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Summary

In a previous paper, the authors presented an elemental enriched space to be
used in a finite-element framework (EFEM) capable of reproducing kinks and
jumps in an unknown function using a fixed mesh in which the jumps and
kinks do not coincide with the interelement boundaries. In this previous pub-
lication, only scalar transport problems were solved (thermal problems). In the
present work, these ideas are generalized to vectorial unknowns, in particu-
lar, the incompressible Navier-Stokes equations for multifluid flows presenting
internal moving interfaces. The advantage of the EFEM compared with global
enrichment is the significant reduction in computing time when the internal
interface is moving. In the EFEM, the matrix to be solved at each time step has
not only the same amount of degrees of freedom (DOFs) but also the same con-
nectivity between the DOFs. This frozen matrix graph enormously improves the
efficiency of the solver. Another characteristic of the elemental enriched space
presented here is that it allows a linear variation of the jump, thus improving
the convergence rate, compared with other enriched spaces that have a con-
stant variation of the jump. Furthermore, the implementation in any existing
finite-element code is extremely easy with the version presented here because
the new shape functions are based on the usual finite-element method shape
functions for triangles or tetrahedrals, and once the internal DOFs are statically
condensed, the resulting elements have exactly the same number of unknowns
as the nonenriched finite elements.
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1 INTRODUCTION

In a previous paper,1 the authors presented an elemental enriched space capable of reproducing kinks and jumps of the
unknown functions using a fixed mesh in which the jumps and kinks do not coincide with the interelement boundaries.
In that publication, only thermal problems were solved in which the unknown variable was a scalar function. In this
work, we generalize the previous ideas to a vectorial field such as the incompressible Navier-Stokes equations.

Kinks and jumps in the velocity and in the pressure fields are present in many engineering problems, particularly
in multifluids and fluid-structure interaction problems. In the case of multifluids (several fluids with different physical

Int J Numer Meth Fluids. 2017;1–20. wileyonlinelibrary.com/journal/fld Copyright © 2017 John Wiley & Sons, Ltd. 1

https://doi.org/10.1002/fld.4477
http://orcid.org/0000-0003-0034-7883


2 IDELSOHN ET AL.

properties), the dynamics of the interface between the fluids involved plays a dominant role. The computation of the
interface between various immiscible fluids or the free surfaces is extremely difficult because neither the shape nor the
positions of the interfaces are a priori known. The 2 main approaches to solving these problems are as follows: one based
on using a moving mesh that follows the discontinuity, named interface-tracking methods, and another based on using
a fixed mesh (some times refined in that part of the domain where the interfaces cross during the evaluation), named
interface-capturing methods.

In this last method (see other works2-4), the interface is determined by an implicit function immersed in a Eulerian
(fixed) mesh, and the flow problem is solved considering the fluids as a single effective fluid with variable proper-
ties. Popular methods of this type are the volume-of-fluid technique5-7; the level-set method,8-11 which advects the
interface using Eulerian strategies; and the Particle Finite-Element Method—Second Generation,12-15 which employs a
Lagrangian method.

Independent of the method used to move the internal interface, the problem in fixed-mesh methods is that the change in
physical material properties along the interface introduces kinks or possibly jumps that must be captured in the solution
of the global problem in order to have accurate results. Some authors try to fulfill this issue by refining the mesh near the
interface without introducing any possibility of having a kink or a jump inside the elements.

For such problems, when the interface does not necessarily conform to the element edges (in 2-dimensional [2D]) or
faces (in 3-dimensional [3D]), the finite-element solution, either for continuous or discontinuous approximations across
interelement boundaries, suffers from a suboptimal convergence rate. This poor approximation leads to spurious velocities
near the interface that may significantly affect the precision and the robustness of numerical simulations (see, eg, the
work of Ganesan et al16). Furthermore, the need for a local refinement around the interface implies the refinement of the
mesh in almost the entire domain where the possible position of the interface may go through when the interface moves.

A number of methods have been developed to overcome these difficulties. One possibility is to add degrees of freedom
(DOFs) or to enrich the finite-element space at the elements cut by the interface. Minev et al17 and, later, Chessa and
Belytschko18 adopted an enrichment technique nowadays called XFEM, a name coined in the context of fracture mechan-
ics, and also named GFEM by other authors.19 Both approaches lead to optimal orders of convergence, but the main
drawback is that the additional DOFs cannot be eliminated before assembly. The XFEM approach has also been used
recently in 2-phase flows.20,21 These kinds of enrichment have been also called global enrichment or nodal enrichment,
previously stated XFEM or GFEM. A method that avoids the inclusion of additional DOFs is one that allow to statically
condense the additional DOFs prior to the assembly. For this reason, these kinds of enrichment have been named elemen-
tal enrichment or EFEM.22,23 A generalization of the treatment of kinks and jumps in the pressure field was presented by
Ausas et al.24 However, the enriched space proposed in the aforementioned literature24 works satisfactorily for the pres-
sure field in the Navier-Stokes equations but does not work correctly for the enrichment of the temperature field in a
typical thermal problem or for the enrichment of the displacement or the velocity field in solid or fluid mechanics prob-
lems. As previously stated, Idelsohn et al1 presented a new elemental enriched space that allows a better approximation of
second-order equations in which an integration by parts is needed. The generalization of these ideas to the incompressible
Navier-Stokes equations is presented next.

As presented by Oliver et al23 and Sánchez et al25 in the context of fracture simulations, the computational cost of
XFEM is always larger than that of the corresponding EFEM due to the stiffness matrix construction and the solver
(in turn, the most time-consuming operations), mainly in 3D problems. The difference, they showed, is due to the ele-
mental condensing done in EFEM, where additional DOFs do not substantially contribute to the computational costs,
irrespective of their number. That conclusion can be extended to internal interface problems and leads to a significant
reduction in computing time when the internal interface is moving. If this kind of problem is simulated with EFEM,
then the matrix to be solved at each time step has not only the same amount of DOFs but also the same connectivity
between the DOFs. This means that the matrix graph (profile) remains constant, whereas in the XFEM, the matrix graph is
permanently changing.

The advantage of not modifying the matrix can be exploited by employing both direct and iterative solvers for sparse
linear equation systems. The former is used by an important community seduced by the independence from matrix con-
ditioning and the goodness when parallelized solution techniques, as additive Schwartz, are employed. Here, if the matrix
graph does not change during simulation, a unique prefactorized matrix can be used to solve that system at each time
step, thus reducing substantially the global central processing unit time. In the case of using iterative solvers, Oliver et al23

report in its fig. 25 that the central processing unit time differences increase (up to 3 times in 3D) when the ratio between
the number of enriched and nonenriched elements, ie, the proportion of the interface along the domain, grows. More-
over, the cost of matrix assembly should be considered only once with EFEM (just the coefficients must be updated),
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thus avoiding the costly continuous reassembling of the system matrix done by XFEM where memory chunk allocation
is permanently required for each time step.

The disadvantage of the EFEM is the impossibility of exact consistency with the internal continuities required for the
variational form. How to mitigate these inconsistencies for the case of multifluids (also called variational crimes) is one of
the main targets of this work. Another characteristic of the elemental enriched space presented here is that it allows a lin-
ear variation of the jump, improving the convergence rate to the exact solution, compared with other enriched spaces that
have a constant variation of the jump. The implementation in any existing finite-element code is extremely easy in both
2 and 3 spatial dimensions. This is because the new shape functions are based on the usual finite-element method shape
functions for triangles or tetrahedrals, and once the internal DOFs are statically condensed, the resulting elements have
exactly the same number of unknowns as the nonenriched finite elements. To show the accuracy of the new space pro-
posed, simple but very convincing examples of the solution of the Navier-Stokes equations for single-phase and multifluid
flows using a fixed background mesh are presented as numerical examples.

2 THE GOVERNING EQUATIONS

2.1 Conservation of linear momentum
The momentum conservation in the entire domain reads:

ρDu
Dt

= ∇ · 𝛔 + b, (1)

where ρ is the density, u is the velocity vector, 𝛔 is the stress tensor, b is a source vector, and Du
Dt

, the material derivative,
is the acceleration vector that can be also written in a Eulerian frame as Du

Dt
= 𝜕u

𝜕t
+ u · ∇u.

For the incompressible Navier-Stokes equations, the stress values are related to the velocity gradients and the pressure
through

σ = 2μ∇su − pI, (2)

where μ is the dynamic viscosity, p is the pressure, I is the identity matrix, and ∇su is the symmetric gradient tensor of
the velocity field.

Possible boundary conditions on the boundary domains are{
𝛔n = 𝛔n = (2μ∇su − pI) · n on Γσ
u = u on Γu,

(3)

where 𝛔n and u represent known external values, and n is the outside normal vector.
Possible internal conditions at the internal interface are

𝛔+n = 𝛔−n on Γint, (4)

where 𝛔+n and 𝛔−n represent the normal stresses on both sides of the interface considering positive in the sense of the
outside unit normal to the interface, respectively.

2.2 Conservation of mass
Mass conservation, or the continuity equation, must be satisfied in the entire fluid domain. Assuming incompressible
fluid flows, continuity requires the divergence of the velocity to be zero, ie,

∇ · u = 0, (5)

with the following boundary conditions:

un = u · n = un on Γu. (6)

On the internal interfaces, the incompressible condition forces to have

u+n = u−n on Γint, (7)

where, again, u+n and u−n represent the normal velocity on both sides of the interface.
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FIGURE 1 Nomenclature employed for interface names and regions [Colour figure can be viewed at wileyonlinelibrary.com]

3 THE FINITE-ELEMENT DISCRETIZATION AND THE ENRICHED SPACE

3.1 Conservation of linear momentum
In a finite-element approximation, artificial kinks of the unknown functions between 2 neighboring elements are
introduced. In this case, the following constraint must be added:

𝛔ele
n = 𝛔neigh

n on Γl, (8)

where Γl represents all the finite-element boundaries (see Figure 1), 𝛔ele
n represents the normal stresses at the

finite-element boundaries, and 𝛔neigh
n represents the normal stresses on the finite-element boundaries of the neighboring

elements.
The weighted residual form of the previous equation is

Ωl=Ne∑
Ωl=1

∫Ωl

w ·
(
ρDu

Dt
− ∇ · 2μ∇su + ∇p − b

)
dΩ − ∫Γσ w ·

(
𝛔n − 𝛔n

)
dΓ

−∫Γint

w ·
(
𝛔+n − σ−n

)
dΓ − ∫Γl

w ·
(
𝛔ele

n − 𝛔neigh
n

)
dΓ = 0, (9)

where w is the vector of weighting functions (equal to the shape function to be used to approximate the velocity field in
the case of Galerkin approximations).

Remark. For a Eulerian time integration, the weighting function should be modified in order to get spatially stabilized
schemes.26

After the integration by parts, (9) remains as follows:

Ωl=Ne∑
Ωl=1

[
∫Ωl

w ·
(
ρDu

Dt
− b

)
+ ∇w ∶∶

(
μ∇su + pI

)]
dΩ − ∫Γσ w · σn dΓ. (10)

Note that due to the continuity of the weighting functions w, after integration by parts, all the integrals on the internal
interfaces at the real interface Γint as well as on the artificial interelement interfaces Γl disappear.

Nevertheless, in order to allow the possibility of having discontinuities in the velocity field, special discontinuous shape
functions will be added to the continuous standard finite-element shape functions. In the same way, a continuous part and
a discontinuous part will form the weighting functions. Calling we the discontinuous weighting function to be introduced
for the enriched space and maintaining the notation of w for the standard continuous finite-element weighting functions,

http://wileyonlinelibrary.com
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the integration by part will read as follows:
Ωl=Ne∑
Ωl=1

∫Ωl

[
w ·

(
ρDu

Dt
− b

)
+ ∇w ∶∶

(
μ∇su + pI

)]
dΩ − ∫Γσ w · 𝛔n dΓ = 0

Ωl=Ne∑
Ωl=1

∫Ωl

[
we ·

(
ρDu

Dt
− b

)
+ ∇we ∶∶

(
μ∇su + pI

)]
dΩ − ∫Γσ we · 𝛔n dΓ

−∫Γint

(
w+

e · 𝛔−n +w−
e · 𝛔+n

)
dΓ − ∫Γl

we · 𝛔neigh
n dΓ = 0. (11)

The first line in (11) is the standard variational form for the continuous weighting functions w, whereas the second line
is the variational form for discontinuous weighting functions.

The term σneigh
n represents the normal stress to the finite-element boundaries of the neighboring elements, and σ+n ,

w+
e , σ−n , and w−

e are the normal stress and the enriched weighting function on both sides of the internal interface. The
evaluation of these terms will be discussed later.

3.2 Conservation of mass
As stated before, the elemental enriched space may introduce discontinuities between the 2 neighboring elements as well
in the velocity field as in the pressure field. Furthermore, for a Galerkin approximation, the corresponding weighting func-
tions have exactly the same possible discontinuities that must be taken into account in order to satisfy the incompressible
condition.

Possible velocity discontinuities between elements force to impose the following constraint:
uele

n = uneigh
n on Γl, (12)

where uele
n represents the normal velocity to a boundary element, and uneigh

n represents the normal velocity on the
boundary of the neighboring element.

The weighted residual form of the mass conservation with possible discontinuous velocity fields (supposing that the
boundary constraint un = un is a priori satisfied) reads:

Ωl=Ne∑
Ωl=1

[
∫Ωl

w p∇ · u dΩ − ∫Ωl

∇w p · ue dΩ + ∫Γu

w p une dΓ +∫Γint

w p (u+ne − u−ne
)

dΓ + ∫Γl

w p
(

uneigh
ne − uele

ne

)
dΓ

]
= 0,

(13)
where wp is the weighting function equal to the shape function to be used to approximate the pressure field in the case of
Galerkin approximations, and une is the enriched velocity at the boundary.

Remark. Equal-order interpolation for velocity pressure is stabilized through streamline-upwind/pressure-stabilizing
Petrov-Galerkin methods in this context.

For the case of continuous velocity fields, all the boundary integrals in the previous equation disappear, but for
discontinuous velocities, special care must be taken on the internal interfaces and on the boundaries between 2
neighboring elements crossed by the interface.

Furthermore, the pressure (and then the weighting functions wp) will be also enriched with discontinuous func-
tions. Calling wp the continuous weighting functions for the incompressible terms and ue and w p

e the enriched velocity
shape functions and the pressure weighting functions, respectively, 4 cases must be taken into consideration.

1. Continuous weighting functions and continuous velocity shape functions. In this case, the weighted residual form
for the incompressible equation reduces to

Ωl=Ne∑
Ωl=1

[
∫Ωl

w p∇ · u dΩ
]
= 0. (14)

2. Continuous pressure weighting functions and discontinuous velocity shape functions. In this case, integrating by
parts the divergence term, all the boundary integral terms disappear, producing

−
Ωl=Ne∑
Ωl=1

[
∫Ωl

∇w p · ue dΩ
]
+ ∫Γ w p · une dΓ = 0. (15)
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This means that the terms involved in continuous pressure weighting functions and discontinuous velocity shape
functions are easily solved integrating by parts the divergence velocity term. In contrast, an integral term must be
added in the whole external contour of the domain.

3. Discontinuous weighting functions and continuous velocity shape functions. In this case, again, (13) reduces to

Ωl=Ne∑
Ωl=1

[
∫Ωl

w p
e ∇ · u dΩ

]
= 0. (16)

4. Discontinuous weighting functions and discontinuous velocity shape functions. In this case, Equation (13) remains
with all the terms. Integration by parts avoids some terms on the boundary integrals, but the terms concerning the
neighboring elements remain in the equation, which makes it impossible to be exactly solved with an elemental
enrichment strategy. The approximation of both neighboring terms𝛔neigh

n in (11) and uneigh
n in (13) will be discussed

next.

4 EVALUATION OF THE JUMP CONDITION FOR THE INTERNAL
INTERFACES

Equation (11) introduces integral terms with the normal stresses 𝛔+n and 𝛔−n , which represent the normal stresses on both
sides of the internal interface in which a jump or a kink might be located. To evaluate these terms, a regularization zone on
a very thin band with thickness ϵwill be considered. On this band, the stress tensor will be described in local coordinates
on the interface in its normal and tangent directions n, τ1, and τ2, respectively, which will be named 𝛔R. In the same way,
the normal unit vector in these particular coordinates will be called nR with (nR)T = (1, 0, 0). For instance, for the 2D
case, the matrix 𝛔R remains as follows:

𝛔R = 2𝛍∗
⎡⎢⎢⎣

𝜕un
𝜕n

1
2

(
𝜕uτ
𝜕n
+ 𝜕un

𝜕τ

)
1
2

(
𝜕uτ
𝜕n
+ 𝜕un

𝜕τ

)
𝜕uτ
𝜕τ

⎤⎥⎥⎦ − pI. (17)

The coefficient 𝛍∗ is a fictitious viscosity of the regularization zone. It can be considered as an orthotropic material.
Thus

𝛍∗ =
[
μ∗n 0
0 μ∗τ

]
. (18)

The tensor stress normal to the interface in the regularized region becomes

𝛔R
n = σR · nR = 2

[
μ∗n 0
0 μ∗τ

] ⎡⎢⎢⎣
𝜕un
𝜕n

1
2

(
𝜕uτ
𝜕n
+ 𝜕un

𝜕τ

) ⎤⎥⎥⎦ − pnR. (19)

Furthermore, in this region, the derivatives in the direction of the normal to the interface may be written as

𝜕uR
n

𝜕n
= ||un||+

ϵ
and

𝜕uR
τ

𝜕n
= ||uτ||+

ϵ
, (20)

where ||uα||+ = u+α − u−α and ||uα||− = u−α − u+α represent the jumps at the interface of the α component of the velocity
including the sign.

For a finite value of the jumps, this derivative tends to infinity when ϵ tends to zero. This means that the other derivatives
may be neglected on this regularized region, ie,

𝛔R+
n = 2

[
μ∗n 0
0 μ∗τ

] ⎡⎢⎢⎣
||un||+
ϵ‖uτ‖+

2ϵ

⎤⎥⎥⎦ − p+nR

= 2

[ μ∗n
ϵ

0

0 μ∗τ
2ϵ

] ||uR||+ − p+nR = JR||uR||+ − p+nR, (21)
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where the orthotropic coefficient matrix JR is

JR =
[

Jn 0
0 Jτ

]
=

[ 2μ∗n
ϵ

0

0 μ∗τ
ϵ

]
. (22)

Taking into account all the previous considerations, the normal stress at the interface 𝛔+n must be evaluated as

𝛔+n = σn · n+ = RT𝛔RRRT · nR = RT𝛔R · nR = RTσR
n = R

(
JR||uR||+ − p+nR) (23)

or
𝛔+n = RTJRR||u||+ − p+RT · nR = J||u||+ − p+n+, (24)

with J = RTJRR and R as the rotation tensor. Note that, according to their definition from fictitious viscosities, both Jn
and Jτ regulate the amount of momentum transfer in the regularization zone along normal and tangential directions,
respectively, and the degree of continuity in the primal variables. In this context, a zero value of any of these coefficients
implies no momentum transfer between regions along their respective directions and, therefore, some discontinuity in
the primitive variable. On the contrary, an infinite value indicates total momentum transfer, ie, momentum continuity.

As a summary, the final equations to be solved are as follows.

1. Momentum conservation
Ωl=Ne∑
Ωl=1

∫Ωl

[
w ·

(
ρDu

Dt
− b

)
+ ∇w ∶∶

(
μ∇su + pI

)]
dΩ − ∫Γσ w · 𝛔n dΓ = 0

Ωl=Ne∑
Ωl=1

∫Ωl

[
we ·

(
ρDu

Dt
− b

)
+ ∇we ∶∶

(
μ∇su + pI

)]
dΩ − ∫Γσ we · 𝛔n dΓ

−∫Γint

(
w+

e ·
(
J||u||+ − p+n+

)
+w−

e · (J||u||− − p−n−)
)

dΓ − ∫Γl

we · 𝛔neigh
n dΓ = 0 (25)

2. Mass conservation

Ωl=Ne∑
Ωl=1

[
∫Ωl

w p∇ · u dΩ − ∫Ωl

∇w p · ue dΩ
]
+ ∫Γ w p · une dΓ = 0

Ωl=Ne∑
Ωl=1

[
∫Ωl

w p
e ∇ · (u + ue) dΩ + ∫Γint

(
w p+

e ||ue||+ · n+ + w p−
e ||ue||− · n−

)
dΓ + ∫Γl

w p
e

(
uneigh

ne − uele
ne

)
dΓ

]
= 0 (26)

It must be noted that in case the integration by parts of the terms involved with the continuous weighting functions
and the discontinuous enriched functions (second integral in the first line of (26)) is not performed, then the first line of
(26) remains as follows:

Ωl=Ne∑
Ωl=1

[
∫Ωl

w p∇ · (u + ue) dΩ − ∫Γint

w p||ue|| · n dΓ + ∫Γl

w p
(

uneigh
ne − uele

ne

)
dΓ

]
= 0, (27)

which means that without this integration by parts, one integral must be added on the internal interfaces and along all
the element boundaries enriched in order to preserve the mass conservation.

In the previous equations, there are terms named σneigh
n and uneigh

n corresponding to the normal stress and normal veloc-
ity of the neighboring element where the integration is performed. In order to enable the condensation of the enriched
DOF at the elemental level (EFEM), these 2 terms will be approximated with the corresponding stress and velocity in the
integration element itself. In other words, σneigh

n = σele
n and uneigh

ne = uele
ne .

With this approximation, the last integral on the element boundaries of the mass conservation equations becomes null,
producing only the last integral on the element boundaries in the momentum equation. These integrals were named
interelement forces in the previous work of the authors1 because they are similar to the introduction of a load on both
boundaries of 2 neighboring elements. However, as explained in the aforementioned work,1 the addition of these inte-
grals must not be understood as the addition of a boundary load. It must be better interpreted as a do nothing boundary
condition between the 2 neighboring elements. The do nothing boundary condition was first proposed in the work of
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FIGURE 2 Standard and enriched shape functions for a kink and a jump: 2-dimensional case [Colour figure can be viewed at
wileyonlinelibrary.com]

Papanastasiou et al27 to improve the outflow boundary condition in unbounded flows. It was later generalized to a slip
boundary condition in the work of Behr28 and discussed in the work of Coppola-Owen and Codina.29 In this new enriched
space, the do nothing boundary condition will improve the capture of the discontinuity existing between 2 elements in
the case of elemental enrichment. As can be seen in the numerical examples, these interelement forces considerably
improve the accuracy of elemental enrichment, decreasing (and, in many cases, eliminating) the artificial jump that
appears between 2 neighboring elements due to the static condensation of the enriched DOF.

Unfortunately, in spite of using a Galerkin approximation, the interelement forces and the integration by parts of one of
the terms in the mass conservation equation generate a nonsymmetry stiffness matrix. Nevertheless, the improvements
in the results that are obtained using this approximation counteract the disadvantage of having asymmetric matrices.

5 THE FINITE ELEMENT WITH THE ENRICHED SHAPE FUNCTION

The enriched space for reproducing a kink or a jump inside a 2D triangle may be obtained by subdividing the element in
3 subelements and using the standard finite-element shape functions of each subelement, as shown in Figure 2.

For the case of kinks + jumps, the triangle is subdivided in the same way, but the nodes at the internal interface are
duplicated. The procedure to obtain the final stiffness matrix of each element to be assembled in the global stiffness matrix
may be followed in the previous work of the authors.1

The stiffness matrix of each subelement is assembled in 1 superelement of 5 nodes (for kinks) or 7 nodes (for
kinks + jumps). The interelemental forces are added on all the element boundaries in which an internal interface is
present. Finally, the enriched DOFs are eliminated by static condensation following a standard procedure presented in
Appendix.

In the case of 3D finite elements, the internal interfaces are composed of planar facets, which do not conform to the
element faces. Again, the element can then be split into 2 subregions. Two possible situations have to be considered,
since the reconstructed interface can be either a triangular or a quadrangular facet. In the first case, the tetrahedron is
subdivided into 4 subelements, and in the second case, it is divided into 6 subelements. Then, the enriched DOFs are
eliminated by static condensation as usual.

Two different cases of the pathological problem have been referred in the previous paper, and the same solution will be
used now. One case is related to geometrical problems involved when the internal interface is near a node, very close to
an interface, or both. The other case is related to which decision must be taken when there are more than one result in
the same position as currently occur in the elemental enriched space. The readers are referred to the previous paper in
order to learn about the solution adopted for both cases.

http://wileyonlinelibrary.com
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FIGURE 3 Couette flow case configuration and unstructured mesh employed. The units are m/s for velocity, Pa for pressure, Pa·s for
viscosity, and kg/m3 for density [Colour figure can be viewed at wileyonlinelibrary.com]

Concerning the inertial terms ∫Ωl
w · ρDu

Dt
dΩ, the enrichment space was not considered, using for these terms the

standard finite-element shape functions corresponding to the linear triangle or the lineal tetrahedral, respectively. For the
case of a Eulerian formulation, the term Du

Dt
was replaced by 𝜕u

𝜕t
+u·∇u with a standard streamline-upwind Petrov-Galerkin

stabilized scheme26 without any enriched space used to avoid spurious oscillation due to the convective terms.
It must be also noted that in the case of equal-order velocity pressure elements as those used in the examples pre-

sented next, the conservation of mass equation must be also stabilized. A standard pressure-stabilizing Petrov-Galerkin26

stabilization was used here without enrichment in its functional space.

6 NUMERICAL EXAMPLES

The numerical examples chosen in this section are fluid mechanics problems where the unknown functions are the
velocity and pressure fields. The main objective is to highlight the possibilities of the EFEM for these kinds of vectorial
solutions and put in evidence the accuracy of the elemental enrichment in this context. To see the errors compared with
analytical solutions and the convergence of the method for more academic cases, the readers are referred to the authors'
previous work.1

6.1 Couette flow with 2 fluids
The first case analyzed is the incompressible flow counterpart of the cases named one-dimensional kink and
one-dimensional jump presented in the previous work of the authors.1 Instead of solving thermal problems, in the current
case, the unknowns are the velocity and pressure fields. According to the geometry and boundary conditions presented in
Figure 3, the test represents the problem of 2 plane plates with different tangential velocities between them, also known
as the Couette flow. If the same fluid at each side of the interface is considered and Jτ = Jn = ∞ is imposed, the solution
is the classical linear velocity profile. In the case of fluids with different viscosities, a kink of the velocity is produced on
the interface due to a discontinuity in their gradients. The analytical solution is presented in (28), while the pressure is
constant over all the domains, taking the same value imposed at the inlet.

ux(x, y) =
⎧⎪⎨⎪⎩

2μ2
μ1+μ2

y y ≤ 0.5

1 − 2μ1
μ1+μ2

(1 − y) y > 0.5
(28)

The first test considers a viscosity jump of μ1 = 1, μ2 = 10 with constant density ρ1 = ρ2 = 1 and continuity of
the solution at the interface, ie, Jτ = Jn = ∞. Figure 4 A presents the analytic solution over a slice at x = 1 compared
with 3 different numerical solutions obtained employing the unstructured mesh showed in Figure 3. The solution with
a standard finite-element method, ie, without enrichment, fails at capturing the kink and wrongly estimates the velocity
gradient, which results in an unacceptable solution even in this simple case. As expected, using enrichment improves
kink capturing. However, as discussed before in this work, the lack of the interelemental load term leads to a solution that
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FIGURE 4 Couette flow with a kink generated by a viscosity jump. Horizontal velocity over horizontal and vertical slices. A, x= 1 slice; B,
y= 0.5 slice [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Couette flow with a jump. Solutions for different values of J [Colour figure can be viewed at wileyonlinelibrary.com]

has some deficiencies specially in the region of small viscosity. That variational crime is clearly solved incorporating the
mentioned term in the elemental assemble (solution with interelemental load). This difference is highlighted in Figure 4B,
where the value of x-velocity over the enriched DOFs over the interface is presented. It is noticeable how including the
interelemental load the solution obtained matches the analytic one, whereas not employing it results in the solution being
poor. Moreover, some enriched nodes at the same physical point have different velocity values depending on the interface
side where they are. As seen in this first case, the only numerical strategy that guarantees an accurate solution when the
mesh does not match the interface is employing enrichment with interelemental load.

The second example considers a jump in the unknowns. A jump of the velocity in an incompressible flow problem may
be considered when there are 2 fluids in contact but supposing that there is a material in between the 2 domains that
imposes some restriction for momentum transference. It is, for instance, how the surface tension acts at the interface
of 2 fluids or the presence of a plate between 2 fluids with the same or different physical properties. The amount of
momentum transfer for each direction, ie, tangential and normal to the interface, is regulated by the coefficient of the
matrix J described in (22). Although Jn can take any value depending on the problem, in this case and the following ones
in this work, we will always consider the same normal velocity at both sides of the interface with Jn = ∞. Cases with
Jn ≠∞ are not treated in this work, but could be useful in the case of curved interfaces where a slipping condition should
be ensured, but as the interface is represented by straight lines, a locking of the flow is found at the interface. Therefore,
in order to simplify the notation, we will use J when we refer to Jτ.

Figure 5 compares the solutions in a problem with the same fluid at both sides of the interface (μ1 = μ2 = ρ1 = ρ2 = 1)
when J varies. In all the cases, the enrichment proposed with the interelemental forces gives the exact result in any
horizontal line.

http://wileyonlinelibrary.com
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FIGURE 6 Geometry and boundary conditions for the flap valve case. The red line represents the valve position at t = 0 [Colour figure can
be viewed at wileyonlinelibrary.com]

Remark 1. Is important to mention that the interelemental load evaluation on the edges where Γl ∩ Γσ ≠ ∅ must
consider σneigh

n = σ̄n, ie, the traction is dictated by the boundary condition. On the other hand, for boundaries where
Γl ∩ Γu ≠ ∅, an approximation employing σneigh

n = σele
n is adopted as in the internal edges.

Remark 2. In contrast to the previous work1 where linear equation systems were solved, in the case of incompressible
flows, nonlinear systems must be solved. In this context, the condensation of new DOFs introduces nonlinearities
that must be solved iteratively. Therefore, previous iteration values for enriched nodes must be stored. During the
first nonlinear iteration, linear interpolation among parent nodes could be considered to impose an initial value on
enriched nodes. Note that even if the solution for the velocity field on each phase is a linear profile, the equation system
solved includes the convective nonlinear term, and the use of condensed unknowns forces to iterate the linearized
solver.

6.2 Moving flap valve
The Couette case shows the capability of the enriched space proposed to improve the accuracy of the solution when a
coarse mesh does not match the interface and there is a kink or/and a jump of the unknowns. However, if the interface
position is fixed, a matching mesh (with duplicated nodes at the interface) can be used or strategies as XFEM can be
applied, and the accuracy of the results will be at least equal.

In this context, this case proposes a moving interface where a matching mesh strategy would require remeshing every
time step, or the matrix of the equation system of XFEM techniques should be resized according to the variation in posi-
tioning and the number of extra DOFs. This task requires extensive computational time, which can be avoided if the EFEM
proposal of this work is employed, where exactly the same matrix graph is used; this means that the solution matrix has
exactly the same DOFs although the interface position may be continuously moving.

Figure 6 shows a 2D homogeneous and incompressible flow problem that represents a pipe with a flap valve character-
ized by a moving interface. The valve position is fixed at the inlet, and a rigid oscillating movement is imposed following
the equation: y(x, t) = 0.5 + x 0.15 sin(2πt∕T). Imposing impenetrability, ie, un|Γint = 0, and discontinuity of tangential
velocities over it, ie, J = 0, the interface models a solid and slip valve. The flow rate imposed at the inlet is 1 m3∕s, and it
must be kept constant at the outlet; this condition will accelerate the flow in the region where the valve constrains its area.

The background fixed mesh employed consists in 36× 18 structured nodes conforming 1296 triangles. The oscillation
period is T = 105, whereas the time step employed isΔt = 5×103. These huge temporal steps are selected in order to avoid
the influence of the mass matrix over the system. In this context, each time step is treated as a pseudo-stationary state.

Figure 7 shows the magnitude of the velocity at different valve positions. As a validation of the results, the differ-
ence between the inlet flow rate and the outlet flow rate is considered. Maximum differences are about 1% and could
be attributed to the coarse background mesh employed. This fact can be observed in the comparison among the velocity
profiles at the outlet shown in Figure 8. When the valve is centered (for example, at the starting position), the solution is
the classical parabolic profile with maximum |u|max = 3

2
|u|inlet. Solutions for other stages present a jump at the interface,

and the velocity varies its maximum according to the contraction or expansion of the region transversal area, in order to
guarantee conservativeness.

Remark 3. In this case, a slip condition is employed over the interface. A possible improvement could be including
the modeling of a boundary layer through a wall law, adjusting the value of J.
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FIGURE 7 Moving-valve case. |u| at several snapshots. Scale from |u| = 0 m/s (blue) to |u| = 2.2 m/s (red). A, t∗ = 0; B, t∗ = 1/4; C, t∗ = 3/4
[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 Moving-valve case. Velocity profile at the outlet ( x = 1) for different valve positions [Colour figure can be viewed at
wileyonlinelibrary.com]

6.3 Elbow with internal wall
The basis of this case is similar to the previous one. The flow inside a 2D pipe with a valve is also calculated. However, in
this case, the pipe geometry presents a 90◦ curve conforming an elbow. This more complex case is employed to validate
the quality of the elemental approximations used when the interface is not a straight line.

With the aim of reproducing the procedure on general simulations, instead of using the analytical expression, a distance
function fieldψ(x) that has values over the mesh nodes is employed to determine the interface position. Using the standard
linear shape functions, an interface element estimates the interface position as the straight line, which accomplishes
ψ(x) = 0. More details about this standard algorithm can be found in the work of Gimenez and González.30 This procedure
makes that, over a curve, the interface normals n vary element by element. This fact could introduce discrepancies of the
unknown values computed by the pair of enriched DOFs at the same position but on different elements.

Figure 9 presents the geometry and boundary conditions employed. Note that the radius of the duct is not constant, then
the interface position reduces the transversal area of the lower region after the curve. Three Cartesian grids are employed,
starting from a coarse mesh with 2400 elements, which is refined by splitting each element into 4 once (medium mesh
with 9600 elements), twice (fine mesh with 38 400 elements), and thrice (very fine mesh with 153 600 elements). A 1-phase
flow is considered with viscosity and density of unity for simplicity. Taking as the reference length the radius of the duct,
the Reynolds number simulated is Re= 1.

Pressure and velocity solutions using the coarse mesh are shown in Figure 10. The contraction in the right region of
the pipe after the curve generates acceleration of the fluid in order to keep the total flow rate constant. The pressure field
also presents a jump along the interface, which is expected due to the different driving forces required by each region in
order to satisfy the inlet flow imposed. In this context, the inlet flow rate of 2 m3/s, which is split at the centerline of the
duct into 2 equal parts, must be preserved at the outlet. Because the transversal area after the curve changes, it can be
demonstrated that, considering the parabolic flow at both sides, the analytical maximum of the velocity must be 1.5 and
3 m/s in the upper (left) and lower (right) regions, respectively.
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FIGURE 9 Elbow case. Geometry and boundary conditions. The red line represents the interface position [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 10 Elbow case. Solutions using the coarse mesh. A, Velocity magnitude; B, Pressure [Colour figure can be viewed at
wileyonlinelibrary.com]

Figure 11A presents the velocity profile at a slice near the inlet (x = 2) compared with the velocity profile at the outlet,
computed using the coarse mesh. It can be noticed how the symmetrical distribution near the inlet is modified after the
curve because the duct contraction leads to a velocity jump at the interface to preserve the flow rate. Penetrability of the
interface because of the procedure for computing the normals and other numerical issues, particularly for the coarse
mesh, leads to solutions with a certain level of error, for example, a slower velocity at the left region of the outlet.

In order to check how the solution is improved when the mesh is refined, Figure 11B shows the velocity profile at the
outlet computed by the 4 different grids employed. Measuring the error for each solution as the difference between the
analytical and the numerical maximum of the parabolic profile at each side of the interface, the numerical method does
not modify its error convergence order even when employing the EFEM space proposed in this work (upwind schemes
are used for the convective term). Quantitative data are presented in Table 1.

6.4 The flow through a moving sail of a sailboat
An interesting application case of the enrichment space proposed is presented here where the flow around a sailboat is
simulated. The sail, an impenetrable, thick, and deformable material, is modeled as an interface with discontinuity in
both normal and tangential velocities, which implies that the flow at one side does not interact directly with the flow at
the other side of the sail.
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FIGURE 11 Elbow case. Velocity profiles. A, Velocity profile at the inlet and the outlet with the coarse mesh; B, Velocity profile at the
outlet with several mesh refinements [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Elbow case. Maximum of velocity (m/s) at the outlet
using different meshes|vy|max at Left e |vy|max at Right e

Expected 1.5 – 3.0 –

Coarse 1.253 0.247 2.786 0.214
Medium 1.41 0.09 2.907 0.093
Fine 1.452 0.048 2.949 0.0502
Very fine 1.4814 0.0186 2.974 0.0261

FIGURE 12 Geometry and boundary conditions for the sail case. The red line represents the sail position at t = 0 [Colour figure can be
viewed at wileyonlinelibrary.com]

The case configuration is shown in Figure 12. The sail position is represented by the analytic functionψ(x, t) = ax2+bx+c
with ψ(0.3) = 0.347, ψ(0.7) = 0.707, and c = 3

2
sin(2πt∕T). A uniform Cartesian grid of 75× 25 elements subdivided into

triangles is employed. A 1-phase flow is considered, its properties being μ = 1 and ρ = 1. Therefore, Re = 1 taking as
reference length the channel width. In order to model that the interface begins and ends inside the domain, the jump
coefficient is given as follows:

J =

{
0, 0.3 ≤ x ≤ 0.7
∞, otherwise.

(29)

The solution is presented in Figure 13. Figures 13A and 13B show the magnitude of the velocity and the pressure fields,
respectively, with arrows representing the direction of the flow. Although the Reynolds number of the problem is low
and, thus, the flow does not produce shedding, the velocity and pressure fields have the expected features. Pressure is
at maximum over the side of impact of the sail, whereas the minimum occurs behind the sail where flow detachment
is observed. Flow surrounds properly the shape without permeabilities. The snapshots shown in Figure 13C-H, which
present the behavior of the flow for the different positions of the sail, also accomplish the mentioned features.
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FIGURE 13 Moving-sail case. Solution fields at several times. A, |u| at t= 5000 s; B, Pressure at t= 5000 s; C, |u| at t= 10 000 s; D, |u| at
t= 20 000 s; E, |u| at t= 40 000 s; F, |u| at t= 60 000 s; G, |u| at t= 75 000 s; H, |u| at t= 90 000 s [Colour figure can be viewed at
wileyonlinelibrary.com]

6.5 External and internal fluid flow around a droplet
In this case, an internal circulation pattern developed in a heavier fluid (as water) droplet due to the movement of the
surrounding moving lighter fluid (as air) is solved. Analyzing the drop's behavior and its interaction with the environment
is important, for example, for spray technology physics, injection in combustion chambers, etc, and its understanding is
required to properly model those applications.

The case configuration (geometry, boundary, and initial conditions) is presented in Figure 14. The condition of un|Γint =
0 is imposed at the interface, but 2 different cases are solved selecting different values for J. Physical parameters employed
are ρ = 1, μ1 = 1, and μ2 that is variable, and the surface tension is not modeled. Defining Re = ρ|u|a

μ
, with a = 0.15
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FIGURE 14 Fluid drop case. Geometry and boundary conditions. The red line represents the interface position at t = 0, where
impenetrability is imposed [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 15 Fluid drop case with J = 0. A, ux and isocontours; B, uy and isocontours [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 16 Fluid drop case with J = ∞. A, ux and isocontours; B, uy and isocontours [Colour figure can be viewed at
wileyonlinelibrary.com]

being the droplet radius, the Reynolds number simulated is Re = 0.15. The mesh employed consists of a Cartesian grid of
60× 30 cells split into triangles.

The first case imposes J = 0, ie, discontinuity in the tangential velocity at the interface, and μ2 = 0.01. Its solution
should not induce almost any flow inside the drop despite the large viscosity difference. This case is inspired by a fluid flow
surrounding a solid sphere or a fluid droplet isolated by a rigid membrane. Figures 15A and 15B show the horizontal and
vertical components of the velocity, respectively, for the solution at time t = 0. Note that inside the drop, both components
vanish, and the exterior flow contours the shape. In Figure 16A, the magnitude of velocity and base mesh employed are
shown. It is noticeable how the velocity jump is captured even if the interface cuts an element.

On the other hand, the case with J = ∞ and μ2 = 1 allows a momentum transfer along the interface, inducing a flow
inside the drop. The solutions presented in Figures 17 and 16B show that the external fluid motion, in the horizontal
direction, results in a doughnut-shaped toroidal flow within the drop known as a Hill's vortex. The cause of the internal
circulation is the shear force at the drop surface created by the fluid moving along the surface and allowed by the J selected.

A comparison between the solutions at different J values is presented in Figure 18. The velocity profiles along the
horizontal (x = 0.5) and vertical (y = 0.5) axes are clearly shown as the velocity vanishes inside the drop in the case of
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FIGURE 17 Fluid drop case. Profiles of velocity and pressure with different values of J. A, x-velocity along the line x = 0.5; B, x-velocity
along the line y = 0.5; C, Pressure along the line y = 0.5 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 18 Fluid drop case. Velocity fields with different values of J. A, Mesh and |u|. Scale goes from blue to red (0.0-1.6). Case J = 0. B,
Vectorial representation of the velocity field. Case J = ∞ [Colour figure can be viewed at wileyonlinelibrary.com]

J = 0. In the solution for J = ∞, some checkpoints can be analyzed, which guarantee a physical solution, ie, considering
the creeping flow where the velocity magnitude at the interface must be |u| = |u|inlet∕2.0, which is well accomplished by
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the solution; this is particularly proven from Figure 18 at the impact point where ux(0.35, 0) = 0 and at the higher and
lower points of the drop, ie, ux(0.5, 0.65) = ux(0.5, 0.35) = 0.5. Both velocity profiles inside the drop describe a parabola
with a similar minimum value, showing the presence of the typical pair of vortices induced by an external moving fluid.

The enriched space employed allows also to capture the discontinuity of the pressure field at the interface. In the case of
J = ∞, the maximum pressure due to the flow impact to the shape occurs in the same numerical point than the minimum
inside the drop, while the jump at the other side of the drop is smaller. The captured pressure jump is also noticeable
when J = 0 is employed. In the latter, the pressure keeps constant to the reference value imposed in one of the droplet
nodes (p = 0).

7 CONCLUSIONS

This paper describes how to extend the ideas of using an enriched functional space to capture the discontinuities normally
present at interfaces of multifluid flows, either kinks or jumps. After being successfully applied to thermal problems, in
this paper, the theory was adapted for a vectorial nonlinear momentum equation constrained by the incompressibility
condition as in fluid mechanics. Instead of using a very refined mesh to capture these flow features, this methodology saves
a lot of DOFs by using a specially defined functional space that allows for representing in a synthetic way discontinuities in
either the function itself or its gradients. Moreover, for problems where the interfaces are constantly moving all around the
domain, this strategy based on elemental enrichment (EFEM) may be more adequate than XFEM in terms of efficiency.
However, similar to the thermal case, the interelemental loads should be included in order to diminish the variational
crime produced by EFEM when using a linear representation along the interface for both the kinks or the jumps. Finally,
this new method, to capture the discontinuities at the interface, opens a new horizon in terms of modeling the surface
tension and the wall law for turbulence modeling, avoiding a very detailed mesh around the interface.
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APPENDIX

In this Appendix, the local assembling of a 2D enriched element and the condensing procedure of the elemental matrix
are presented. The ideas showed are easily extensible to the 3D case.

Considering the 2D enriched element presented in Figure A1, the original nodes are tagged as 1, 2, and 3 and the
enriched nodes as 4, 5, 6, and 7. Each node has 3 DOFs, namely, u, v, and p for the 2 components of velocity and pres-
sure. Therefore, the elemental assembly of Equation (25) leads to a local equation system with 21 equations and 21
unknowns, ie,
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FIGURE A1 Enriched element for the 2-dimensional case [Colour figure can be viewed at wileyonlinelibrary.com]

where the subindexes denote the kind of node (original 1 ≤ n ≤ 3 or enriched 1 ≤ e ≤ 4), and the supraindexes denote
the DOF involved. Employing that ordering of the equations, the system can be split, using the lines showed, as[

Knn Kne
Ken Kee

] [
𝛟n
𝛟e

]
=
[

Rn
Re

]
, (A2)

which is condensed in terms of the original nodes as(
Knn −KneK−1

ee Ken
)
𝛟n = Rn −KneK−1

ee Re. (A3)
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