,βM |x))))

= 1

|Sμ|Π(nμ

S)

[ ∫

ΩL
μ

βM |x ⊗S nμ

S(y0)

θlμ(y0)
dΩL

μ

]

= Π(nμ

S)

[

βM |x ⊗S 1

θ |Sμ|
∫

Sμ

nμ

S(y0) dSμ

]

= Π(nμ

S)
[
βM |x ⊗S nμ

S
] = βM |x. (259)

Let us apply the kinematical admissibility concept for gen-
eralized displacements. We require that (see (61))

HU
μ

11
((uμ,βμ)) = HU

μ

11
(J U

μ (uM |x)). (260)

Constraint (260) is accomplished by forcing

∫

Ωμ

ũμ dΩμ = 0. (261)

Concerning the kinematical admissibility for strain actions,
we must satisfy (see expression (62))

HE
μ

11
(εμ) = HE

μ

11
(Dμ(J E

μ ((εM |x,βM |x)))), (262)

HE
μ

21
(εμ) = HE

μ

21
(Dμ(J E

μ ((εM |x,βM |x)))). (263)

From the structure of the HE
μ

11
-component, given by (254),

constraint (262) yields the following definition of kinemati-
cal admissibility

1

|Ωμ|
∫

Ωμ

εμ dΩμ

= 1

|Ωμ|
∫

Ωμ

Dμ(J E
μ ((εM |x,βM |x))) dΩμ. (264)

Then, since (258) holds, and considering (249), expression
(264) is fulfilled if
∫

Ωμ

∇S
y ũμ dΩμ = 0, (265)

which is equivalent to
∫

Γμ

ũμ ⊗S nμ dΓμ = 0. (266)

On the other hand, from theHE
μ

21
-component of the homog-

enization operator, see (255), the kinematical admissibility
requirement (263) results in

1

|Sμ|Π(nμ

S)

[ ∫

ΩL
μ

εμ dΩL
μ

]

= 1

|Sμ|Π(nμ

S)

[ ∫

ΩL
μ

Dμ(J E
μ ((εM |x,βM |x))) dΩL

μ

]

.

(267)

Using (249) and (259), we get that condition (267) is satisfied
whenever

Π(nμ

S)

[ ∫

ΩL
μ

∇S
y ũμ dΩL

μ

]

= 0, (268)

which, after integration by parts, results equivalent to

Π(nμ

S)

[ ∫

Γ L
μ

ũμ ⊗S nμ dΓ L
μ

]

= 0, (269)

and from definition (256), it yields

∫

Γ L
μ

(nμ · nμ

S)ũμ dΓ L
μ = 0. (270)

Thus, the space of kinematically admissible fluctuations for
the uμ-component of the displacement field at micro scale is
defined as

Kinũμ
= Varũμ

=
{

ũμ ∈ H1(Ωμ),

∫

Ωμ

ũμ dΩμ = 0,
∫

Γμ

ũμ ⊗S nμ dΓμ = 0,

∫

Γ L
μ

ũμ(nμ · nμ

S) dΓ L
μ = 0

}

. (271)

We recall here that β̃μ = 0.

Remark 26 In [104,123], a slightly different kinematical for-
mulation was derived. This remark describes such model.
Only the kinematical ingredientswhich are different between
the proposal of [104,123] and the present approach are dis-
cussed here.

The kinematical counterpart in terms ofmacro generalized
strain actions, DM , on the cohesive crack, was reinterpreted
in the cited contributions. The strain actionoperator is defined
as DM (·) = (∇S

x (·), (·) ⊗S nμ

S). So, DM is given by the

pair (εM (uM ), εL
M (βM )) = (∇S

x uM ,βM ⊗S nμ

S). Then, it is
EM = {(εM , εL

M ) ∈ L2(ΩM ) × L2(SM ), εM = εTM , εL
M =

(εL
M )T }. Observe that the term εL

M has a very intuitive phys-
ical interpretation: a strain-like action, or a localized strain-
like mode, induced by the displacement jump βM acting on

the macro cohesive surface SM , with unit normal vector nμ

S .
The structure of the micro-scale generalized displacement

vector space results in:Uμ = H1(Ωμ)×H1(Ωμ)×L2(ΩL
μ).

As before we have: uμ = (uμ, γ μ,βμ) ∈ Uμ. The insertion
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operator for the generalized macro strain actions is the fol-
lowing

J E
μ ((εM |x, εL

M |x)) =
(

0, εM |x(y − yo),
βM |x

θ

)

. (272)

Instead of (255), the following alternative homogeniza-
tion operator is considered

HE
μ

21
(εμ) = 1

|Sμ|
∫

Ωμ

εμ dΩμ,

for J E
μ ((0, εL

M |x)). (273)

From (273), equation (60) is now verified as seen next

HE
μ

21
(Dμ(J E

μ ((0, εL
M |x))))

= 1

|Sμ|
∫

ΩL
μ

βM |x ⊗S nμ

S(y0)

θ lμ(y0)
dΩL

μ

= βM |x ⊗S nμ

S = εL
M |x. (274)

In this case, the kinematical admissibility concept for
strain actions can be written as

HE
μ

11
(εμ) = HE

μ

11
(Dμ(J E

μ ((εM |x, εL
M |x)))), (275)

HE
μ

21
(εμ) = HE

μ

21
(Dμ(J E

μ ((εM |x, εL
M |x)))). (276)

Fulfillment of expressions (275)-(276) requires that

1

|Ωμ|
∫

Ωμ

∇S
y ũμ dΩμ = 0, (277)

1

|Sμ|
∫

ΩL
μ

∇S
y ũμ dΩL

μ = 0, (278)

or integrating by parts

∫

Γμ

ũμ ⊗S nμ dΓμ = 0, (279)

∫

Γ L
μ

ũμ ⊗S nL
μ dΓ L

μ = 0. (280)

The previous discussion leads to the following space of kine-
matically admissible fluctuations of the displacement field at
the micro scale

Kin◦
ũμ

= Var◦ũμ
=
{

ũμ ∈ H1(Ωμ),

∫

Ωμ

ũμ dΩμ = 0,
∫

Γμ

ũμ ⊗S nμ dΓμ = 0,

∫

Γ L
μ

ũμ ⊗S nL
μ dΓ L

μ = 0
}

. (281)

It is now clear that Var◦ũμ
⊂ Varũμ

. Then, the multiscale
model developed in [104,123], which results from the use of
Var◦ũμ

given by (281), is kinematically more restricted than
themodel developed in the body of this section, which results
from using Varũμ

given by (271).

The internal virtual power associated to point x over a
macro-cohesive crack (which is to be linked with the RVE)
is given by the product TM |x • β̂M |x = ω1 TM |x · β̂M |x,
whereTM |x represent the traction vector acting on the crack,
at point x. The cohesive traction TM |x is identified as a dual
quantity (power-conjugate) respect to β̂M |x and its consti-
tutive characterization will be obtained from the homoge-
nization of a micro-mechanical problem. At the RVE-level,
after exploiting the form of the admissible variations ε̂μ (see
(250)), the internal virtual power results

P int
μ =

∫

ΩL
μ

σμ · β̂M |x ⊗S nμ

S(y)

θ lμ(y)
dΩL

μ

+
∫

Ωμ

σμ · ∇S
y

ˆ̃uμ dΩμ. (282)

Therefore, the formulation of the Principle ofMultiscale Vir-
tual Power for the present application is given by the follow-
ing statement.

PMVP. It is said that TM |x and σμ satisfy the Principle of
Multiscale Virtual Power if and only if the following varia-
tional equation holds

TM |x • β̂M |x =
∫

ΩL
μ

σμ · β̂M |x ⊗S nμ

S(y)

θ lμ(y)
dΩL

μ

+
∫

Ωμ

σμ · ∇S
y

ˆ̃uμ dΩμ

∀((0, β̂M |x), ˆ̃uμ) ∈ R̂
x
EM

× Varũμ
. (283)

��
The consequences of the principle formulated above are

the following.

Equilibrium problem at micro scale. Consider
β̂M |x = 0 then, the equilibrium problem at the
micro scale is formulated as follows
∫

Ωμ

σμ · ∇S
y

ˆ̃uμ dΩμ = 0 ∀ˆ̃uμ ∈ Varũμ
. (284)

Traction homogenization at macro scale. Let
ˆ̃uμ = 0, then

TM |x • β̂M |x =
∫

ΩL
μ

σμ · β̂M |x ⊗S nμ

S(y)

θ lμ(y)
dΩL

μ

∀(0, β̂M |x) ∈ R̂
x
EM

. (285)

Working on the right hand side of the above expres-
sion we obtain
∫

ΩL
μ

σμ · β̂M |x ⊗S nμ

S(y)

θ lμ(y)
dΩL

μ

=
[ ∫

Sμ

1

θ
σμ(y0)n

μ

S(y0) dSμ

]

· β̂M |x, (286)
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where σμ(y0) is the mean value of σμ over the
thickness of the domain of localization ΩL

μ at
point y0. Therefore, the homogenization formula
for TM |x results as

TM |x = 1

θ |Sμ|
∫

Sμ

σμ(y0)n
μ

S(y0) dSμ. (287)

Observe that the dimensional parameterω1 involved
in the duality product (·)•(·) can be easily identified
from (286), given in this problem as ω1 = |Sμ|.
Consider the particular case where Sμ is a plane
(nμ

S(y0) = nμ

S) and lμ(y0) = lμ are constants,
then we have θ = 1, and the above homogenization
formula (287) agrees with that proposed in [104],
which is repeated here

TM |x = 1

|ΩL
μ |

∫

ΩL
μ

σμn
μ

S dΩL
μ . (288)

Numerical simulations obtained using a very similar model
to the one presented here are discussed in detail in Sect. 7.2.

6.5 Convective/Dissipative Macro Effects: Classical Micro
Fluid Mechanics

In what follows we consider the multiscale modeling in fluid
mechanics for a steady state problem. At the micro scale the
fluid is considered to behave asNewtonian, and the focus is on
the interplay between forces due to convective effects (accel-
eration forces) and constitutive (viscous) effects phenomena.
In addition, incompressibility constraint is considered at both
scales. That is, the materials of the domain at micro scale are
all incompressible, resulting in an incompressible behavior
at macro scale.

At macro scale, the domain (configuration of the body)
is an open subset ΩM ⊂ R

3, with smooth boundary ΓM

(outward unit normal nM ), and whose coordinates are x.
We consider an Eulerian description of the physical phe-
nomena. The generalized displacement is the velocity vec-
tor field uM = vM , with structure given by UM = {vM ∈
H1(ΩM ), divx vM = 0}. The strain action operator is not
the classical symmetric gradient, but the full gradient, which
will allow us to retrieve non-symmetric stress tensors due
to convective effects at micro scale, so DM (·) = gM (·) =
∇x(·). Thus, it is DM = gM (vM ) = ∇xvM , and therefore
DM ∈ EM = {gM ∈ L2(ΩM ), tr(gM ) = 0}. All fields
are defined in ΩM . Then, we have nM = 1 (RM = 3) and
mM = 1 (SM = 9).

At the micro-scale we have a similar model to the one
used at the macro scale, so the RVE domain is Ωμ ⊂ R

3,
with smooth boundary Γμ (outward unit normal nμ), whose
coordinates are y. This RVE is a representative element

standing for a fixed window in the micro scale (Eulerian
approach). Also, the generalized displacement is a velocity
field, expressed as uμ = vμ = v̄μ + ṽμ, with structure given
by Uμ = {vμ ∈ H1(Ωμ), divy vμ = 0}. Equivalently, the
strain action operator is the full gradient Dμ(·) = ∇y(·),
so Dμ = gμ(vμ) = ∇yvμ, so Dμ ∈ Eμ = {gμ ∈
L2(Ωμ), tr(gμ) = 0}. In this case, the strain action and
velocity are distributed throughout the entire RVE domain,
implying that Ω g

μ = Ωv
μ = Ωμ. Here, it is nμ = 1 (Rμ = 3)

and mμ = 1 (Sμ = 9).
The definition of the space of point-valued velocities at

macro scale is given by R
x
UM

= {w ∈ R
3, w = vM |x, vM ∈

UM }, and for the strain action we have R
x
EM

= {d ∈
R
3×3, d = gM |x, gM ∈ EM }. Note that tensors in R

x
EM

are such that tr(d) = 0. Here, it is R̂
x
UM

= R
x
UM

and

R̂
x
EM

= R
x
EM

.
The insertion operator for the velocity field is defined as

follows

J U
μ (vM |x) = vM |x, (289)

and the insertion operator for the strain action is proposed to
be

J E
μ (gM |x) = gM |x(y − yo), (290)

with yo being the geometrical center of the RVE, i.e. yo =
1

Ωμ

∫
Ωμ

yΩμ. Then, at micro scale we have

vμ = vM |x + gM |x(y − yo) + ṽμ. (291)

Considering the divergence of vμ, taking into account that
vM |x is constant with respect to y and that gM |x is trace free,
we obtain

divy vμ = divy(vM |x + gM |x(y − yo) + ṽμ)

= divy ṽμ, (292)

so, the velocityfield atmicro scale is divergence free provided
that

divy ṽμ = 0. (293)

Besides, since Dμ(J U
μ (vM |x)) = ∇yvM |x = 0, we have

gμ = gM |x + ∇yṽμ. (294)

Regarding homogenization, we define the following homog-
enization operator for the velocity field

HU
μ (vμ) = 1

|Ωμ|
∫

Ωμ

vμ dΩμ, (295)
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and for the strain action field

HE
μ(εμ) = 1

|Ωμ|
∫

Ωμ

gμ dΩμ. (296)

By definition of the insertion operator, equation (59) is
satisfied, i.e.

HU
μ (J U

μ (vM |x))
= 1

|Ωμ|
∫

Ωμ

J U
μ (vM |x) dΩμ = vM |x. (297)

In addition, the kinematical admissibility concept (see equa-
tion (61)) states that

1

|Ωμ|
∫

Ωμ

vμ dΩμ = 1

|Ωμ|
∫

Ωμ

J U
μ (vM |x) dΩμ. (298)

By construction,

1

|Ωμ|
∫

Ωμ

gM |x(y − yo) dΩμ = 0. (299)

So, (298) is satisfied by ensuring

1

|Ωμ|
∫

Ωμ

ṽμ dΩμ = 0. (300)

For the insertion of the strain action, by construction we have
that equation (60) is satisfied, in fact

HE
μ(Dμ(J E

μ (gM |x)))
= 1

|Ωμ|
∫

Ωμ

Dμ(J E
μ (gM |x)) dΩμ = gM |x, (301)

while the linkage between strain action at macro and micro
scales is performed by the kinematical admissibility concept
(see (62)), which states that

1

|Ωμ|
∫

Ωμ

gμ dΩμ

= 1

|Ωμ|
∫

Ωμ

Dμ(J E
μ (gM |x)) dΩμ. (302)

Expression (302) is fulfilled by enforcing

1

|Ωμ|
∫

Ωμ

∇yṽμ dΩμ = 0. (303)

After integrating by parts we reach

1

|Ωμ|
∫

Γμ

ṽμ ⊗ nμ dΓμ = 0. (304)

Thus, we define the space of kinematically admissible veloc-
ity fluctuation fields at micro scale as being

Kinṽμ
= Varṽμ

=
{

ṽμ ∈ H1(Ωμ), divy ṽμ = 0,

∫

Ωμ

ṽμ dΩμ = 0,
∫

Γμ

ṽμ ⊗ nμ dΓμ = 0
}

. (305)

The internal virtual power at macro scale is given by
P int
M = ∫

ΩM
σ M ·∇xv̂M dΩM . This internal power at a given

point x is P int
M,x = σ M |x • ĝM |x. The external virtual power

in this case is given by acceleration forces, particularly the
convective acceleration forces Pext

M = ∫
ΩM

cM · v̂M dΩM .
Here we slightly modified the notation, using cM instead
of fM . In the classical single scale scenario the convec-
tive force is cM = ρ(∇xvM )vM , but in the present mul-
tiscale setting we will retrieve such term from the micro
scale. This external power at a given point x is Pext

M,x =
cM |x • v̂M |x.

After exploiting the composition of the strain action, and
introducing the hypothesis about the Newtonian behavior of
the fluid at micro scale, i.e. σμ = 2μ∇S

y vμ, with μ the fluid
viscosity, the internal virtual power at micro scale results as

P int
μ =

∫

Ωμ

2μ∇S
y vμ · ∇yv̂μ dΩμ

=
∫

Ωμ

2μ∇S
y vμ · ( ĝM |x + ∇y ˆ̃vμ) dΩμ

=
∫

Ωμ

2μ∇S
y vμ · ĝM |x dΩμ

+
∫

Ωμ

2μ∇S
y vμ · ∇y ˆ̃vμ dΩμ. (306)

The external virtual power accounting for the convective
effects is expressed as

Pext
μ =

∫

Ωμ

cμ · v̂μ dΩμ =
∫

Ωμ

ρ(∇yvμ)vμ · v̂μ dΩμ

=
∫

Ωμ

ρ(∇yvμ)vμ · (v̂M |x + ĝM |x(y − yo) + ˆ̃vμ) dΩμ

=
∫

Ωμ

ρ(∇yvμ)vμ · v̂M |x dΩμ

+
∫

Ωμ

(ρ(∇yvμ)vμ ⊗ (y − yo)) · ĝM |x dΩμ

+
∫

Ωμ

ρ(∇yvμ)vμ · ˆ̃vμ dΩμ. (307)

The formulation of the Principle of Multiscale Virtual Power
for the present case is the following.

PMVP. It is said that (σ M |x, cM |x) and (σμ, cμ) =
(2μ∇S

y vμ, ρ(∇yvμ)vμ) satisfy the Principle of Multiscale
Virtual Power if and only if the following variational equa-
tion holds
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σ M |x • ĝM |x + cM |x • v̂M |x
=
∫

Ωμ

2μ∇S
y vμ · ĝM |x dΩμ +

∫

Ωμ

2μ∇S
y vμ · ∇y ˆ̃vμ dΩμ

+
∫

Ωμ

ρ(∇yvμ)vμ · v̂M |x dΩμ

+
∫

Ωμ

(ρ(∇yvμ)vμ ⊗ (y − yo)) · ĝM |x dΩμ

+
∫

Ωμ

ρ(∇yvμ)vμ · ˆ̃vμ dΩμ

∀(v̂M |x, ĝM |x, ˆ̃vμ) ∈ R̂
x
UM

× R̂
x
EM

× Varṽμ
. (308)

The consequences of the principle stated above are listed
below.

Equilibriumproblematmicro scale.Atfirst, con-
sider v̂M |x = 0 and ĝM |x = 0. The equilibrium
problem at the micro scale is defined by the follow-
ing variational equation
∫

Ωμ

2μ∇S
y vμ · ∇y ˆ̃vμ dΩμ

+
∫

Ωμ

ρ(∇yvμ)vμ · ˆ̃vμ dΩμ = 0

∀ˆ̃vμ ∈ Varṽμ
. (309)

Stress homogenization at macro scale. Consider
now v̂M |x = 0 and ˆ̃vμ = 0. Then it results that

σ M |x • ĝM |x
=
∫

Ωμ

2μ∇S
y vμ · ĝM |x dΩμ

+
∫

Ωμ

(ρ(∇yvμ)vμ ⊗ (y − yo)) · ĝM |x dΩμ

∀ ĝM |x ∈ R̂
x
EM

. (310)

Therefore, we have that the element σ M |x −
1

|Ωμ|
∫
Ωμ

[2μ∇S
y vμ+(ρ(∇yvμ)vμ⊗(y−yo))] dΩμ

is in (R̂x
EM

)⊥. Since in the macro scale the internal
power is performed by σ M against the space of
divergence free velocity fields, it turns out that the
relevant part of the stress, from the internal power
point of view, is the deviatoric component of σ M ,
called σ dev

M . Then the homogenization for this com-
ponent is

σ dev
M |x = 1

|Ωμ|
∫

Ωμ

[2μ∇S
y vμ

+ρ((∇yvμ)vμ ⊗ (y − yo))dev] dΩμ,

(311)

where dev denotes deviatoric operation. Theduality
operation is σ M |x • ĝM |x = |Ωμ|σ M |x · ĝM |x =
|Ωμ|σ dev

M |x · ĝM |x, so, it is ω1 = |Ωμ|.

In this expression, the contribution of the different
phenomena from the micro scale onto the homog-
enized macro scale stress tensor is clear. Further-
more, it is non-symmetric because of the last term
in (311).
Convective forcehomogenizationatmacro scale.
Now, consider ĝM |x = 0 and ˆ̃vμ = 0, which yields

cM |x • v̂M |x =
∫

Ωμ

ρ(∇yvμ)vμ · v̂M |x dΩμ

∀v̂M |x ∈ R̂
x
UM

, (312)

from where we obtain

cM |x = 1

|Ωμ|
∫

Ωμ

ρ(∇yvμ)vμ dΩμ. (313)

Notice that the duality operation is cM |x • v̂M |x =
|Ωμ|cM |x · v̂M |x, and then γ1 = |Ωμ|.
Further manipulation of the above expression by
introducing the form of the velocity field at micro
scale, leads to

cM |x = 1

|Ωμ|
∫

Ωμ

ρ∇yvμ(vM |x
+gM |x(y − yo) + ṽμ) dΩμ

=
(

1

|Ωμ|
∫

Ωμ

ρ dΩμ

)

gM |xvM |x

+ 1

|Ωμ| gM |xgM |x
∫

Ωμ

ρ(y − yo) dΩμ

+ 1

|Ωμ| gM |x
∫

Ωμ

ρṽμ dΩμ

+ 1

|Ωμ|
(∫

Ωμ

ρ∇yṽμ dΩμ

)

vM |x

+ 1

|Ωμ|
(∫

Ωμ

ρ∇yṽμ ⊗ (y − yo) dΩμ

)

gM |x

+ 1

|Ωμ|
∫

Ωμ

ρ(∇yṽμ)ṽμ dΩμ. (314)

For the particular case of a fluid in the micro scale
with constant density it simplifies to

cM |x = ρ

[

gM |xvM |x

+ 1

|Ωμ|
(∫

Ωμ

∇yṽμ ⊗ (y − yo) dΩμ

)

gM |x

+ 1

|Ωμ|
∫

Ωμ

(∇yṽμ)ṽμ dΩμ

]

. (315)

Remark 27 The model will deliver, as an internal reactive
force, a certain pressure field in the macro scale and a
micro pressure field. These are reactions with respect to
the macro and micro incompressibility. More general situ-
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ations can be thought of if we consider, for example, the
interaction of an incompressible flow with compressible
objects at micro scale, delivering an effective compressible
response.

Remark 28 Considering ṽμ = 0 in the expressions derived
above, and assuming constant density and viscosity, we
obtain a simplified multiscale model for fluid flow whose
homogenized form for the stress becomes

σ dev
M |x = 2μgSM |x

+ ρ

[

gM |xgM |x
(

1

|Ωμ|
∫

Ωμ

(y − yo)

⊗(y − yo) dΩμ

)]dev
. (316)

Therefore, the stress loses symmetry, as it accounts for sec-
ond order terms due to the convective phenomena at micro
scale. In turn, under the same assumptions as before, for the
convective force, from (315), we obtain

cM |x = ρgM |xvM |x. (317)

That is, such simple model contributes with high order terms
in the behavior of stresses, while does not affect the convec-
tive force.

Remark 29 In fluidmechanics, it is customary to have obsta-
cles at the micro scale. Consider the case in which obsta-
cles are fixed and a no-slip condition is considered over
the boundaries. In such a case, obstacles introduce external
forces, which are the reactive forces to the no-slip condi-
tion the flow must comply. These reactive forces are put in
evidence through the corresponding Lagrange multipliers.
The external virtual power at the micro scale changes in this
case to account for such external forces. Consider that Γ i

obs,
i = 1, . . . , Nobs, are the boundaries corresponding to the
micro scale obstacles. Lagrange multipliers are denoted by
λiμ ∈ Λi (Λi a proper functional space), i = 1, . . . , Nobs.
Then it is

Pext
μ =

∫

Ωμ

cμ · v̂μ dΩμ +
Nobs∑

i=1

∫

Γ i
obs

λiμ · v̂μ dΓ i
obs

=
∫

Ωμ

ρ(∇yvμ)vμ · v̂μ dΩμ +
Nobs∑

i=1

∫

Γ i
obs

λiμ · v̂μ dΓ i
obs

=
∫

Ωμ

ρ(∇yvμ)vμ · (v̂M |x + ĝM |x(y−yo) + ˆ̃vμ) dΩμ

+
Nobs∑

i=1

∫

Γ i
obs

λiμ · (v̂M |x + ĝM |x(y − yo) + ˆ̃vμ) dΓ i
obs

=
[ ∫

Ωμ

ρ(∇yvμ)vμ dΩμ+
Nobs∑

i=1

∫

Γ i
obs

λiμ dΓ i
obs

]

· v̂M |x

+
[ ∫

Ωμ

ρ(∇yvμ)vμ ⊗ (y − yo) dΩμ

+
Nobs∑

i=1

∫

Γ i
obs

λiμ ⊗ (y − yo) dΓ i
obs

]

· ĝM |x

+
∫

Ωμ

ρ(∇yvμ)vμ · ˆ̃vμ dΩμ

+
Nobs∑

i=1

∫

Γ i
obs

λiμ · ˆ̃vμ dΓ i
obs. (318)

Thus, the equilibrium problem at the micro scale is
∫

Ωμ

2μ∇S
y vμ · ∇y ˆ̃vμ dΩμ +

∫

Ωμ

ρ(∇yvμ)vμ · ˆ̃vμ dΩμ

+
Nobs∑

i=1

∫

Γ i
obs

λiμ · ˆ̃vμ dΓ i
obs +

Nobs∑

i=1

∫

Γ i
obs

λ̂
i
μ · vμ dΓ i

obs = 0

∀( ˆ̃vμ, λ̂
1
μ, . . . , λ̂

Nobs
μ ) ∈ Varṽμ

× Λ1 × · · · × ΛNobs .

(319)

The homogenization form for the (deviatoric component of
the) stress results as

σ dev
M |x
= 1

|Ωμ|
[∫

Ωμ

[2μ∇S
y vμ+ρ((∇yvμ)vμ ⊗ (y−yo))dev] dΩμ

+
Nobs∑

i=1

∫

Γ i
obs

(λiμ ⊗ (y − yo))dev dΓ i
obs

]

, (320)

and that of the forces is

cM |x = 1

|Ωμ|
[ ∫

Ωμ

ρ(∇yvμ)vμ dΩμ

+
Nobs∑

i=1

∫

Γ i
obs

λiμ dΓ i
obs

]

. (321)

6.6 Thermo-mechanics with Temperature Fluctuations

This section is devoted to the problemofmodelingmultiscale
phenomena in the field of thermomechanics. For simplicity,
we consider infinitesimal strain theory at both scales.

The domain in the macro scale is an open subset ΩM ⊂
R
3, with smooth boundaryΓM (outward unit normalnM ) and

with coordinates x. The generalized displacements is now the
displacement-temperature pair uM = (uM , θM ), and then the
structure of the space of generalized displacements is UM =
H1(ΩM ) × H1(ΩM ). The generalized strain action opera-
tor is DM (·) = (∇S

x (·),∇x(·)), where ∇S is the symmetric
gradient. Thus, we have DM = (∇S

x uM ,∇xθM ), and there-
fore DM ∈ EM = {(εM , gM ) ∈ L2(ΩM ) × L2(ΩM ), εM =
εTM }. All the kinematic fields are defined in ΩM . It is then
nM = 2 (RM = 4), and mM = 2 (SM = 9).
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At the micro-scale we have classical thermomechanics
with the RVE domain being Ωμ ⊂ R

3, with smooth bound-
ary Γμ (outward unit normal nμ) and coordinates y. Gen-
eralized displacements at this scale are also displacement-
temperature pairs, i.e. uμ = (uμ, θμ) = (ūμ + ũμ, θ̄μ +
θ̃μ), with underlying structure given by Uμ = H1(Ωμ) ×
H1(Ωμ). Analogously, it is Dμ(·) = (∇S

y (·),∇y(·)), so
Dμ = (∇S

y uμ,∇yθμ), and thus Dμ ∈ Eμ = {(εμ, gμ) ∈
L2(Ωμ) × L2(Ωμ), εμ = εTμ}. At micro scale the fields are
defined in the entire RVE domain. As for the macro scale,
we have nμ = 2 (Rμ = 4) and mμ = 2 (Sμ = 9).

The space of point-valued generalized displacements at
macro scale is R

x
UM

= {(w, τ ) ∈ R
3 × R, (w, τ ) =

(uM |x, θM |x), (uM , θM ) ∈ UM }, and for the generalized
strain actions R

x
EM

= {(ε,h) ∈ R
3×3 × R

3, (ε,h) =
(εM |x, gM |x), (εM , gM ) ∈ EM }. In this case it is R̂

x
UM

=
R
x
UM

and R̂
x
EM

= R
x
EM

. The operator which makes the
insertion of the pair displacement-temperature into the RVE
domain is postulated to be

J U
μ ((uM |x, θM |x)) = (uM |x, θM |x), (322)

resulting in uniform fields over the entire RVE. In turn, the
generalized strain action from the macro scale is postulated
to be inserted into the micro scale as

J E
μ ((εM |x, gM |x))

= (εM |x(y − yo), gM |x · (y − yo)), (323)

with yo being the geometrical center of the RVE, i.e. yo =
1

Ωμ

∫
Ωμ

yΩμ. Then, at micro scale we have the following
expansion of the generalized displacement field

uμ = uM |x + εM |x(y − yo) + ũμ, (324)

θμ = θM |x + gM |x · (y − yo) + θ̃μ. (325)

Naturally, it isDμ(J U
μ ((uM |x, θM |x))) = (0, 0), fromwhich

it results

εμ = εM |x + ∇S
y ũμ, (326)

gμ = gM |x + ∇yθ̃μ. (327)

Further, by construction the insertion operator J E
μ is such

that

Dμ(J E
μ ((εM |x, gM |x))) = (εM |x, gM |x)

∀y ∈ Ωμ. (328)

Now, we define the following homogenization operator for
the generalized displacement field

HU
μ ((uμ, θμ))

=
(

1

|Ωμ|
∫

Ωμ

uμ dΩμ,
1

|Ωμ|
∫

Ωμ

θμ dΩμ

)

, (329)

and for the generalized strain action field

HE
μ((εμ, gμ))

=
(

1

|Ωμ|
∫

Ωμ

εμ dΩμ,
1

|Ωμ|
∫

Ωμ

gμ dΩμ

)

. (330)

By construction, the operator J U
μ satisfies (see (59))

HU
μ (J U

μ ((uM |x, θM |x)))
=
(

1

|Ωμ|
∫

Ωμ

uM |x dΩμ,
1

|Ωμ|
∫

Ωμ

θM |x dΩμ

)

= (uM |x, θM |x). (331)

To put the kinematical admissibility into action let us con-
sider the generalized displacement field first. Then we must
fullfil (see constraint (61))

(
1

|Ωμ|
∫

Ωμ

uμ dΩμ,
1

|Ωμ|
∫

Ωμ

θμ dΩμ

)

=
(

1

|Ωμ|
∫

Ωμ

uM |x dΩμ,
1

|Ωμ|
∫

Ωμ

θM |x dΩμ

)

. (332)

In addition, observe that by construction it is

1

|Ωμ|
∫

Ωμ

εM |x(y − yo) dΩμ = 0, (333)

1

|Ωμ|
∫

Ωμ

gM |x · (y − yo) dΩμ = 0. (334)

So the expression (332) is met by enforcing

(
1

|Ωμ|
∫

Ωμ

ũμ dΩμ,
1

|Ωμ|
∫

Ωμ

θ̃μ dΩμ

)

= (0, 0). (335)

Regarding the link between strain action at macro and micro
scales, first we have that the operator J E

μ satisfies by con-
struction (see requirement (60))

HE
μ(Dμ(J E

μ ((εM |x, gM |x))))
=
(

1

|Ωμ|
∫

Ωμ

εM |x dΩμ,
1

|Ωμ|
∫

Ωμ

gM |x dΩμ

)

= (εM |x, gM |x). (336)
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Second, we have that the kinematical admissibility condition
for generalized strain actions establishes (see constraint (62))
(

1

|Ωμ|
∫

Ωμ

εμ dΩμ,
1

|Ωμ|
∫

Ωμ

gμ dΩμ

)

=
(

1

|Ωμ|
∫

Ωμ

εM |x dΩμ,
1

|Ωμ|
∫

Ωμ

gM |x dΩμ

)

, (337)

which is fulfilled by enforcing
(

1

|Ωμ|
∫

Ωμ

∇S
y ũμ dΩμ,

1

|Ωμ|
∫

Ωμ

∇yθ̃μ dΩμ

)

= (0, 0). (338)

Integrating by parts in the expression above we obtain
(

1

|Ωμ|
∫

Γμ

ũμ ⊗S nμ dΓμ,
1

|Ωμ|
∫

Γμ

θ̃μnμ dΓμ

)

= (0, 0), (339)

where ⊗S is the symmetric tensor product. Thus, we define
the space of kinematically admissible fluctuation displace-
ment fields at micro scale as

Kin(ũμ,θ̃μ) = Var(ũμ,θ̃μ)

=
{

(ũμ, θ̃μ) ∈ [H1(Ωμ)]3 × H1(Ωμ),

∫

Ωμ

ũμ dΩμ = 0,
∫

Ωμ

θ̃μ dΩμ = 0,

∫

Γμ

ũμ⊗S nμ dΓμ =0,
∫

Γμ

θ̃μnμ dΓμ = 0
}

.

(340)

The internal virtual power at macro scale is given by the
contribution of the mechanical and thermal powers P int

M =
∫
ΩM

σ M · ∇S
x ûM dΩM + χ

∫
ΩM

qM · ∇xθ̂M dΩM (χ is a
dimensional scalar to make the sum of powers dimension-
ally consistent, therefore, it has the units of [temperature]−1).
At a point x (linked to the RVE) we then have P int

M,x =
(σ M |x, χqM |x) • (ε̂M |x, ĝM |x). The external virtual power
is Pext

M = ∫
ΩM

fM · ûM dΩM + χ
∫
ΩM

hM · θ̂M dΩM , and

at a point x it is Pext
M,x = (fM |x, χhM |x) • (ûM |x, θ̂M |x).

Observe that in the external virtual power the macro scale
model allows for classical body forces, fM , and sources of
heat per unit volume, hM .

The internal virtual power at micro scale, after exploit-
ing the composition of the generalized strain action at micro
scale, results in

P int
μ =

∫

Ωμ

σμ · ∇S
y ûμ dΩμ + χ

∫

Ωμ

qμ · ∇yθ̂μ dΩμ

=
∫

Ωμ

σμ · (ε̂M |x + ∇S
y

ˆ̃uμ) dΩμ

+χ

∫

Ωμ

qμ · (ĝM |x + ∇y
ˆ̃
θμ) dΩμ

=
∫

Ωμ

σμ · ε̂M |x dΩμ +
∫

Ωμ

σμ · ∇S
y

ˆ̃uμ dΩμ

+χ

∫

Ωμ

qμ · ĝM |x dΩμ + χ

∫

Ωμ

qμ · ∇y
ˆ̃
θμ dΩμ.

(341)

In turn, the external virtual power in the present model incor-
porates body forces fμ and sources of heat per unit volume
hμ, both defined in the micro scale domain. It can be written
as follows

Pext
μ =

∫

Ωμ

fμ · ûμ dΩμ + χ

∫

Ωμ

hμ · θ̂μ dΩμ

=
∫

Ωμ

fμ · (ûM |x + ε̂M |x(y − yo) + ˆ̃uμ) dΩμ

+χ

∫

Ωμ

hμ(θ̂M |x + ĝM |x · (y − yo) + ˆ̃
θμ) dΩμ

=
∫

Ωμ

fμ · ûM |x dΩμ

+
∫

Ωμ

(fμ ⊗S (y − yo)) · ε̂M |x dΩμ

+
∫

Ωμ

fμ · ˆ̃uμ dΩμ

+χ

∫

Ωμ

hμθ̂M |x dΩμ+χ

∫

Ωμ

hμ(y−yo) · ĝM |x dΩμ

+χ

∫

Ωμ

hμ
ˆ̃
θμ dΩμ. (342)

The formulation of the Principle of Multiscale Virtual Power
for the present case is the following.

PMVP. It is said that ((σ M |x,qM |x), (fM |x, hM |x)) and
((σμ,qμ), (fμ, hμ)) satisfy the Principle of Multiscale Vir-
tual Power if and only if the following variational equation
holds

(σ M |x, χqM |x) • (ε̂M |x, ĝM |x)
−(fM |x, χhM |x) • (ûM |x, θ̂M |x)

=
∫

Ωμ

σμ · ε̂M |x dΩμ +
∫

Ωμ

σμ · ∇S
y

ˆ̃uμ dΩμ

+χ

∫

Ωμ

qμ · ĝM |x dΩμ + χ

∫

Ωμ

qμ · ∇y
ˆ̃
θμ dΩμ

−
∫

Ωμ

fμ · ûM |x dΩμ−
∫

Ωμ

(fμ⊗S (y−yo)) · ε̂M |x dΩμ

−
∫

Ωμ

fμ · ˆ̃uμ dΩμ
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−χ

∫

Ωμ

hμθ̂M |x dΩμ − χ

∫

Ωμ

hμ(y − yo) · ĝM |x dΩμ

−χ

∫

Ωμ

hμ
ˆ̃
θμ dΩμ

∀((ûM |x, θ̂M |x), (ε̂M |x, ĝM |x), ( ˆ̃uμ,
ˆ̃
θμ)) ∈

R̂
x
UM

× R̂
x
EM

× Var(ũμ,θ̃μ). (343)

��

The consequences of the principle stated above are listed
below.

Equilibrium problem at micro scale. Firstly, take
(ûM |x, θ̂M |x) = (0, 0) and (ε̂M |x, ĝM |x) = (0, 0).
The equilibrium problem at the micro scale is
defined by the following variational equations
∫

Ωμ

σμ · ∇S
y

ˆ̃uμ dΩμ + χ

∫

Ωμ

qμ · ∇y
ˆ̃
θμ dΩμ

−
∫

Ωμ

fμ · ˆ̃uμ dΩμ − χ

∫

Ωμ

hμ · ˆ̃
θμ dΩμ = 0

∀( ˆ̃uμ,
ˆ̃
θμ) ∈ Var(ũμ,θ̃μ). (344)

That is, we obtain the classical variational formu-
lations for the mechanical
∫

Ωμ

σμ · ∇S
y

ˆ̃uμ dΩμ −
∫

Ωμ

fμ · ˆ̃uμ dΩμ = 0

∀( ˆ̃uμ, 0) ∈ Var(ũμ,θ̃μ), (345)

and thermal subsystems of the body
∫

Ωμ

qμ · ∇y
ˆ̃
θμ dΩμ −

∫

Ωμ

hμ
ˆ̃
θμ dΩμ = 0

∀(0, ˆ̃
θμ) ∈ Var(ũμ,θ̃μ). (346)

Generalized stress homogenization at macro
scale. Consider (ûM |x, θ̂M |x) = (0, 0) and

( ˆ̃uμ,
ˆ̃
θμ) = (0, 0). Then it results

(σ M |x, χqM |x) • (ε̂M |x, ĝM |x)
=
∫

Ωμ

σμ · ε̂M |x dΩμ + χ

∫

Ωμ

qμ · ĝM |x dΩμ

−
∫

Ωμ

(fμ ⊗S (y − yo)) · ε̂M |x dΩμ

−χ

∫

Ωμ

hμ(y − yo) · ĝM |x dΩμ

∀(ε̂M |x, ĝM |x) ∈ R̂
x
EM

. (347)

Therefore, the homogenization formulae for the
stress and the heat flux is obtained from identifying
that (σ M |x, χqM |x)• (ε̂M |x, ĝM |x) = |Ωμ| σ M |x ·
ε̂M |x + χ |Ωμ|qM |x · ĝM |x, resulting in

σ M |x = 1

|Ωμ|
∫

Ωμ

σμ − (fμ ⊗S (y − yo)) dΩμ,

(348)

and

qM |x = 1

|Ωμ|
∫

Ωμ

qμ − hμ(y − yo) dΩμ. (349)

Note that in this case it is ω1 = ω2 = |Ωμ|.
Generalizedbody forcehomogenizationatmacro
scale. Now, it is considered (ε̂M |x, ĝM |x) = (0, 0)

and ( ˆ̃uμ,
ˆ̃
θμ) = (0, 0), which yields

(fM |x, χhM |x) • (ûM |x, θ̂M |x)
=
∫

Ωμ

fμ · ûM |x dΩμ + χ

∫

Ωμ

hμθ̂M |x dΩμ

∀(ûM |x, θ̂M |x) ∈ R̂
x
UM

, (350)

and from the fact that the product (fM |x, χhM |x) •
(ûM |x, θ̂M |x) = |Ωμ| fM |x · ûM |x + χ |Ωμ| hM |x ·
θ̂M |x, we have

fM |x = 1

|Ωμ|
∫

Ωμ

fμ dΩμ, (351)

and

hM |x = 1

|Ωμ|
∫

Ωμ

hμ dΩμ. (352)

Here, it is γ1 = γ2 = |Ωμ|.

Remark 30 Let us consider that at micro scale the material
exhibits a classical linear constitutive response in the ther-
momechanical setting, i.e.

σμ = Cμεμ − Bμθμ, (353)

with Cμ and Bμ the elasticity tensor and the thermal expan-
sion tensor, respectively. Now, due to the splitting of fields
we have

σμ = Cμ(εM |x + ∇S
y ũμ)

−Bμ(θM |x + gM |x · (y − yo) + θ̃μ). (354)

Beyond standard functional dependencies, in this case σμ

depends on gM |x, which implies that σ M |x depends on gM |x.
As pointed out in [15], even having considered a standard
thermodynamic setting at micro scale, the multiscale formu-
lation results in an extended thermodynamics setting at the
macro scale.
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7 Numerical Applications

7.1 A Plasticity-Like Multiscale Model of Martensitic
Transformation

In this section we present a multiscale model of stress-
induced martensitic transformation. The model relies on a
multiplicative plasticity-like description of the phase trans-
formation phenomenon that occurs at grain level—here taken
as the micro-scale— accounting for the accompanying large
transformational strains. The overall behaviour of the alloy
is predicted by means of the homogenization of an RVE
containing a sufficient number of randomly oriented grains.
A crucial feature of the model presented here is that the
mechanical dissipation associated with the martensitic trans-
formation above the temperature of spontaneous austenite-
martensite transformation is rigorously accounted for in a
newly proposed plasticity-like criterion that incorporate the
ideas of Patel and Cohen [95] in a thermodynamically con-
sistent finite strain framework.We remark that the multiscale
class within which the present model is developed is standard
in the sense that no discontinuities or higher-order kinemat-
ics are present. In particular, the model is an instance of the
purely constitutive approach referred to in Sect. 4. The main
contribution here is the level of refinement of the constitutive
model used at the micro-scale and our main aim is to show
that higher levels of micro-scale constitutive refinement can
lead to macro-scale material behaviour descriptions capa-
ble of capturing the effects of rather complex phenomena—
phase transformation in the present case—usually not easily
captured by standard phenomenological (macro-scale) con-
stitutive theories. Such levels of refinement are, in our view,
essential in order to move towards truly predictive (rather
than simply descriptive)multiscalemodels with potential use
in application-tailored micro-structure design— an impor-
tant area of current research in materials engineering and
science.

In the following sections, the index μ referring to micro-
scale quantities has been omitted for the sake of notational
simplicity.

7.1.1 Martensitic Transformation Kinematics

Crucial in development of the constitutive model to be used
at the micro-scale is the description of the kinematics of the
phase transformation under consideration. The transforma-
tion of metastable austenite into martensite is a diffusion-
less transformation that at any one point of the transforming
crystal can be described in continuum terms by a shear defor-
mation and an expansion normal to a so-called habit plane.
The potential habit planes and the possible shear directions
within each such a plane are entirely determined by the geom-
etry of the crystal lattice under consideration, according to

the theory ofWechsler-Lieberman-Read/Bowles-Mackenzie
[16,127]. With ξ denoting the transformational shear, δ the
accompanying normal expansion, mi the unit normal to the
habit plane and si the relevant shear direction for the vari-
ant i , the transformation is characterized by a deformation
gradient

Ftr = I + di ⊗ mi , (355)

where

di = ξsi + δmi , (356)

with no summation on repeated indices.
Typically, stress-inducedmartensitic transformationoccurs

as part of a process involving elastic lattice deformations and
possibly plastic slip prior to the onset of the transformation.
In this context, we shall adopt a multiplicative kinematics
whereby the total deformation gradient F at any point of the
crystal is given as a product of elastic, plastic and transfor-
mational contributions:

F = FeFtrFp
A, (357)

where Fe denotes the elastic deformation gradient, Fp
A the

plastic deformation gradient associated with plastic slip of
the meta-stable austenite phase (prior to the transformation).
If plastic slip of the newly-formed martensite is to be con-
sidered, then the corresponding plastic deformation gradient
Fp
M can be accounted for by augmenting the above decom-

position according to

F = FeFp
MFtrFp

A. (358)

Martensite plasticity, however, will not be considered here.
We remark that the above multiplicative splits of the defor-
mation gradient can be rigorously justified as a continuum
model of the kinematics associated with the lattice geometry
changes associated with the elastic, plastic and transforma-
tional phenomena under consideration. It extends the now
standard multiplicative kinematics adopted in finite strain
elasto-plasticity [111].

7.1.2 Thermodynamical Considerations: Plasticity-Like
Model

It is widely accepted [14,96,116] that external mechanical
work is required for themartensitic transformation to occur at
temperatures above the temperature Ms at which martensite
forms spontaneously. This idea appears to have been formally
explored firstly in the seminal paper by Patel and Cohen [95]
and is illustrated inFig. 5. It suggests that the total energyden-
sity dissipated by the transformation is a constant. Belowor at
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Fig. 5 Martensitic transformation. Energies involved

Ms the difference between the chemical free-energy density
of the (unstable) austenite and (stable) matensite phases is
sufficient to allow the transformation to occur spontaneously,
without external energy input into the lattice. At tempera-
tures above Ms and below T0 (the austenite-martensite equi-
librium temperature), where the chemical free-energy drop
during transformation is smaller than the energy dissipated
by the transformation itself, the transformation may only
occur if additional energy is injected into the lattice. When
the transformation does occur under such circumstances, this
additional energy density, denoted ΔGMEC, is provided by
mechanical work. The parameter ΔGMEC can be regarded
as a (temperature-dependent) material property. In summary,
wewant to model a mechanism that dissipates a given energy
densityΔGMEC (at a given temperature) andwhose phenom-
enological manifestation is a deformation gradient Ftr , in the
context of amultiplicative split (357) of the total deformation
gradient.

The situation here is analogous to finite multiplicative
plasticity and, as such, the underlying phenomenon can be
modelled in the very same way. Assuming the mechanical
free-energy density ψ to be a function solely of the elastic
deformation gradient Fe, and accounting for the split (357),
we have

ψ̇ = ∂ψ

∂Fe : Ḟe

= ∂ψ

∂Fe (FtrFp
A)−T : Ḟ

− FeT ∂ψ

∂Fe (F
trFp

A)−T : (FtrFp
A)·, (359)

or, since the rate of plastic slip vanishes during the transfor-
mation,

ψ̇ = ∂ψ

∂Fe (FtrFp
A)−T : Ḟ − FeT ∂ψ

∂Fe (F
trFp

A)−T : Ḟtr. (360)

The dissipation inequality,

Ḋ ≡ P : Ḟ − ψ̇ > 0, (361)

then reads
[

P − ∂ψ

∂Fe (FtrFp
A)−T

]

: Ḟ

+FeT ∂ψ

∂Fe (F
trFp

A)−T : Ḟtr > 0. (362)

From the above we identify the constitutive equation for
the first Piola-Kirchhoff stress,

P = ∂ψ

∂Fe (FtrFp
A)−T , (363)

and the dissipation inequality during the martensitic trans-
formation reduces to

Ḋ = T : Ḟtr > 0, (364)

where

T ≡ FeTP, (365)

is the work-conjugate stress to the transformational deforma-
tion gradient.

A plasticity-like constitutive model that dissipates exactly
the additional energy density ΔGMEC over a transformation
on a variant i can be devised by firstly postulating a transfor-
mation function Φ tr

i , analogous to a plastic yield function, of
the type

Φ tr
i (T) ≡ T : (di ⊗ si ) − ΔGMEC. (366)

The model is completed by further postulating an associative
transformation rule (c.f. associative plastic flow rule)

Ḟtr = γ̇
∂Φ tr

i

∂T
= γ̇ di ⊗ si , (367)

where the multiplier γ̇ satisfies

{
Φ tr
i ≤ 0; γ̇ ≥ 0; Φ tr

i γ̇ = 0 if γ < 1,
γ̇ = 0 if γ = 1.

(368)

Note that with initial conditions γ = 0 and Ftr = I at the
onset of transformation, the evolution problem defined by
(367) and (368) ensures thatFtr = I+di⊗si upon completion
of the transformation (when γ = 1).

The consistency of the model with the ideas illustrated in
Fig. 5 can be trivially demonstrated as follows. In view of
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the transformation rule (367) the dissipation rate (364) can
be expressed as

Ḋ = γ̇ T : di ⊗ si . (369)

Further, note that (368) requires that Φ tr
i = 0 during the

transformation (when γ̇ > 0) or, equivalently, T : di ⊗ si =
ΔGMEC. Substituting this into (369) renders

Ḋ = γ̇ ΔGMEC, (370)

so that the total mechanical energy density dissipated during
the transformation reads

D =
∫ 1

0
dγΔGMEC = ΔGMEC. (371)

That is, the total mechanical energy density dissipated by
the martensitic transformation mechanism coincides with
the (temperature-dependent) parameter ΔGMEC alluded to
in Fig. 5.

7.1.3 Elastic and Austenite Plasticity Descriptions

As a first approximation to the description of the elastic
behaviour of the crystal lattices, a regularized neo-Hookean
model is adopted for both the austenite and the transformed
martensite phases. The plasticity of the meta-stable austen-
ite, in turn, is described by a rather conventional (time-
dependent) crystal plasticity approach of the type described
in [111]. The austenitic plastic flow is assumed governed by
the rule

Ḟp
A =

[nsyst∑

α=1

γ̇ α(rα ⊗ mα)

]

, (372)

where nsyst is the total number of slip systems, rα andmα are,
respectively, the unit vectors in the slip direction and normal
to the slip plane of slip system α. The multiplier γ̇ α—the
slip-rate on slip system α—is given by

γ̇ α =
⎧
⎨

⎩

1
β

[( |τα |
τy

) 1
ε − 1

]

sign(τα) if |τα| ≥ τy

0 if |τα| < τy,

(373)

with τα the Kirchhoff resolved Schmid shear stress on slip
system α and β, ε and τy material constants.

7.1.4 Integration Algorithm

The numerical integration of the coupled elastic-plastic-
transformation constitutive equations described in the above

follows a procedure analogous to those of crystal plastic-
ity described in [111]. Before the start of the transformation
the material behaviour is given by a multiplicative elasto-
viscoplatic crystal model with slip-rate given by (373). The
integration algorithm adopted at this stage is that based on
the exponential map as described in [111]. The transfor-
mation begins within a time interval [tn, tn+1] if the cor-
responding elastic trial stress Ttrial

n+1 obtained by the elasto-
viscoplastic crystal model integration algorithm is such that
Φ tr

j (T
trial
n+1) > 0 for some variant j . In this case, a variant

selection procedure— determining the transformation actual
system i in which the transformation occurs—will select the
most favourable system (the one with highest transforma-
tion function value) and the stress will be updated by means
of a return mapping-type algorithm for the transformation
rule. For the transformation, however, the return mapping-
type algorithm is simpler than that of crystal plasticity in
that: (a) It only accounts for plastic flow originating from
one system—the transforming variant; and, (b) The trans-
formation rule is discretized by a standard backward-Euler
scheme (as opposed to the more complex exponential map-
based scheme of crystal plasticity), i.e. (367) has the follow-
ing time-discrete counterpart,

Ftr
n+1 = Δγ di ⊗ si , (374)

where Δγ ≡ γn+1 − γn satisfies

Φ tr
i (Tn+1) ≤ 0; Δγ ≥ 0; Φ tr(Tn+1)Δγ = 0, (375)

when γn+1 < 1. The overall algorithm is described in the
following in pseudo-code format, withFΔ denoting the incre-
mental deformation gradient between times tn and tn+1 and
ψ the regularized neo-Hookean free-energy function.

(1) Compute elastic trial state

Fe trial
n+1 = FΔFe

n; Ttrial
n+1 = (Fe trial

n+1 )T
∂ψ
∂Fe

∣
∣
∣
trial

n+1
(Ftr

nF
p
A n)

−T

(2) Transformation update
IF a variant i has been selected, THEN
IF Φ tr

i (Ttrial
n+1) > 0 THEN

GOTO transformation return mapping
to update Ftr

n+1 and Tn+1
ELSE

update (·)n+1 := (·)trial and EXIT
ELSE
variant selection:
Set i := arg{max j=1,...,nv {Φ trial

j : Φ trial
j > 0}}

IF i = ∅ THEN
GOTO elasto-plastic algorithm and EXIT

ELSE GOTO (2)

The elasto-plastic algorithm referred to in the above is
that of conventional time-dependent crystal plasticity with
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Fig. 6 Polycrystalline
aggregate RVE. Geometry, mesh
and material parameters

exponential map plastic flow integrator [111]— here with
slip-rate governed by (373) and material parameters corre-
sponding to the metastable austenite phase in question. The
transformation return mapping, in turn, is given by:

(a) Solve the scalar equation

Φ tr(T(Δγ )) = 0

for the unknown Δγ , where

T(Δγ ) ≡ [Fe(Δγ )]T ∂ψ

∂Fe

∣
∣
∣
∣
Fe(Δγ )

[Ftr(Δγ )Fp
A n]−T ,

with Ftr(Δγ ) ≡ (γn + Δγ )di ⊗ si

and Fe(Δγ ) ≡ Fn+1(F
p
A n)

−1[Ftr(Δγ )]−1

(b) Update γn+1, Fe
n+1 and Ftr

n+1

γn+1 := γn + Δγ

IF γn+1 > 1 THEN
set γn+1 := 1; Δγ := γn+1 − γn

ENDIF
Fe
n+1 := Fe(Δγ ); Ftr

n+1 := Ftr(Δγ )

Finally, we remark that, for use within an implicit finite
element framework (adopted in the numerical example
described below), linearization of the time-discrete consti-
tutive model resulting from the above numerical integration
scheme and the corresponding constitutive tangent operators
can be obtained in exact form in the same way as in conven-
tional crystal plasticity [111].

7.1.5 RVE-Based Simulations

In the simulations presented in this section, the above consti-
tutive model/algorithm is used to model the material behav-

iour at the micro-scale, taken here to be the crystal scale
of a polycrystalline aggregate. That is, the RVE is formed
by representative sample of crystals assumed to be perfectly
bonded together within the aggregate—each crystal hav-
ing its own crystallographic orientation. The specific mater-
ial modelled here is 12Cr9Ni4Mo—a low carbon austenitic
stainless steelwhose retained austenitic phase can fully trans-
form into martensite at room temperature under the action
of external mechanical loading [61,62]. A simplified two-
dimensional model is used whereby the twenty four variants
of the three-dimensional fcc austenite crystal are reduced to
a total of four in-plane variants. Crystals are assumed to be
in their metastable austenitic phase at first and then will be
subjected to a mechanical loading process leading to marten-
sitic transformation according to the proposed rule. The RVE
representing the polycrystalline aggregate is shown in Fig. 6
together with the material parameters published in [34,96].
The grains are oriented randomly. It should be noted that the
transformation in this case is accompanied by a 2% dilation
normal to the habit plane and 26% shear deformation in the
corresponding shear direction.

The first test presented here consists of the numerical pre-
diction of the transformation surface in stress space atmacro-
scale, i.e. the locus in stress space containing combinations
of stresses at the onset of martensitic transformation. The
procedure is analogous to that used in [38] in the determi-
nation of a macroscopic plastic yield surface for a porous
metal (see also [32,94]). Deformation gradient histories (lin-
ear in time) from the macro-scale are applied to the RVE
so as to produce a wide range of homogenized stress paths.
For any path for whichmartensitic transformation occurs, the
homogenized stress is recorded at the onset of transformation
and the stress point plotted in stress space atmacro-scale. The
collection of all such points will provide a numerical approx-
imation for the transformation locus in stress space. Due
to the assumed randomness of grain orientation, the aggre-
gate may be regarded as macroscopically isotropic. Under
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Fig. 7 Numerically predicted transformation surface in stress space at
macro-scale

this assumption, the transformation surface can be plotted in
principal stress space. The numerical results are shown in
Fig. 7. It can be seen that the present multiscale model is
able to capture quite accurately the experimental results pro-
duced by Geijselaers and Perdahcioğlu [34]. Interestingly,
the experimental transformation surface resembles a Mohr-
Coulomb yield surface (typical in the modelling of geoma-
terials) in stress space at macro-scale. It is worth remarking
that, in fact, the proposed criterion based on the transforma-
tion function (366) is entirely analogous to aMohr-Coulomb
plasticity criterion, the main difference being that in the cri-
terion proposed here the critical combination of normal and
shear stressesmust occur with respect to one plane (the trans-
forming habit plane) whereas in theMohr-Coulomb criterion
critical combinationsmay occur at any plane. Obviouslywith
increasing numbers of randomly oriented planes in an RVE,
the predicted locus here will converge to a Mohr-Coulomb-
type locus. In particular, we should point out that the hori-
zontal and vertical lines of the Mohr-Coulomb-type surface
plotted in Fig. 7 (not captured by the present 2D model) will
be trivially captured by a three-dimensional version of the
present model.

Finally, in Fig. 8 we plot the results evolution of the
homogenized Cauchy shear stress over a loading programme
consisting of a monotonic shearing of the RVE. A macro-
scale (in-plane) deformation gradient,

F =
[
1 η

0 1

]

,

is imposedwithηmonotonically increasing in time. TheRVE
is subjected to the minimal kinematical constraint (uniform
boundary traction). The model is able to capture the experi-
mental results of Perdahcioglu & Geijselaers [96] with rea-
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Fig. 8 Stress–strain response under monotonic shearing at macro-
scale

sonable accuracy. We remark that further refinements of the
model, such as the use of a full three-dimensional RVE and
incorporation of martensite plasticity are likely to improve
the predictive capability of the model. These are currently
under investigation and shall be the subject of a future pub-
lication.

7.2 Failure Modeling in Heterogeneous Materials

7.2.1 Preliminaries

One of the main motivations to develop an abstract gen-
eralization of the concepts behind multiscale formulations
has been the modeling of failure in complex heterogeneous
materials. This kind of problems forced us to realize a very
critical reinterpretation about the underlying foundations of
conventional RVE-based multiscale approaches, in order to
be able to model mechanical scenarios ruled by strain local-
ization phenomena leading, ultimately, to complete mater-
ial exhaustion. Such problems cannot be addressed by using
conventional multiscale procedures because its mechanical
consistency is lost during the unstable macroscopic material
regime [37,88,104]. In this context, the particular multiscale
model exposed in Sect. 6.4, called Failure-Oriented Multi-
scale Formulation (FOMF) (see also [103,104]), could be
considered as one of the most representative branches of the
unified variational theory debated in this document. Indeed,
the FOMF approach exploits (at maximum) the potential-
ities of the generalized framework of Sect. 3. Hence, the
introduction of a numerical simulation showing the behav-
ior and capabilities of such class of multiscale model adapts
perfectly to the objectives of this contribution.

The FOMF approach considers crack nucleation in the
macro scale (i.e displacement discontinuities) and strain
localization in the micro scale domain. Thus, once the fail-
ure mechanism is activated in the macro scale, the proposed
multiscale technique has to deal with kinematical hetero-
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geneity between the involved physical length scales, since it
establishes a kinematical/constitutive link between a macro
cohesive “interface” and a “volumetric”RVE. Furthermore,
the mechanics at the level of the micro scale features differ-
ent mechanical regimes with localization phenomena taking
place in certain regions of the RVE. In such case, the role of
the insertion operators is of the utmost relevance.

This part of the manuscript focuses around a mechani-
cal scenario that becomes intrinsically discontinuous after
the nucleation of a macro cohesive crack. The main mecha-
nism that needs to be captured here is the intricate interplay
between micro degradation phenomena and its influence at
macro-scale level. Therefore, subsidiary effects such as for
example, the consideration of finite strain kinematics or the
incorporation of external body forces, are disregarded in the
subsequent analysis.

The numerical implementation of the FOMF approach
is based on a nested (coupled) macro-micro finite element
scheme, which is not described here. In [123], a detailed
description of the numerical and algorithmic aspects can be
found.

7.2.2 General Description

The numerical example we incorporate in this section deals
with damage, degradation, strain localization and material
failure. See [123] for more details. In particular, we are inter-
ested in the assessment of the multiscale model performance
and accuracy to estimate the (effective) fracture energy at
the macro-scale as a result of the dissipative processes and
complex interactions taking place at the microscopic level.

To this endwe choose a classical problem in the“phenom-
enological” fracture mechanics community, which has been
adapted here to a “multiscale” (two-scale) setting. It consists
in the so-called Single-EdgeNotched BeamTest at themacro
scale (SENBT), undergoing a vertical descendant displace-
ment which is prescribed in the upper mid-span point, PI,
see Fig. 9e–g. The beam has a very marked heterogeneous
microstructure. Actually, three different microstructural pat-
terns have been considered for modeling purposes, as we
explain in this section.

Two important features are highlighted about the proposed
problem setting: (1) the strain localization pattern in the
microstructure, leading to failure, is pre-induced to be verti-
cal by means of the material definitions in each RVE, and (2)
the cohesivemacro-crack path can be easily predicted, indeed
it will be a vertical crack which propagates from the notch up
to the top mid-span point of the beam (i.e. towards the point
PI where the vertical descendant displacement is imposed).
These two features permit us to estimate, a priori and with
sufficient precision, the macro fracture energy through sim-
ple analytical computations and then, we can compare it with
the predictions of the multiscale model.

In spite of the previous simplifying hypotheses, the pro-
posed test is complex enough to consider all the funda-
mental (and novel) ingredients which are present in the
FOMF methodology, namely: (1) non-linear damage and
strain localization in the micro scale, (2) the irreversible
degradation mechanisms, taking place in the RVE, trigger
a critical material state or material instability in the macro
point linked to such RVE, (3) the critical condition is eval-
uated performing a spectral analysis on the homogenized
tangent constitutive tensor, (4) when material instability is
reached, in some point of the macro scale, a cohesive crack
is nucleated (thus we determine the nucleation time tN ), (v)
the constitutive response of the macro crack is evaluated
from specific homogenization rules, naturally provided by
the variational formulation presented in this work, and (vi)
new kinematical restrictions are applied over the boundary
Γ L

μ of the strain localization domain ΩL
μ in the RVE (an

original ingredient derived from our unified variational for-
mulation) which are the responsible of preserving objectivity
of the mechanical response with respect to the RVE size.

7.2.3 Test Configuration

The characteristic dimensions of the macro structure (the
beam) is displayed in Fig. 9d–g. Three beams with identi-
cal macro-geometries and boundary conditions but with dif-
ferent microstructures are simulated. The topology of each
micro structure (the RVEs), together with their characteristic
dimensions, are showed in Fig. 9a–c. In all cases, plain strain
condition has been considered for both scales.

The domains of the macro and the micro scales are parti-
tioned into several patches or finite element sets, see Fig. 9.
Each set is characterized by its constitutive behavior and
by the finite element technology employed. There are two
categories of constitutive models: (1) the classical or “Phe-
nomenological” material, where the constitutive response is
obtained from standard, generally non-linear, mono-scale
return-mapping schemes, and (2) “Multiscale RVE-based”
constitutive model, where the mechanical response is recov-
ered after homogenization of a micro-mechanical problem.
Table 1 gives the required specifications for each set, where
the following terminology has been introduced: Eμ is the
Young’s Modulus, νμ is the Poisson’s ratio, GμF is the frac-
ture energy and σ u

μ is the ultimate tensile limit stress; all
quantities related to the micro scale domain, thence the sub-
index (·)μ.

Three types of periodic microstructures, containing a reg-
ular arrangement of voids, are modeled. Figure 9a–c shows a
sketch of the adopted microstructural patterns. The void vol-
ume fraction, fv , in each one of the three cases is: fv = 0,
fv = 0.037 and fv = 0.111, respectively (quantities referred
to the total RVE measure |Ωμ|). The micro pores (see set
S3 in Fig. 9b) are modeled by means of an extremely soft
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Fig. 9 Single-Edge Notched Beam Test with inner heterogeneous microstructure. Geometrical definitions, material distributions and finite element
meshes

Table 1 Single-Edge Notched Beam Test with inner heterogeneous microstructure

SET number Constitutive model Eμ (GPa) νμ GμF (N/m) σ u
μ (MPa) Finite element

S1 Phenomenological damage 20 0.20 100 2.40 Bilinear quadrilateral

S2 Phenomenological elasticity 20 0.20 – – Bilinear quadrilateral

S3 Phenomenological elasticity (voids) 0 0 – – Bilinear quadrilateral

S4 Multiscale RVE-based – – – – Strong discontinuity
linear triangle

S5 Phenomenological elasticity (homogenized) – – – – Bilinear quadrilateral

Material properties and finite element description according to the nomenclature introduced in Fig. 9
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(phenomenological) elastic material (i.e. ES3
μ → 0)3. An

additional heterogeneity introduced in the material defini-
tion of the RVE is a central vertical band of finite thickness,
�μ, which is characterized in terms of a (phenomenologi-
cal) isotropic damage model with softening that degrades
under tensile stress states. The softening behavior is regu-
larized by using the “Smeared Crack Approach” to fracture
[91,102]. This set is denoted as S1 in Fig. 9a–c. The softening
band is surrounded by the set S2, made of a (phenomenolog-
ical) elastic material, see Fig. 9a–c. Considering all previous
definitions, the strain localization mode in the micro scale
domain will develop along the vertical central band, cross-
ing the pores.

The element set S4, defined at the macrostructural level,
has a complex material behavior which is obtained through
the RVE-based multiscale formulation, via the homogeniza-
tion approach developed in the present work, see Fig. 9f, g.

Finally, the set S5, also defined for the macro scale,
behaves as a (phenomenological) elastic material. However,
its elasticity tensor is actually a homogenized tensor, obtained
from off-line microstructural analysis for each RVE, during
an elastic loading process. This set S5 permits us to take
into account the complex elastic material behavior, due to
the underlying heterogeneous microstructure, in large sub-
domains of the beam where we know, a priori, that no dissi-
pative mechanisms will occur, see Fig. 9e–g. Computational
effort is drastically decreased following such a simple mod-
eling assumption.

7.2.4 Numerical Approaches

For each one of the three beam tests, two different numerical
strategies have been considered:

• Multiscale Simulation (MS). It is based on the pro-
posed FOMFmethodology. In this case, the finite element
meshes used in the macro scale are shown in Fig. 9f, g.
Note that in correspondence with the vertical zone where
the macro cohesive crack is able to propagate (i.e. from
the notch up to the point PI), the set S4 is considered.
A total of 40 multiscale strong-discontinuity triangular
finite elements compose this set. The macroscopic inte-
gration points of such finite element list are linked with
their corresponding RVEs. Outside the fracture zone the
set S5 is used, composed of about 1,130 standard bilin-
ear quadrilateral finite elements. The discrete models for
each RVE are depicted in Fig. 9a–c. These micro cells are

3 This treatment simplifies the algorithmic procedure used for detect-
ing the localization sub-domain ΩL

μ , where the strain field localizes in

the RVE, and thus the boundary Γ L
μ of ΩL

μ , where new kinematical
restrictions must be prescribed after the cohesive crack nucleation.

composed by the sets {S1,S2,S3} and consider standard
bilinear quadrilateral finite elements.

• Direct Numerical Simulation (DNS). In this approach the
microstructural heterogeneities are explicitly embedded
into the macro scale domain, thus no technique for scale
transition is required. The discretemodels use very refined
meshes to capture the details of the microstructure. In our
simulation, the DNS approach only represents the cen-
tral part of the beam, such as shown in Fig. 9e–d. The
remaining part of the beam is modeled by using the set
S5, previously described. A total of about 53700 standard
bilinear quadrilateral finite elements compose the beam
models. The pattern adopted to define the central zone,
where failure is expected to occur, is based on a periodic
repetition of microcells, identical in size and geometry, to
those used for the RVEs of the MS analysis, see Fig. 9d,
a–c. Also, the material distributions corresponding to the
sets {S1,S2,S3} are identical to those defined for the MS
models.

Remark 31 Themost remarkable difference betweenMS and
DNS approaches lies on the fact thatMSmodels utilize strong
discontinuity kinematics for simulating crack propagation in
the macro scale. On the other hand in the DNS method the
failure zone is simulated within a classical continuum kine-
matical description, where the softening response is regular-
ized through the smeared crack approach.

Remark 32 The results obtained with DNS are taken as ref-
erence solutions to validate the material response predicted
by the MS approach. It is worthwhile to note that such a
comparison represents a consistent, and probably the most
rigorous, form to evaluate the numerical performance of any
multiscale formulation.

Next we describe the kinematical restrictions applied to
the RVEs in MS models, differentiating between the pre-
critical and post-critical material regime. Recall that the
underlying finite element technology used to simulate the
failure zone in MS model is a strong discontinuity linear tri-
angle. Thus, a unique integration point is required during
the stable macro material response, which is called Regu-
lar Gauss Point (RGP). The so-called Minimal Kinematical
Restrictions are prescribed on the RVE-boundaries linked to
the RGP, it is

∫

Γμ

ũμ ⊗S nμ dΓμ =
∫

Γμ

ε̃∗
μ dΓμ = 0. (376)

In a two-dimensional problem, as the present case, the previ-
ous constraint imposes three independent linear and homo-
geneous equations, one for each component of the symmetric
tensor ε̃∗

μ (i.e. ε̃∗
μ y1y1 , ε̃

∗
μ y2 y2 and ε̃∗

μ y1y2 ), see the sketch in
Fig. 10a.
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(a) Pre-critical regime (b) Post-critical regime

Node with zero displacement fluctuations

Node with zero vertical displacement fluctuation

Node where one equation of the
minimal kinematical restrictions is applied

Node where two equations of the
minimal kinematical restrictions are applied

Fig. 10 Single-EdgeNotchedBeamTestwith inner heterogeneousmicrostructure. RVEkinematical restrictions. (a) StandardBoundaryConditions
for the stable macroscopic regime (t < tN ). (b) Non-standard Boundary Conditions for the unstable macroscopic regime (t > tN )

Once detected the material bifurcation condition in a
macroscopic regular integration point (t = tN ), a new
quadrature point is activated into the finite element under
study, which we call Singular Gauss Point (SGP). At tN ,
the SGP is cloned from the RGP, i.e. their mechanical states
are identical. For t > tN , the RGP and SGP evolve follow-
ing different equilibrium branches. The RVE related to the
RGP is forced to respond elastically during the postcritical
regime, preserving their initial boundary conditions already
explained4.On the other hand, theRVEassociated to the SGP
is endowed with new kinematical restrictions, according to
FOMF approach. In the present case, we adopt a sub-model
with zero displacement fluctuation increments in the bound-
ary Γ L

μ ofΩL
μ , such as sketched in Fig. 10b. Observe that the

kinematical restrictions applied on the RVE associated with
the SGP can be identified as particular case of the minimally
constrained model proposed in Sect. 6.4, Remark 26.

7.2.5 Numerical Results

Figure 11 plots the (macro) structural responses of the SENB
tests in terms of the homogenized vertical loads vs. the
vertical (imposed) displacements of point PI. Remarkably,
observe that the DNS and MS models provide almost the
samemacroscopic solutions for the threemicrostructures and
during the complete loading history, involving the pre-critical
as well as the post-critical regime. As expected, microstruc-
tures with larger void volume fraction, fv , have less elastic
stiffness, less peak load and require less dissipation energy
to completely exhaust the macro structure.

Figure 12a features the contours of homogenized cohesive
traction vs. displacement jump for the singular integration

4 The idea of forcing an elastic unloading behavior in those integration
points located outside the cohesive crack in a strong discontinuity finite
element, is a standard technique widely used in the phenomenological
approach to fracture. We have adapted this procedure to the multiscale
modeling context.
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Fig. 11 Single-Edge Notched Beam Test with inner heterogeneous
microstructure. Vertical load vs. vertical displacement curve for point
PI. Comparison between MS and DNS approaches for different void
volume fractions

point (SGP), where the bifurcation condition is first satisfied
during the loading history, i.e. at point PII (see Fig. 12b). The
plots of Fig. 12a represent the normal components of both
vector fields, the tractions (Tn) and the displacement jumps
(βn), where the sub-index (·)n refers to the normal projection
with respect to the crack path. The tangential components
of both quantities, the tractions (Ts) and the displacement
jumps (βs), are almost zero (the sub-index (·)s refers to the
tangential projection with respect to the crack path). Then,
as expected, the macro cohesive crack opening mode is a
pure Mode I of fracture. The numerically obtained unit vec-
tor field, normal to the macroscopic discontinuity surface,
is depicted in Fig. 12b. In the FOMF approach this result is
obtained from a discontinuous bifurcation analysis.

The cohesive responses observed in Fig. 12a allow us to
evaluate the effective fracture energy (GF ) which is put into
play to fully exhaust the macroscopic cohesive crack, nucle-
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Fig. 12 Single-Edge Notched
Beam Test with inner
heterogeneous microstructure.
Homogenized cohesive
responses (Tn vs. βn) obtained
using the Failure-Oriented
Multi-Scale Formulation.
Curves evaluated at point PII
(see picture b), for different void
volume fractions
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Table 2 Single-Edge Notched Beam Test with inner heterogeneous microstructure

Void volume Void volume Effective fracture Estimated fracture
fraction: fv fraction: f ∗

v energy: GF energy: Gest
F

(referred to |Ωμ|) (referred to |ΩL
μ |) [N/m] [N/m]

0.0 0.0 99.90 100

0.037 0.111 88.42 88.89

0.111 0.333 66.16 66.67

Comparison between the Effective fracture energy “GF” (obtained by using the mutiscale approach) vs. the Estimated fracture energy
“Gest

F ”(computed from simple analytical considerations)

ated at point PII. The effective fracture energy can be simply
computed by determining the area under the plots in Fig. 12a:

GF =
∫ ∞

tN
(T · β̇) dt. (377)

This parameter is reported in Table 2 (column 3). Alterna-
tively, we can also “estimate” the fracture energy available
in each RVE via an average value of the fracture energy for
those finite elements that belong to the strain localization
band ΩL

μ , including the voids:

Gest
F = 1

|ΩL
μ |

∫

ΩL
μ

GμF dΩμ, (378)

where GS1
μF = 100 [N/m], for the set S1, and GS3

μF =
0 [N/m], for the set S3, as shown in Table 1. The so esti-
mated macro fracture energies, Gest

F , are shown in Table 2
(column 4) for each microstructure. Note the well marked
effect that the variable fv has on both, the effective fracture
energy GF as well as the estimated fracture energy Gest

F .
Comparing the values of GF and Gest

F it is noticed that,
for the RVE without pores, the agreement between both

quantities is almost exact. A slightly larger disagreement is
observed for the microstructures with one and three voids.
This result has a rational/physical explanation. From expres-
sion (378), the value Gest

F is computed by assuming that,
during the macroscopic stable regime (i.e. previous to the
crack nucleation at macro scale: t < tN ), energy dissipa-
tion has not occurred. In the case of the RVE without pores,
the problem is homogeneous before bifurcation because all
materials have the same elastic constants, see Table 1. In
this case, macroscopic bifurcation detection happens just at
the same time (tN ) that the central band, described with the
damage model, reaches its limit ultimate strength. Then, the
assumption that there is no dissipation before bifurcation, is
correct. However, in the micro structures with pores, damage
during the stable regime happens. Therefore, the assumption
that the fracture energy can be evaluated by equation (378) is
no longer correct and the parameter Gest

F overestimates the
actual fracture energy.

Figure 13 shows structural responses similar to those
explained in Fig. 11. This time we demostrate the mesh
size independence of the multiscale response modifying the
macroscopic finite element size. Just the problem with void
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Fig. 13 Single-Edge Notched
Beam Test with inner
heterogeneous microstructure.
Mesh-size independence of the
FOMF approach.
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volume fraction fv = 0.111 has been considered. The finite
element mesh of Case 2 (Mesh2) displays smaller elements
with respect to Case 1 (Mesh1) in the zone where the multi-
scale set S4 is simulated.

8 Concluding Remarks

A unified variational theory has been proposed for a general
class of multiscale models based on the concept of Represen-
tative Volume Element. The entire theory lies on three funda-
mental principles: (1) kinematical admissibility, whereby the
macro- and micro-scale kinematics are defined and linked in
a physically meaningful way; (2) duality, through which the
natures of the force- and stress-like quantities are uniquely
identified as the duals (power-conjugates) of the adopted
kinematical variables at the two scales; and (3) the Principle
ofMultiscaleVirtualPower, requiring the total virtual powers
of the macro- and micro-scales to coincide. This is a gener-
alization of a variational statement of the well-known Hill-
Mandel Principle of Macrohomogeneity and allows the RVE
equilibrium equations and homogenization relations for the
force- and stress-like quantities to be unequivocally derived
as Euler-Lagrange equations.

The proposed theory leads to a clear, logically struc-
tured method—named here the Method of Multiscale Vir-
tual Power—whereby general multiscale models of complex
physical systems can be rigorously derived in well-defined
steps. The method is well-suited for the treatment of prob-
lems involving phenomena as diverse as dynamics, higher
order strain effects, material failure with kinematical discon-
tinuities, fluid mechanics and coupled multi-physics, among
others.

Particularly noteworthy is the fact that the proposed
methodology allows the development of multiscale models

in an intuitive manner without ambiguities. Indeed, the only
degree of arbitrariness one has in the development of a mul-
tiscale model lies in postulating its kinematics. This consists
in defining: (a) the kinematical variables adopted at macro-
and micro-scales; and (b) how these kinematical variables
are linked, subject to the condition that their magnitudes
are preserved in the micro-macro kinematical transfer—this
amounts solely to the definition of physically sound kine-
matical insertion and homogenization operators. Once the
kinematics has been postulated, the function space of admis-
sible micro-scale generalized displacements is automatically
defined and all remaining model equations will be unequivo-
cally derived on the basis of the principles of duality andmul-
tiscale virtual power. This is in sharp contrast with most of
the work currently published in the field, where various such
equations are postulated a priori—aprocedure that can poten-
tially lead to serious inconsistencies in the resulting model.

The theory has been presented in a rather abstract set-
ting, which allows its use in the modeling of a very wide
range of physical systems. However, practical examples of
its use with several well-knownmultiscale formulations have
been presented. In our view, casting known models within
the proposed framework has made the distinction between
their kinematics and their consequences very clear, allowing
a better understanding of the limitations of each model and
showing directions for possible improvements that can be
incorporated in a consistent manner. In addition, application
of the theory to the modeling of more complex, less conven-
tional physical systems—including higher order kinematics,
dynamical effects,material failurewith dissimilar kinematics
across scales, thermomechanics and even fluid mechanics—
has also been presented. This provides very strong evidence
of how powerful and useful the proposed variational frame-
work can be as a tool for the rigorous and consistent devel-
opment of new multiscale models.
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We believe that the proposed systematization of RVE-
based multiscale modeling is particularly relevant at present
when there is a clear need to further combine more complex
models of continua describing phenomena that take place at
different scales in order to improve predictive capabilities.
Our experience has shown that this appears to be even more
relevant when resorting to kinematical descriptions for the
different scales that are a priori heterogeneous.

Finally, we remark that the variational format in which
model equations are exposedwithin the present framework is
naturally well-suited for numerical approximation by means
of schemes such as the Finite Element Method. In this con-
text, examples of practical numerical computations were
presented, including the use of a non-conventional failure-
oriented multiscale model with discontinuous kinematics, as
well as a multiscale plasticity model for martensitic phase
transformation.
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