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Abstract The latest generation of the particle finite ele-
ment method (PFEM-2) is a numerical method based on
the Lagrangian formulation of the equations, which presents
advantages in terms of robustness and efficiency over clas-
sical Eulerian methodologies when certain kind of flows are
simulated, especially thosewhere convection plays an impor-
tant role. These situations are often encountered in real engi-
neering problems, where very complex geometries and oper-
ating conditions require very large and long computations.
The advantages that the parallelism introduced in the compu-
tational fluid dynamicsmaking affordable computationswith
very fine spatial discretizations are well known. However, it
is not possible to have the time parallelized, despite the effort
that is being dedicated to use space–time formulations. In this
sense, PFEM-2 adds a valuable feature in that its strong sta-
bility with little loss of accuracy provides an interesting way
of satisfying the real-life computation needs. After having
already demonstrated in previous publications its ability to
achieve academic-based solutions with a good compromise
between accuracy and efficiency, in this work, the method is
revisited and employed to solve several nonacademic prob-
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lems of technological interest, which fall into that category.
Simulations concerning oil–water separation, waste-water
treatment, metallurgical foundries, and safety assessment are
presented. These cases are selected due to their particular
requirements of long simulation times and or intensive inter-
face treatment. Thus, large time-steps may be employed with
PFEM-2 without compromising the accuracy and robustness
of the simulation, as occurs with Eulerian alternatives, show-
ing the potentiality of the methodology for solving not only
academic tests but also real engineering problems.

Keywords Particle methods · PFEM-2 · Large time-steps ·
Multiphase flows

1 Introduction

Hardware has been evolved considerably over the past few
decades, increasing the computing performance and allowing
better facilities for data entry and postprocessing of results.
However, there have been no substantial improvements con-
cerning the efficiency on the numerical methods. Computer
simulation of incompressible fluid flows has been mainly
based on the Eulerian formulation of the fluid mechanics
equations on fixed domains [1]. The drawback of these strate-
gies is quickly encountered in most practical engineering
problems: very fine meshes and very small time-steps are
needed to reach acceptable results. This handicap exceeds
most of the time the capacity and speed of current powerful
computers.

Starting from the work ofMonaghan [2], another research
branch that emerged was the development of methods based
on the Lagrangian formulation [3]. Researchers found that
the Lagrangian approach presents advantages over Eulerian
one while solving problems in which deformations are not
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negligible. In addition, the explicit formulationofLagrangian
approach is in better position regarding the computational
efficiency when employed in parallel computing. A better
option is the use of the so-called hybrid methods, where the
Lagrangian perspective is supported by an Eulerian reference
grid or mesh, where the forces are computed with less error
than meshless alternatives. In this context, several method-
ologies such as particle-in-cell (PIC) [4], marker-and-cell
(MAC) [5], material point method (MPM) [6], and finally
particle finite element method (PFEM) [7] have emerged.
Despite the better capabilities regarding free-surfaces man-
agement, fluid–solid interaction, and explicit computing, the
hybrid methods present their drawbacks and require expen-
sive processing unnecessary in pure Eulerian frameworks.
The cost of the extra tasks is mainly the construction of
a new nondistorted mesh at each time-step, which besides
being expensive, also limits the time-step leading to expen-
sive simulations.

With the aim of reducing the computational requirements
of the current methodologies, the works of Idelsohn et. al.
[8,9] introduce improvements to PFEM, such as the novel X-
IVS integration strategy and the employment of a fixedmesh,
leading to PFEM-2. This latter method has demonstrated its
ability to employ larger time-steps on convective dominant
problems reducing the computing time required to solve a
wide range of simulations [12,13]. The strategy was also
extended and validated for solving multiphase flows [14,15],
fluid–structure problems [16], and those with surface tension
dominance [10,17], always preserving the mentioned capa-
bilities.

As demonstrated in the work of Idelsohn et. al. [11],
for convection-dominated cases, the usage of a Lagrangian
frame with particles as PFEM-2 produces results with the
same accuracy as classical Eulerian alternatives even while
using coarser meshes and larger time-steps. Moreover, while
employing the same numerical setting in cases with interface
evolution, it is not possible to obtain any useful solution (sim-
ulations blow-up) with Eulerian methods without reducing
the time-step. In this context, this work reviews the PFEM-
2 methodology and applies it to simulate several problems
with high impact on industrial needs. In order to make use of
the goodness of the method, every simulation employs large
time-steps. This choice leads to high CFL numbers, exceed-
ing those normally employed by Eulerian formulation-based
simulations, due to stability reasons. This valuable capability
of enlarging the time-step provides the PFEM-2with the abil-
ity of making affordable very long real-life phenomena often
found in industrial applications. Details about the PFEM-2
code employed to run the tests were previously presented in
[12,13]where parallel efficiencyup to 32processorswas ana-
lyzed. Although new features were included to solve current
tests, the main core of the code was not modified, and there-
fore, no discussion about implementation details is included

here considering that conclusions are almost the same as
those reported before.

Having thus demonstrated its ability in academic situa-
tions, the next step is to prove how well PFEM-2 behaves
while we go for solving engineering problems. In industrial
applications, it is common to find equipment that needs a
long time to carry out physical–chemical processes mak-
ing the computational fluid dynamics (CFD) to encounter
severe difficulties in terms of feasibility. A problem which
involves long-time running operation is the residence time
distribution computation, normally employed by chemical
engineers to design their plant’s flow-sheet, aiming at the
optimization of the operation. Keeping in mind the expan-
sion of the CFD in the engineer’s life and the need for finding
the optimal configuration, the main question to be answered
in the near future is what degree of maturity is required for
the CFD to afford these challenges. In this work, two typi-
cal examples, like a contact tank employed in a waste-water
treatment plant and awater–oil separation tank normally used
in enhanced oil recovery (EOR) in petroleum extraction, are
presented. This set of cases requires very long real-time sim-
ulations, which probably disqualifies any standard Eulerian
formulation. Without the possibility of parallelizing the time
evolution, one of the fewpossible alternatives is usingPFEM-
2 allowing for increasing the time-steps, thereby reducing
noticeably the computing time. However, the last is possible
to be achieved only due to the Lagrangian approach onwhich
PFEM is based. On the other hand, the chaotic nature of the
flow inside the tanks requires turbulence modeling at particle
level. In this context, this work presents another technique
associated with the extension of the X-IVS methodology
in combination with a strategy like random-walk to simu-
late the randomness of particle paths and compare with the
Eulerian alternative of computing the turbulence diffusion
implicitly over the mesh. Even though preliminary results
have not shown any advantage in favor of this technique over
the previous methodology, further work could be carried out
based on this idea in order to improve it.

Remaining test cases are focused on showing the advan-
tages of PFEM-2 inmanaging two-phase simulations,mainly
when a proper computing of the interface evolution domi-
nates the quality of the solution. Interface modeling incor-
porates an advection equation to the system, which is solved
naturally, i.e., rapidly and accurately, using the Lagrangian
frame. This approach overcomes the restrictions of Eulerian
alternatives, such as the need of high-resolution schemes, sta-
bilization terms, flux-limiters, and inmost of cases, reduction
in the number of time-steps. In the first place, an applica-
tion of PFEM-2 to mold filling, one of the most important
processes in metallurgical foundries, is presented. Those
cases are solved with the two-phase version of PFEM-2,
presented previously in [10,17], where the accuracy and effi-
ciency were assessed for academic problems, and here they
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were compared with experimental references coming from
the literature. Finally, the application of the method to the
problem of a catastrophic failure of a storage tank is reported.
In this simulation, qualitative (snapshots of the collapse and
visual description) and quantitative results (mass bound over-
topping and forces over walls) are shown.

The final section of this is devoted to conclusions based
on the results presented in this work, where the capabilities
of the method are highlighted, and future research lines are
suggested and commented upon.

2 Numerical modeling

For solving the problems planned in this paper, a multiphase,
isothermal, and incompressible Newtonian flow model is
presented. This formulation, like a typical volume of fluid
(VOF), considers a mixture of separated phases in a domain
Ω , where the fluid-intensive properties depend on an indi-
cator function λ used to distinguish between the two phases,
i.e., ρ = ρ(λ) and μ = μ(λ) for density and dynamic vis-
cosity, respectively. Then, the interface capturing model is
composed by the Navier–Stokes equation constrained by the
mass-conservation equation and the pure advective transport
equation for only one of the phases with an equation for the
interface movement, all of them employing the Lagrangian
reference frame as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
DV
Dt

= ∇ · [
μ

(∇V+∇VT
)]−∇ p+ρg+FΓ

∇ · V = 0

Dλ

Dt
= 0

Dx
Dt

= V

in Ω,

(1)

where V and p are the unknowns, velocity and pressure,
respectively, and, as the Lagrangian frame is employed, a
trajectory equation for particle positions x is also included.
The first equation is the so-called momentum-conservation
equation. It relates the total variation of the momentum with
the forces applied, with g being the gravity acceleration and
FΓ = σκδΓ nΓ being the force over the interface between
the phases due to surface tension, where δΓ is the Dirac delta
function that localizes the surface tension force on the inter-
face. The set of Eq. (1) has the advantage of avoiding the
constant splitting of the domain into two sub-domains. This
is why this method is called the interface capturing.

The numerical method employed to solve the equation
system is PFEM-2. This methodology is based on a hybrid
spatial discretization which includes a cloud of Lagrangian

particles and a fixed background Eulerianmesh. In this work,
just a brief description of the theory of the numerical method
is presented. Further details can be found in several previous
works of the authors in the literature [9,10,15,17].

In the context of incompressible flows, a point, known as
particle and denoted by p, has associated physical variables
like velocity Vp, temperature Tp; and mathematical variables
like λp which indicates the kind of phase of the particle.
In PFEM-2, massless particles are employed (they do not
have associated size), allowing to use variable densities of
particles through the domain. This is useful for refining the
approximation in some regions of interest. Also, the parti-
cles carry the original data which is never replaced but only
updated according to the computing obtained by the mesh,
which plays a secondary role, thus avoiding the excessive
numerical diffusion.

Temporal discretization of equations is based on the
fractional-step-splitting method (FSM) [18]. However, as
explained in depth in [10], the momentum predictor is also
split into three stages: one Lagrangian step where the con-
vection is solved just moving the particles; a second step
where the convected states over particles are projected to
the mesh nodes; and the last one which solves the remain-
ing terms (diffusive, reaction, body forces) over the fixed
mesh using standard finite elements. The Lagrangian step
integrates the particle trajectories using the X-IVS algorithm
presented in [8] and extended to two-phase flows in [15,16],
while different strategies for the projection step are analyzed
in [10,23]. It must be also remarked that the last step work-
ing over the mesh is substantially easier to solve problems
such as nonlinearities, stabilization, nonsymmetric matrices
which disappear without the convective term in the equa-
tion being removed by the Lagrangian formulation. Finally,
the time splitting is completed by solving the remaining two
steps in the traditional FSM, i.e., the pressure calculation and
the velocity correction. Readers interested in additional fea-
tures of the method can find a formulation for the treatment
of surface tension forces in [17] or fluid–structure interaction
in [35], and a high-performing implementation along with a
parallel efficiency analysis in [12,13].

2.1 Algorithm synopsis

It is assumed that all fluid variables are known at time tn

for both the particles and the mesh nodes. Subindexes () j y
()p represent a generic mesh node j and a generic particle
p, respectively. Let N be the finite element linear basis func-
tions. According to this notation, the steps are presented in
Algorithm 1, where x is a spatial coordinate, δV = V − ̂̂V is
the velocity correction computed on the mesh, where ̂̂V is an
initial value of the velocity considering only convection, and
V̂ is the predicted velocity considering both convection and
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diffusion. The numerical parameter θp can be 0 or 1 depend-
ing on the pressure restart choice affecting the approximation
order of the pressure, and the other parameter, θμ, can be 0
or 1 depending on the necessity or not of an accurate diffu-
sion calculation when large Fourier numbers are employed.
Also, the external forces are compacted in a vector F such

as F =
∫

Ω

N j (ρg + FΓ ) dΩ , and M, K, and B are the

standard mass, stiffness and gradient (or mixed) matrices,
respectively, of any FEM assembling. Finally, τ is a stabi-
lization parameter for the pressure according to the work of
Codina [34], whileπn is the recovery of the pressure gradient
on mesh nodes enforcing its continuity.

Algorithm 1 - Time-Step PFEM-2 for two-phase incompressible

fluids.
1. Convective Stage over particles:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xn+1
p = xnp +

n+1∫

n

Vn(xτ
p ) dτ

̂̂V
n+1
p = Vn

p
λn+1
p = λnp

2. Projection Stage from particles to nodes:

Mi j
̂̂V
n+1
j = Mi p

̂̂V
n+1
p

ML
i jλ

n+1
j = Mi pλ

n+1
p

3. Momentum Stage over mesh:

(
M

( ρ

Δt

)
+ K(μ)

)
V̂n+1 = M

( ρ

Δt

)
̂̂V
n+1 − θpGpn + Fn+1

4. Pressure-Calculation Stage over mesh:

K
(

Δt

ρ
+ τ

)

pn+1 = BV̂n+1 + K
(

Δt

ρ

)

θp p
n + θpB(τ )πn

5. Correction Stage over mesh and particles:

M(ρ) + Vn+1 = M(ρ)V̂n+1 − ΔtG
(
pn+1 − θp p

n
)

+ θμK
(

μ

ρ

) (
Vn+1 − V̂n+1

)

ρpVn+1
p = ρp

̂̂V
n+1
p +

∑

j

δVn+1
j N j (xn+1

p )

3 Residence time distributions

3.1 Background

In the oil and gas industry, the water–oil separators are an
essential part of the superficial installations downstream of
the wells. Particularly, in secondary oil recovery, the extrac-
tion requires large amount ofwater that needs to be reinjected

into the wells in order to attend environmental issues. The
produced water is reinjected to help to extract crude by drag
and buoyancy forces. The produced water must be thor-
oughly cleaned of the remaining oil in order to avoid possible
obstructions making the well to be put out of service. This
cleaning process is carried out in partwith a separation equip-
ment called skimmer, which basically consists of a big tank
with internals where the water–oil mixture enters and the
crude is separated by buoyancy and collected on the free-
surface, while the water is removed from the bottom.

A parameter used to characterize the mixing and flow
within tanks and to compare the behaviors of real skim-
merswith their idealmodels is the residence time distribution
(RTD). It is a probability distribution function that describes
the time a fluid element could remain inside the tank, for its
purification. The RTD is useful, not only for troubleshoot-
ing in the existing skimmers allowing for their optimization,
but also in estimating the yield of a given separation and
improving the future tank designs. The standard function
E(t), normally employed for RTD, has the units of time−1

and is defined such that
∫ ∞

0
E(t) dt = 1 (2)

In the absence of dispersion and for a constant volumetric
flow (Q = Q0), the theoretical residence time t̂ is defined as

t̂ = V

Q
, (3)

with V the tank volume, must be equal to the mean residence
time, tm . As is the case with other variables described by
distribution functions, the mean value of the variable is equal
to the firstmoment of theRTD function, E(t). Thus, themean
residence time is

tm =
∫ ∞

0
t E(t) dt (4)

Tracer injection from the inlet is the strategy which allows
for experimental or numerical measurements of the RTD
function. The kind of material and amount of the tracer is
selected such that itmodifies neither the fluid’s physical prop-
erties nor its hydrodynamic conditions. There are two options
mainly used for the tracer inlet distribution: a pulse or a step.
In the first case, a small volume of tracer, which approximates
to the Dirac delta function, is introduced. The injection time
tinj must be much smaller than the theoretical residence time,
i.e., tinj � t̂ . Then, consideringC(t), the tracer concentration
at the outlet at any time t , the RTD function can be obtained
as

E(t) = C(t)
∫ ∞
0 C(t) dt

(5)

123



Comp. Part. Mech.

In an experiment with a step function, the tracer concen-
tration at the inlet changes suddenly at a given time t from 0
to C0. The tracer concentration is measured at the outlet and
normalized in order to obtain the cumulative RTD function
F(t) having values between 0 and 1:

F(t) = C(t)

C0
(6)

The responses to the pulse and to the step are related as

⎧
⎪⎨

⎪⎩

F(t) =
∫ t

0
E(t) dt

E(t) = dF(t)

dt

(7)

The efficiency of a skimmer tank is measured as the
capacity of separating water and oil. Because the equipment
works only by buoyancy, the more time the injected mixture
resides in the tank, the more separation is obtained. Thus,
it is expected that the skimmer works as a plug–flow reac-
tor (PFR) where no dispersion of E(t) is obtained. However,
because of geometric or economic constraints, real tanks have
channeling (bypassing or short circuiting) and dead zones
which tend to modify the desired ideal behavior by reducing
the residence times of some injectedfluid portions.Moreover,
the presence of flow turbulence leads to nonideal behaviors.
In this context, numerical experiments are widely used to
optimize geometric designs and operational conditions with-
out the need for a large set of experimental tests. Finding
E(t) and/or F(t) for several tank prototypes using numerical
experiments requires very long time-consuming simulations
(for standard skimmers, several hours of real time). As afore-
mentioned, PFEM-2 is able to employ large time-steps that
are useful to solve in a faster way this type of problems with-
out compromising stability. In addition, because the flow
behavior inside a skimmer tank has regions dominated by
inertia and a proper tracer transport mainly depends on the
convective term, it has been demonstrated that the method
will introduce less numerical errors than other Eulerian alter-
natives.

3.2 Turbulent dispersion

The concentration C of the tracer follows an advective–
diffusive equation, i.e.,

DC

Dt
= ∇ · (αT∇C) (8)

Most of real skimmers present turbulent flow regime, i.e.,
the experimental RTD can be described by the plug–flow
with axial dispersion model. In this context, the simulated
dispersion coefficient αT can be described as the sum of three

contributions, two of them are physical: molecular (αm) and
turbulent dispersions (αt), and the third term is the numerical
diffusion (αn):

αT = αm + αt + αn (9)

The tracer employed must guarantee negligible molecular
diffusion. In general, it is known that molecular diffusion
has little effect on ensemble mean concentrations in high
Reynolds number flows [19]. However, experiments show
that the turbulent contribution αt is not negligible for flow
regimes being analyzed in this section, requiring the numer-
ical computation of the diffusion to accurately predict the
behavior of the tracer. Regarding the third term, it is well
known that Lagrangian integration does not introduce exces-
sive numerical diffusion, while Eulerian strategies introduce
more or less diffusion depending on the discretization strat-
egy selected and the mesh employed.

With the PFEM-2 method, the advection (i.e., left-hand
side of Eq. 8) is automatically done through the movement
of the particles. Each particle carries its own character or
concentration value Cp, marking with Cp = 1 for those
that belong to the tracer, leaving the others with Cp = 0.
The diffusive part of the equation can be solved in PFEM-2
either explicitly or implicitly. The former, which computes
the diffusion over particles during its streamline integration
(X-IVAS method [8]), cannot be employed with time-steps
larger than αTΔt/Δx2>1. On the other hand, the latter is
unconditionally stable and consists of projecting the con-
centration field from particles to nodes, solving a Laplacian
equation on the mesh, and interpolating the incremental cor-
rection again over the particles. When only the tracer is
solved, this strategy adds three extra stages per time-step,
increasing the computational work, mainly caused by the
solution of the equation system for diffusion. It can be noted
that both approaches lose the particle character, allowing it to
take values 0 ≤ Cp ≤ 1 . Readers interested in further infor-
mation can refer to a previous work of the authors where they
discuss in depth both alternatives [23].

In this work, an alternative approach, which can be solved
explicitly over particles without any stability issue and with-
out modifying the particle character, is presented. It is based
on the traditional idea of modeling the motion of single par-
ticles in a turbulent flow assuming that the turbulent motions
of the particles are similar to the Brownian motions of par-
ticles or molecules, i.e., a stochastic strategy. Therefore, the
movement of the particles due to the turbulent part of the flow
field ismodeledwith a random-walk scheme. The tracer posi-
tion x(t) in a continuous random-walk model (CRW) can be
described by the nonlinear Langevin equation:

dx
dt

= A(x, t) + B(x, t)ξ(t) (10)
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where the vector A(x, t) represents the variation of x(t) due
to the mean velocity field (i.e., deterministic part), while the
second term is a stochastic term which depends on a tensor

B(x, t) that characterizes the random motion and a vector
ξ(t) with random numbers normalized between 0 and 1.
Following the assumptions presented by Fabbroni [21] and
considering isotropic turbulent diffusivity, the Eq. 10 can be
applied to each particle leading to

Δxp = V j (xp)Δt + √
2αtΔt w (11)

where w is a random Gaussian variable with zero mean and
standard deviation of 1. An additional term that allows incor-
porating physical anisotropy to the model was introduced in
recent works [24]. The key idea is to move the particles from
high turbulent zones to lower ones in order to represent the
diffusion in a more realistic way.

Δxp = V j (xp)Δt − ∇αt(xp)Δt + √
2αtΔt w (12)

There are other alternatives in order to model the tur-
bulence over particles, the most used being called Discrete
Random Walk (DRW). This model, which is also known as
Eddy Interaction Model (EIM) [22], is based on reconstruct-
ing the instantaneous field from the local mean values of
velocity and turbulent intensity. The discrete time intervals
between velocity updates are dictated by the eddy lifetime
which varies spatially according to the turbulent fields. Due
to the explicit and parallel integration employed by PFEM-
2, this approach is far from being efficient when time-steps
larger than eddy lifetime are used. Finally, in this work, the
CRW, based on the approach assumed by Eq. 12, is selected
for modeling turbulent dispersion.

3.3 Contact tank

Although the purpose is rather different, the optimization
of chlorine contact tanks follows similar design strategies
as presented at the beginning of this section for the case of
skimmer tanks. The target task of a chlorine contact tank,
based on the volume displacement criterion, is to achieve
enough detention time to successfully conclude the chlori-
nation process. This criterion relies upon the assumption that
plug–flow conditions are held along the tank. However, the
existence and arrangement of baffles in the tank, and the inlet
and outlet configurations, can result in a much more com-
plex flow pattern, where turbulent mixing, dead zones, and
short-circuiting exist. Therefore, a RTD analysis is usually
employed to evaluate and optimize the design.

Following the experimental work of Shiono [26], an
example is presented to show the performance of the CRW
compared with the calculation of turbulent diffusion over the
mesh. The case consists on a 2Dmodel of a contact tank with

(a)

(b)

Fig. 1 Contact tank case. Geometric configuration and steady-state
incompressible flow field calculated with k − ε. Geometry dimensions
are expressed in meters. Magnitude of velocity is scaled from 0 (ms−1)
(blue) to 0.22 (ms−1) (red). a Case configuration. b Steady flow

seven baffles and eight compartments, as presented in Fig. 1.
The discharge entering the tank is 1.17 (L s−1), resulting in
a mean cross-sectional velocity of 0.0104 (ms−1). This flow
configuration leads to a t̂ ≈ 750 (s). The geometry is dis-
cretized with an unstructured mesh composed of triangles.
Elements have an almost uniform size of Δx ≈ 0.01 (m).

In order to obtain the time-averaged flow quantities, a first
simulation is done. Turbulence is modeled employing the
k − ε model. This flow, shown in Fig. 1b, is in good agree-
ment with the other published works [25,27]. The turbulent
kinematic viscosity νt can be obtained as νt = Cμk2/ε,
with Cμ = 0.09 being a constant parameter. Then, the
turbulent dissipation is found as αt = νt/σt , where σt is
named turbulent Schmidt number. The value of σt is adjusted
from experiments. Previous works have verified that a turbu-
lent Schmidt number of 0.44 would give a good agreement
between experimental and simulated RTDs.

Next step is computing the tracer transport. In order to
solve Eq. (8), the steady-state velocity and turbulent fields are
employed. The simulation is carried out using the two numer-
ical strategies available,whichvary according to the turbulent
dispersion approach employed, i.e., an implicit calculation
isotropic over themesh, or a stochastic simulationwithCRW.
Table 1 presents tabulated snapshots for the tracer evolution
for both strategies also comparingwith a pure advective solu-
tion.
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Table 1 Screen-shots for tracer
distribution at t = 250 (s) (left)
and t = 500 (s) (right) simulated
with several PFEM-2 variants

Scale goes from 0 (blue) to 1 (red)

Without turbulent diffusion treatment, the solutions obtained
are nonphysical leading to unrealistic RTDs (F(t) never
reaches the unity). On the other hand, the inclusion of dis-
persion modeling let to the entire volume will be filled by
tracer. However, the transient evolution from the initial state
(without tracer) to the final state is simulated differently with
implicit or CRWstrategies. The random-walk solution shows
greater axial diffusion while the implicit one presents larger
diffusion at front of tracer step.

Figure 2 compares among the cumulative RTDs calcu-
lated using PFEM-2 and a numerical reference calculated
with the CFD software OpenFOAM�2.4.0 which imple-
ments the finite volume method (FVM). Finer-mesh (Δx =
0.005 (m)) and high-order methods for convection and other
interpolations were employed in order to obtain a refer-
ence solution. The reference cumulative RTD obtained is
in agreement with other numerical results reported in the
literature [27]. Comparing the reference with PFEM-2 simu-
lations, a better agreement with the Implicit option can be
seen. The stochastic approach tends to transport a lower
dissipated step leading to a cumulative RTD being too
sharp.

Regarding to computing times, if only the transport equa-
tion for the tracer is solved, only then the random-walk
approach becomes cheaper. The need of projection, solution
of an equation system, and correction over particles makes
the implicit strategy approximately 40 % more expensive
than the stochastic strategy.Although this 2Dcasewas solved
considering a steady-state flow,most of tracer transportsmust
be simulated together with the unsteady flow. In such cases,
PFEM-2 already requires the three mentioned steps for the

Fig. 2 Cumulative residence time distribution for contact tank case.
Comparison between both options for turbulent dispersion in PFEM-2
(implicit and random-walk) and an Eulerian reference solution

velocity and pressure calculation; therefore, the inclusion of
the tracer treatment does not add significant extra work. Con-
sidering the above-mentioned facts, the implicit treatment of
the turbulent dispersion is chosen as a modeling strategy for
the next example.

3.4 Skimmer tank

The skimmer selected for the numerical experiments is a
cylindrical tank with aspect ratio between the height H and
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Table 2 Skimmer tank’s main
features and operative
conditions

Feature Symbol Value

Height H 17.89 (m)

Diameter D 11.93 (m)

Volume V 2000 (m3)

Inlet Flow Q 1/9 (m3s−1)

Theoretical mean residence time t̂ 5 (hs)

Fluid viscosity μ 0.001 (Kg s−1 m−1)

Fluid density ρ 1000 (Kgm−3)

Tracer diffusivity α 0 (m2 s−1)

Fig. 3 Skimmer tetrahedral mesh employed in the numerical experi-
ments

diameter D of H/D = 1.5. It comprises three plates. Two of
them are held by the central column which is also used for
inlet and outlet, and the third is supported by the cylindrical
tankwall named ring plate. Everymember has a three-degree
inclination. The fluid enters through two pipes located below
the upper plate that injects the load tangentially to the tank
walls in order to produce a rotational movement concentric
with the vertical axis of the tank. Table 2 presents the main
characteristics of the tank and the operative condition. The
mesh employed can be observed in Fig. 3, which consists of
306,768 nodes corresponding to 1,683,575 tetrahedral ele-
ments.

As the tracer injection is performedwhen the flow is estab-
lished, a start-up simulation is carried out started with a
hydrostatic initial condition along the tank, i.e., filled with
standing water without tracer. Concerning the boundary con-
ditions, a fixed and uniform velocity is imposed at the inlet to

satisfy the required flow rate, the pressure is fixed to a refer-
ence value (p = 0) at the outlet, the free-surface is assumed
as slip, and the remaining boundaries are considered aswalls.

In order to model the turbulent behavior of the flow, the
static Smagorinsky large eddy simulation (LES) turbulence
model [28] is employed, which captures the effects unre-
solved by the scale of the mesh. This approach models the
turbulent viscosity as

μt = C2
s ρΔ2|S| (13)

being S = ∇V + ∇VT and Cs = 0.2 the Smagorinsky
constant. More references about the turbulence modeling in
PFEM-2 can be found in [29] and [12].

The start-up simulation was performed employing aΔt =
2 (s) which leads to a maximum CFLmax ≈ 20, being

CFL = |V|Δt

Δx
. The final time Tf is chosen when the integral

of the kinetic energy reaches a converged value, as shown by
Fig. 4a. At this moment, no significant changes are observed
at the main flow, apart from small fluctuations caused by its
own unsteadiness. In Fig. 4b, the magnitude of the velocity
field is presented. The tank plates are not shown for clarity,
but three horizontal and one vertical slices are included to
visualize the obtained solution. With a mean inlet velocity
of about 0.24 (ms−1), it is possible to see the flow surround-
ing the tank going upward and downward close to the walls.
Using a limited scale adjusted between 0 and 0.01 (Fig. 4b),
it is also possible to identify a toroidal flow pattern.

Considering the solution presented in Fig. 4 as the initial
condition, a new simulation is performed, but now by inject-
ing a fully concentrated tracer at the inlet and solving an
extra transport equation for it (Eq. 8). The entering particles
through the inlet are marked with Cp = 1, leaving the oth-
ers with Cp = 0. Each particle carries its own concentration
value Cp, which is projected to the mesh in order to calculate
the turbulent dispersion implicitly. The advective–diffusive
tracer equation is solved together with the incompressible
flow equations, remarking that the former does not produce
any modification into the latter (passive scalar).

123



Comp. Part. Mech.

(a) (b)

Fig. 4 a Integral of the kinetic energy. b Velocity magnitude of the final solution in the start-up simulation sampled at slices

(a) (b)

Fig. 5 Left snapshot with the concentration field at T = 80 min. Right cumulative RTD using different Δt . a Concentration saturated from C = 0
(blue) to C = 0.25 (red). b Accumulated RTD. (Color figure online)

A qualitative analysis of the numerical experiment with
step-type injection is presented in Fig. 5a. In the figure, a
capture of the tracer concentration employing a scale limited
to 0 < C < 0.25 after 80 min is shown. The tracer is con-
centrated mostly above the ring plate because the main flow
is ascending, but some tracer overflows that plate and grad-
ually fills the lower tank section, which allows us to obtain
concentration at the outlet. On the other hand, a quantitative

analysis is presented in the Fig. 5b. The temporal evolution of
the concentration measured at the outlet corresponds directly
to the function F(t) (Eq. 6). The same tests were simulated
employing different time-steps Δt = 2, 10, and 50 which
leads to CFLmean ≈ 4 and CFLmax ≈ 500 in the last case.
The three cases show similar overall solutions.

A relevant result in this type of analysis is the fraction
of tracer that has been in the tank for less time than t̂ , i.e.,
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F(t̂ − ε) with ε small enough. An ideal PFR would obtain
FPFR(t̂ − ε) = 0, but considering current simulations of
the real tank, the obtained value is FΔt=2(t̂ − ε) ≈ 0.598
(taken from the simulation with smallest time-step). This
value should be compared with the obtained by simulating
other skimmer designs. This allows to determine the rela-
tive quality of the tank, characterizing the troubleshooting
of this particular design. The more relevant problem is the
reduction of the effective volume mainly because of the dead
zone around the axial axis of the tank where the tracer rarely
enters. Simulations with larger time-step predict similar val-
ues for F(t̂ − ε), the solution forΔt = 10 being very similar
to the reference, FΔt=10(t̂ − ε) ≈ 0.6, but slightly differ-
ent from the solution while employing the largest time-step
( FΔt=50(t̂ − ε) ≈ 0.608).

In this work, the first arrival time t0 is defined as

t0 = min(t) ∀t | F(t) > 0.01, (14)

which gives information of the shortest path between the
inlet and the outlet (i.e., short-circuiting) in the tank. In this
case, solutions withΔt = 2 and 10 (s) present similar results
(t0 ≈ 38 min), while the simulation with largest time-step
underestimate the arrival time at 25 min.

Regarding to computational times, as mentioned above,
the benefits of employing large time-steps are very much
appreciated for solving this type of problems. In this particu-
lar case, and considering at least 500 min of simulation time
required, if the numerical scheme is restricted to CFLmax <

1, then more than 3 × 106 iterations are needed. A mod-
erate Δt = 2 (s), which can be used with other implicit
Eulerian alternatives, was selected as a PFEM-2 reference
solution requiring one order less of iterations, although it
required more than two days of CPU running time for the
twelve processes in parallel. By employing a larger time-step
Δt = 10 (s), PFEM-2 achieves a similar solution, but spend-
ing only 12 h.Moreover, PFEM-2 has the chance of obtaining
a useful result in only 3 h, employing the largest time-step,
thanks to its high robustness; however, while using Eulerian
alternatives, that is not possible, i.e., simulation blows-up.

Remark This type of problems where the Reynolds number
is not large enough require a finer mesh, but the process that
takes very long time makes this methodology very useful.
Remember that it is very straightforward to parallelize the
spatial coordinates, but it is not so obvious as to how to par-
allelize the time scale.

4 Mold filling

The casting’s mold-filling process is a widely employed
technique in material processing engineering. The procedure
involves a liquid–gas two-phase flow where a proper study

of the interaction between the molten metal and the gas in
the complex geometries used as molds is required to opti-
mize the process. In this context, numerical simulations can
be used to properly predict the gas-entrapment defects and
better understand the complex motions of the gas phase and
the liquid phase.

Most of the current mold-filling simulation researches
limit to single-phase models where only the molten metal
fluid flow is considered, while the role of gas dynamics is
completely or largely neglected. Based on such models, gas-
entrapment defects are only qualitatively estimated because
the coupled effects of gas velocity and pressure, i.e., the back
pressure is neglected or inaccurately estimated. Employing
two-phasemodel is a better strategy, but it is still under devel-
opment due to the complexity for treating the large density
and viscosity ratios of the phases involved. A promising
work was done by Pang et.al. [31] where they employed
the SOLA particle level set method (SOLA-PLSM) to sim-
ulate the process. However, the results are not qualitatively
correct due to the poor prediction of gas-entrapped regions.
Two three-dimensional benchmark tests are reproduced in
this Section with the two-phase solver of PFEM-2. Large
time-steps such as CFLmax ≈ 15 are employed at the inter-
face.

4.1 High-speed water filling into an S-shaped channel

An experiment performed by Schmidt and Klein [30] on a
cold chamber die-casting machine is simulated. It consists
of a S-shaped channel, initially filled with air, where liq-
uid water is injected at very high velocity (8.7 ms−1). A
2D sketch of the geometry is presented in Fig. 6a, with the
thickness of the third dimension being 8 (mm). The outlet is
explicitly modeled in order to allow the gas to escape. It is
very small, and consequently it can be predictable that there
will be a large amount of gas-entrapment phenomena inside
the mold during water filling.

This process was simulated by Pang et.al. [31] using an
algorithm based on the Particle Level Set Method (PSLM)
and was compared with the experimental data. Current work
presents the results obtained by employing PFEM-2with two
different spatial discretizations: the first one with a coarser
mesh which allows using time-steps one order larger and the
second with a mesh refinement similar to Pang’s. Table 3
reveals the discretization parameters employed for both sim-
ulations. The target is to know if our numerical strategy can
predict filling evolution and gas entrapping even when we
employ cheaper computational resources and spending less
time.

Figures 7, 8 and 9 present snapshots at different simula-
tion times comparing experimental and numerical references
extracted from the work of Pang et. al. Due to initialization
differences, a relative time t∗ is employed, setting t∗ = 0 at
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(a) (b)

Fig. 6 Mold-filling tests. Sizes are expressed in millimeters. A valve
has been included in both geometries to allow the gas to escape. a S-
shaped test. b Campbell’s benchmark

Table 3 Tests solved and numerical parameters employed

Name Δx Δt Turbulence model

Test 1 2.5 (mm) 0.25 (ms) LES

Test 2 0.075 (mm) 0.05 (ms) LES

themoment of the first snapshots. Subsequent snapshot times
are referred to the initial one.

The general filling evolution is well reproduced by both
PFEM-2 simulations. As shown by Fig. 7, at t∗ = 0 (ms),
all solutions are in agreement. They obtain a sharp and well-
delimited water front. At t∗ = 17.88 (ms), two entrapped
gas bubbles appear in the cavity that are captured by each
simulation. However, PFEM-2 results present better agree-
ment regarding the impact of the free-surface against the left
wall, where the main water jet is split in two streams. How-
ever, at the moment of the impact with the right wall, i.e.,
t∗ = 32.19 (ms), (Fig. 9), the overall interface shape of each
simulation is still similar to the experiment. PFEM-2 shows
some improvements due to the possibility of capturing the
backward creeping flow at the outer wall on the first curve.
In this last snapshot, the lack of mesh refinement in Test 1
(specially in the front) is responsible for the production of a
mixture between air and water with a nonphysical behavior.
However, this approximation with a cheaper and less time-
consuming simulation (it spends only 10 % of the computing
time compared with Test 2) is good enough to represent the
overall behavior of the mold filling process.

4.2 Campbell benchmark test

TheworkofCampbell et. al. [32] presents awell-characterized
casting experiment that is a useful benchmark for the model-

ing community. This case is included in order to strengthen
the conclusion that the S-shaped channel brings about the
agreement of PFEM-2 solutions with experiments, even
when employing large CFL numbers. The model is a plate
with dimensional sizes: 200 × 100 × 10 (mm) in X, Y,
and Z directions, respectively. The mold cavity is made of
resin-bonded sand. The pouring liquid is pure aluminum.
The filling process is recorded using the in situ X-ray imag-
ing technology. Since the metal temperature is 720 ◦C, the
density of the aluminum liquid is 2385 kgm−3 and the kine-
matic viscosity is set to be 1.3 × 10−6 m2 s−1. The physical
parameters for gas phase is air at room temperature. The aver-
age injection velocity, estimated from the gating system and
numerical experiences, is 0.4 ms−1.

A slice of the simplified geometry of the mold cavity is
presented in Fig. 6b. The grid step is uniformly set to be
2.5 (mm), obtaining a mesh with 40 K nodes conforming to
200 K tetrahedra. Regarding the time-step, it is fixed asΔt =
0.01 (s). Therefore, the simulation reaches a CFLmax ≈ 20
at the moment the interface enters into the rectangular cav-
ity. With these parameters, simulation takes approximately
35 min to reach the Tf = 2 (s) of simulation time for run-
ning on a desktop computer with an Intel i7-2600K processor
and 16 Gb RAM. These computing requirements make the
simulation with PFEM-2 affordable for any engineering and
design office.

Figure 10 compares a snapshot series of three experi-
ments taken from the reference and the simulated interfaces
between the molten aluminum and the gas phase. As men-
tioned before, an average velocity was employed at the inlet
because the real pouring condition is not available. Therefore,
the first numerical snapshot is taken at the most favorable
time, i.e., when qualitatively there is more agreement, and
subsequent snapshots are taken relative to this initial time.
Under this strategy, comparisons present good overall agree-
ment. Interface does not look as sharp as in experiments,
but the filling volume by time is coincident in achieving a
solution that can be considered as an accurate and cheap first
approach. One can conclude that, even while employing very
large time-steps when the interface evolution is computed,
the current two-phase flow method can be used to properly
predict the evolution of the actual mold-filling process.

5 Failure of a storage vessel

Several industries employ tanks for bulk storage of hazard
liquids. Normally, these tanks are surrounded by a wall or
earth embankment in order to provide a secondary contain-
ment for any spillage from the tank. Although the capacity
of the bounded area is large enough to provide full contain-
ment of the more likely spills, it is not able to contain the
surge of liquid that would follow a catastrophic failure of the
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Fig. 7 Interface shape of S-shaped channel filling at t∗ = 0 (ms). Liquid water is shown in green (b) and red (c, d). a Experimental. b Pang
et. al. c Test 1. d Test 2. (Color figure online)

Fig. 8 Interface shape of S-shaped channel filling at t∗ = 17.88 (ms). Liquid water is shown in green (b) and red (c, d). a Experimental. b Pang
et. al. c Test 1. d Test 2. (Color figure online)

Fig. 9 Interface shape of S-shaped channel filling at t∗ = 32.19 (ms). Liquid water is shown in green (b) and red (c, d). a Experimental. b Pang
et. al. c Test 1. d Test 2. (Color figure online)

tank. Even if the surge does not destroy the bound wall, the
flood wave is likely to overtop it. While catastrophic failure
of bulk storage tanks is rare, the consequences for site person-

nel, any local community, and the environment can be severe.
Such accidents have occurred in the USA, in Greece, and in
Lithuania, and more recently in Argentina among others.
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Fig. 10 Progressive filling of
the mold. Snapshots from three
experiments of [32] (left side)
are compared with PFEM-2
solution at different times (right
column). Simulation results are
colored from black (aluminum)
to white (air) in order to
compare with the X-ray coloring
of the experiments. a t = 0.74
(s). b t = 1.0 (s). c t = 1.24 (s).
d t = 1.5 (s)

Fig. 11 Some surface patches of the 3D mesh employed for the tank collapse test
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Fig. 12 Evolution of the collapse observed from the first impacted corner. Isocontour of λ = 0. Vectors depict velocity field, being scaled and
colored according to velocity magnitude. a 1 s. b 2 s. c 3 s. d 6 s. e 10 s. f 20 s

A relevant experimental study was done by Atherton [33]
which performed simulations of catastrophic failure of a stor-
age tank, covering a comprehensive range of tank and bound
arrangements, and to measure both the dynamic pressures
that are exerted on the bounding walls and the quantity of
liquid that overtops it. However, the cited work supposes
a instantaneous disappearance of the tank wall during the
failure, and the models lack of breakwaters at the top of the
bound wall which are usually utilized to diminish the amount
of liquid that overtops the secondary container. To overcome
these missing features, numerical simulations appear as a
cheap and accurate complement to experimental measure-
ments. Computational models can be employed to simulate
different failure types and test the efficiencies of several
options of breakwaters (measured in minimizing the amount
of overtopped liquid), among other possibilities. Due to the
catastrophic nature of the failure events, the flow regime
is dominated by inertia. As mentioned in previous works
[10,11], this type of situations are suitable to be solved by
employing a numerical method like PFEM-2.

The study case presented in this section corresponds to the
catastrophic collapse of a tank containing a water–oil mix-
ture. The target is the fluid-dynamic evaluation of themixture
during the surge and the collision with the bounding walls.
Neither details related to failure causes nor structural aspects
of failure propagation are objectives of this simulation.

The PFEM-2 two-phase model is employed, considering
an isothermal and turbulent flow. The fluid initially fills the
90 % of the tank and is considered as a mixture of 3/4 part

of water and 1/4 part of oil, with a density of 925 (Kgm−3)

and dynamic viscosity of 0.034225 (Kgm−1 s−1). The rest
of the domain is considered filled with air at 15 ◦C. Surface
tension is neglected.

Figure 11 shows the geometric features of the tank and
the surrounding walls. Also, this model includes breakwaters
over the walls shape of which is presented in the said figure.
A relevant characteristic of the simulation is the failuremodel
adopted, which was based on fractomechanical studies done
upon the real tank failure. It assumes that the failure started
at some point, and it is propagated erratically toward the
top, following a path described by the heat-affected zone of
the welding toward both sides. Considering an instantaneous
propagation of the failure, simulation uses a fixed triangular
opening of the tank wall from the initial time. Its dimensions
and shape, depicted in Fig. 11, pertain to a model supplied
by the mechanical department of the company interested in
analyzing this accident.

The used mesh consists of 312,251 nodes conforming to
1,724,389 tetrahedral. The average size of the elements is
Δx = 0.3 (m), and the time-step is set constantwith avalueof
Δt = 0.05 (s), leading to a CFLmax = 10 which occurs at the
moment of the splashing. An Intel(R) Core(TM) i7-3930K
CPU @ 3.20GHz computer was employed for the parallel
simulation (6 cores). It has taken around 5 h to complete 20 s
of simulation time, which is enough to drain the tank.

Figure 12 presents several snapshots of the free-surface
(λ = 0) observed from one corner. It can be seen clearly
that the first surge overtops the wall in spite of the use of
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Fig. 13 Evolution of the collapse observed from the top. Isocontour of λ = 0. Vectors depict velocity field, being scaled and colored according to
velocity magnitude. a 1 s. b 2 s. c 3 s. d 6 s. e 10 s. f 20 s

breakwaters (see Fig. 12d), leading to a calculated loss of
around 20 % of the initial inventory. Secondary splashes are
well contained by the structure. Maximum forces exerted by
the fluid are also detected at the moment of the first surge
impact the wall. The horizontal component detected at the
first-impacted wall is 2000 kgf while the breakwater receives
around 6000 kgf of vertical force. These values justify con-
sequences experienced after the accident according to the
company report.

Figure 13 presents a sequence of snapshots observed from
top. This point of view demonstrates the need of using break-
waters to minimize liquid losses and also allows to examine
how the secondary container bounded by walls is quickly
filled by the liquid.

6 Conclusions

From previous works, PFEM-2 has demonstrated to be
a promising option for engineers and scientists when a
good compromise between efficiency and accuracy for CFD
problems is required. This hybrid Lagrangian–Eulerian strat-
egy found advantages when advection plays a main role:

convection-dominant problems, or in general when the trans-
port of a quantity (tracer, reactive, or passive species;
temperature, momentum, free-surface, and so on) has an
important advective component. This is justified because
there is no need for employing very fine mesh like those
found when using an Eulerian formulation to avoid exces-
sive numerical diffusion and also when there is a strong
need of enlarging the time-step to afford very long real-
time simulations requiring normally in the order of hours
of real time. This kind of situations is typically found in
most of the industrial applications, and in the current work,
several representative problems have been simulated with
PFEM-2 obtaining good agreement with experimental ref-
erences even while employing large time-steps. Among the
more auspicious situations, the calculations of the RTDs in
tanks appear to be very attractive, because they largely exploit
the advantages of PFEM: its ability to resolve a long-time
interval without the need of having a very fine mesh. The
enlargement of the time-step and coarsening of the mesh are
two advantages of PFEM against any Eulerian-based solver
which shows instabilities with high Courant numbers and
inaccuracies due to excessive numerical dissipation when
using coarse mesh.

123



Comp. Part. Mech.

Different strategies for modeling turbulent dispersion are
also presented. If the flow is very unsteady, other techniques
such as particle tracking cannot be employed ignoring the
necessity of coupling the flow computing. In this context,
the utility of PFEM-2 to manage both situations (steady and
unsteady flows) is another strong point that is presented for
the case of steady flow in a contact tank and troubleshooting
detection in unsteady flow in a skimmer tank.

For the case of two-phase flows, the advantages of PFEM-
2 are extended due to its capability for using time-steps larger
thanCFLmax 
 1 at the interface. Such kind of flows appears
in real-time industry, and in this work, some representative
cases were successfully simulated.

Two mold-filling process were computed where, despite
using coarser meshes and larger time-steps than those used
with other numerical alternatives, PFEM-2 has demon-
strated that its solution reproduces the experiment even
better than its competitors. Finally, the last test, concerned
with the collapse of a container, allows to show again the
capabilities of PFEM-2 to deal with other interesting engi-
neering problems, like industrial accidents. Useful results
such as forces over contentions and inventory losses inside
themwere obtained justifying the consequences experienced
after the accident by the company interested in this analy-
sis.

In conclusion, this work aims to show the feasibility of
application of the method PFEM-2 to cases of industrial
interest.After several publicationswhere its capabilitieswere
demonstrated in terms of accuracy, robustness and efficiency,
here a series of interesting examples of real-life applications
are presented, showing that the method is not only an attrac-
tive numerical method for research, but also a valuable tool
for design engineers at the moment of taking decisions, in
particular, in such cases that require long real-time simula-
tions.
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