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SUMMARY

This paper presents a numerical formulation for a three dimensional elasto-plastic interface, which can be
coupled with an embedded beam element in order to model its non-linear interaction with the surrounding
solid medium. The formulation is herein implemented for lateral loading of piles but is able to represent
soil-pile interaction phenomena in a general manner for different types of loading conditions or ground
movements. The interface is formulated in order to capture localized material plasticity in the soil sur-
rounding the pile within the range of small to moderate lateral displacements. The interface is formulated
following two different approaches: (i) in terms of beam degrees of freedoms; and (ii) considering the dis-
placement field of the solid domain. Each of these alternatives has its own advantages and shortcomings,
which are discussed in this paper. The paper presents a comparison of the results obtained by means of
the present formulation and by other well-established analysis methods and test results published in the
literature. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The analysis of lateral loading of piles can be performed by means of several techniques, such as:
two dimensional beam over elastic foundation using the Winkler hypothesis [1–4], elastic analysis
as proposed by Poulos [5] or Randolph [6], the p � y method originally proposed by Reese et al.
[7, 8], the Strain Wedge Method originally proposed by Norris et al. [9] and further developed by
Ashour et al. [10, 11].

Although these approaches have been very useful in engineering practice, their application is
not straightforward for the analysis of complex soil-structure interaction problems, where large
pile groups, heterogeneous soils, and demands because of applied loads and ground movements
are present. In these situations, an FE approach can provide some advantages, as it can readily
account for several key features controlling the soil-structure interaction; for example, material
elasto-plasticity, pile-soil-pile interaction in pile groups, installation effects, etc.

Sadek and Shahrour [12] proposed an Embedded Beam Element (EBE) formulation for the elastic
analysis of piles in solid FE models, where the nodal pile displacements are written in terms of
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the nodal solid displacements through the interpolation of the solid (soil) elements. In this model,
only the beam translational degrees of freedom (DOFs) are linked to solid DOFs, whereas the beam
rotational DOFs remain as unknown variables of the problem. The main advantage of the classical
EBE formulation is that it allows the interaction of two different kinds of finite elements (i.e., beams
and solid), which are associated to different domains (i.e., pile and soil). Furthermore, the number of
beam translational DOFs of the complete problem does not increase with the addition of embedded
piles elements. Another key feature is that the beam mesh does not represent a constraint for the
solid mesh generation, which can be adopted independently of the beam location. However, as
a consequence of the fact that there is no explicit interaction surface between soil and pile, this
formulation presents a mechanical incompatibility which produces non-convergent solutions when
the pile nodes are close to or at the solid nodes. Engin et al. [13] show that the results obtained by
means of the standard EBE for non-linear problems depend upon the mesh size of the model because
of numerical instability and propose, as an ad-hoc solution, the definition of an elastic region around
the pile axis where the behavior of the solid at the Gauss points is forced to remain elastic. These
authors [14] and [15] have used this modified EBE formulation in order to estimate the behavior of
pile groups.

Turello et al. [16] present an improved EBE formulation, which explicitly considers the inter-
action surface of the pile, where interaction forces –defined in terms of distributed forces– are
accounted for within a well-posed mechanical framework.

As a novelty, this paper presents the formulation of an elasto-plastic interface, which is intended
to represent the plasticity in the soil surrounding the pile, that can readily be coupled with the
EBE formulation presented by Turello et al. [16]. Thus, the global pile-soil interaction problem is
represented by means of the EBE formulation and the local plasticity in the soil next to the pile
by means of the proposed interface. The interface is formulated so as to capture the initial states
of plasticity in the solid domain (i.e., soil) and its effects on the structural response. An elasto-
plastic constitutive law is considered in order to model the interaction forces in terms of the relative
solid and beam displacements. The definition of the interface kinematics can be formulated in two
different ways: (i) considering the displacement jump between solid and beam displacement fields
along the beam axis, considering standard kinematic assumptions for the beam; and (ii) considering
the relative displacements at the interaction surface by means of the full three dimensional (3D)
solid kinematics.

The manuscript is organized as follows: Section 2 summarizes key aspects of the formulation of
the previously proposed EBE with interaction surface [16]; Section 3 describes the proposed elasto-
plastic interface within the EBE formulation; Section 4 discusses two alternative approaches for the
definition of the constitutive laws for the proposed EBE model; Section 5 discusses the numerical
performance of the proposed formulation showing comparisons against alternative approaches (such
as: a p�y method solution, strain wedge method, and field tests). The conclusions of this paper are
summarized in Section 6.

Throughout the manuscript, the following nomenclature convention is adopted. Normal font is
used to express mechanical objects based on 3D-solid kinematics, italic font means quantities based
on technical beam-kinematics, whereas the hat-symbol over a variable implies nodal parameters.
Lowercase and uppercase letters identify entities at the finite element level and global (assem-
bled) level, respectively. Finally, double square brackets denote a displacement jump (i.e., a relative
displacement).

2. OVERVIEW OF EMBEDDED BEAM ELEMENT FORMULATION WITH
INTERACTION SURFACE

In this section, an overview of the EBE formulation, previously proposed by the authors, is pre-
sented. Full details of the formulation can be found in Turello et al. [16]. A sketch of the embedded
beam element with explicit interaction surface is shown in Figure 1.

The main purpose of the EBE formulation proposed by Turello et al. is to explicitly represent the
force interactions at the pile surface in order to avoid ill conditioning of the problem, which trans-
lates into singular stresses [16] and [13]. From a mechanical standpoint, this is naturally achieved
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Figure 1. Layout of proposed Embedded Beam Element.

Figure 2. Layout of mapping operators: (a) hu and (b) hf in the proposed Embedded Beam Element with
interaction surface !.

by imposing a compatibility requirement between beam and solid displacements along the interac-
tion surface. Full adherence between beam and solid is assumed for the elastic case. The system of
interaction forces can be viewed as the system of reactive forces (r-forces) because of the kinematic
restriction imposed at the interaction surface. In order to stress this important concept, and not to
confuse it with another system of forces that will later be introduced in this paper also defined at the
interaction surface, the interaction forces are referred to as r-forces in this paper.

As a starting point of this formulation, beam and solid displacements are defined by means of
standard interpolation functions on the basis of nodal displacements (beam and solid) and rotations
(beam only). Mapping functions are defined in order to express the beam displacements ub and r-
forces fb (vectors in R3 at the interaction surface) as a function of the technical beam displacements
ub and r-forces fb defined along the beam axis (vectors in R6), respectively (Figure 2).

2.1. Discretization and mapping functions

The 3D solid displacement vector field us is discretized by means of standard interpolation
functions, ns, in terms of the spatial position, X, and nodal parameters, Ous:

us.X/ D ns.X/ Ous (1)

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2016)
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The beam displacement vector field ub at the interaction surface (Figure 2), is expressed as a
function of the beam nodal displacements Oub (whose components are the displacements, Ov, and the
rotations, O�), by means of a mapping matrix hu, which is composed of the following: (i) an interpo-
lation matrix nu that defines the displacement field at the beam axis in terms of nodal displacements
Oub; and (ii) a mapping matrix mu that converts displacements and rotations at the beam axis into a
R3 vector displacement field at the interaction surface.

Figure 2 shows a layout of the interpolation and mapping operations, together with the global
(X1; X2; X3) and local (r; ') coordinate systems for the case of a vertical pile with circular cross
section (Rp is the radius of the pile). While the procedure can be generalized for other cross section
geometries, this is not a straightforward task, as a new generalized mapping operator needs to be
defined.

The interpolation matrix for beam displacements, nu, is defined in terms of the local position
along the beam axis, r (Figure 2).

The mapping matrix mu is defined in terms of the local cylindrical coordinate, ', and takes into
account the standard Navier–Bernoulli hypothesis, where the beam cross section � , remains planar,
undeformed, and perpendicular to the beam axis. This hypothesis may be inaccurate for piles in stiff
soils, where shear strains in the beam element may be significant because of the short characteristic
length. However, the basis of the coupling formulation technique herein discussed remains valid if
shear strains are accounted for, and will be implemented in future developments.

The vector field for beam displacements, ub, at the interaction surface can thus be written in terms
of the beam nodal displacements, Oub, as follows:

ub.r; '/ D hu.r; '/ Oub D mu.'/ nu.r/ Oub (2)

The explicit form of the mapping matrix, hu, for a 2-node (i.e., nodes i and j ) cylindrical pile in
local coordinates, as shown in Figure 2, is given in [16].

It is also assumed that the interaction r-force field, fb, at the interaction surface, can be expressed
as a function of nodal beam interaction r-forces, Ofb, by means of the mapping matrix hf. The
mapping scheme consists of two parts: (i) a matrix nf that performs an interpolation of the beam
r-forces fb, defined at the beam axis, in terms of nodal r-force values Ofb; and (ii) a mapping matrix
mf that converts the r-force system at the beam axis, fb, into a statically equivalent r-force system,
fb, at the interaction surface. In other words, a specific structure for the reactive load system fb is
prescribed.

The interpolation matrix nf is written in terms of the local coordinate r (Figure 2), whereas the
matrix mf, that transfers the loads from the beam axis into the interaction surface, is defined in terms
of the local coordinate '.

The distributed r-force vector field fb, at the interaction surface, can thus be written as follows:

fb.r; '/ D hf.r; '/ Ofb D mf.'/ nf .r/ Ofb (3)

The explicit form of the mapping function hf for a cylindrical pile is given in [16].
It should be noted that the interpolation matrices nu and nf are defined in terms of the r coor-

dinate alone (Figure 2), whereas the mapping functions hu and hf are written in terms of local
cylindrical coordinates r and '. Another point to be emphasized is that the mapping operators mu

and mf introduce modeling hypotheses (for kinematics and load distributions, respectively) at the
continuum formulation level, irrespective of the numerical approximations adopted through nu
and nf .

2.2. Formulation of the Embedded Beam Element with interaction surface

As discussed in [16], the key feature of the EBE formulation with interaction surface is that it
expresses the global stiffness matrix of the beam,Kb, in terms of solid DOFs, Kbs, and the stiffness
matrix can readily be assembled to the solid stiffness matrix, in order to obtain the total stiffness
matrix of the soil-pile system. Both, translational and rotational beam DOFs are transformed into
equivalent solid DOFs.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2016)
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The problem is thus solved in terms of solid DOFs, whereas the beam DOFs can be subsequently
obtained in a post-process step.

3. PROPOSED ELASTO-PLASTIC INTERFACE FORMULATION

In this section, an elasto-plastic interface between solid and beam elements is considered, in order
to represent plastic strains in the soil within the vicinity of the pile‡. Thus, the hypothesis regarding
perfect adherence of pile and soil is no longer enforced, and relative displacements because of plastic
strains are introduced.

Figure 3. Layout of mechanical entities for embedded beam element with plastic interaction surface: (a)
Displacements, and jumps, along the pile axis formulated on beam kinematics, (b) Interaction, r-forces
and a-forces, along the pile axis, written using beam kinematics, (c) Mapping process showing displace-
ments and jumps, at the interaction surface, expressed in terms of solids kinematics, (d) Mapping process
displaying interactions force systems, r-force and a-force, at the interaction surface, written in terms of

solids kinematics.

‡Eventually, generalized plasticity could be considered in the whole soil mass, through proper elasto-plastic constitutive
laws in the 3D solid elements. However, this is not the aim of the present work.
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Therefore, a new (independent) kinematical descriptor is introduced into the mechanical formu-
lation, �u� (a vector in R3), whose physical meaning is the relative displacement between the beam
and solid, as shown Figure 3-(c), associated to plastic strains developed in the near field and which
is added to the elastic soil-structure response (obtained by means of the standard EBE formula-
tion) in order to evaluate the total displacement of the pile. By using classical duality arguments,
an additional system of interaction forces arises at the interaction surface, td 2 R3, for which a
constitutive relation (in terms of �u�) is required (Figure 3-(d)). This additional system of forces is
herein referred to a the active-force system (and will be denoted a-force), in order to differentiate
it from the r-force system, fb 2 R3, which is also introduced to guarantee a kinematical relation
between beam and solid domains. Thus, it is important to keep in mind that, on the interaction sur-
face, two force systems coexist: (i) the active forces (td), defined by means of a constitutive model
and non-linear in general; and (ii) the r-forces (fb), related to a kinematic compatibility requirement,
as shown in Figure 3-(d). Both, td and fb, can also be expressed in terms of beam kinematics, td
and fb, respectively, as shown in Figure 3-(b).

It is assumed that mapping functions, such as the ones given in Equation (2) and Equation (3), can
also be applied to �u� and td, respectively. Thus, the following expressions can be written as follows:

�u� D hu � Ou� D mu.'/ nu.r/ � Ou� (4)

td D mf.'/ td (5)

Because the EBE model couples two dissimilar kinematics (i.e., beam and solid), the relative
displacements can be expressed in two alternative ways: either (i) in terms of beam kinematics,
thus a constitutive model that links distributed interaction a-forces and moments versus relative
displacements and rotations along the beam axis is warranted; or (ii) in terms of solid kinematics, for
which a classical 3D constitutive model that links stresses versus strains on a thin zone representing
the interaction surface needs to be introduced.

In the first case, for every pair of energy-conjugate variables (e.g., lateral a-force vs. lateral dis-
placement) the constitutive law can be represented by means of a one dimensional (1D) model.
In this context, the load-displacement methods, representing the non-linear soil response in lateral
loading of piles (e.g., p � y or t � ´ methods), are widely accepted in the engineering practice and
have been calibrated by several full scale load tests. Thus, definitions of this type of 1D constitu-
tive relations, using the information of the p � y (or t � ´) methods, are adopted in this paper. Due
to the fact that the p � y (or t � ´) curve represents the full elasto-plastic response of the piles,
and that the elastic response in the proposed EBE approach is accounted for by the 3D FE model
in the solid domain, the elastic contribution has to be subtracted from the p � y curves in order to
calibrate the interface. Thus, the full elasto-plastic response in the proposed modeling approach is
represented by the interface (only plastic deformations) and the 3D FE model (elastic deformations).
This mechanical model has to deal with the 3D nature of the problem by considering a 1D constitu-
tive law that characterizes every couple of conjugate variables. Consequently, a projection scheme
from the global reference axis onto the resultant bending plane is established, as the non-linearity
of the problem precludes the consideration of two independent bending planes.

In the second case, an elasto-plastic constitutive model is formulated for the soil-pile domain
representing the interaction region and is then projected onto the interaction surface, in order to
obtain the required a-forces, td, versus displacement jump, �u�, law. Following this approach, the
3D nature of the problem is naturally accounted for. Besides, as the relationship between stresses
and strains is established by means of a general 3D solid constitutive model, additional effects
could easily be incorporated into the problem by adopting well established 3D phenomenological
models generally encountered in the soil mechanics field; for example, pore pressure generation and
gapping.

These two alternative modelling approaches are discussed and compared in this paper.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2016)
DOI: 10.1002/nag



THREE DIMENSIONAL ELASTO-PLASTIC INTERFACE FOR EMBEDDED BEAM ELEMENTS

3.1. Formulation of the Embedded Beam Element with elasto-plastic interface

Compatibility of solid and beam displacements, including the existence of a relative displacement
or jump �u�, is formulated at the entire interaction surface�.� D [eDNbeD1 !, where ! stands for the
interaction surface of each beam element, and Nb is the total number of beam elements).

A weak kinematic compatibility is enforced by imposing the condition that the relative displace-
ment between the beam and solid plus the finite displacement jump, at the interaction surface,
produces no virtual work with respect to any statically admissible system of virtual interaction r-
forces, ıfb (this vector field at global level, and in terms of beam kinematics, is written as ıF b).
Considering a standard FEM interpolation scheme, and using Equations (1), (2), (3), and (4), this
restriction can be expressed as follows:

0 D

eDNb

AAA
eD1

Z
!

ıfb
T .us � ub C �u�/ d!; 8 ıfb statically admissible in the sense of Equation (3)

0 D ı OF
T

b

0
BBB@
eDNb

AAA
eD1

Z
!

hTf ns d!„ ƒ‚ …
AT

OUs �

eDNb

AAA
eD1

Z
!

hTf hu d!„ ƒ‚ …
BT

�
OU b � � OU �

�
1
CCCA ; 8 ı OF b

0 D AT OUs � BT
�
OU b � � OU �

�
(6)

where OUs is the assembled vector of all solid nodal DOFs, OU b is the assembled vector of all nodal
beam DOFs, � OU � is the assembled vector of all nodal displacement jumps DOFs,AAA is a FE assembly
operator and the matrices A and B are defined as follows:

A D
eDNb

AAA
eD1

Z
!

nTs hf d!

B D
eDNb

AAA
eD1

Z
!

hTu hf d!

(7)

Note that the size of matrix A is given by the number of solid-DOFs times the number of beam-
DOFs, whereas the size of matrix B is given by the number beam-DOFs squared. Thus, the assembly
operatorAAA must be properly constructed in each case.

It can be shown that if the same interpolation matrices for both, beam displacements ub and
interaction r-forces fb, are chosen (i.e., nu D nf ), the matrix B yields invertible [16], which is
a requirement in the present formulation. Another alternative is to adopt different discrete spaces
for displacements and interaction r-forces, because the forces are usually interpolated by means of
polynomials with lower degrees than the displacements. In this case, the regularity of matrix B is
not automatically guaranteed and has to be checked in every case. In this paper, a beam element
with linear interpolation for axial and torsional displacements and cubical interpolation for bending
displacements is adopted, whereas the interaction r-forces are linearly interpolated. This combina-
tion gives an invertible B matrix. Thus, the nodal beam displacements could be expressed in terms
of the nodal solid displacements and nodal displacement jumps as follows:

OU b D B�T AT OUs C � OU � (8)

The next step is to relate the active with the r-force systems at the interaction interface. For this
purpose, the balance of their corresponding virtual works under any admissible virtual displace-
ment jump field of the entire pile, ı�u� is enforced. And then, by using Equations (3) and (4), the
nodal interaction r-force vector, OF b, can be written in terms of the distributed non-linear interaction
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a-forces along the beam axis, td, as follows:
eDNb

AAA
eD1

Z
!

ı�u�T fb d! D
eDNb

AAA
eD1

Z
!

ı�u�T td d!; 8 ı�u� kin. admissible in terms of Equation (4)

ı� OU �T
eDNb

AAA
eD1

Z
!

hTu hf d!„ ƒ‚ …
B

OF b D ı� OU �T
eDNb

AAA
eD1

Z
!

hTu td d!„ ƒ‚ …
OT d

; 8 ı� OU � kin. admissible

B OF b D OT d
(9)

The non-linear global interaction a-force vector, OT d , can be defined using solid kinematics as
indicated in Equation (9), and rewritten for convenience here

OT d D

eDNb

AAA
eD1

Z
!

hTu td d! (10)

where td 2 R3 is a 3D vector of interaction non-linear a-forces defined on each interaction surface
! (a constitutive relation for td needs to be prescribed).

As an alternative, the non-linear interaction a-force vector, OT d , could be expressed in terms of
beam kinematics. Replacing Equations (4) and (5) into Equation (10) yields:

OT d D

eDNb

AAA
eD1

Z
!

nTu mu
T mf td d!

OT d D

eDNb

AAA
eD1

Z
lp

nTu

�Z 'D2�

'D0

mT
u mf Rp d'

�
td dlp

OT d D

eDNb

AAA
eD1

Z
lp

nTu td dlp

(11)

where lp is the 1D-elemental beam domain (after assembling the elemental matrices this variable is
written as Lp) and td 2 R6 is a vector that contains distributed interaction non-linear a-forces and
moments along the beam axis (a constitutive model of the type p � y or t � ´, is required for td ).

From Equation (9), the nodal interaction r-force vector, OF b, could be expressed in terms of the
non-linear interaction a-force vector, OT d , as follows

OF b D B�1 OT d (12)

By establishing the virtual work balance under a kinematically admissible virtual nodal displace-
ment of the entire pile, ı OU b, and considering Equations (2) and (3), the equivalent load vector for
the complete pile OPb (induced only by the system of interaction r-forces acting on the lateral pile
surface), can be written in terms of OF b (and OT d ) as follows:

ı OU
T

b
OPb D ı OU

T

b

eDNb

AAA
eD1

Z
!

hTu hf d! OF b; 8 ı OU b kinematically admissible

OPb D B OF b D OT d

(13)

The equivalent nodal load vector of the solid OPs (induced only by interactions forces), can be
related to the system of r-forces, OF b, by balancing their respective virtual works with respect to any
kinematically admissible virtual displacement, ı OUs, of the solid nodes. Thus,

ı OUTs OPs D ı OUTs

eDNb

AAA
eD1

Z
!

ns
T hf d!„ ƒ‚ …

A

OF b; 8 ı OUs kinematically admissible

OPs D A OF b

(14)
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Using Equation (12), OPs can be rewritten as a function of the non-linear interaction a-force vector,
OT d , as follows:

OPs D A OF b D A B�1 OT d (15)

Finally, the complete system to be solved is composed by the discrete equilibrium equations of
both domains, solid and beam, which can be rearranged as follows:

²
�Ks OUs C OPes C OPs D 0
�Kb

OU b C OPeb � OPb D 0
(16)

where OPes is the standard equivalent load vector because of external forces (e.g., surface tractions
and body forces) applied to the solid, OPeb is the equivalent global load vector of the beam because of
the lateral loads applied at the top of the pile, whereas Ks andKb represent the standard (assembled)
stiffness matrices for the solid and beam domains, respectively.

By considering Equations (13) and (15), the final system of equations yields as follows:
²
�Ks OUs C OPes C A B�1 OT d D 0
�Kb

OU b C OPeb � OT d D 0
(17)

where it becomes evident that the coupling is given through the interaction system of a-forces OT d .
The system of Equations (17) is subject to classical kinematical boundary conditions on the

Dirichlet boundary of the solid and the constraint imposed by the displacements compatibility, given
in Equation (8), which can be re-written as follows:

� OU � D OU b � B�T AT OUs (18)

4. INTERFACE CONSTITUTIVE MODELS

4.1. Constitutive model for td based on beam kinematics

In this case, the input variable for the constitutive model is the displacement jump along the beam
axis, �u�, defined in terms of the beam kinematics. The constitutive model yields the non-linear
interaction a-forces defined also in terms of beam kinematics; that is, distributed loads and moments
along the beam axis, td .

The displacement jump �u� on a point with local coordinates along the beam axis r (Figure 3-(a)),
is written as follows:

�u� D ub � u
!
s (19)

where u!s is the solid displacement field evaluated over the interaction surface ! and mapped onto
the beam axis by means of the kinematics assumed for the beam domain. The global counterpart of
Equation (19) is given by Equation (18).

The displacement jump over the beam axis, �u�, is characterized by means of six components
(three displacement jumps and three rotation jumps). Nevertheless, the constitutive model is defined
in terms of only four components as it is shown in Figure 4, due to the fact that the mechanical
response cannot be considered independently along Cartesian components when plastic strains are
allowed in the soil. In Figure 4, the �-axis, aligned with the resultant lateral displacement jump
vector �v��, and the �-axis (being orthogonal to �-axis) aligned with the resultant rotation jump
vector ��� �, both associated with bending, are displayed on a point with local coordinates along the
beam axis r . Hence, the jump components are the following: the lateral displacement jump along
the �-axis �v��, the axial displacement jump �v3�, the rotation jump along the �-axis ��� �, and the
torsional rotation jump along the beam axis ��3�. These components are grouped together into an
equivalent displacement jump vector �u�� 2 R4. This equivalent reduced displacement vector is
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Figure 4. Components of the displacement vector jump �u��: (a) displacement component along �-axis
�v�� (b) rotation component along �-axis ���� and (c) components along the beam axis �v3� and ��3�.

written in terms of the six components of displacement jumps using the projection operator P as the
following:

�u�� D P �u�

0
B@

�v��
�v3�
��� �
��3�

1
CA D

0
B@

cos �� sin �� 0 0 0 0

0 0 1 0 0 0

0 0 0 cos �� sin �� 0
0 0 0 0 0 1

1
CA

0
BBBBB@

�v1�
�v2�
�v3�
��1�
��2�
��3�

1
CCCCCA

(20)

where �� and �� are the angles between the global axis X1 and the resultant lateral jump along
�-axis and the resultant rotation jump along �-axis, respectively, as it is shown in Figure 4.

The equivalent non-linear reduced interaction a-force vector, t�
d
2 R4, is defined in terms of the

equivalent displacement jump vector �u�� 2 R4 as follows:

t�d D f
�
�u��

�
(21)

The constitutive model, t�
d
D f .�u��/, relates each component of the displacement jump vec-

tor (defined along the beam axis) with the corresponding distributed interaction a-force. Thus, the
following conjugate pairs are defined: the lateral displacement jump, �v��, versus the lateral dis-
tributed interaction a-force, t� , along the �-axis; the axial displacement jump, �v3�, versus the axial
distributed interaction a-force, t3; the rotation jump associated with bending, ��� �, versus the dis-
tributed bending a-moment, m� , along the �-axis; and the torsional rotation jump along the beam
axis, ��3�, versus the distributed torsional a-moment, m3.

In this paper, two kinds of 1D elasto-plastic models are adopted for each conjugated pairs (see
more details in [17]), namely: (i) a bi-linear model with linear hardening and with limit load for
granular soils; and (ii) a model with exponential hardening for cohesive materials.

A sketch of the proposed models is given in Figure 5, where the typical curves for t�versus�v��
are shown. The curves for the other components are constructed in a similar way. In this figure, C ept�
is the elasto-plastic tangent modulus, and C et� is the initial elastic interface stiffness. As the global
elastic response of the soil mass is taken into account by the full 3D FE model of the soil, the elastic
strain component at the interface needs to be minimized. This is attained by defining a fictitiously
large elastic stiffness at the interface. In order to obtain the initial elastic interface stiffness for the
different types of loadings, a simple methodology (Figure 6) is proposed, where the initial elastic
interface stiffness is estimated as the elastic stiffness of a ring surrounding the pile with an elastic
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Figure 5. One dimensional elasto-plastic model to characterize t�versus�v��: (a) bi-linear model with linear
hardening and (b) exponential hardening.

Figure 6. Sketch of the ring-model used to estimate the initial elastic interface stiffness of the pile for differ-
ent loading modes: (a) lateral stiffness C et� (b) axial stiffness C e

t3
(c) flexural stiffness C e

m�
and (d) torsional

stiffness C e
m3

. In this methodology, �i and 	i are the normal and shear stresses at the pile-ring interface.

shear modulus Gi , Poisson coefficient 
i and fictitious thickness hi §. In this paper, an elastic shear
modulus for the ring Gi D 2 to 5 Gs is adopted, where Gs is the elastic shear modulus of the
soil, whereas the Poisson ratio 
i D 
s and hi D 0:10Dp . The adopted expressions for the initial
stiffness coefficients, according to different loading modes, are shown in Table I.

Due to the fact that the p�y method is widely used in the engineering practice, the proposed 1D
elasto-plastic models are calibrated in order to fit key parameters of the p � y curves; for example,
the ultimate load, the yield load and the ultimate relative displacement. Moreover, the non-linear
interface parameters of the present approach are expressed in terms of the solid parameters and the
ones used in the p � y curve definition. In what follows, the procedure to characterize the a-force
along �-axis for the lateral displacement case t� is described as follows:

§In this work, hi is adopted as a fraction of the pile diameterDp
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Table I. Initial elastic
interface stiffness for
different loading modes

given in Figure 6.

Initial elastic stiffness

C et�
Gi
hi
2 .3C 2
i /

C et3
Gi�
hi

C e
m�

Gi�D
2
p

8 hi

C em3
Gi�D

2
p

4 hi

(i) The ultimate load in the bi-linear model, tu� (being the ultimate load of the 1D plasticity model
depicted in Figure 5-(a)), is adopted as the ultimate load from the p � y curve, whereas in
the exponential model, t1� (Figure 5-(b)), is adopted as the ultimate load for very large lateral
displacements and tu� D 98% t1� .

(ii) The lateral yield load is adopted as ty� D ay t
u
� , where ay is an internal parameter which is

adopted in order to fit the yielding loads in the corresponding p � y curves.
(iii) The ultimate displacement jump �v��u, in the proposed 1D elasto-plastic model (Figure 5),

is defined by subtracting the elastic displacement component from the ultimate displacements
in the p � y curve, which is estimated as tu�

ks
, ks being the soil-pile lateral reaction modulus

estimated from Vesic [18]. The displacement jump at yielding, �v��y , is estimated from the
definition of the lateral yield load and the correspondent initial elastic interface stiffness given
by: �v��y D t

y
�

Ct�
.

(iv) In the bi-linear model, the linear hardening plastic modulus, Ht� (Figure 5-(a)), is defined in
order to fit the p � y curve, and takes the form as follows:

Ht� D
C et�

�
tu� � t

y
�

�
C et��v��u � tu�

(22)

(v) Finally, ı� is a model parameter that characterizes the exponential hardening (Figure 5-(b))
also defined in order to fit the p � y curve¶, and �v��p is the cumulative equivalent plastic
displacement at the interface. The parameter ı� is defined as follows:

ı� D � ln

�
t1� � t

y
�

t1� � t
u
�

�
C et�

C et��v��u � tu�
(23)

The curves for other types of loadings conditions can be described in a similar way using the p�y
or t �´method. In this work, considering that single vertical piles carrying large torsional loads are
rarely encountered in practice, the curves corresponding to the torsional load are adopted as fully
elastic. Nevertheless, a 1D elasto-plastic model can easily be defined by following the procedure
described previously.

A comparison of the proposed 1D constitutive model for lateral behavior and the p � y curves
proposed by Reese et al. [7, 8] is shown in Figure 7 for both sand and clay, for a depth of ´ D
15:00m. The pile diameter is Dp D 0:50m, whereas the soil parameters adopted for the sand (and
for the definition of the p � y curve) are as follows: Young’s modulus Es D 216MPa, Poisson
coefficient 
s D 0:25, unit soil weight �s D 16 kN=m3, internal friction angle �s D 32ı, increment
of soil reaction modulus with depth mh D 40MPa=m. The fictitious thickness of the interface is
hi D 0:10Dp , and the internal parameter ay is adopted as ay D 0:20. The clay model, in terms
of total stresses, considers an undrained shear strength su D 0:01MPa, unit soil weight �s D

¶The model parameter ı� is defined with proper units in order to give a dimensionless exponent in Figure 5-(b). In this
case, for the lateral displacements, the units are L�1.
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Figure 7. Proposed elasto-plastic one dimensional model and p � y curves for ´ D 15:00m in the
t�versus�v�� component for: (a) bi-linear model with linear hardening and (b) exponential hardening.

16 kN=m3, increment of soil reaction modulus with depthmh D 20MPa=m. In this case, the internal
parameter is ay D 0:40.

It can be seen from Figure 7 that the proposed 1D elasto-plastic model fits the ultimate and yield
loads obtained by means of the p � y curves, whereas the general response is stiffer due to the fact
that the lateral displacement jump in the proposed approach neglects the initial elastic displacement
component present in the p � y curves.

The energy-conjugate couples in Equation (21) are assumed to be independent from each other;
hence, the derivative of the distributed interaction forces t�

d
with respect to �u�� can be written

as follows:

Cd D
@t�
d

@�u��
D

0
BBBBBBBBB@

C
ep
t� 0 0 0

0 C
ep
t3 0 0

0 0 C
ep

m�
0

0 0 0 C
ep
m3

1
CCCCCCCCCA

(24)

where Cd is the interface tangent modulus matrix (Figure 5).
Next, the components of the interaction a-force vector td 2 R6 are obtained by transforming the

equivalent interaction a-force t�
d

over the pile axis in the coordinate system X1; X2; X3

td D PT t�d0
BBBBB@

t1
t2
t3
m1
m2
m3

1
CCCCCA D

0
BBBBB@

cos �� 0 0 0

sin �� 0 0 0

0 1 0 0

0 0 cos �� 0
0 0 sin �� 0
0 0 0 1

1
CCCCCA

0
B@
t�
t3
m�
m3

1
CA (25)
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Figure 8. Sketch of the interface expressed in solid kinematics. Transverse section view. Displacement jump
�u� at the point O for the evaluation of stresses at the point K in the ring, which projected over the nor-
mal vector n gives the interaction a-forces td. The vectors x3 and x0

3
are out-of-plane vectors, normal to

the figure.

4.2. Constitutive model for td based on solid kinematics

In this section, the constitutive model is formulated in terms of a conventional 3D stress-strain law in
a narrow domain around the pile, representing the interaction surface, !. Figure 3-(c) and 3-(d) show
the kinematic variables and the interaction a-forces, respectively, considered in order to describe the
non-linear interface. It should be noted that, in the present approach, additional hypotheses regarding
projection schemes are not warranted, because the mechanical formulation naturally captures the
three-dimensionality of the problem.

In this case, the non-linear interaction a-forces, td 2 R3, are defined in terms of the displacement
jump, �u� 2 R3, as shown in Figure 3-(c) and 3-(d). The displacement jump is assumed to develop
between the interaction surface and a fictitious surface (at an offset, hi , from the interaction surface
!, as shown in Figure 8). By doing so, a soil ring surrounding the pile is defined, which is modeled
by means of a fully 3D elasto-plastic constitutive law. Thus, hi becomes a new parameter of this
model, which has to be characterized according to the thickness where localized plastic strains are
taking place.

Figure 8 shows a generic transverse section of a circular pile together with the local Cartesian
coordinate system, x1; x2; x3 .x3 is an out-of-plane vector, normal to the figure). This figure also
shows the point O, on the interaction surface, defined by means of a cylindrical coordinate system
'; Rp . Another local Cartesian coordinate system, x01; x

0
2; x

0
3, is used in order to define the normal

and tangential components of the displacement jump �u�. In this case, the vector normal to the
interaction surface, n, is coincident with the axis x02. The transformation between the coordinate
systems (x1; x2; x3) and

�
x01; x

0
2; x

0
3

�
is performed by means of a conventional rotation matrix Q,

defined as follows:

Q D

0
@� cos' sin' 0

� sin' � cos' 0
0 0 1

1
A (26)

where ' is defined in Figure 8.
The displacement jump on the interaction surface, �u�, is first written by means of Equation (4)

and then expressed in terms of the local coordinate system, �u0�, through the rotation matrix Q,
as follows:

�u0� D Q �u� (27)
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In this paper, it is assumed that the deformation gradient is constant through the fictitious
thickness hi and along the n-direction. The strain tensor in the soil interface, "i , because of the
displacement jump �u0� at a point K (Figure 8), can be written as follows:

"i D
�u0�˝s n

hi
(28)

where ˝s represents the symmetric tensor product.
The stress tensor at the interface, � i , is obtained as the sum of a previous stress state, �p

i
, plus

a stress increment, �� i , which is related to the strain tensor increment, �"i , by means of a 3D
constitutive model. Thus, � i is written as follows:

�i D �
p

i
C�� i D �

p

i
C C epW�"i (29)

where C ep is the fourth-order tangent elasto-plastic constitutive tensor. In this work, two different
3D laws are implemented: (i) a Modified Cam Clay (MCC), as described in [19], for materials that
undergo plastic strains under hydrostatic and deviatoric strains states; and (ii) a J2 plasticity model
with a limit pressure and tension cut-off for modeling undrained behavior of saturated clays in total
stresses. Linear hardening and associated plasticity are adopted for both models.

Before the deformation process because of external loadings, the previous stress state, �p
i

, coin-
cides with a predefined initial stress state � 0

i
. For simplicity, in this paper, the initial stress state, � 0i ,

is considered as an isotropic stress state. However, the effects of deviatoric components in the initial
stress field can readily be accounted for (e.g., by means of a Ko stress state ratio between vertical
and horizontal components).

The non-linear interaction a-forces, t0d, at the point O on the interaction surface expressed in the
local coordinate system

�
x01; x

0
2; x

0
3

�
, are obtained by projecting the stress state at the point K, as

follows:

t0d D � i � n (30)

Finally, the non-linear interaction a-forces at point O; td 2 R3, written in the local Cartesian
coordinate system (x1; x2; x3) are obtained by rotating the components of t0d through the matrix Q,
as follows:

td D QT t0d (31)

5. VALIDATION

5.1. Preliminaries

In this paper, the EBE formulation is implemented for two types of solid elements: an 8-node
bi-linear brick element with reduced-integration (referred to as H8) and a 27-node bi-quadratic
brick element (referred to as H27). The interpolation functions for both elements belong to the C0
space [20].

For the beam domain a 2-node beam element is considered, referred to as B2, with standard
Hermite cubic interpolation functions for lateral displacements (interpolation functions belong to
the C1 space) and standard linear interpolation functions for axial and torsional displacements
(interpolation functions belong to the C0 space).

The interface model defined in terms of beam kinematics, and characterized by means of 1D
models that represent standard p � y curves, is referred to as PY, whereas the interface model
described in terms of solid kinematics, and considering a fully 3D MCC constitutive model, is
referred to as CC.

Combining the solid and beam elements described previously, and considering the different inter-
faces, the embedded beam elements H8B2-PY, H27B2-PY, H8B2-CC, and H27B2-CC are derived.
The Elastic reference solution is used to denote the response obtained by means of the H8B2 EBE
assuming perfect adherence between pile and soil following the EBE formulation proposed by the
authors [16].
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Figure 9. Pile in a cohesionless soil. Lateral view of the three dimensional example.

5.2. Pile in a cohesionless soil

In this section, the key features of the proposed EBE formulation with elasto-plastic interface are
assessed for a vertical pile under lateral loading in a cohesionless Gibson soil (i.e., linear increase of
stiffness with depth). A lateral view of this 3D problem is shown in Figure 9, where the geometry, the
external loads and boundary conditions are illustrated. The numerical results obtained by means of
the proposed formulation are compared with: (i) the results obtained by means of the p�y method,
considering in this case the curve for sand proposed by Reese et. al. [21]; and (ii) the elastic solution
obtained by means of the EBE formulation with explicit interaction surface previously proposed by
the authors [16] (i.e., assuming perfect adherence between pile and soil).

The soil parameters (used for modeling the solid domain) are as follows: Young’s modulus Es D
14:42MN=m3 � ´, Poisson coefficient 
s D 0:25, soil unit weight �s D 16 kN=m3, and internal
friction angle �s D 32ı.

The proposed non-linear interface, described in terms of beam kinematics, uses 1D-plasticity
models with bi-linear hardening as shown in Figure 5-(a), for each component of t0d. These curves
are characterized by the rate of increase of reaction modulus with depth, mh D 60MPa=m, as
well as the remaining soil and beam parameters defined previously. The fictitious thickness of the
interface is hi D 0:10Dp , and the internal parameter ay is adopted as ay D 0:20.

The proposed interface described in terms of solid kinematics considers the 3D elasto-plastic
MCC model (full details are given [19]), which are as follows: internal material constant ˇ D 0:70,
tensile yield hydrostatic stress pt � 0MPa, compressive yield hydrostatic stress pc D ��s ´,
critical state line slope Mc D

6 sin.�s/
3�sin.�s/

D 1:287, and linear hardening modulus H D 0:20.
The beam domain is characterized by the pile properties, namely: Young’s modulus Ep D

30,000 MPa, length Lp D 15:00m, diameter Dp D 0:50m, and second moment of area

Ip D
�D4p
64

.
Figure 10-(a) shows the normalized lateral displacements along the pile in terms of the normalized

depth, where a good agreement is observed between the p � y method and the numerical solution
obtained by means of the proposed formulation, both for the interface model expressed in terms of
beam and solid kinematics.

Figure 10-(b) and 10-(c) displays the normalized internal forces (bending moments and shear
forces, respectively) in terms of the normalized depth, where it can be seen that the results obtained
by means of the proposed formulation are in good agreement with those obtained by the p � y
method. In this case, H8B2-CC and H27B2-CC EBEs yield internal forces larger than those obtained
by the H8B2-PY and H27B2-PY EBEs.

Table II depicts key numerical results and their relative position for different EBEs and different
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Figure 10. Pile in a cohesionless soil. Normalized results for H8B2 y H27B2 elements versus normalized
depth: (a) lateral displacement u, (b) bending moment M y (c) shear force V .

Table II. Pile in a cohesionless soil. Normalized head displace-
ments, distances and internal forces for the last load step.

EBE u0
Dp

.%/ Mmax
Dp P0

´Mmax

Dp

Vmax
P0

´Vmax
Dp

H8B2-PY 1.065 �2:835 4.615 �0:639 6.923
H27B2-PY 1.084 �2:829 4.615 �0:616 6.923
H8B2-CC 1.049 �2:722 4.712 �0:602 7.212
H27B2-CC 1.064 �2:715 4.712 �0:578 7.212

EBE, Embedded Beam Element.

elasto-plastic interfaces, for the last load step considered in the analysis.
Figure 11 shows curves of the lateral load P0 versus the normalized head displacement u0

obtained by means of the proposed formulation and the p � y solution. The EBEs H8B2-PY and
H27B2-PY (solid line in Figure 11) yield a slightly more flexible response than the EBEs H8B2-CC
and H27B2-CC (dashed line in Figure 11). For low strains, the response obtained either by H8B2 or
H27B2 elements, and both interfaces herein implemented, are tangent to the elastic response eval-
uated by means of the EBEs with perfect adherence between pile and soil (dashed line). For larger
loads, the proposed EBE formulation with non-linear interface captures plastic strains. The global
response, after the initial elastic range, is a little stiffer than the one obtained by means of the p � y
method (considering the Reese curves); however, the overall agreement is acceptable for engineer-
ing purposes. The H8B2-PY and H27B2-PY EBEs yields results closer to the ones obtained by
means of the p � y method.

It is noted that in the non-linear iterative Newton-Raphson scheme, the EBE’s interfaces expressed
in terms of solid kinematics show a better numerical behavior than the one obtained by means of the
interface expressed in terms of beam kinematics.

5.3. Pipe pile in sand

This section describes the results obtained by means of the proposed formulation for a case study
reported by Ashour et al. [11], consisting of a vertical pipe pile in sand. Figure 12 shows the basic
features of the problem.
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Figure 11. Pile in a cohesionless soil. Head external load P0 versus normalized lateral displacements u0
Dp

.

Figure 12. Pipe pile in sand. Lateral view of the three dimensional example.

The soil profile consists of a homogeneous submerged medium to dense sand [7] with the follow-
ing parameters: Young’s modulus Es D 100MPa, Poisson coefficient 
s D 0:25, soil unit weight
�s D 18 kN=m3, friction angle �s D 32ı.

The proposed non-linear interface, described in terms of beam kinematics, uses 1D-plasticity
models with bi-linear hardening as shown in Figure 5-(a), for each component of t0d. These curves
are characterized by means of the soil-pile lateral reaction modulus ks , which is defined in terms
of the soil and beam parameters, as proposed by Vesic [18]. The fictitious thickness of the interface
hi D 0:10Dp , and the internal parameter ay is adopted as ay D 0:20.
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Figure 13. Pipe pile in sand. Results: (a) P0 versus u0 and (b) P0 versus Mmax .

The proposed interface described in terms of solid kinematics is based on a 3D elasto-plastic
MCC model, whose parameters are as follows: internal material constant ˇ D 0:20, tensile yield
hydrostatic stress pt � 0MPa, compressive yield hydrostatic stress pc D � N�s ´ . N�s being the
submerged unit weight of the soil), critical state line slopeMc D

6 sin.�s/
3�sin.�s/

D 1:287, linear hardening
modulus H D 0:20.

The pile parameters are as follows: bending stiffness EpIp D 1:67 � 105 kNm2, length Lp D
21:30m, diameter Dp D 0:61m, cantilever length d D 0:30m (Figure 12).

Figure 13-(a) shows the lateral displacements at the pile head, u0, as a function of the applied
lateral load, P0. The numerical solution is in good agreement with the experimental observations
obtained by the field load tests [7]. Figure 13-(a) also shows results obtained by means of the Strain
Wedge (SW) method [11] and the computer program COM624 [22], which considers p � y curves
to represent the lateral soil response.

Figure 13-(b) displays the maximum bending moment,Mmax , as a function of the applied lateral
load, P0, where it can be seen that there is good agreement between the proposed numerical solu-
tions and the experimental results. It is observed that the proposed numerical solution obtained by
means of the H8B2-CC and H27B2-CC EBEs yields more accurate results than the H8B2-PY and
H27B2-PY EBEs. The latter ones agree better with the solution obtained by COM624 due to the
fact that both methods are based on a very similar representation of the lateral soil reaction (i.e.,
p � y curves).

As in the previous example, the numerical performance of the H8B2-CC and H27B2-CC EBEs
in the iterative solution scheme is better than the H8B2-PY and H27B2-PY EBEs.

6. CONCLUSIONS

This paper presents the formulation of an elasto-plastic interface which, together with the EBE
formulation presented in a previous paper by the authors, allows modeling laterally loaded piles
considering the plasticity that develops in the near field, for the range of small-to-moderate
displacements.

The interface introduces a relative displacement between solid and beam, referred to as a dis-
placement jump, which represents the additional displacement with respect to elastic ground mass
behavior because of plastic strains in the near field. The displacement jump can be described either
in terms of beam or solid kinematics. These two alternatives require different constitutive model
definitions in order to represent the non-linear soil behavior at the interface. The interface defined
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in terms of beam kinematics warrants a constitutive model that links distributed interaction a-forces
and moments along the beam axis with displacement and rotation jumps associated with beam
DOFs. In order to accomplish this, a 1D constitutive model, which is defined following p�y curves
widely used in engineering practice, is introduced for each displacement and rotation DOF. This
interface has the advantage that this type of constitutive model is defined on the basis of experimen-
tal curves that are backed by an extensive database of load tests, performed on different types of
soils and loading conditions. Thus, different p�y (or t�´) curves can be introduced in a 3D frame-
work for the coupled analysis of soil-structure interaction problems. As the p�y method is defined
in a single loading plane, a projection scheme is defined in order to account for the 3D nature of the
problem. This procedure is implemented trough a projection operator P , defined at every point of
the beam axis.

As an alternative, an interface defined in terms of solid kinematics is presented, where the dis-
placement jump is distributed along a thin domain, where plasticity can occur, representing the
interaction surface !. The fictitious thickness of this domain is an additional parameter of the model.
In this case, the constitutive law can be introduced as a standard 3D plasticity model, which pro-
jected over the normal of the interaction surface yields the required non-linear interaction a-forces
system. This interface concept has the advantage that the three-dimensionality of the problem is
naturally accounted for. Moreover, many complex phenomena can be easily incorporated using this
modeling approach; for example, pore pressure generation, installation effects, and gapping.

Both interface approaches have been implemented within the context of the FEM. The interface
expressed in solid kinematics shows a better numerical behavior when using the Newton-Raphson
non-linear iterative scheme. These interface models are particularly suitable for modeling problems
where structural demands are due to free field ground deformations and the direction of the inter-
action force vector is not known beforehand; as for lateral spreading problems, ground movements
due to nearby excavation or tunneling, as well as deformations due to surcharge loads applied in the
ground near existing foundations.

Unlike the previous work of the authors [16], in the present formulation the soil-structure inter-
action problem cannot be exclusively written in terms of solid DOFs. Thus, the extra beam DOFs
enlarge the size of the final equation system. However, all the other advantages inherent to the
EBE-type formulations are preserved, including the fact that the pile location does not introduce
restrictions to the mesh generation within the solid domain.
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