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Abstract A simple mathematical model that quantitatively describes the dynamics of analyte cap-

ture in lateral flow assays is presented. The formulation accounts for the capillary-driven flow through

the porous membrane, the advective transport of analyte, and the immunoreactions that takes place

in the detection line. Model predictions match the numerical results obtained by computer simula-

tions of the full advection-diffusion-reaction problem in the operating regime of lateral flow assays.

The main system parameters were condensed into two dimensionless numbers, namely the relative

fluid velocity and the relative analyte concentration. The system is then completely characterized in

the space of these critical numbers. The model is also able to describe the time evolution of ana-

lyte binding by using alternative time scalings, which discriminate different experimental conditions.

The equations reported are practical tools for the design and optimization lateral flow tests, en-

abling informed decisions on basic questions such as the appropriate flow rate, sample volume, or

assay time. Beyond lateral flow assays, the work offers an improved understanding of the underlying

physico-chemical processes involved in paper-based microfluidics.

1 Introduction

Lateral flow assays are well established tests for rapid and easy detection of a large variety of biological

and chemical markers (Wong and Tse, 2009). As the technique satisfies all the requirements to be

implemented in resource-limited settings, mainly for public health in developing countries (Yager

et al, 2006), the development of test strips is experiencing a renaissance on these days, which is

also motivated by the high research activity in paper-based microfluidics (Mace and Deraney, 2014;

Yetisen et al, 2013; Cate et al, 2015).

Improving the existing technologies requires, among other things, the introduction of quantitative

determinations and enhanced detection limits. These challenges demand large experimental efforts,
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because the optimization of novel materials and reaction schemes is currently made empirically. In

fact, despite the large experience gained in the field, quantitative descriptions of how assay parameters

influence the analyte capture efficiency are not available in the scientific literature. Straightforward

questions (but of significant practical relevance) such as the appropriate concentration of capture sites

or the optimal fluid velocity are usually solved via experimentation. In this context mathematical

models able to explore different assay conditions would be of practical interest to lateral flow test

developers, as well as for microfluidic researchers.

Comprehensive theoretical models for surface binding in microfluidic systems are available (Hu

et al, 2005; Gervais and Jensen, 2006; Parsa et al, 2008; Squires et al, 2008; Hansen et al, 2012;

Aguirre et al, 2014), which involve the coupling of advective transport, molecular diffusion, and

chemical reactions. These formulations are very useful to understand the physicochemical basis of

the general problems, however the practical implementation invariably requires numerical compu-

tations. For the specific case of lateral flow assays, theoretical calculations are barely found in the

literature. A mathematical model of strip test was reported for sandwich (Qian and Bau, 2003) and

competitive assays (Qian and Bau, 2004). The formulation includes a complete set of immunoreac-

tions and computations were made on commercial simulation tools. However practical information is

not easily extracted from numerical results and critical parameters are not identified. More recently,

a mathematical model to predict the optimal test line location (xL in Fig. 1) and sample volume was

reported (Ragavendar and Anmol, 2012). Another numerical approach (Zeng et al, 2012) makes use

of particle filtering techniques to estimate the state of different assay parameters from experimen-

tal data of the detection line. Numerical calculations were also used to explore different membrane

shapes (Mendez et al, 2009), assay architectures (Parolo et al, 2013), and fluidic delays (Choi et al,

2016). The last three works simulated the flow through the membranes without computing immunore-

actions.

The present work proposes a mathematical model that describes the dynamics of the analyte

capture process in lateral flow assays. In contrast to the above mentioned approaches, which demand

numerical computations and require experts analysis, here a simple analytical model is reported.

It is based on algebraic expressions of ease computation, and explicitly includes the key system

parameters, namely the relative flow rate and the relative analyte concentration. Thus the model

serves as a handy tool for the design and optimization of lateral flow tests. The next section describes

the problem formulation, the hypothesis made, and the analytical solution in terms of critical system

parameters. Afterwards the numerical calculation of the full transport-diffusion- reaction problem

is presented, which was implemented to validate the predictions of the analytical model. Finally we

discuss the capability of the proposed model to quantitatively describe the essential features of lateral

flow test.
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Fig. 1: (a) Schematic representation of the basic test strip, where xL measures the location of the
test line. (b) Geometry of the reaction zone considered to model the analyte transport and capture:
the dashed lines define a volumetric reaction zone, where wL is the test line width, ws is the strip
width (test line length), and h is the membrane thickness.

2 Theoretical modeling

2.1 Problem statement

Initially we define the flow domain and the kinetic problem to be modeled, which also involves im-

munoreactions. The assay takes place on a paper-like strip, typically nitrocellulose, with the geometry

sketched in Fig. 1a. The test begins when a drop of sample is laid over one of the strip ends. The

sample is an aqueous solution containing the analyte, which has been previously incubated with a

label agent. Capillary action drives the fluid towards the opposed strip end, where a capture line

is located to specifically bind the analyte. Analyte capture occurs while the sample flows through

the reaction zone (Fig. 1b); the accumulation of captured analyte (conjugated to the label agent)

produces a visible signal on the test line. The flow continues until capillary action is interrupted due

to sample volume limitation, or because the fluid front reaches the strip end. A control line is also

included in the membrane, which is prepared to specifically bind the label agent.

The reaction volume VL = wLwsh is the membrane volume associated to the capture zone,

comprised by the test line width (wL) and the cross-sectional area (wsh) traversed by the fluid flow

(Fig. 1b). The rate of analyte capture, r = −dCA/dt, follows the standard immune-reaction kinetics

r = kbCACS − kuCAS (1)

where CA, CS , and CAS are, respectively, the concentrations of analyte (either antigen or antibody),

capture site (the inmuno counterpart of the analyte) and reaction product (antigen- antibody com-

plex). In addition kb and ku are the binding and unbinding constants, respectively, the ratio of which

constitutes the equilibrium constant K = kb/ku.
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For the capture sites inmmobilized in the reaction zone, the initial concentration fixed to the

membrane must satisfy, C0
S = CS + CAS . As a first approximation, here we consider that capture

sites are uniformly distributed in the considered domain, and species concentrations are average

values in the volume VL. On the other hand, the analyte is unidirectionally transported by the flow,

hence describing the dynamics of CA requires additional considerations, as discussed below.

2.2 Dynamics of capillary imbibition

Capillary imbibitions in paper-like substrates has been well described in the recent literature (Masoodi

and Pillai, 2010; Wang et al, 2013; Shou and Fan, 2015; Elizalde et al, 2015). The flow is assumed to

be stationary and free of inertia, because of the very low Reynolds numbers reached at the pore level.

For homogeneous strips, at isothermal conditions and with controlled humidity level, the average

velocity of the fluid front reduces to

u(x) = c/x (2)

where c = κ∆p/(µφ) is a coefficient that characterizes the whole system: ∆p is Laplace’s pressure due

to capillarity, φ is the medium porosity, µ is the fluid viscosity and κ the permeability of the porous

substrate. For water in nitrocellulose, c ≈ 1−10 mm2/s, depending on the membrane microstructure.

Time integration of Eq. 2 leads to the typical x ∼ t1/2 imbibition kinematics.

According to Eq. 2, the sample reaches the capture zone at the velocity uL = c/xL , considering

t = 0 when the fluid is at the starting position (dotted line in Fig. 1). Thus the analyte flux can

be adjusted by varying the location of the detection line (distance xL ), which is known to have a

significant impact on assay sensitivity. Nevertheless, as changing xL also influences both the amount

of sample required and the assay time, other strategies to control the fluid front velocity are being

explored as well (Jahanshahi-Anbuhi et al, 2012; Shin et al, 2014; Elizalde et al, 2015; Choi et al,

2016).

2.3 Characteristic times

The analyte is transported by the flow, and while passing through the reaction zone, molecules diffuse

toward the capture sites and react to form the complex. The relative importance of each process can

be studied from the respective time scales:

– The residence time of the analyte in the capture zone is tr = wL/uL , considering that fluid

velocity does not change appreciably across the test line (wL ≪ xL ; Fig. 1). Introducing the

volumetric flow rate Q = uLwSh, the residence time also represents the time required to exchange

one reaction volume, tr = VL/Q. In practice, xL ≈ 20mm and wL ≈ 1mm, thus tr ≈ 20s.
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– The diffusive time is tD = d2/D, where D is the molecular diffusion coefficient (≈ 10−10m2/s,

IgG in nitrocellulose, (Moghadam et al, 2015) and d is the membrane pore diameter (≈ 10µm).

Therefore tD ≈ 1s.

– The characteristic kinetic time can be estimated as tk = (kbC
0
A)

−1 from the forward term of the

reaction equation. For typical immunoassays, kb ≈ 104(Ms)−1 and C0
A ≈ 100nM, thus tk ≈ 103s.

It is readily seen that analyte diffusion is much faster than chemical reaction, hence analyte

capture occurs in the so-called reaction-limited condition(Kockmann, 2008), in other words, the

complex formation is the limiting step of the analyte capture process. Under these conditions, the

capture dynamics is characterized by the balance between the residence and reaction times (Gervais

and Jensen, 2006). This scaling analysis agrees with the practical knowledge in the field: controlling

the sample flow rate is critical to optimize the capture efficiency. Therefore, here we introduce the

relative fluid velocity:

U =
c

xLwLkbC
0
s
=

Q

VLkbC
0
s

(3)

as a critical system parameter. The second equality in Eq. 3 represents the relative flow rate, which

can be also interpreted as the advective transport rate divided by the characteristic reaction rate.

In addition, U coincides with the reciprocal of the first Damköhler number used in microprocess

engineering (Gervais and Jensen, 2006; Kockmann, 2008).

2.4 Transport model for the analyte

Given the situation of chemical control, a macroscopic balance of the analyte moles in the reaction

volume is expressed (Kockmann, 2008),

QCA|inlet −QCA|outlet ≈ rVL (4)

where QCA accounts for the moles per unit time entering/leaving the reaction zone with the flow

(Fig. 1b). A pseudo steady state is assumed, where the analyte flux through the reaction volume (left

hand side of Eq. 4) equals the rate of consumption by the immunoreaction. Fluid velocity is c/xL at

the inlet and c/(xL + wL) at the outlet. For wL ≪ xL, Eq. 4 is rewritten as,

uL
wL

(C0
A − CA) ≈ kbCA(C

0
S − CAS)− kuCAS (5)

where C0
A is the analyte concentration entering the reaction zone. This flux balance leads to an

explicit expression of the analyte concentration in terms of fluid velocity,

CA =
kuCAS + C0

A
uL

wL

kb(C
0
S − CAS) +

uL

wL

(6)
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where CA and CAS are instantaneous (time dependent) values. In particular, at the very early stages

of the reaction, CAS ≈ 0 and CA/C0
A ≈ U/(1 + U). This relationship predicts that the analyte

concentration exiting the reaction volume increases with flow rate. Thus the formulation grasps the

trend expected in practice: the capture efficiency improves when fluid velocity decreases.

2.5 Kinetic model for the complex formation

Taking into account that the rate of antigen-antibody complex formation is equivalent to the rate

of analyte capture, r = dCAS/dt = −dCA/dt, the complex concentration CAS is governed by Eq. 1,

where the analyte concentration CA can be substituted by the pseudo steady state solution obtained

above (Eq. 6). The following non-linear differential equation is obtained for CAS(t):

dCAS

dt
= kb

[ kuCAS + C0
A

uL

wL

kb(C
0
S − CAS) +

uL

wL

]

(C0
S − CAS)− kuCAS (7)

Defining the dimensionless variables CAS = CAS/C
0
S (relative complex concentration) and tk = t/tk

(relative kinetic time), and reordering the terms, Eq. 7 is rewritten as follows:

dCAS

dtk
=

1− CAS(1 + 1/KC0
A)

1 + (1− CAS)U−1
(8)

this governing equation involves two critical system parameters: the relative fluid velocity U and the

normalized initial analyte concentration KC0
A.

In the limiting case of U → ∞, Eq. 8 becomes a linear equation, the solution of which is the

Langmuir-type adsorption kinetics (Da → 0),

CAS = C
∞

AS(1− e−(C
∞

AS
tk)) (9)

with the initial condition CAS = 0, tk = 0. In this solution, C
∞

AS = KC0
A/(1+KC0

A) is the maximum

occupation of capture sites (tk → ∞). Equation 9 has been recently used to discuss the detection limits

of lateral flow assays (Moghadam et al, 2015), however it is valid for constant analyte concentration

only (negligible capture). Here, Eq. 9 is useful to illustrate the influence of KC0
A . For instance, if

KC0
A = 1, then, C

∞

AS = 1/2, meaning that only 50% of capture sites will be occupied at equilibrium,

due to the balance between binding and unbinding processes. Besides, KC0
A serves as metric of the

detection limits in immunoassays, the best values reached in practice are KC0
A ≈ 10−2 (Moghadam

et al, 2015). Furthermore, for such low KC0
A values, one observes that the amount of complex formed

is directly proportional to the initial analyte concentration, a fact of practical interest in the design

of quantitative analysis.
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For arbitrary U values, Eq. 8 still admits analytical solution, though in the implicit form tk(CAS).

In fact, integrating with the initial condition CAS = 0, tk = 0, yields,

tk =
CASU

−1 − [1 + (1 +KC0
A)

−1U−1] ln[1− (1 + 1/KC0
A)CAS ]

1 + 1/KC0
A

(10)

It should be mentioned that a solution analogous to Eq. 10 has been reported (Hansen et al, 2012) for

pseudo steady state operation of open flow-cells with surface reactions. Precisely, the kinetic time scale

tk is more suitable for systems without sample volume limitations. Considering the characteristics of

test strips, where sample volume is limited, here we introduce the relative flow time, tr = t/tr. As tk

and tr are related by U , Eq. 10 is easily rewritten in the form tr(CAS):

tr =
CAS − [U + (1 +KC0

A)
−1] ln[1− (1 + 1/KC0

A)CAS ]

(1 +KC0
A)/KC0

S

(11)

Both Eqs. 10 and 11 represent the time evolution of complex formation, or equivalently the fraction

of bound sites, for the same physical problem, though with different time scaling. In particular, the

relative flow time also represents the relative reacted sample volume, that is tr = VS(t)/VL , where

VS(t) is the sample volume that pass through the reaction zone at time t. Finally, Eq. 11 is reordered

to solve for U vs CAS as follows,

U =
CAS − (VS/VL)(1 +KC0

A)/KC0
S

ln[1− (1 + 1/KC0
A)CAS ]

−
1

1 +KC0
A

(12)

This expression allows one to investigate the dynamics of complex formation as a function of flow

rate, in the space of the dimensionless numbers KC0
A , KC0

S , and VS/VL , which are the main design

parameters of lateral flow assays.

3 Numerical Simulation

In order to develop an internal validation of the practical model, numerical simulation were performed

using a Finite Element Method (FEM) tool. Besides the 3D calculation domain, in this case the

differences between the practical model and the simulations were: (i) the existence of a finite diffusion

coefficient DA for the analyte; (ii) finite lengths before and after the test line; and finally, (iii)

continuous variation of the velocity according to Eq. 2.

3.1 Software

Numerical simulations were performed with a previously developed FEM tool using the program

PETSc-FEM as the numerical calculation platform in a Python environment. This simulation tool

was already validated for several analytical applications (Kler et al, 2011, 2013). The simulations

were performed on a desktop computer with single quad-core Intel i7 3770 3.4 GHz processor, 16
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GB DDR3-1066 memory, using 4 calculation threads. Data postprocessing was performed with Par-

aview(Ayachit, 2015), NumPy, SciPy and Matplotlib (van der Walt et al, 2011).

3.2 Simulation conditions

The geometry of the calculations domain for the FEM calculations were xL = 20 mm,ws = 5 mm,h =

10 µm, and wL = 1 mm. In order to perform the analysis for different values of tr, the total length

of the modeled strip was l = 30mm. FEM mesh consisted of 15000 hexahedrons distributed as a

structured uniform mesh. Initial concentrations for analyte and capture sites were C0
A = C0

S = 100 nM,

diffusion coefficient for the analyte was DA = 10−12m2s−1. Finally, the values of kb, ku and c were

varied in order to match the different values for U proposed by the analytical model: 104 (Ms)−1 ≤

kb ≤ 6.4 105 (Ms)−1, 10−3 s−1 ≤ ku ≤ 6.4 10−2 s−1, 1.3 10−6m2s−1 ≤ c ≤ 7.8125 10−8m2s−1. Initial

velocity was chosen in order to develop a suitable initial condition for solving Eq. 14, i.e.:

||uL||t=0 =
c

CFL hFEM
(13)

3.3 Simulation scheme

The simulation procedure involves the iterative coupling of analytical calculations for the fluid velocity

and front position, and the numerical simulation of transport and reaction processes. After initial

conditions for the fluid velocity and concentrations, the first step consists in setting an adequate

timestep (∆t) for the FEM simulation. In order to determine this value, we use the following equation:

∆t = min

{

CFL hFEM

||uL||

}

(14)

where CFL accounts for the Courant-Friedrich-Levy condition (Donea and Huerta, 2003) that we

define with an optimum value of 0.95, and hFEM = 10µm is the finite element mesh parameter,

which results from dividing the domain length by the total number of mesh elements. Once the

timestep is determined, one solving iteration of the transport–reaction equation is performed by

using the velocity field previously calculated. The used transport–reaction equation for the analyte

CA is written as follows (Kockmann, 2008):

∂CA

∂t
+∇ ·

(

uLCA −DA∇CA

)

− r = 0 (15)

After that, the front position l(t) is updated by using the previous front velocity and the calculated

timestep:

l(t+∆t) = l(t) + ||uL(t)||∆t. (16)
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Velocity magnitude is updated again by using Eq. 2. Finally the FEM solver is called again as it was

previously described. This iterative scheme is reproduced until the velocity front reaches the end of

the strip, and consequently, velocity is null throughout the whole strip.

4 Results and discussion

4.1 Validation against numerical calculations

First of all, model predictions are compared to numerical simulations of the full transport problem

solved by FEM. The amount of complex formed as a function of flow rate is considered. The curves

plotted in Fig. 2a were obtained from Eq. 12, for constant KC0
A and KC0

S (dimensionless analyte

and capture sites concentration, respectively) and predefined values of VS/VL (reacted sample vol-

ume relative to reaction volume). Symbols are the numerical results for the same parameter values,

obtained as described in the previous section. A close agreement is observed, notably at intermediate

sample volumes. In particular, for very low sample volumes (dotted line in Fig. 2a) the model over-

estimates the rate of complex formation, which is due to the initial condition used in the derivation

of the analytical solution (Eq. 10). In fact, the model implicitly assumes that the immunoreaction

starts with the reaction volume completely filled. The numerical calculation instead reflects the real

situation: the reaction volume is filled by capillary flow and the reaction proceeds gradually until

VS(t) = VL . Then, for VS ≥ VL , both calculations predict the same complex formation in the full

range of relative flow rates considered. On the other hand, the analytical model detaches from nu-

merical results for sample volumes VS = 8VL and higher. This behavior is also expected because of

the assumption of constant fluid velocity through the test line. In fact, Eq. 6 is valid for assay times

equivalent to a few residence times, ntr, say n < 10. According to Eq. 2, the flow rate decreases as

the fluid front advances, and uL(ntr) = uL(tr)/(1 + nwL/xL). In Fig. 2a, xL = 20 mm, wL = 1 mm,

thus uL decreases about 30% for n = 8. It is worth noting however that real-world lateral flow tests

involve effective xL distances around 3− 5 cm, as they include sample and conjugate pads upstream

the membrane (Wong and Tse, 2009); therefore the model could predict reasonably well for larger

VS .

Figure 2b presents model predictions obtained with KC0
A varying four orders of magnitude, for

fixed sample volume an capture site concentration. Finally, Fig. 2c shows the influence of the KC0
S

on the amount of complex formed, for fixed values of analyte concentration and sample volume. In

both cases, lines were obtained from Eq. 12 and symbols are simulation results obtained with the full

numerical formulation. A close matching of calculations is observed for wide ranges of U , KC0
A , and

KC0
S (several orders of magnitude), which constitutes a validation of the analytical model against

rigorous numerical formulation.

It is worth to remark that computer simulations involve the full transport problem, while Eq. 12

neglects molecular diffusion. The quantitative agreement found in the validation suggests that molec-
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Fig. 2: Relative concentration of complex formed as a function of the relative flow rate. In all cases,
lines are the prediction of Eq. 11 and symbols are the results of FEM simulation. 3D numerical data of
CAS(U) were converted to 1D by integrating the complex concentration over the whole computational
domain. Curves correspond to: (a) different values of VS/VL for fixed KC0

A and KC0
S , (b) different

KC0
A for fixed VS/VL and KC0

S , and (c) different KC0
S for fixed KC0

A and VS/VL.
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ular diffusion is effectively irrelevant in the operating regime of lateral flow assays. The overall shape

of curves in Fig. 2 reflects the fact that, for a given sample volume, slow flow rates give more time to

molecules to increase the probability of collisions and analyte binding. On the contrary, if the sample

flows relatively fast, a fraction of analyte molecules could not bind the capture sites before exiting the

reaction zone, and therefore the conversion is poor. The numerical simulation also considers a large

flow domain that expands upstream and downstream the test line, with fluid velocity locally varying

along the path. The domain of the analytical model is the reaction zone, however the magnitude of

fluid velocity is controlled by both the test line location xL and the membrane coefficient c. Thus one

may conclude that the model comprises the key governing factors of lateral flow assays.

In summary, the analytical model can be safely used to attain quantitative predictions for the

practical ranges of immunoreaction constant rates, analyte concentrations, capture sites concentra-

tions and typical membranes used in lateral flow test. The only restriction to be taken into account

in calculations is that assay times should be higher than tr (equivalently, VS > VL) and lower than

about 10 tr (equivalently, VS < 10 VL). However, this last constraint can be relaxed for relatively

large test line locations (say, xL > 20wL).

4.2 Model prediction of time-dependent processes

Here we illustrate model predictions for time evolution of the analyte capture process, while analyzing

the interplay between the following operating conditions: fixed sample volume- unlimited assay time,

and fixed assay time-unlimited sample volume, as previously discussed by (Parsa et al, 2008) for

surface capture in open microchannels. As in lateral flow tests the sample volume is limited, we start

with the first situation. The right analysis of the problem comes from Eq. 11, where the reaction

dynamics is scaled with the residence time.

Figure 3 shows the prediction of Eq. 11 for different values of U . All the curves are plotted for

KC0
A = 1, so that the maximum sites occupation is 50%. It is worth noting that, for a given residence

time, the conversion improves at the lowest flow rates. Of course, assay time and flow rate are inversely

proportional, as illustrated in the inset of Fig. 3. For example, if the sample volume to pass by the

capture zone is limited to 2VL, more than 90% of the attainable equilibrium binding can be attained

working at U = 0.1. However the assay time will be impractically long. Furthermore, in the limiting

case of vanishing fluid velocity the batch process operating regime is virtually reached.

In order to fulfill the analysis, Fig. 4 presents the prediction of Eq. 10, where the analyte capture

process is scaled with the kinetic time. It is observed that the conversion for a given time improves with

flow rate. This result, in apparent contradiction with the previous one (Fig. 3), is the trend typically

expected in the kinetic analysis of advection-diffusion-reaction systems (Gervais and Jensen, 2006;

Kockmann, 2008; Hansen et al, 2012; Aguirre et al, 2014). The rationale is that flow rate must be

increased to improve the analyte flux, and hence attain better capture efficiency in a given assay time.

The drawback of this operation mode is that the sample volume required to attain a given capture
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Fig. 3: Relative concentration of complex formed as a function of the relative time (flow scaling). The
inset shows both the relative concentration and the assay time required, as a function of the relative
fluid velocity, for the specified sample volumes. A sample volume equal to nVL passes through the
reaction zone during an assay time equal to ntr.

Fig. 4: Relative concentration of complex formed as a function of the relative time (kinetic scaling).
The inset shows both the amount of complex formed and the reacted sample volume for the specified
reaction times, as a function of the relative fluid velocity.

level increases with flow rate, as shown in the inset of Fig. 4. For example, if one needs to reach

90% of attainable equilibrium binding in a time equivalent to 2tk, then the sample volume needed

is around 100 times the reaction volume. In other words, increasing the fluid velocity minimizes the

assay time, but requires much more sample to pass through the reaction zone to attain the desired

capture level. Representations like Fig. 4 are thus misleading for lateral flow tests.

4.3 Practical use of model predictions

Finally we highlight how model predictions are valuable information for the design and development

of lateral flow assays. Figure 5 shows the effect of both analyte concentration and sample volume

on the amount of complex formed, at each flow rate. It is observed that increasing the fluid velocity

for a given analyte concentration (from (a) to (b), full line) produces the same effect on the amount
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Fig. 5: Relative concentration of complex formed as a function of the relative fluid velocity, for
different values of the dimensionless analyte concentration and sample volume. The arrows indicate
alternative ways to obtain a different conversion level (dashed line) from an arbitrary situation (a).

of complex formed that keeping the original fluid velocity but decreasing the analyte concentration

(from (a) to (c), dashed line). In addition the same effect is obtained by limiting the amount of sample

(dotted line) for a given analyte concentration. Of course, the opposite happens by decreasing U or,

alternatively, increasing KC0
A .

In this sense, it must be noted that there is an empirical rule (widely diffused among test strip

developers) saying that the effective concentration of analyte in the sample is inversely proportional

to the square of the change in flow rate. The argument is that, when the flow rate doubles, the analyte

has half the time to react, and considering a second order reaction, the impact on the amount of

complex formed would be equivalent to reduce the analyte concentration by a factor 4. Figure 5 shows

that, although the predicted trend is right, the quantitative relation of the aforementioned rule is

not necessarily accurate. Furthermore, it is clearly seen that the effective analyte concentration for

a given flow rate depends on the considered region of parameters space; hence a single prescription

cannot be given for general use. Precisely, the benefits of the model proposed here is that it enables

quantitative predictions in terms of the main parameters governing the system, in a wide range of

practical conditions.

Finally, Fig. 6 presents an example of diagrams to be studied in the parameter space of the

system, namely the dimensionless analyte concentration and the relative fluid velocity. The regions

plotted correspond to operation windows defined by the percentage of complex formed. The contour

lines were arbitrarily chosen for the purposes of illustration. The diagram in Fig. 6 condense the

results discussed above: relatively low flow rates are required to attain better capture efficiencies in

samples with low analyte concentrations. Conversely, high flow rates can be implemented in dealing

with concentrated samples, which also means shorter assay times. The white region in the bottom of

the diagram indicates the practical limit of detection of the system.
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Fig. 6: Parameter space of the system. The different regions are defined by the percentage of complex
formed, for a fixed sample volume (VS = 4VL) and capture sites concentration (KC0

S = 10).

5 Conclusions

Throughout this work we have described the derivation and practical uses of an analytical model

for the dynamics of analyte capture in paper-like membranes, which is the central problem of lateral

flow tests. The formulation accounts for the capillary-driven flow through the porous membrane, the

advective transport of analyte, and the immunoreactions that takes place in the detection line. The

included approximations are physically consistent with the operating regime of lateral flow assays,

as probed by the satisfactory comparison of model predictions against full numerical simulations

implemented in our lab.

From the fundamental point of view, the proposed model condense the main design parameters

of lateral flow assays into two dimensionless numbers: the relative flow rate and the relative analyte

concentration. Then the system can be completely characterized in the parameter space of these

critical numbers. In addition, the model is able to describe the time evolution of analyte binding

by using alternative time scalings. Results are quite interesting, and not necessarily intuitive, as the

fraction of bound sites changes significantly depending on the imposed conditions of fixed sample

volume or fixed assay time. To our knowledge, the quantitative assessment of lateral flow assays by

such a simple, though robust, analytical model has not been reported before in the scientific literature.

From the practical point of view, the equations reported here are valuable tools for the develop-

ment of strip test. In fact, informed decisions can be made on basic questions such as the appropriate

flow rate, sample concentration, or assay time, which in turn are constrained by requirements of sensi-

tivity and detection limits. For example, the model enables a quantitative analysis of the mandatory

tradeoff between sample volume and assay time, both of which are to be minimized to fulfill the

advantages of microfluidics for point-of- care biosensors.
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