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Abstract

A topology optimization technique based on the topological derivative and
the level set function is utilized to design/synthesize the micro-structure of a
pentamode material for an acoustic cloaking device.

The technique provides a micro-structure consisting of a honeycomb lattice
composed of needle-like and joint members. The resulting metamaterial shows
a highly anisotropic elastic response with effective properties displaying a ratio
between bulk and shear moduli of almost 3 orders of magnitude. Furthermore,
in accordance with previous works in the literature, it can be asserted that
this kind of micro-structure can be realistically fabricated.

The adoption of a topology optimization technique as a tool for the inverse
design of metamaterials with applications to acoustic cloaking problems is one
contribution of this paper. However, the most important achievement refers
to the analysis and discussion revealing the key role of the external shape of
the prescribed domain where the optimization problem is posed.

The efficiency of the designed micro-structure is measured by comparing
the scattering wave fields generated by acoustic plane waves impinging on
bare and cloaked bodies.

*Corresponding author. E-mail address: ahuespe@intec.unl.edu.ar (A.E. Huespe).



1 Introduction

New methodologies to fabricate metamaterials open a wide range of interesting ap-
plications in engineering and science. In this context, the goal is to design and
manipulate architectured micro-structures to develop new materials with exotic me-
chanical, optical, acoustical or thermal properties (Zheng et al. [1], Kadic et al. [2],
Narayana and Sato [3]). These metamaterials are envisaged to satisfy specifically
given requirements at the macro-structure scale level.

For example, making an object invisible to sound waves can be achieved by
covering it with an appropriately designed layer of material having extreme and
highly anisotropic elastic properties. Following this kind of approach, one technique
to get acoustic cloaking is based on the coordinate transformation method, reported
by Norris [4], whereby the material properties of the cloak copy the geometrical
coefficients of an adequate space (singular) transformation. Norris has generalized
the key observation of Pendry et al. [5] to acoustic wave problems. Pendry has
shown that metamaterials can be designed at will, by adopting singular coordinate
transformations, to redirect electromagnetic waves and, therefore, attaining optical
cloaking devices.

According to Norris, metamaterials for cloaking systems based on transformation
acoustic can be categorized into two broad classes: materials requiring anisotropic
inertial mass densities, identified with inertial cloaking devices (see Cheng et al. [6]
for realizations of this type of metamaterial), and materials requiring anisotropic
bulk moduli. Realizations of this last type of metamaterials can be reached through
pentamode materials.

Pentamode materials have been initially proposed by Milton and Cherkaev ([7]).
These materials are usually formed by truncated cones, similar to bars, and joints
which are spatially distributed as a Bravais lattice.

Layman et al. [8] have developed a design methodology for pentamode materi-
als employed in acoustic cloaking devices. In their approach, these authors use a
methodology where the micro-structure topology is prescribed beforehand, i.e. the
micro-structure has a pre-defined architecture. The dimensions and geometrical po-
sition of each member constituting the micro-structure are parametrized. The most
convenient set of parameters is then determined through a non-linear programming
algorithm, such that the effective elastic properties are adjusted to those values
required by Norris’s analysis.

Additionally, pentamode materials have been fabricated and reported by Kadic
et al. [9]. A number of issues concerning the material processing are addressed in [9].
An important conclusion reported in this paper, closely connected with the present
work, is that in order to allow genuine pentamode material realizations, the members
constituting the micro-structure have to be neither pin-jointed nor rigid-jointed.

The main objective of the present paper is to contribute to computational de-



sign /synthesis of pentamode material, constituted by highly heterogeneous microstruc-
tures, aiming to built acoustic cloaking devices. The question that has to be solved
is how to distribute and combine the material within a prescribed domain to obtain
the desired properties of the composite for building the cloaking device.

To solve this inverse design problem, we use a technique based on a topology
optimization algorithm. Starting from the seminal paper of Bendsge and Kikuchi
[10] on topology optimization, there have been a huge number of well-known and
established inverse techniques for material micro-structure design based on topology
optimization. The book of Bendsoe and Sigmund [11] and, more recently, the review
paper by Sigmund et al.[12] give excellent overviews of different approaches that can
be found in the literature. Furthermore, a more specific discussion of topics here
addressed can be found in the recent review by Osanov and Guest [13] and the
references cited therein. It is important to mention that these kind of techniques
provide a detailed description of the material micro-structure without preconceiving
beforehand any kind of micro-architecture.

In this work, we adopt the topology optimization algorithm previously presented
by Amstutz and Andrd [14], which uses a level set function and the topological
derivative concept. This algorithm has been enhanced in posterior contributions of
Amstutz and co-authors and successfully applied to a series of topology optimization
problems, such as micro-structure inverse design ([15]), structural design subjected
to stress constraints ([16]) and design of piezoelectric actuators ([17]). Furthermore,
based on the contributions of Novotny and Sokotowski [18], who have obtained
expressions of topological derivatives in the three-dimensional space, this kind of
algorithm can be extended to solve 3D topology optimization problems. Synthesis
of 3D micro-structures utilizing topological derivatives has been shown by Ozdemir
[19].

The Amstutz’s algorithm is here adapted to seek the micro-structure topology
of a material which effective elasticity tensor is equal to the target tensor given by
Norris’s analysis. It is shown that the Amstutz’s algorithm, with some minor mod-
ifications introduced in the present contribution, turns to be an adequate technique
for designing pentamode materials for acoustic cloaking.

Also, we analyze an important aspect of topology optimization techniques for de-
signing metamaterials, which has not been particularly discussed in the literature.
It refers to the relationship between the symmetry of the material to be synthesized
and the external shape of the prescribed domain where the optimization problem
is posed. Our results demonstrate that the external shape plays an important role
in obtaining good micro-architecture designs. We propose a procedure to appropri-
ately define this external shape. Conclusions extracted from this discussion can be
extended to more general metamaterial inverse design problems using these tech-
niques; provided that the effective properties of the target material satisfy given
symmetry requirements. Discussion of this point is one of the main achievements of



the present paper.

A brief description of the topics covered in this paper is the following. First, in
Section 2, some pentamode material properties are highlighted. These properties are
subsequently utilized in the context of Norris’s method. A reminder of this method is
briefly presented in Appendix A. Also, in the same Appendix, the elasticity tensors
reported by Gokhale et al. [20] are described and briefly summarized in sub-Section
2.1. They are the target tensors adopted in this work for the pentamode material
inverse design.

In Section 3, a sketch of the topology optimization problem utilized for the micro-
structure synthesis of the acoustic cloaking device is presented. A more detailed
description of this procedure is shown in Appendix B.

The topology optimization algorithm described in Appendix B.3 is validated in
sub-Section 3.3. The validation test consists of synthesizing an extremal metamate-
rial having a high ratio between the bulk and shear moduli.

The procedure for designing the micro-structure of the acoustic device is ad-
dressed in Section 4. The so-designed micro-structure is virtually tested through
computational simulation of the scattered wave field produced by means of a cloaked
object immersed in a fluid. The result is compared with the field produced by the
same bare object. This assessment is presented in Section 5.

Finally, in Section 6, some conclusions are addressed.

2 A pentamode material

A Pentamode material is a class of extremal material having five easy (compliant)
modes of deformation in a three-dimensional space, and having only one non-easy
(hard) mode of deformation. The elasticity tensor of this material has one non-null
eigenvalue and five null eigenvalues (hence the name of pentamode given to this class
of material). For example, a compressible inviscid fluid (ideal gas) is a pentamode
material, where shear strains in any directions represent easy modes of deformations,
while volumetric strains represent hard modes of deformation. Milton and Cherkaev
[7] have coined the name of pentamode materials in the context of linear elasticity,
see also [21] where additional properties of this type of materials are analyzed.

Pentamode materials are a special class of linear anisotropic elastic solids. They
can be characterized through elasticity tensors represented by:

C=xk'S®8 ; (1)

where k* is a pseudo-bulk modulus with the dimensions of stress and S is an adi-
mensional symmetric second order tensor with norm not necessarily equal to one.
As usual, the symbol ® denotes the tensorial product.



Pentamode materials are useful for constructing acoustic cloaking devices. These
devices require a particular heterogeneous distribution of properties characterized
by k* and S. In particular, for cylindrical acoustic cloaking devices, it can be consid-
ered a rotationally symmetric pattern of material properties in the plane (X7, X5),
schematized in Figure 1-a ! | where the tensor S could be defined in a rather general

context by
S = —H (er ® er) + _Ii (e ® é ) (2)
V K \/ K o 0%

e, and ey being the radial and circumferential unit vectors related to the polar
coordinate system. The material properties, k,.(X) and k¢(X) are seen as the
radial and circumferential bulk moduli, respectively. Additionally, S satisfies a self-
equilibrium condition: divxS = 0 2 (note, however, that S is not a stress).

By adopting Voigt ® notation for describing tensors of second and fourth order
in the coordinate system defined by the basis {e,, ey}, the strain and stress tensors
in this case, removing the out-of-plane component, result in € = [g,, g9, 2¢,9]7 and
o = [0,,09,0,4]", while the elasticity tensor C defined in equation (1) (S given by
equation (2)) is represented in the same basis by the matrix:

R Ky VErkg 0

C = \/ KrKg Ko 0 . (3)
0 0 0

The equation of motion in a solid composed of this particular pentamode material
is derived as follows. The constitutive equation and the momentum balance equation
for the solid are given by:

oc=C:e=r"(5:¢)8 = —p§S, (4)
pr-u=divxo=—-S-Vxp, (5)

where u, € and o are the displacements, strain and stress fields, respectively, and
p=—-r"(S:¢) (6)

is a pseudo-pressure scalar term. In (4), the trace of the tensorial product between
the two second order tensors is denoted by the symbol (:), while the symbol (-)

n the following, we preserve the name of pentamode material for plane (two-dimensional)
problems. Removing the third dimension and the out-of-plane field components, the elasticity
tensor has only three eigenvalues. Particularizing the same concept of pentamode material, two of
these eigenvalues are related to compliant modes of deformation and only one is related to a hard
mode. Strictly, this material should be called bi-mode material.

2In this work, the gradient and divergence operators are denoted by Vx (-) and divx(-), respec-
tively. Subindex X emphasizes the coordinate system where they are evaluated.

3Voigt or tensorial notation are used indistinctly in this paper. The proper context of every
equation determines which specific notation is used.
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Figure 1: Acoustic cloaking problem. (a) Polar coordinate system; (b) domain of analysis B with
a cylindrical object immersed in the fluid; and (c¢) cylindrical object with a cloaking device.

indicates the contraction of one index of the tensorial product. In accordance with
(4), only stresses proportional to S, with the proportionality factor given by pseudo-
pressures, can be held by this material. The momentum balance equation (5) is
written assuming that the inertial mass density, p*, is a generalized second order
tensor, not necessarily a spherical one.
After replacing the conventional kinematical compatibility condition € = 1 (V x (u)+

V% (u)) in equation (4), deriving in time and replacing (5) into (4), a wave propa-
gation equation in terms of the pseudo-pressure field p can be derived as follows:

p—KS:Vx((p)-8-Vxp)=0. (7)

2.1 Pentamode material for acoustic cloaking devices

Next, let us consider a cylindrical object of radius » = a immersed in a fluid oc-
cupying the infinite domain B. The object is reached by an incident plane wave
propagating from left to right, as sketched in Figure 1-b. The fluid is characterized
by a bulk modulus k¢ and density py. We address the problem of designing the
pentamode material placed in the circular ring €2, with exterior radius » = b and
thickness b — a, acting as the acoustic cloaking device for the cylindrical object, see
Figure 1-c.

Equation (7) is utilized in the transformation acoustic analysis by Norris and
co-authors (Norris [4] and Gokhale et al. [20]) to define the properties k*, p* and S
of a pentamode material which is used to built an acoustic cloaking device adapted
for a cylindrical object. Appendix A briefly summarizes Norris’s analysis by which
the pentamode material parameters for solving this problem are determined. The
principal equations being necessary for the following development of the paper are
also summarized in Appendix A and have been taken from Gokhale et al. [20].

Considering the large set of possible maps defining a useful coordinate transfor-
mation for this problem, Gokhale et al. [20] have defined one transformation preserv-
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ing the isotropy of the inertial mass density, while keeping the elastic anisotropic
properties to a bare minimum (see Appendix A.1). According to these authors,
by adopting this particular transformation map and then copying the elastic coef-
ficients of the pentamode material to the geometrical parameters induced by the
transformation, the bulk moduli and the inertial mass density of this material result
in:

o=t o=nro (). )

r

where 7 is the radial coordinate as shown in Figure 1-b. The function f(r), defining
the coordinate transformation map, is given by:

b>—ad,.  _a—3 32al. < r<
f(r) = { (bLaZT a2l 'r> > ; <b (10)

T T

with § being a geometrical parameter whose meaning is discussed in Appendix. Note
case that, defining 1 as the unit tensor, p* results in a spherical tensor retrieving
the concept of an isotropic inertial mass density. Figure 2-a plots the function f(r)
for 6 = 0.333a and b = 2a, while Figure 2-b plots the corresponding normalized
material properties described in equations (8) and (9) as a function of the radial
coordinate.

Then, from expression (3), the elasticity tensor of a pentamode material, whose
properties are given by (8) and (9), is defined by:

70 (fgf)> 1 0
C =k, 1 () (fg;)) 01 (11)
0 0 0

3 Topology optimization problem

The design of the material micro-structure required by Norris’s analysis is carried out
by defining an appropriate optimization problem which is described in this Section.

Also in this Section, we study the selection of an adequate external shape of
the unit cell in where the topology optimization problem is placed. Finally, in sub-
Section 3.3, the whole procedure for solving the topology optimization problem is
assessed and validated.
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Figure 2: (a) Plot of the function f(r) taken from Gokhale et al. [20]. This function defines the
coordinate transformation which is adequate for designing a cylindrical acoustic cloaking layer with
minimal elastic anisotropy. (b) Normalized material properties of expressions (8) and (9), derived
from the coordinate transformations (27)-(29) (Appendix A) and the parameter § = 0.333a. The
normalization factors are the fluid properties.

3.1 Synthesis of micro-structures as a topology optimization
problem

Let us consider a two-phase composite with a periodic micro-structure occupying
the macro-scale domain €2, such as schematized in Figure 3. One phase is assumed
to be very stiff and is denoted by M1. The other one is assumed to be very compliant
and is denoted by M2. It is assumed that the micro-structure characteristic length,
lyc, is much smaller than the characteristic length of the body ¢ 4.

External boundaries
of V-Cells

(a) (b)

Figure 3: Multiscale material model of a composite with two phases: M1 and M2. Computational
homogenization approach to determine o (&).

The effective properties of this composite, subjected to elastic loading regimes,
are computed via a conventional homogenization technique from a unit-cell denoted

4In relation to the acoustic cloaking problem here addressed, ¢ can be taken as the cylinder
radius.



by €,. This homogenization technique is briefly explained in Appendix B.1. The

effective elasticity tensor C"™ obtained through this homogenization technique re-

lates the macro-stress field o (x) with the macro-strain field e(x), as follows:
o=C""(Q):¢. (12)

I

Denoting Q}L and QZ the micro-cell domains occupied by phases M1 and M2, respec-
tively, the argument of C"*™ remarks its dependence with the material distribution
within the unit cell.

Let us now consider a unit-cell, with domain €2,,, defined by its external boundary
I'y. The material distribution within this domain is determined by solving the
following topology optimization problem:

min 7 (2}) = min(|C™"(2}) ~ OP); (13)

where the target tensor C is a data of the problem °, while the conventional Frobe-
nius norm || - | computes the distance between C"*™ and C. In problem (13), min-
imization of the objective function J (Q,l) is attained by changing the placement of
material M1 within the domain delimited by I',,.

The optimal distribution of M1 is found with the topology optimization algorithm
proposed by Amstutz and Andrd [14] and its extended version [15] particularly
adapted to solve inverse material design problems.

Here, the Amstutz’s algorithm has been slightly modified to solve the specific
problem (13). Some details of this algorithm are presented in Appendix B, while a
more fundamental description of the original version can be found in the mentioned
bibliography.

The algorithm is implemented with linear triangular finite elements. Therefore,
linear polynomials are used to interpolate the level set functions as well as the
topological derivative in €2,,.

3.2 Selecting an appropriate shape of the boundary I',

The mathematical problem associated with the topology optimization algorithm is
defined in a two-dimensional domain delimited by an external boundary I',, which
has to be known in advance. The selection of an adequate shape of I', is a par-
ticularly important issue whenever composites with periodic micro-structures and
showing specific symmetries have to be designed.

In this sub-Section, a guideline for solving this issue is given. The idea is inspired
by concepts taken from crystallography, Bravais lattices and elastic properties of
crystals and also exploits the symmetry shown by the pentamode material.

5As it is shown in sub-Section 4.2, the target tensor C in the acoustic cloaking design problem
is given by equation (11)



In 2D problems, it has been demonstrated that there are only four different sym-
metry classes for describing any arbitrary elasticity tensors (see Auffray and Ropars
[22] and the references cited therein, as well as Ting [23]). The elasticity tensor C of
a plane pentamode material, defined in equation (1), has orthotropic (orthorhombic)
symmetry denoted by D, in Aufray et al. This kind of symmetry is also a character-
istic of the elasticity tensors associated with crystalline structures ([24]) that have
an atomic distribution placed on the vertices of a (centered rectangular) Bravais
lattice having orthogonal primitive vectors a; and as, such as shown in Figure 4-a.
The lattice parameter n = ||a1||/||az|| governs approximately the ratio between the
coefficients C1; and Cy of the crystal effective elasticity tensor.

We conjecture that the external boundary I',, coincides with the boundary of a
unit-cell utilized in crystallography. In the present case, the unit-cell is taken from
a Bravais lattice having orthorhombic symmetry. Figure 4-b shows the Wigner-
Seitz unit-cell denoted V-Cell (by Voronoi cell) of a Bravais lattice having this kind
of symmetry. It is a non-regular hexagon containing one lattice point (point 0 in
Figure 4-a) in the center. The hexagon is built around this point and its sides are
the perpendicular bisectors of the segments joining the central point 0 and every
one of the other six closest points in the lattice (A, B, C, D, E and F in Figure 4-a).

According to this conjecture, we use V-Cells to represent the boundaries I',, of
generic unit-cells associated with pentamode materials. The V-Cell external bound-
ary can be described with only one parameter, such as the lattice parameter n. In
Figure 5 are shown several Wigner-Seitz unit-cells for different lattice parameters 1,
denoted from now on as the shape parameter. For n = /3, the unit-cell is a regular
hexagon, while for n = 1, it is a square.

From the previous consideration, an isotropic pentamode material should be
represented by a regular hexagon defined for the shape parameter 7 = v/3.

V-cell

directions~__

Figure 4: a) Crystal system with orthorhombic symmetry Do. The associated centered rectangu-
lar Bravais lattice has the primitive orthogonal vectors a; and as; b) Wigner-Seitz cells (V-Cells)
inspiring the selection of the external boundary shape I';, of the unit-cell used for designing the
pentamode material. The vectors indicating the periodicity directions are depicted.
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Figure 5: Wigner-Seitz cell (V-Cell) for different shape parameters 7.

3.3 Validation of the design methodology based on topology
optimization

The algorithm presented in Appendix B is validated and assessed through analyt-
ical and numerical solutions taken from Sigmund [25]. The proposed problem for
this assessment consists in designing the micro-structure topology of an extremal
isotropic two-phase material displaying the maximum ratio ~/ C, where & and G
are the effective bulk and shear moduli of the composite. Sigmund has solved this
problem and obtained several micro-structures using a topology optimization tool
based on SIMP.

Before presenting the results, a-priori analytical estimations of the bounds for
the effective elastic properties of an isotropic composite are discussed. The analyzed
composite is constituted by two-phases and bounds, for this kind of composites,
have been determined by Hill and successively improved by by Hashin-Shtrikman,
Walpole [26] and Cherkaev and Gibiansky [27]. According to the notation utilized
by Cherkaev et al., the effective elasticity tensor of a plane strain elastic isotropic
material (using Voigt notation for tensors) can be written as:

K+G K—-G 0 ) )
C°=| K-G K+G 0 : K=krk+G/3, (14)
0 0o G

where, as indicated above, £ and G are the effective bulk and shear moduli of the
material, and K is the plane strain effective bulk modulus. The Hashin-Strikman
bounds for a plane elastic isotropic composite with two phases, identified in the
following with the numbers 1 and 2, having volume fractions fi, fo and being char-
acterized by the bulk moduli x; and ko and shear moduli G; and G35, respectively,
satisfying k1 > ko and G > G, are:

I J1 . f2 .
Ki§ = Ky + — " ;o Ky = K1+ — " ; (15)
Ki—K> Ko+Go Ko—Ky Ki1+Gh
low __ fl . upp __ f2
GHS = Ga+ 1 + fo(K242G2) 7 GHS =G+ 1 + f1(K142Gy) © <16>
G1—Gso 2G2 (K2+G2) Go—Gq 2G1(K1+Gh)

11



Then, the effective plane strain bulk and shear moduli, K and C, of the composite
satisfies: X X
Kys <K <Ky 3 Ghs<G<GyL (17)

Next, let us consider the case studied by Sigmund consisting in finding the micro-
structure that provides the maximum possible ratio &/ G, agreeing with the analyt-
ical estimations of these bounds. In the analysis of Sigmund, here reproduced, both
phases are characterized by Ky = 5/7; Ky = K1/20; G; = 5/13; G5 = G1/20 (units
of moduli are given in GPa), with the volume fraction f; = 0.5. Then, the bounds
(15)—(16) result in K% = 0.0830, K% = 0.2235, Gi%% = 0.0439, G3¥% = 0.1157.
These bounds are represented in Figure 6-a coinciding with the green external box.
In the same Figure, the curve corresponding to the improved lower limit bound,
found by Cherkaev and Gibiansky [27] has been plotted. The Walpole point is de-
noted by W, and has also been plotted in the same Figure. In accordance with
these improved bounds, the W, point determines the maximum ratio ~/ G that can
be attained with this type of two-phase composite. For the considered composite,
the coordinates of the W, point are Ky, = K% = 0.2235 and

S

1 f2(K142G3)

Gwp =Gy +
G1—Go + 2G2(K1+G2)

= 0.0503 . (18)

Therefore, from (14), the effective elasticity tensor of the two-phase composite as-
sociated to the W), point is:

0.2738 0.1732 0
Cw,= | 01732 02738 0 |. (19)
0 0  0.0503

Procedure for designing the extremal material

The problem (13), constrained by the condition f; = 0.5, determines the optimal
micro-structure topology whose homogenized elasticity tensor, C"*™, matches the
target elasticity tensor: C = Cyy, of expression (19). This topology optimization
problem is solved with the algorithm described in Boxes 1 and 2 of Appendix B.
The constraint fixing the volume fraction is imposed to the problem (48) through
an augmented lagrangian technique reported in [28] and [29].

Because the target elasticity tensor is isotropic (symmetry O(2) according to
[22]), the original domain where the topology optimization algorithm is computed,
is the regular hexagon shown in Figure 7. Note that the Wigner-Seitz unit-cell
of a Bravais lattice with symmetry O(2) is also a regular hexagon. Additionally,
symmetry of the material distribution within the hexagonal unit-cell is imposed by
forcing a reflection symmetry of the level-set function respect to the symmetry axis

12
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Figure 6: Bounds of effective properties for a two-phase isotropic composite according to Hashin-
Shtrikman and Cherkaev et al. Properties of phases 1 and 2 are K; = 5/7; Ko = K1/20; G = 5/13;
G9 = G1/20 (units of moduli in GPa). Volume fraction of phase 1 is f; = 0.5. The Walpole point
is denoted by W,. Symbols indicate the effective properties of five microstructures obtained with
the topology optimization algorithm.

1-1, 2-2 and 3-3 shown in Figure 7-a. The symmetry is forced in every iteration of
the algorithm, after computing (49) in Loop A of Box 2 and before the normalization
of wi—H.

Results and discussion

Figure (7) shows the micro-structures 1 to 5 that have been obtained with this
methodology, using different initializations procedures.
Let us consider the obtained homogenized elasticity tensor corresponding to

structure 5:
0.279 0.161 0.000

0.161 0.279 0.000
0.000 0.000 0.059

Clom = (20)

The effective parameters G = Cs3 and K = Cy; — G, computed from (20), are
plotted in Figure 6. The present approach gives a relative difference of 17% between
Cw,(3,3) and C!™(3,3). The micro-structures 5 is notoriously similar to that
obtained by Sigmund utilizing the SIMP technique.

13
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Figure 7: a) The material distribution within a unit-cell has reflection symmetry with the sym-
metry axes being 1-1’, 2-2” and 3-3’. b) Micro-structures obtained with the algorithm of Boxes 1

and 2 (Appendix B.3). Elements with negative values of the level set function are in black and
show the position where phase M1 is placed.
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4 Design of the pentamode material for acoustic
cloaking

By adopting the analytical results of Gokhale et al. [20], shown in Appendix A.1, we
design the micro-structure of a highly anisotropic pentamode metamaterial used as
a layer for diminishing the acoustic wave scattering caused by a cylinder immersed
in fluids.

4.1 Problem description

A sketch of the addressed problem is shown in Figure 8. The layer covering the
cylinder of radius 7 = a has a thickness which is identical to the cylinder radius (b =
2a). The mapping f(r), defining the coordinate transformation in Norris’s analysis,
is given by equation (10) (see also Appendix A) with the parameter § = 0.333a.
With this parameter, the effective scattering cross section area of the cloaked object
has to be similar to that produced by a bare cylinder of radius a, = § = 0.333a.

Radially graded
micro-structure

Scattered " _
wave S

Layer to reduce
the scattering

Unit-cell

Cylindrical
object

Figure 8: Scattering reduction layer.

We design 20 unit-cells of the graded layer in correspondence with the same
quantity of radial points equally spaced between r = a and r = b = 2a. We assume
that the graded layer is composed of 20 uniform sub-layers which micro-structures
are designed with those 20 cells.

The stiff phase of the synthesized material (material M1) is assumed to be alu-
minum with properties x4, = 70.GPa, G 4 = 25.5GPa and p = 2700.K g/m?. The
soft phase (material M2) is assumed to be a flexible polymer foam characterized by
an isotropic material whose elastic modulus has a contrast factor v = 0.00001 times
the elastic modulus of the aluminum (taken from Ashby [30], pp.51).
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4.2 General design procedure

The procedure guiding the design of the micro-structures of each sub-layer aims to
satisfy point-wise the following two conditions:

i) The effective elasticity tensor C"™ of the synthesized composite matches the
target tensor C defined in (11) for the corresponding sub-layer. Note that this
tensor is described in the coordinate system whose basis is: (e, ey).

ii) The effective inertial mass density p"™ of the same unit-cell matches the target

inertial mass density p defined by equation (9).

Both goals can be attained in two sequential steps. The first step searches the op-
timal distribution of phase M1 satisfying the objective described in task i) without
imposing the density constraint. This problem is formulated as a topology opti-
mization problem and solved with the algorithm of Appendix B.3. The solution
provides a homogenized density p®? which is assumed to satisfy p°7 < p. This is a
reasonable assumption which can be satisfied by taking an enough high ratio E;/p;
of the material M1 (aluminum in this case).

In a second step, the micro-cell density is adjusted to p. This objective is attained
by filling the holes (soft phase) with a composite constituted by the phase M1
dispersed in the phase M2. In this case, the disperse dense material does not work
as a structural component and the effective elasticity is not substantially modified.
We assume that the second step can be easily solved. Therefore, in the following,
we only address the topology optimization problem associated with the first step.

A similar design procedure in two sequential steps has been reported by Kadic
et al. [9]. To build a pentamode material, these authors have independently adjusted
the effective bulk moduli in a first stage, and then, the effective inertial mass density.
Additionally, they have proven the fabricability of the so-designed metamaterial by
manufacturing small samples.

4.3 Technique for adjusting the anisotropic bulk moduli

The external boundary I', delimiting the domain €2, in where the topology opti-
mization problem is posed, has to be known in advance. Due to the symmetry of the
target tensor C' (orthotropic symmetry D,), V-Cells with given shape parameters 7
are chosen. In each case, ) is adjusted for each sub-layer of the 20 designed cells.

Influence of the shape parameter 7 on the resulting micro-structures

To better understand the role played by the selection of I',, and the shape pa-
rameter 7 in the present design technique, we study the influence of this parameter
on the obtained micro-structure solution.
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Sub-layer number 15 of the acoustic cloaking device is chosen to perform this
study. For this sub-layer, the target elasticity tensor C is given by the expression
(see equation (11)):

5.893 2.250 0
2.250 0.859 0 |. (21)
0 0 0

V-Cell geometries, as shown in Figure 4, are tested. Then, the optimal solutions of
problem (13) are sought by varying the parameter 7 in the range: 1 <n <8.

In Figure 9-a, the optimal value of J attained for different parameters n are
plotted. Two finite element meshes are solved. Results obtained with the coarse
mesh (with m,,., = 3 and h§ = {yc/32) are denoted by (CM), while those obtained
with the finest one, m,,,, = 4, are denoted by (FM). We recall that m,,,, defines
the number of mesh refinements and A§ is the initial finite element mesh size. Both
parameters have been defined in Box 1 (Appendix B.3). The finite element size of
the finest mesh is half of that of the coarse mesh.

In the same Figure, the effective elasticity tensor component C2¢™ and the ho-
mogenized inertial mass density p®T of the designed cell (Figures 9-b and c, respec-
tively) are also plotted. We recall that the effective densities plotted in Figures
9-c, are the results of the topology optimization problem (13) without imposing a
density constraint.
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Figure 9: Two set of solutions attained with finite element mesh refinement, CM and FM denote
coarse and fine mesh, respectively. V-Cells are characterized with the shape parameter 7: a)
optimal attained value of 7 defined in problem (13); b) Shear stiffness Cs3 of the effective attained
elasticity tensor; c) effective attained inertial mass density p©7.

Results in Figure 9 show a rather sensitive response with respect to changes of
the shape parameter 7. The minimal shear modulus C%™ and the minimal objective
function value [J are attained in the range 3 < n < 5. Also, note that in the same
range of 7, the effective inertial mass density is almost constant around p°T = 0.5.
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It is noted that the correct capturing of the effective shear modulus of the sub-
layer, represented by the term C2™  is crucial to get a good response of the cloaking
device. According to Norris’s analysis, this term has to be zero.

Figure 10 displays the micro-structures and the corresponding effective elasticity
tensors obtained as solution of the topology optimization problem computed with
four V-Cell geometries. In all cases, except in the result with n = 2, we have

obtained good agreement between C"*™ and the target tensor defined in expression
(21).

n=2 /- \ o a4
~ _ _ a4l
\ N=lay azT:I}Hazu
a4
{ )
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hom
\ , C"'=|2382 0989  -0.000
. < -0.000 -0.000 0.012
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Figure 10: Microstructures for sub-layer number 15 obtained with V-Cells (FM) and varying
the shape parameter 7. The first column displays the unit-cells and the solutions provided by
the topology optimization algorithm. The second column displays the resulting micro-structures
obtained by the spatial repetition of the computed unit-cell. The third column (cases with n = 3,5
and 7) displays details of the joints between needle-like members. The last column shows the
computed effective elasticity tensors.

Conclusions of the study about the influence of  on the microstructure design
are summarized as follows:

e As the finite element mesh is refined (M, is increased), better solutions to
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problem (13) are obtained. However, the crucial conclusion is that the shape
of I', is of paramount importance to obtain good solutions. Tests conducted
with rectangular unit-cell shapes, using different slenderness ratios, yield un-
satisfactory results.

e From Figure 9, the range of parameters 3 < n < 5 provides good approaches
to the solution of the topology optimization problem. Notably, however, ge-
ometries defined with 1 < 2.5, that correspond to squares or regular hexagons,
are excluded from the admissible configurations and must be avoided.

e There are several micro-structure architectures providing effective elasticity
tensors C"™ approaching the target one. It is the case of the microstructures
depicted in Figure 11. Then, it can be concluded that the problem (13) has
not a unique solution and that several material architectures are admissible
for the present acoustic cloaking device.

e In most cases observed in Figures 10, the external boundaries of the V-
Cells do not coincide well with the hexagonal cells displayed by the obtained
honeycomb-like micro-structures. For example, for the microstructures de-
picted in Figure 11, we have detected that for n ~ 011/6'22 ~ 7 (Figure 11-b),
the V-Cell captures almost exactly the geometry of the basic cell. However,
this configuration does not lead to the better solution. The best solution is
obtained for n ~ 3.75 (Figure 11-a).

_ External boundaries

> / of V-Cells
L K/ﬁ

(b)

(@)

Figure 11: Two possible micro-structures for sub-layer 15 obtained with V-Cells characterized
with the shape parameters: a) n =3 and b) n="7.

4.4 Results of the designed acoustic cloaking device

From the exposed conclusions in the previous sub-Section and in order to avoid
a similar study for the 20 sub-layer designs, we solve these topology optimization
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problems by adopting V-Cell geometries whose shape parameters are defined through
a relation depending on the coefficients of the target elasticity tensor, as follows:

n:\/§<1+0.z%> .

22

This criterion is taken by considering the following empirical rules: for an isotropic
pentamode material, with Ci / Cyy = 1, the V-Cell should be a regular hexagon
defined by n = v/3. While for C’H / 6’22 ~ 6.9, that corresponds to the sub-layer 15
studied in the previous sub-Section, the V-Cell should be defined by n = 3.75, which
has proven to give the most optimal solution.

Figure 12 shows the micro-structures of sub-layers 1, 5, 10, 15 and 20, obtained
with this procedure. The second column displays details of the synthesized micro-
structures such as the needle-like members and joints. The third column shows
the effective elasticity tensors C"™ and densities p®” compared with the target
elasticity tensors C and target densities p for these sub-layers.

As commented above, the solutions for the 20 cells provide homogenized mass
densities which are lower than the ones required by Norris’s analysis. Therefore, in
the validation test of next Section, we assume that these densities could be exactly
adjusted to the target values.

Figure 13 plots the effective properties k
20 sub-layers.

hom - ghom and Che™ for the synthesized

r )

5 Scattering performance assessment of the de-
signed layer

The performance of the metamaterial designed with the technology of the previous
Section, whose properties are plotted in Figure 13, is next assessed in the following
examples.

This performance is evaluated by studying the scattering wave field produced by
a plane wave impinging on a cloaked cylindrical object immersed in an infinite fluid
medium. The cloaking device being designed with a parameter § = 0.333m has to
affect the external wave field, outside the cloak region, as much as a bare cylindrical
object of radius a, = 0.333m. Then, the goal of the present validation test consists
in comparing the scattered wave field for both cases.

Considering the excessively high computational cost required by a detailed DNS
simulation (Direct Numerical Simulation) of this problem including the modeling
of the material micro-structure and its interaction with the fluid, we simulate a
simplified verification test. The acoustic cloaking device is modeled with 20, layers
perfectly connected, made of elastic materials whose properties are identical to the
effective ones determined with the design methodology of the previous Section.
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Figure 12: Solutions obtained with the topology optimization algorithm for several sub-layers of
the acoustic cloaking device. C™™ and p®7T are the effective elasticity tensors and homogenized
densities of the micro-cells obtained with the topology optimization algorithm. C and p are the
target effective elasticity tensors and densities according to Norris’s analysis.
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Figure 13: Normalized effective properties of the 20 sub-layers obtained with the topology opti-

mization algorithm. The bulk moduli x!°™ and x}°™, the inertial mass densities p"°™ and shear

moduli C¢™ are shown in symbols. Curves in line are the analytical expression taken from Figure
2.

Figure 14 displays the pressure maps (real part) for several cases of the mentioned
problem computed with an in-house finite element code. This code solves the wave
equation problem in the frequency domain and utilizes a Perfectly Matched Layer
(PML) technique for modeling the infinite domain of the fluid. Pressure maps in the
Figure are the results of an incident plane wave, from the left. The wave frequency
is 2.07Khz (angular frequency: w = 1.3edrad/s) and the medium, across which
the wave propagates, is water with a density py = 1000.Kg/m? and a volumetric
modulus kg = 2.25GPa. The wave speed in this medium is ¢y = 1500.m/seg and
the wave number for this frequency is k = w/co = 8.67rad/m with a wavelentgth
A =27/k = 0.72m. The analyzed domain has a size of 10.m x 10.m.

Solutions are computed and compared for different cases:

i) object with perfect cloak designed according to analytical results of Norris;
ii) bare object of radius a = 1.m;

it11) object of radius a = 1.m with the cloaking device designed in accordance with
the topology optimization technique and the parameter o = 0.333m;

iv) bare object of radius: a, = 0.333m.
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We recall that the external domain solution of case 74i) should mimic the solution
of case ).

In order to quantitatively compare the solutions presented in Figure 14, the
effective cross section areas are computed in the last three cases. Let us consider
again a plane wave traveling from left to right in a free infinite medium with a vertical
wavefront. The pressure response in the time domain (X, ¢) can be expressed by:

p'(x,t) = poexp (i(k - X — wt)) (22)

where, recalling that k is the wave number, k = ke, is the wave vector, and e, is
the unit vector in the horizontal direction. The rigid cylindrical object of radius
a = 1.m is placed at X = 0. The cloak occupies the space 2 = {X | 1.m <
| X || < 2.m}. The object produces a scattered wave field which, at large distances
from the cylinder, can be assumed as spherical wave field centered at X = 0. The
pressure field, p(X, ), resulting from the incident and scattered waves is computed
in the frequency domain with the finite element code. By considering that p,(X)
denotes the amplitude of the pressure field in the frequency domain, the effective
cross section area (per unit of thickness) of the object is evaluated as follows:

ot = [EIE s (X) = (X0 () (29
s PuPw

where the integration curve S is a circle of radius » = 4.5m and the symbol (), over

both terms in the integrand, represents the complex conjugate of the magnitude.

Figure 15-a depicts, in a polar plot, the integrand value of expression (23) along
the curve § as a function of the angular position #. Three curves corresponding to
cases ii), 4ii) and v) are shown. Figure 15-b depicts a zoom of the polar plot in where
only the case i) and iv) are shown. Note that the cloaked cylinder of radius a = 1
generates a scattered wave field, with notably lower values of the integrand term if
compared with the bare cylinder of the identical radius. Furthermore, the integrand
value distribution is qualitatively identical to that produced by a significantly smaller
object.

Figure 15-¢ plots the effective cross-section areas (per unit of thickness of the
object) for the three cases: i), i) and iv) and different frequencies of the incident
plane wave. These results quantify the capability of the designed cloak at different
wave frequencies. They confirm that, in a wide range of frequencies, the cloaking
device is almost insensitive to this variable.

5.1 Modal analysis of a micro-cell

Considering that the micro-structure of the designed material consists of slender
bars with a filler polymer possessing a very low stiffness and a dense disperse phase,
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Perfect cloak

Figure 14: Pressure maps (real part) of an incident plane wave problem. Domain size: 10.m x
10.m, wave angular frequency: w = 1.3e4rad/s. a) Solution of the cylinder with radius a = 1m and
perfect cloaking (parameter 6 = 0.m). The material properties of the cloak are given by Norris’s
analysis in Appendix A.1; b) solution with a bare cylinder of radius @ = 1.m; ¢) cylinder of radius
a = 1lm with the designed acoustic cloaking using the parameter § = 0.333m; d) solution with a
bare cylinder of radius a, = 0.333m.
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a) Polar plots of the integrand in (23) corresponding to the cases: i), i) and iv);
b) zoom of the polar plot shown in (a) displaying the cases 4ii) and iv); ¢) Effective cross-section

areas (per unit of thickness) for cases ii), i) and iv) computed for different wave numbers of the
incident wave.
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it is necessary to guarantee that the lower eigenfrequencies of the unit-cell are much
higher than the frequency of the sound wave. This requirement should be satisfied
to guarantee that the static homogenization analysis, implicitly considered in this
paper, is a valid assumption of the model and that the natural frequencies of the
cloak do not interfere the sound wave.

The unit-cell eigenfrequencies increase with the inverse of the cell size. Therefore,
it can be guaranteed that the above requirement is satisfied for small enough cell
sizes. The maximum cell size of the designed pentamode material is limited by the
acoustic wavelength and by the thickness of the layers in which the cloaking device
is divided. The shortest wavelength in the analysis of Figure 15 is 0.25m and the
layer thickness, by assuming an identical value for all layers, is 0.05m.

In view of the above discussion, the modal analysis of the unit-cell of layer 1 is
subsequently performed. In the context of evaluating minimal eigenfrequencies of
the designed micro-structures, this layer is the most compromised one. Figures 16-a
and b show the finite element model of the analyzed cell and the adopted geometrical
dimensions. A characteristic cell size of 0.01m is arbitrarily chosen. Two cases are
solved. In the first one, the polymer, as well as the dynamical effect of the disperse
phase are neglected. In the second case, all the components are considered.

In accordance with the cell designed for layer 1, in Figure 16, the density provided
by the solution of the topology optimization algorithm is p®7 = 389.kg/m?3. The
target density is p = 1442.kg/m3. Therefore, by taking a polymer density pp, =
20.Kg/m? and the aluminum density ps = 2700.kg/m3, the target density p is
get by dispersing a volume fraction fa = 0.2642 of aluminum into the polymer.
The disperse aluminum phase is modeled by assigning the aluminum properties to
finite elements randomly placed into the space which is originally occupied by the
polymer, until the required volume fraction is reached. Therefore, due to the fact
that the cell volume is 1.06e — 4m? and the number of finite elements is 11911, the
mean size of the aluminum particles used in the analysis is 8.9e — 09m?.

Periodic boundary conditions are imposed to the finite element model of the unit
cell Note that the acoustic wavelengths are much larger than the cell size.

The obtained results in both cases are: a) the lower eigenfrequency when the
polymer and disperse phase is neglected is 79kHz. b) the lower eigenfrequency
when the polymer and disperse phase is taken into account is 75k H z. Then, both
frequencies result much higher than the sound wave frequencies considered in the
analysis of the previous sub-Section.

The eigenmode related to the lower eigenfrequency for the case a) is depicted in
Figure 16-c.

These results confirms that, for cell sizes smaller than 0.01m, the homogenization
static analysis followed in this paper is a valid assumption.
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Figure 16: Modal analysis of the unit cell taken from layer 1 of the cloaking device. a-b)
Finite element model. ¢) Eigenmode corresponding to the lower eigenfrequency when polymer and
disperse phase effects are neglected.

6 Conclusions

The results presented in this work show the viability of using topology optimization
techniques based on topological derivative to design the micro-structures of a graded
layer for acoustic cloaking devices. The manufacturing feasibility of such layers,
employing available materials, has been already proven.

To attain such results, it has been imperative to properly select a unit-cell ge-
ometry where the topology optimization problem is posed. In this sense, it has been
shown that the material symmetry can be properly exploited to solve this issue. The
presented study has provided additional ingredients to understand the influence of
the unit-cell external shape on the results obtained with the optimization algorithm.
From this study, it has been proven that solutions strongly depend on this variable,
and that square or regular hexagonal shapes have to be discarded in several cases.

The validation test proves the effectiveness of the synthesized composite for sat-
isfying the target proposed for the cloaking device. This virtual test shows a sig-
nificant decrease of the scattered wave power produced by the immersed cloaked
object. The pattern of the scattered wave agrees acceptably well with the ideal case
of an immersed bare object with reduced dimensions.

An additional conclusion refers to the wide range of metamaterial design prob-
lems in which this type of framework can be applied. The most promising application
field is related to metamaterial design problems whose micro-structure architecture
cannot be conjectured beforehand. Typical cases are the design of: i) extreme ma-
terials with large negative Poisson ratios, ii) ultralight and ultra stiff metamaterials,
iii) material for thermal flux manipulation, between others. Progress in the synthe-
sis of ultralight and ultra stiff structures using this type of computational design
tool has been presented by the authors in [31].
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Finally, a potential improvement of this technology can be identified by intro-
ducing the notion of topological derivatives of anisotropic elastic materials. Some
of the authors of this paper have recently published a work with contributions in
this topic, see Giusti et al. [29]. This derivative, within the context of topology
optimization, opens the possibility to design metamaterials through several length
scales.
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A APPENDIX: Linear acoustic theory and field
transformation analysis

Let us consider a conventional acoustic wave problem propagating in a fluid medium
at rest and placed in an homogeneous domain B, see Figure 1. In this medium,
denotes the time-averaged bulk modulus and py denotes the time-averaged density.
The disturbance produced by the wave motion superposed to the time-averaged
fields are assumed small. Then, the linear acoustic wave equation in terms of the
pressure field P(X,t) can be written as ([32]):

P — kodivg(py'VgP)=0. (24)

In the present description, B refers to the homogeneous space because the wave
propagate with null scattering strength. B is also assumed as the reference space
for the transformation to be defined in the following.

Following to Norris [4], the form-invariance property of equation (24) is next
exploited. Let us consider the physical space B, where some object is immersed in
the fluid, and the coordinate system X in B. The physical space is mapped from
the reference space through a coordinate transformation, X = ¢(X), sketched in
Figure 17. The map ¢ is assumed to be one-to-one and invertible, except at possibly
one point in the domain  C B. The deformation gradient of ¢ (¢ : B — B) is:
F=Vx3o.
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Then, equation (24) can be re-written in the physical frame X by introducing the
tensorial transformations of the differential operators: divx(-) and Vx(-), in terms
of div¢(-) and V (+). These tensorial transformations can be derived by introducing
the deformation analysis, within the context of finite elasticity, described in the book
of Ogden [33]. The resulting wave propagation equation in the physical domain is
given as follows:

p— kod divx ((poJ)'V? - Vxp) =0 (25)

where V2 = FF? | J = det(F) and the pressure in the physical space is denoted by
p(X,1).

Unit vectors eg and er are parallel

Figure 17: Radially symmetric deformation map. Homogeneous (B) and physical (B) spaces.

However, and following to Norris, a more general and adequate expression of the
acoustic wave equation (24) in the physical space can be defined by introducing a
second order symmetric tensor field 3, such that: divx 3 = 0. In this case, equation
(25) can be equivalently rewritten as:

P—koJE: Vx ((pJE)™ V- Vxp) =0 (26)

At every point of B, it can be recognized the similar form displaying the pseudo-
pressure wave equation (7), which represents an acoustic wave propagating across a
pentamode material, and the acoustic wave equation (26) in the transformed space.
Both equations can be made identical under the condition that the parameter of
the geometrical transformations, given by the map ¢ in (26), are reinterpreted as
being the heterogeneous properties of the pentamode material defined in Section 2.
This condition is satisfied if the following constraints on the material properties are
imposed point-wise:

i) S=3,
i) K* = KoJ, and

iii) p* = pyJE - V2. 3.
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With this redefinition of the pentamode material properties in X, the wave
equation in B\ mimics the wave equation in the reference empty space B\f2.

A.1 A radially symmetric deformation map for cylindrical
object cloaking

Let us consider an acoustic wave propagating in a medium where a cylindrical object
of radius a is immersed, as shown in Figure 1-b. Our goal is to design the properties
of the metamaterial filling the circular ring domain 2, of thickness b — a, around
the cylinder such that it acts as a cloaking for the object. In this way, the wave
propagating at the exterior domain B\ is not affected by the object.

This goal can be reached by exploiting the results of the previous sub-Section.
Let a radially symmetric deformation map be given by:

r(R)
R

X =¢(X) = =X (27)
where R and r are the radial coordinates of two points: X and X (R = HX H and

r = || X]||) in the reference and physical spaces, respectively, related through the
map (27). The radial unit vectors in both spaces are defined by:

X X
=6 = =75 2
” e €ERr R ( 8)
The radial coordinate r(R) is defined by the inverse function:
b2—ad,.  _a—=6 12a ). <<
R = f(?”) — (bQ—aQT b2—a2b 7‘) o asTrs b (29)
T, r>b

The interpretation of this deformation map is sketched in Figure 17. This func-
tion transforms the circular ring domain Q, of thickness b — ¢, in another circular
ring €2, of thickness b — a, while the exterior domain B\2 is identically mapped.

By considering a null parameter ¢ for this transformation, the map (27)-(29)
is singular at the origin and the cylinder acoustic cloaking, associated with this
transformation, is perfect. To avoid the singularity, we assume a value: § > 0. In
this case, the effective cross-section of the immersed object is reduced if compared
with that of the bare cylinder. Therefore, the device built with the so-idealized
pentamode material work as a scattering reduction layer instead of as a perfect
cloaking device.

The function (29) is taken from Gokhale et al. [20] and, according to these
authors, satisfies the criteria by which the cloaking material properties show minimal
elastic anisotropy.
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Further identities involving the gradient of deformation of ¢ and the associated
right stretch tensor are derived from (28) and (29) as follows:
1 T
=Lt oL
frir)y " ()
J = det(F) = — ( r )(nd ! (31)
= de = — | ——
f'(r) \f(r)
where we consider a two-dimensional space, with ng = 2.
Furthermore, we choose:

Ir:er®er ; Il:]l_e7‘®e7“;(30)

Lo
Fr) fr)’

- (1) 500

Note that the divergence-free condition of the field S follows from equation (33).
From expressions (32), (33) and (1), the moduli of the elastic constitutive tensor
k, and Ky in equation (3), result in:

s () e (515) (34)
(4
1

(32)

K" = KoJ = Ko

and:

and therefore:

f’(?”)

~

C =

0 0 0

In this case, p* results in a spherical tensor, and therefore:

o)

r

pr=po=p=pof(r) (37)

With these definition of the material parameters at the cloak, and the condition:
f(r = b) = b, the radial impedance and the circumferential wave speed at the
interface separating both domains, medium and cloak, are identical:

Z;:loack( _ ) _ W _ /_Féo/?a Zmedium( ) (38)
Cgloack _ _ /ﬁe _ Fv'o/po _ Cgmdlum b) (39)
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B Topology optimization algorithm for inverse de-
sign of the micro-structure

In this Appendix, the most salient points of topology optimization algorithm utilized
for micro-structure inverse design are discussed. These points include the compu-
tational homogenization technique (sub-Section B.1), which is used to evaluate the
effective properties of the composite, the topological derivative of the homogenized
elasticity tensor described in sub-Section B.2, and the optimization algorithm sum-
marized in two Boxes 1 and 2 of sub-Section B.3. Also, the modification of some
key aspects of the topology optimization algorithm are included in order to adapt
this algorithm to the acoustic cloaking design problem.

B.1 Computational homogenization

Let us consider the two-phase composite schematized in Figure 3 with a periodic
micro-structure represented through a unit cell denoted by €2,,.

The macro-strain and macro-stress fields described at €2 are denoted by € and o,
respectively. The same fields observed at the micro-scale €2, are denoted by ¢, and
o,. These terms are represented in Figure 3-a, where the homogenization procedure
is also sketched.

A linear elastic response for every phase of the composite at the micro-scale is
assumed. It is expressed by:

o.(y) =Cu(y) :eu(y) , (40)

where C),(y) is the elasticity tensor of the corresponding phase at point y. Then, a
macroscopic linear constitutive relation, o = C"™ : €, is inherited, whose effective
elasticity tensor is denoted by C"*™. The tensor C"™ is evaluated by following
conventional computational homogenization techniques imposing periodic boundary
conditions at I',, see [34]. Due to the assumed linearity of the relation o(e), we
compute the homogenized constitutive tensor evaluating three homogenized macro-
stresses, o1 , 09 and o3 for specific macro-strains €1, €5 and 3. The three strains
{€1,€9,€3}, given by: 1 = e, QR e,, e =€y @ eg and €3 = 1/2(e, R ey + ey @ e,.),
define a canonical basis of the macro-strain space. In Voigt notation, the j-th basis
of these strain tensors can be written as: €; = [(£;)rr, (€;)08, 2(¢;)r0]” -
Then, the matrix of the elasticity tensor is given by:

C"™ = [o1(e1), 02(€2), T3(e3)] - (41)

So, the j-th column of C"*™ is the macro-stress o;(€;) computed as the volumetric
average of the micro-stress (o,);:

1
7€) = [ / (@) 4% (42)
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The micro-stress (o,); results from solving the unit-cell boundary value problem
briefly defined as follows:

i) the macro-strain ¢; is uniformly distributed into the unit-cell domain €2,,. This
term operates as the driving force of the mechanical problem formulated at
the unit-cell;

i) the micro-strain field, (e,);, in €, is the addition of two terms: (eg,); =
€; + (€,);. The last term, (€,);, is a kinematically compatible micro-strain
fluctuation field;

i4i) micro-stress (o,); is a self-equilibrated stress field satisfying anti-periodic trac-
tion boundary conditions and the elastic constitutive relation (40).

Additional details of this homogenization procedure can be obtained in the ref-
erence works de Souza Neto and Feijéo [34].

The rule of mixtures is the homogenization technique adopted for evaluating the
effective inertial mass density p"o™.

B.2 Topological derivative of the homogenized elasticity ten-
sor

The unit-cell domain 2, considered in the previous sub-Section is separated in two
disjoint domains: Q}‘ and Qi, occupied by phase M1 and M2, respectively (£, =
Q) UQ?), sce Figure 18.

Phase M1 is an isotropic elastic material whose elastic modulus and Poisson’s
ratio are denoted by E; and l/li. Phase M2 is also an isotropic elastic material whose
clastic modulus and Poisson’s ratio are defined by: E> = vyE, and v, = v, where
the parameter 7 is the stiffness contrast ratio between phases M1 and M2.

Unit-cell {2,

2£A oA Ml ol

I
M2
‘%
Figure 18: Multiscale material model of a composite with two phases: M1 and M2. The topo-

logical derivative DpC"°™ (1) of the homogenized elasticity tensor C"°™ (1) gives its sensitivity to
material distribution changes within the micro-cell.

\V4

L7
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For a given distribution of phases, let us consider the homogenized constitutive
tensor C"™. The topological derivative of C"™, denoted by DrC"™, at point y
occupied by phase M1, is the fourth order tensor representing the sensitivity of C"™
to the nucleation of a circular perturbation around y. The perturbation consists in
substituting a ball of material M1 and radius £ by an identical ball constituted of
material M2. The ball area |(| is the perturbation parameter. Alternatively, if
y refers to a point occupied by phase M2, the topological derivative indicates the
sensitivity of nucleating a circular perturbation of material M1.

The mathematical meaning of the topological derivative can be illustrated through
the asymptotic expansion of the effective elasticity tensor ng’ﬁ which is the ho-
mogenized tensor after introducing the perturbation. This asymptotic expansion is
developed in terms of the area |(X| and is written as follows:

Chom — Chom + @

pert |Qu|

Dﬂwww+oG%D. (43)

The last term in (43) is an infinitesimal of order two in the argument. Further
details about the meaning of (43) can be found in [15] and [35].

Using Voigt notation for fourth order tensors, the (7, 7)-th component of the
topological derivative matrix (i,j = 1,...,3), denoted by [DrC"™];;, is computed
through the following expression:

om X1
(DrC" ™y = =55 (4e)i (0,); = xetr((@))tx((@,),)) . (44)
%
where
1-— 1—~(r—2 1—-v, 3-v,
X1 = ’ , X2 = 7( C) y T = /fvcz /f7
147 14 ¢y L+, L+,

while (,); and (o,); are the micro-stress fields utilized in the integrand of equation
(42). These stresses are the solution of the micro-cell problem defined in the previous
sub-Section.

Equation (44) has been derived by implicitly assuming that a ball of material
M2 is introduced into the domain M1. Alternatively, if the perturbation consist of
introducing a small ball of material M1 into the domain M2, the role of E}L, Eﬁ and
7 in equation (44) should be exchanged to compute D7C"™ in that position (Eﬁ
takes the role of E and v is redefined as: v = E;/E}).

B.3 Topology optimization algorithm based on the Amstutz’s
procedure

The algorithm for solving the problem (13) relies on two ingredients:
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a) A continuous function ¢ (y) (with ¢ € L?(€,)) which zero level set represents
the geometry of the interface M1-M2. It is called the level set function and is

defined by:
<0V yeQq,;
¢(y)'_{>0 , Voy e Q. (45)
where sub-domains Q,i and QZ have been previously defined.
b) The topological derivative g(y) which is defined as follows:
_ | —DrJ(y); if: y € Q, ;
9(y) '_{ DrJ(y); if: y € Q) . (46)

The topological derivative of the objective function (13), considering the Frobe-
nius norm, results in:

Drd(y) =2 (chom _ é) . DrChom(y) | (47)

and this functions can be computed after replacing DrC"™ by the term de-
fined in (44).

In the Amstutz’s approach, the function v of the optimal solution of a topology
optimization problem is found through a fixed point iteration and the topological
derivative, providing a descent direction of the objective function.

This algorithm has been slightly adapted to dealt with the objective function
described in the problem (13). It is described in the following Boxes 1 and 2.
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Box 1: Topology Optimization Algorithm defined in (,:

Given:

- one initial finite element mesh of size hg,

- a trial level set function ¥(h§), and m = 0.

Compute C"™ (1o(h¢)) and the sequence of tensors C = {Cy, ..., Cy, ...
described by equation (50), and then:

DO LOOP 1 (mesh reﬁnementvloop): m-index: from 0 to Myaq
DO LOOP 2 (sequence of Cy toward C): ¢-index: from 1 to n.
Evaluates a new v, by solving:

alls,) = arglmin 7(60)} = arg{min(|C™" (v2) ~ G}

using the algorithm in BOX 2
END LOOP 2

Performs a finite element mesh refinement, h$, ., < h¢, /2
Project v, (hS,) to the new mesh: g(hS, 1) < ¥n, (hS,)
Compute: C"™(¢o(hs, 1))
Compute a new sequence C' (equation (50))

END LOOP 1

Box 2: Algorithm for solving problem (48)
Given a trial level set function: 1° = 1),_;

DO LOOP A: ( i-index increases):
Select a step length £ (line search), then compute:

i . Jit+1
9w ), and normalize: ¢! = L
) e+

Compute: J (") and g(¢™*1)

1&2‘-}-1 :wl"i_é

IF: J(¢**1) satisfies the convergence criterion:
STOP: the algorithm converges and the solution is: 1, = "'
ENDIF

END LOOP A

Description of Box 1: the procedure consists of two nested loops:
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1)

2)

(LOOP 1) The external loop handles a finite element mesh refinement se-
quence. The parameter m,,,, identifies the maximum number of times that
the mesh is refined during the solution process. Then, each finite element
mesh, in the refinement sequence, is identified by a characteristic mesh size:
he, where sub-index m denotes the m-th loop. The level set function % is
defined in each node of the finite element mesh. Then, the dependence of
the level set function ¢ with the finite element mesh is remarked using the
notation ¢ (h¢,), where h¢, represents the finite element mesh size at loop m.

The field ¥(h¢,) is determined by solving the problem (13) with the target
elasticity tensor C. This field is found through a sequence of n. sub-problems
solved in the inner loop (LOOP 2). The level set function solution of every
sub-problem (v,) is identified with a sub-index coinciding with the inner loop
index. So, 1y(h¢,) represents the trial level set function for the mesh of size
he,, while 1, (hS,) is the solution obtained after solving n. sub-problems.

In the inner loop, each sub-problem is similar to (13) but with a redefined
target elasticity tensor. For each sub-problem, the target elasticity tensor is
taken from a convex combination of C"™ (1) (h¢,)) and C as follows:

~ Ne — 4 om e ¢ A

Co= ( ) C"" (¢o(hy,)) + (—) C. (50)
Ne Ne

The notation adopted in this equation emphasizes the fact that C"*™ depends

on the level set function determining the topology of the cell €,,.

The tensor C; is utilized to compute the objective function 7, and the corre-
sponding topological derivative, of the /-th sub-problem in the inner loop as
follows:

J = (|C"m (@) = Cil)? (51)

which is solved with the algorithm presented in Box 2. Observe that for £ = n,
is C,,, = C. Then, the last internal loop solves the original problem (13).

Description of Box 2: the iterative algorithm for solving the level set function
Ye(hE,)), of the sub-problem (48), utilizes a fixed point iteration. The topological

derivative g(1) is used as a feasible descent direction to optimize J(€2),) in problem

(13) (additional details about this important point can be found in [14] and [15]).
The normalization factor « is chosen to avoid the ill-conditioning happening in points

close to the solution of problem (48). Note that ||g||z> — 0 as: C"™ () — Cy. The

value « is selected as the average of ||g||z2 in the initial iterations of the loop in Box

Step length selection (£) and convergence criterion in Box 2
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The step length ¢ is found through a line search defined by:

¢ =arg(min J(¥g")) (52)
feT,
with -
N gy . (o
i+1 _ z+ g(¢> ’ i+1 _ A‘ﬁ
R LT

and the parameters ¢ are taken from the set of numbers defined by:

gmaac - gmm
Te = [Gmin : A 1 az] 3 A=
10
where &, and &4, are the minimum and maximum allowed step lengths
which are taken as &,;, < 1 and &, = 1, respectively, and A is a pre-
defined increment of the step length.

The stop criterion is given by:
T () — Jho| < tol (53)

where [Jj¢ is the average of J in the last 10 iterations and tol is an absolute
tolerance.

The initialization of the algorithm is performed through the sequential procedure
defined in Box 1. With the internal loop 2, the results gradually change, from the
trial solution to the original one, by solving a sequence of closely related optimization
problems. Each problem of this sequence is defined by a modified target tensor,
which is adjusted till reaching the original target value C.

Following the idea introduced by Amstutz and Andréd [14], the external loop
1 handles a sequence of finite element mesh refinements. The initial loop starts
with a rather coarse mesh. After convergence, the mesh is refined and the level set
function is projected onto the new mesh. This process is repeated until reaching a
given accuracy. According to Amstutz and Andra [14], the objective pursued with
this mesh mapping strategy is to improve the algorithm response respect to local
minimum. In the present version, they are tested with the coarser meshes, by fixing
the step length to & = 0.1 in equation (49). Once the finest mesh is solved, the
activation of the line search provides a more controlled approach to a specific local
minimum.
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