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1. INTRODUCTION

Composite materials are increasingly used in several types of structural applications.
Advantages that motivate their use are high strength and sti!ness, low weight, improved
fatigue life, etc. Many structural components made of composites have the form of beams.
Accordingly, some re"ned theories were developed in order to consider the special
structural properties of composite beams such as the important role of the shear
deformability and the e!ects of anisotropy.

A theory of shear deformable orthotropic beams was developed by Nowinsky [1]. On the
other hand, Dharmarajan and McCutchen [2] have discussed a method for obtaining shear
correction factors for these types of beams. An orthotropic beam theory including normal
deformability along with the shear e!ect was presented by Soldatos and Elishako! [3].
Recently, Murakami and Yamakawa developed an anisotropic beam theory of the
Timoshenko type from a mixed variational principle [4]. The model was used to calculate
vibration frequencies of cantilever and simply supported beams.

In this article, a two-dimensional vibration analysis for anisotropic beams is presented in
order to verify the Murakami}Yamakawa beam theory. The beam is modelled by means of
a plane state of stress corresponding to an anisotropic elastic body. Natural frequencies are
determined by means of the "nite element system FLEXPDE [5]. The results are compared
against the values obtained in reference [4]. Additional results are given for clamped beams.

2. GOVERNING EQUATIONS

An anisotropic beam with a narrow rectangular cross-section is considered (see Figure 1).
According to the elasticity theory the problem is governed by means of the following
equations:
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Figure 1. Analyzed anisotropic beam and reference system.
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The expressions of the coe$cients Q1
ij

in terms of the material moduli E
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, G
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and l
12

are detailed in reference [6].
The present equations along with the corresponding boundary conditions were solved by

means of the FLEXPDE system. This is a #exible solver of partial di!erential equations
based on the "nite element method. Among other notable features, this system has an
adaptive grid re"nement controlled by an estimation of the maximum relative error
required. More details about the program are given in reference [5].

The cases analyzed in this paper are shown in Table 1. There, it is possible to observe the
boundary conditions of the beam type and the equivalent boundary conditions according to
the two-dimensional model used in this article.

3. NUMERICAL RESULTS

Figures 2}5 show the non-dimensional natural frequencies of vibration given by
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.

TABLE 1

Boundary conditions analyzed

Case Boundary conditions of the beam type Present boundary conditions

Cantilever ;"/"<"0 (x"0) u"v"0 (x"0)
N"M"Q"0 (x"¸) p

x
"p

xy
"0 (x"¸)

p
y
"p

xy
"0 (y"$c)

Simply supported ;"M"<"0 (x"0) u"0 (x"0, y"0)
N"M"<"0 (x"¸) v"0 (x"0)

p
x
"0 (x"0)s

p
x
"v"0 (x"¸)

p
y
"p

xy
"0 (y"$c)

Clamped ;"/"0 (x"0) u"v"0 (x"0, ¸)
;"/"0 (x"¸) p

y
"p

xy
"0 (y"$c)

Note: ;: Longitudinal beam displacement; /: rotational beam displacement; <: transverse beam displacement;
N: longitudinal force; M: bending force; Q: shear force.
sThis condition does not apply at x"y"0.



Figure 2. Non-dimensional natural frequencies u6 versus angle h for cantilever beams. (a) material 1 with
c/¸"1/10; (b) material 1 with c/¸"1/30; (c) material 2 with c/¸"1/10; (d) material 2 with c/¸"1/30:
x, Murakami}Yamakawa beam theory; ----, dominant axial mode; * -*; dominant #exural mode.

Figure 3. Non-dimensional natural frequencies u6 versus angle h for simply supported beams. (a) material 1 with
c/¸"1/10; (b) material 1 with c/¸"1/30; (c) material 2 with c/¸"1/10; (d) material 2 with c/¸"1/30:
x, Murakami}Yamakawa beam theory; ----, dominant axial mode; * -*; dominant #exural mode.
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Figure 4. Non-dimensional natural frequencies u6 versus angle h for simply supported beams with rigid left end.
(a) material 1 with c/¸"1/10; (b) material 1 with c/¸"1/30; (c) material 2 with c/¸"1/10; (d) material 2 with
c/¸"1/30: x, Murakami}Yamakawa beam theory; ----, dominant axial mode; * -*; dominant #exural mode.

Figure 5. Non-dimensional natural frequencies u6 versus angle h for clamped beams. (a) material 1 with
c/¸"1/10; (b) material 1 with c/¸"1/30; (c) material 2 with c/¸"1/10; (d) material 2 with c/¸"1/30: x,
Murakami}Yamakawa beam theory; ----, dominant axial mode; * -*; dominant #exural mode.
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The following material properties were considered. Material 1: E
22

/E
11

"0)1, G
12

/E
11
"

0)0333, l
12
"0)3. Material 2: E

22
/E

11
"0)333, G

12
/E

11
"0)1667, l

12
"0)25. Figure 2

shows the "rst four natural frequencies of vibration for cantilever beams, with the
slenderness ratios c/¸"1/10 and 1/30, as a function of the h angle between the strong "ber
direction of the material and the longitudinal x-axis. Except for h"0 or h"903, the
#exural and axial motions are strongly coupled. However, in the "gures, the modes have
been classi"ed as #exural- or axial-dominant according to the value of the ratio
a"u

max
/v

max
(#exural modes when a(1 and axial modes when a'1).

The present results are compared with those obtained by Murakami and Yamakawa
(M}Y). It may be noted that the M}Y results are practically coincident with the present
ones for all the cases analyzed. However, in the short beam case (c/¸"0)1) with material 1
(more anisotropic), the third frequency obtained with the present model corresponds to
a #exural mode for h(103. This fact was not detected by the M}Y calculation.

Figure 3 shows the results corresponding to simply supported beams. The comparison
with the M}Y theory shows a good agreement for the long beam cases for both materials.
However, there are notable discrepancies in the frequencies corresponding to axial modes
for the short beam cases.

These discrepancies are due to the fact that the left boundary condition corresponding to
the restraint of the longitudinal displacement at x"y"0, yields a notable warping of the
cross-section. This behavior is very di!erent from the assumption, used in the beam theory,
that plane cross-sections remain plane. In Figure 4, results are shown for simply supported
beams again, but with the left end modelled as a very rigid lamina. This is obtained by
de"ning a very narrow region placed at the left side of the beam (0(x(0)01 ¸,
!c(y(c) with very high rigidities (E

11
"G

12
"E

22
"l

12
"1016). In this situation,

the agreement among the present theory and the M}Y theory is complete.
Finally, natural frequencies corresponding to clamped beams are given in Figure 5. The

general behavior is similar to the above-mentioned cases in the sense that the frequencies
decrease with the increase of the h angle.

4. CONCLUSIONS

Natural frequencies of vibration corresponding to anisotropic beams were calculated by
means of a two-dimensional plane stress model. These results were compared, for the cases
of cantilever and simply supported beams, with the values given by Murakami and
Yamakawa using their anisotropic beam theory. The comparison shows a very good
agreement for cantilever beams.

From the point of view of the two-dimensional theory, there exist several ways of
modelling a simply supported end. The numerical values of the frequencies corresponding
to axial modes are highly sensitive to the detailed form in which the simple support is
materialized as it was shown. This means that the anisotropic beam theory should be
applied with caution for short simply supported beams.

Numerical determinations of vibration frequencies of clamped beams were done, in order
to illustrate their dynamic behavior.
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