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SUMMARY

A numerical model to deal with nonlinear elastodynamics involving large rotations within the framework of
the finite element based on NURBS (Non-Uniform Rational B-Spline) basis is presented. A comprehensive
kinematical description using a corotational approach and an orthogonal tensor given by the exact polar
decomposition is adopted. The state equation is written in terms of corotational variables according to the
hypoelastic theory, relating the Jaumann derivative of the Cauchy stress to the Eulerian strain rate.

The generalized-˛ method (G˛) method and Generalized Energy-Momentum Method with an additional
parameter (GEMM+�) are employed in order to obtain a stable and controllable dissipative time-stepping
scheme with algorithmic conservative properties for nonlinear dynamic analyses.

The main contribution is to show that the energy–momentum conservation properties and numerical sta-
bility may be improved once a NURBS-based FEM in the spatial discretization is used. Also it is shown that
high continuity can postpone the numerical instability when GEMM+� with consistent mass is employed;
likewise, increasing the continuity class yields a decrease in the numerical dissipation. A parametric study
is carried out in order to show the stability and energy budget in terms of several properties such as continu-
ity class, spectral radius and lumped as well as consistent mass matrices. Copyright © 2015 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The development of numerical algorithms to simulate the dynamic response of linear and nonlinear
elastic bodies is a major topic in the field of elastodynamics. Traditional time-stepping schemes,
despite having excellent stability properties in the linear range, are usually subject to numerical
instabilities when they are applied to nonlinear problems using numerical models based on the
finite element method (FEM). Investigations on elastodynamics using isogeometric analysis may be
performed in order to study influences of the isogeometric formulation over numerical issues such
as stability and accuracy, where aspec ts related to the time integration process are also extremely
important.
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The need for numerical dissipation was soon recognized when unconditional time-stepping
schemes were applied to finite element models in order to solve dynamic problems with implicit
algorithms. It was observed that large modeling errors associated with the high-frequency range are
introduced by the spatial discretization procedure owing to deficiencies found in the element for-
mulation to reproduce the higher modes accurately. In this sense, although the standard Newmark’s
method presented no numerical dissipation, a formulation with controllable numerical damping was
proposed by Newmark [1]. Later, the Newmark’s method and other early algorithms with numerical
damping such as the Wilson’s method and the Houbolt’s method were investigated by Goudreau and
Taylor [2], where the introduction of a controlled degree of damping to reduce the spurious action
of the higher modes was recommended. However, unconditionally stable algorithms lead to period
elongation, and the second-order accuracy is lost because of the introduction of numerical dissipa-
tion. This drawback was resolved with the method proposed by Hilber et al. [3], which combines
unconditional stability, second-order accuracy, and numerical dissipation of higher modes. A similar
improvement was obtained with the formulation introduced by Wood et al. [4], and a generalization
of the methods presented in [3] and [4], called the generalized-˛ method (G˛), was provided by
Chung and Hulbert [5]. The G˛ method leads to second-order accuracy, and optimized behavior for
the numerical dissipation is obtained when linear problems are analyzed, where minimal dissipation
is observed for lower modes while maximal dissipation is verified for higher modes.

The development of energy-conserving algorithms was motivated by the work presented by
Belytschko and Schoeberle [6], who concluded that a numerical algorithm is stable in terms of
energy if the sum of kinetic and internal energies within each time step is bounded by the exter-
nal work and the kinetic and internal energies evaluated in the previous time step. Moreover, it
was verified that algorithms presenting unconditional stability for applications in linear dynamics
are frequently subject to numerical instability when the nonlinear case is analyzed. Following the
energy criterion introduced in [6], an energy-conserving scheme for nonlinear dynamics where the
trapezoidal rule is extended by using the Lagrange multiplier method to enforce energy conservation
was proposed by Hughes et al. [7]. Nevertheless, Ortiz [8] demonstrated that energy conservation
is not a sufficient condition for maintaining numerical stability in the nonlinear range. The con-
straint energy method presented in [7] conserves the total energy perfectly but leads to failure in
the iteration procedure related to the Newton–Raphson linearization, as was observed by Kuhl and
Ramm [9].

Indeed, Simo and Tarnow [10] had already noticed the importance of momentum conservation
by proposing the energy–momentum method, which conserves total energy as well as linear and
angular momentum. Furthermore, second-order accuracy is also preserved. The energy–momentum
method was developed considering the midpoint rule to evaluate the internal forces in every time
step of the time integration process in order to reach energy conservation algorithmically, because
it was concluded that the stress update procedure is crucial to obtain a numerical algorithm with
energy–momentum conservation. The original formulation was introduced using a constitutive
model for Saint Venant–Kirchhoff materials, which was extended to arbitrary hyperelastic materi-
als by Gonzales [11], who proposed a modified evaluation of the stress tensor employing discrete
derivative to describe the required form for the algorithmic update of the second Piola–Kirchhoff
stress tensor. Later, Laursen and Meng [12] reformulated the stress update scheme presented in [10]
to account for general hyperelastic models properly, where some restrictions found in the original
formulation were removed. An energy–momentum-conserving algorithm for hypoelastic constitu-
tive models was developed by Noels et al. [13] by using a new expression for evaluating the internal
forces at element level. A hypoelastic formulation for applications in nonlinear elastodynamics
using the eight-node hexahedral element with one-point quadrature techniques was used by Braun
and Awruch [14]. According to Romero [15], there are infinite ways to obtain second-order accu-
racy as well as energy and momentum conservation algorithms, whereas the characterization of the
conserving stress as a minimization problem leads to that conclusion.

Although the conservation of energy and momentum is mandatory in order to obtain a stable
numerical algorithm, some amount of numerical dissipation must be introduced in the model to
damp out spurious contributions of the high-frequency range to the dynamic response, which are
induced because of problems related to the finite element discretization of the spatial domain. On
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the other hand, it is well known that classical dissipative methods may fail when they are applied to
nonlinear problems and loss of accuracy is generally observed in these cases. This situation moti-
vated the development of energy-dissipative momentum-conserving algorithms, where momentum
is conserved, energy dissipation is controlled, and order of accuracy is maintained. The constraint
energy–momentum method was proposed in [9], which is a time-stepping scheme combining con-
servation and dissipation properties, where energy and momentum are enforced considering the
constraint energy methodology proposed in [7] and the G˛ method given in [5] is used in order to
obtain a dissipative time integration model. Optimized parameters for the ˛ methods were deter-
mined, leading to an integration process with less numerical dissipation for lower frequencies and
more dissipation on higher frequencies of the energy spectrum. An algorithm based on control-
lable numerical dissipation and on the energy–momentum method introduced in [10] was presented
by Kuhl and Crisfield [16] considering a nonlinear version of the G˛ method. The numerical
scheme was called the generalized energy–momentum method (GEMM), and applications for shell
dynamics were later investigated by Kuhl and Ramm [17] with an additional dissipative parame-
ter, yielding the generalized energy–momentum method + � (GEMM+�). The energy–momentum
method, proposed in [10], to include numerical dissipation by using a damping parameter that only
affects the second Piola–Kirchhoff stress tensor was modified by Armero and Pectocz [18] and also
by Crisfield et al. [19]. Nevertheless, the so-called modified energy–momentum method is only
first-order accurate. In order to circumvent this drawback, a dissipative time-stepping algorithm
with energy conservation properties that also preserves second-order accuracy was developed by
Armero and Romero [20]. Reviews on energy–momentum and dissipative methods may be found in
[16, 21], and [22].

In the present work, a non-uniform rational B-spline (NURBS)-based finite element model is
developed for applications in nonlinear elastodynamics. The kinematic description of the continuum
is performed using the corotational approach. A hypoelastic constitutive model is adopted using
corotational stress and strain tensors, where the small strain hypothesis and large displacements and
rotations are considered. This comprehensive corotational kinematic description is performed using
an orthogonal tensor given by the exact polar decomposition for transformations of the coordinate
system. The state equation is written in terms of corotational variables according to the linear elastic
theory, relating the Jaumann derivative of the Cauchy stress to the Eulerian strain rate. The numerical
model is obtained by applying the Bubnov–Galerkin weighted residual method over the Cauchy’s
equation of motion, and a Newton–Raphson scheme is adopted to linearize the residual vector in
the nonlinear range. Geometry and solution fields are approximated using NURBS basis functions
according to the isoparametric concept. The G˛ method and GEMM+� are implemented into the
IsoGeometric formulation in order to obtain stable and controllable dissipative schemes for time
integration. Additional information about NURBS solids and this NURBS finite element model for
nonlinear static analysis may be found in [23].

The influence of aspects related to the IsoGeometric discretization is investigated for numerical
applications where numerical instabilities are expected. An important improvement can be noted in
both temporal integrators G˛ and GEMM+� when a NURBS description is adopted. We use as a
baseline of comparison the classical works of Kuhl and Ramm [9, 17] where it is shown in particular
that G˛ in nonlinear regime cannot fulfill both the numerical stability and the energy–momentum
conservation. In the present work, it is shown in particular that a high continuity can postpone the
numerical instability when GEMM+� with consistent mass is employed; likewise, increasing the
continuity class yields a decrease in the numerical dissipation. Although a high degree of spatial
discretization may be considered expensive, it is important to notice that shell and beam structures
may be subject to locking phenomena if high-order discretization is not employed once they are
modeled as thin solids. A parametric study is carried out in order to show the stability and energy
budget in terms of several properties such as continuity class of basis, function spectral radius and
lumped as well as consistent mass matrices.
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2. THEORETICAL ASPECTS

2.1. Governing equations for elastodynamics and corotational approach

Problems on elastodynamics may be formulated considering the Cauchy’s equation of motion,
where mass and energy conservation must be also enforced over the volume of the body (for
instance, [24]). Considering a classical Lagrangian kinematical description in the Cartesian coordi-
nate system and in the absence of temperature changes, the system of governing equations is given
by the following expressions:Z

�0

� .X; t0/ d� D
Z
�

� .x; t / d� 8t 2 Œt0; t � (1a)

� Ru � div � � b D 0 in � � Œt0; t � (1b)

u D u on �D � Œt0; t � (1c)

� � n D t on �N � Œt0; t � (1d)

u .x; t0/ D u0 in � (1e)

Pu .x; t0/ D Pu0 in � (1f)

where Equations (1a) and (1b) represent mass and momentum balances over the spatial domain�.t/
corresponding to the body, respectively, with the first-order tensors X and x containing components
of the material .Xi / and spatial .xi / coordinates in the Cartesian coordinate system, t denotes time,
� is the specific mass of the body, b is the first-order tensor of body forces per unit mass, the second-
order tensor � contains components of the Cauchy stress tensor, and the first-order tensors u and Ru
are the displacement and the second time derivative of the displacement. The boundary conditions
are given according to Equations (1c) and (1d), where the first-order tensors u and t are the pre-
scribed Dirichlet and Neumann boundary conditions, over the boundaries �D and �N , respectively,
taking into account that n is the unit outward normal defined on boundary �N . Equations (1e) and
(1f) specify the initial conditions .t D t0I� D �0/ for the displacement and its first time-derivative
fields. In addition, �D

S
�N D � and �D

T
�N D ;. It is important to notice that the equilibrium

equation, which is derived from the Cauchy’s equation of motion, is defined taking into account the
current configuration of the body .�/.

In the present model, geometrically nonlinear problems are analyzed taking into account the
corotational approach (any tensor field in corotational frame is identified by .O�/), where stress and
strain are described according to a coordinate system locally attached to every quadrature point.
Consequently, a linear constitutive model restricted to small strains can be adopted in order to relate
strain and stress measures, which may be written as

O� D OC
mat
W O� D �tr.O�/1C 2�O� (2)

where O� and O� are the Cauchy stress tensor and the small strain tensor, both defined in the corota-

tional system. OC
mat

is the fourth-order elastic tensor, which may be described in terms of the Lamé

constants, � and �.
Theoretically, the motion of a continuum can be decomposed into rigid body motion and pure

deformation. This separation of rigid body and purely deformational motions is originated by
assumption of large rotations. Once the spatial discretization of the problem is fine enough, this
decomposition can be performed at the quadrature level and consequently, in a corotational coordi-
nate system, where the pure deformation part is always a small quantity with respect to the element
dimensions. The corotational description maintains orthogonality of the reference frame, which
leads to exact decomposition of the motion into rigid body and deformational parts. In this sense, an
elastic constitutive formulation is very effective for corotational descriptions, because the nonlinear
problem can be posed in rate form by considering the small strain hypothesis and an objective rate
of the Cauchy stress tensor.
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Assuming that all kinematical variables at the previous configuration tn of the body are known,
the displacement field at the end of the current load step can be obtained from integration of the
strain rate tensor over the time interval defining the present load increment Œtn; tnC1�. In addition, this
integration to obtain the strain increment must be performed in the corotational coordinate system,
where only the deformational part of the incremental displacement field is considered. The strain
rate tensor in the corotational system is defined as

Od D
1

2

"
@Ovdef

@Ox
C

 
@Ovdef

@Ox

!t#
(3)

where Ovdef represents the velocity field associated with the deformation part of the motion in the
corotational system. In order to obtain strain increments, some methodology must be adopted to
integrate the strain tensor over the time interval Œtn; tnC1�. In the present work, the midpoint inte-
gration proposed by Hughes and Winget [25] is used, where the velocity is assumed to be constant
within the time interval and the reference configuration is attached to the intermediate configuration
tnC 12

in the corotational system. According to the midpoint integration, the strain increment may be
obtained from

tnC1Z
tn

Od d	 D
1

2

"
@
 Oudef

@OxnC 12
C

 
@
 Oudef

@OxnC 12

!t#
D 
O� (4)

where 
 Oudef is the deformation part of the displacement increment in the corotational system and
OxnC 12 is the intermediate configuration of the body defined in the corotational system, which can be
determined according to the following expression:

OxnC 12 D R
nC 12
� xnC 12 D

1

2
R
nC 12
�
�
xn C xnC1

�
(5)

where R
nC 12

is the orthogonal transformation tensor performing rotation from the global system

to the corotational system defined locally at the intermediate configuration tnC 12
. The displacement

increment referring to the present time interval Œtn; tnC1� can be decomposed as follows:


u D 
udef C
urot (6)

where 
udef and 
urot are, respectively, the deformation and rotation parts of the displacement
increment defined in the global coordinate system. It is important to notice that the decomposi-
tion described in Equation (6) is locally performed at element level. The deformation displacement
increment in the corotational system can be obtained from the following expression:


 Oudef D R
nC 12
�
udef D OxnC1 � Oxn (7)

where the transformation tensor R is evaluated at the intermediate configuration tnC 12
of the current

time interval Œtn; tnC1�, because the strain rate tensor must be referred to the body configuration
at tnC 12

. Coordinates corresponding to the previous and current configurations of the body in the
corotational system are obtained with following transformations:

Oxn D R
n
� xnI OxnC1 D R

nC1
� xnC1 (8)

where R
n

and R
nC1

are orthogonal transformation tensors performing rotations from the global
system to the corotational system defined locally at tn and tnC1, respectively.

After determining the strain increment in the corotational system, strain and stress updates can be
performed with the following equations:

O�
nC1
D O�

n
C
O� (9a)

O�
nC1
D O�

n
C
 O� (9b)
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where n and n C 1 denote the previous and current configurations of the body in the corotational
system, respectively. It is well known that the Cauchy stress tensor in the corotational system is
frame-invariant, because stress measures are not affected by rigid body motions, but the rate of the
Cauchy stress tensor is not. Therefore, in order to obtain an incrementally objective constitutive
formulation, the Jaumann rate tensor is adopted in this work, which may be described as follows:

ı

O�
J

D PO� C O� � O� � O� � O� (10)

where spin tensor O� is the antisymmetric part of the spatial velocity gradient tensor OL defined in
the corotational system. The corotational spin tensor must be also integrated over the time interval
Œtn; tnC1� considering the same midpoint rule adopted in Equation (4).

The orthogonal transformation tensor R may be evaluated using several methods. In the present
work, a classical polar decomposition theorem is utilized, where spectral decomposition or eigen-
projection of the right Cauchy–Green deformation tensor C is adopted to obtain the right stretch
tensor U.

Being the deformation gradient tensor defined as

F D
@x
@X

(11)

it can be decomposed uniquely (while F is injective) into a symmetric part and an orthogonal part

F D Q � U D V �Q (12)

where Q is an orthogonal tensor and U and V are the right and left stretch tensors. Recall that the

right Cauchy–Green deformation tensor is defined as

C D Ft � F (13)

Then, taking into account Equation (12)

C D Ut �Qt �Q � U D U2 (14)

and from spectral decomposition or eigenprojection of C, the following expression may be written:

C D �2i Ni ˝ Ni D U2 (15)

where �2i and Ni are eigenvalues and eigenvectors of C, respectively. Then, the orthogonal tensor is
evaluated as

Q D F � U�1 D F �
�
��1i Ni ˝ Ni

�
(16)

The transformation tensor utilized in the corotational formulation is obtained considering that
R D Qt .

2.2. The numerical model

A numerical model based on IsoGeometric analysis may be constructed using variational principles
in the same form as that used by the FEM, which is equivalent to considering the correspond-
ing weak forms obtained from the Galerkin method applied to the governing equations. In
elastodynamics, the Hamilton’s principle can be adopted according to the following expression:

tZ
t0

ı.K � �/ dt C

tZ
t0

ıWd dt (17)
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with

K D
1

2

Z
�

� Pu � Pu d� ıK D

Z
�

�ı Pu � Pu d� (18a)

� D

Z
�

U.�/ d� �
Z
�

u � b d� �
Z
�

u � t d� ı� D

Z
�

ı� W � d� �
Z
�

ıu � b d� �
Z
�N

ıu � t d�

(18b)

Wd D �

Z
�

u � fd d� ıWd D �

Z
�

ıu � fd d� (18c)

where K and � are the kinetic energy and the total potential energy, respectively, with ıK and
ı� denoting its corresponding variations, Wd is the work done by any non-conserving force of
the system and ıWd is the respective variation, U.�/ D

R
�
� W � d� is the strain energy density

function, and fd is the vector of non-conserving forces, including viscous damping fd D � Pu. The
displacement variations ıu must vanish at the time limits t0 and tf and also on boundary �D , where
Dirichlet boundary conditions are imposed.

The semidiscrete system of momentum equations is obtained taking into account that they are
discrete in space but continuous in time. The space discretization is performed here considering the
Bubnov–Galerkin method applied into the context of IsoGeometric analysis, where the displacement
variations associated with the variational form (Equation (17)) assume the role of weight functions.
By integrating by parts the kinetic energy variation presented in Equation (17) and considering the
restrictions imposed on the displacement variations ıu at the time limits t0 and tf , the following
expression is obtained:

tZ
t0

�Z
�

�ıu � Ru d�C
Z
�

ıu � � Pu d� �
Z
�

ı� W � d�C
Z
�

ıu � b d�C
Z
�N

ıu � t d�

�
dt D 0

(19)

2.3. Spatial discretization – the IsoGeometric formulation using NURBS

NURBS functions have been widely used because of their flexibility and computational efficiency, in
several areas, such as computer graphics, FEM for solid/fluid mechanics and high-order differential
equations, shape optimization, and time integration schemes (for instance, [26–30]).

In order to define the element concept in the context of IsoGeometric analysis, geometry,
velocities, displacements, and displacement variations must be discretized with the following
expressions:

x.�; t / D
nnpX
aD1

Ra.�/xa u.�; t / D
nnpX
aD1

Ra.�/ua

Ru.�; t / D
nnpX
aD1

Ra.�/ Rua ıu.�; t / D
nnpX
aD1

Ra.�/ıua

(20)

where Ra is the NURBS basis function related to control point a, which is defined as function of
the parametric coordinates .�; ; �/, and nnp is the number of global control points (basis functions).
Knot vectors corresponding to the different directions in the parametric space must be also speci-
fied, defining the non-zero knot spans where elements are then identified. A three-dimensional knot
vector .„;H;Z/ may be written as follows:

�.�/ D ¹0; : : : ; 0„ ƒ‚ …
pC1

; �pC1; : : : ; �sp�p�1; 1; : : : ; 1„ ƒ‚ …
pC1

º; with sp D nC p C 1

H./ D ¹0; : : : ; 0„ ƒ‚ …
qC1

; qC1; : : : ; sq�q�1; 1; : : : ; 1„ ƒ‚ …
qC1

º; with sq D mC q C 1

Z.�/ D ¹0; : : : ; 0„ ƒ‚ …
rC1

; �rC1; : : : ; �sr�r�1; 1; : : : ; 1„ ƒ‚ …
rC1

º; with sr D l C r C 1

(21)
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where p; q, and r are the polynomial degrees of the basis functions over the parametric directions
�; , and �, respectively, and the corresponding numbers of basis functions are specified by n C
1;mC 1, and l C 1, respectively, which are also associated with the number of control points in the
different directions of the physical space. Depending on the geometric topology of the problem, the
knot vector may be reduced to two-dimensional or one-dimensional vectors, i.e., .„;H/ or .„/.

The NURBS basis functions for three-dimensional applications are defined by

R
p;q;r

i;j;k
.�; ; �/ D

Ni;p.�/Nj;q./Nk;r .�/wi;j;k
n;m;lP
Oi ; Oj ; OkD0

N Oi ;p.�/N Oj ;q./N Ok ;r.�/w Oi ; Oj ; Ok

(22)

where the subscripts i; j , and k indicate the position of the control point in the index space and
the superscripts p; q, and r define the polynomial degree of the basis functions. The weight term
wi;j;k is related to the weight associated with the control point defined by the subindices i; j , and
k. Details on evaluation of basis functions may be found in [31] and [32].

The Cox-de Boor recursive formulation [33, 34] is usually adopted to evaluate B-spline basis
functions, which are obtained considering a given one-dimensional knot vector „.�/ defined over
the parametric space � , the number of control points defined along the corresponding direction in
the physical space, and the polynomial order of the corresponding basis functions. According to the
Cox-de Boor formulation, the B-spline basis functions may be expressed as

Ni;0.�/ D

²
1 if �i 6 � < �iC1;
0 otherwise:

Ni;p.�/ D
� � �i

�iCp � �i
Ni;p�1.�/C

�iCpC1 � �

�iCpC1 � �iC1
NiC1;p�1.�/

(23)

where p is the polynomial degree of the basis functionN.�/ and i is the knot index. Equation (23) is
straightforwardly extended to the basis functions associated with the parametric directions  and �.

The IsoGeometric model for the equation of motion given by Equation (19) can be written as:

tZ
t0

nel[
eD1

�Z
�e

�ıu � Ru d�C
Z
�e

ıu � � Pu d�

�

Z
�e

ı� W � d�C
Z
�e

ıu � b d�C
Z
�Ne

ıu � t d�

�
dt D 0

(24)

where �e and �e are volume and boundary surfaces, respectively, corresponding to element e in
the physical mesh. Considering nC 1;mC 1, and l C 1 as the number of basis functions related to
the parametric directions �; , and �, respectively, and their respective polynomial degrees denoted
by p; q, and r , element e is defined by determining the indices at which the corresponding non-zero
knot span begins in the index space, that is,

e , Œ�i ; �iC1� � Œi ; iC1� � Œ�i ; �iC1� (25)

where pC1 6 i 6 n; qC1 6 j 6 m, and rC1 6 k 6 l . The total number of elements at maximum
continuity, nel, in which the spatial field is discretized in the parametric domain is defined as

nel D .n � p C 1/ � .m � q C 1/ � .l � r C 1/ (26)

By substituting the NURBS approximation related to the displacement field (Equation (20)) into
the constitutive equation (Equation (2)), an element level approximation of the stress–strain rela-
tion, using Voigt notation, is obtained, where the strain components in the corotational system are
given by

O� D OB � Ou (27)

where OB and Ou are the symmetric part of the gradient operator and the displacements field, respec-
tively, which are evaluated by referring to the current configuration of the body in the corotational
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coordinate system. When infinitesimal displacements and rotations are observed, Equation (27) is
described in terms of the undeformed configuration of the body .�0/. Derivatives of the B-spline
basis functions are represented in terms of B-spline lower-order bases owing to the recursive def-
inition of the basis functions. Algorithms for numerical evaluation of derivatives of B-spline basis
functions may be found in [32].

Introducing the expansions shown in Equation (20) and the relationship given by Equation (27)
into Equation (24), a matrix equation representing a system of algebraic equations is obtained for
the equation of motion, which may be expressed as:

nel[
eD1

Me RuC
nel[
eD1

Ce PuC
nel[
eD1

Keu D
nel[
eD1

f eext (28)

where Me and Ke are the element mass and element stiffness matrices, respectively, and feext is the
force vector at element level. The matrix and vector dimensions associated to Me and Ke , and feext,
are specified as .neq�neq/ and .neq/, respectively, where neq D nen�ndof , with ndof and nen denoting
the number of degrees of freedom at the control point level and the number of basis functions at the
element level, respectively. The union symbol indicates the assembling procedure to evaluate the
global system of equations, considering the element contributions given according to connectivity
relations established among the control points. The global stiffness matrix is always sparse because
the support of each basis function is highly localized.

In the geometrically nonlinear regime, the system of equations represented by Equation (28) must
be iteratively satisfied using the incremental approach [35], because internal forces are given now
as functions of the current configuration of the body. The nonlinear equation of motion is obtained
by employing a linearization procedure given by the Newton–Raphson method, where the residual
vector is submitted to a Taylor series expansion within the time interval Œtn; tnC1�. Consequently,
Equation (28) must be rewritten as follows:

nel[
eD1

Me RuC
nel[
eD1

Ce PuC
nel[
eD1

Ke
tan.u

e/
u D
nel[
eD1

feext �

nel[
eD1

feint.u
e/ (29)

where Ke
tan is the tangent stiffness matrix. At each iterative step, the tangent stiffness matrix and the

internal force vector are initially evaluated in the corotational coordinate system with the following
expressions:

OKe
tan D

Z
O�e

OBt
�
OCmat C OCgeo

�
OB d O�eI Ofeint D

Z
O�e

OBt O� d O�e (30)

where O�e is referenced to the current configuration of element e in the corotational coordinate
system, and OC and O� are stress tensors related to the Jaumann rate tensor and the corotational Cauchy
stress tensor, respectively, with both evaluated in the corotational coordinate system. In order to
solve the system of nonlinear equations of motion, the tangent stiffness matrix and the internal force
vector must be obtained in the global coordinate system through an objective transformation from
the corotational system, that is,

Ke
tan D Rt OKe

tanRI feint D Rt Ofeint (31)

where R is the rotation matrix defined in the previous section. For additional information about solid
NURBS and this numerical approach, the readers are addressed to [23].

2.4. Temporal integration – the generalized-˛ method and generalized energy–momentum
method + �

The total time interval where the dynamic analysis is carried out Œt0; tf � is subdivided into time steps

t D tnC1 � tn in order to define the time step in the integration process for implicit algorithms,
where the incremental approach is adopted. The kinematic variables are assumed to be known at
the beginning of every time step of the time integration, and the same variables are obtained at the
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end of the respective time step considering the solution of the equation of motion, which is given
in terms of displacement increments, and time approximations provided by a specific method, such
as the Newmark’s method. Although the Newmark’s algorithm is unconditionally stable for linear
problems, it may be unstable in the nonlinear range. In this sense, the G˛ method and GEMM+�
may be utilized, where the equilibrium of the equation of motion is verified at an intermediate point
of the time increment instead of the end point employed by the classical Newmark scheme.

It is assumed that dnC1 � u.tnC1/; vnC1 � Pu.tnC1/, and anC1 � Ru.tnC1/. At the beginning of
each incremental step, the predictor phase is defined according to the Newmark’s formulas

dinC1 D QdnC1
vinC1 D QvnC1
ainC1 D QanC1

(32)

where

QdnC1 D dn C
tvn C
.
t/2

2
..1 � 2ˇ/an C 2ˇ QanC1/ (33a)

QvnC1 D vn C
t ..1 � �/an C � QanC1/ (33b)

The kinematic variables and residual of the governing equations are defined in the G˛ and GEMM+�
by using the following functions:

R
�
dnC˛f ; vnC˛f ; anC˛m

�
D 0 (34a)

dnC˛f D dn C ˛f .dnC1 � dn/ (34b)

vnC˛f D vn C ˛f .vnC1 � vn/ (34c)

anC˛m D an C ˛m .anC1 � an/ (34d)

with Newmark’s formulas (34e)

The equilibrium, Equation (34a), must be satisfied at the intermediate level. Once .dn; vn; an/ is
known,

�
dnC1; vnC1; anC1;dnC˛f ; vnC˛f ; anC˛m

�
can be obtained, where ˛f ; ˛m; � , and ˇ are

parameters defining the method, which are selected in order to achieve second-order accuracy and
unconditional stability.

According to [5], second-order accuracy and unconditional stability may be obtained for second-
order linear differential equations with constant coefficients by using

� D
1

2
� ˛f C ˛m (35a)

ˇ D
1

4
.1 � ˛f C ˛m/

2 (35b)

In order to obtain a numerical scheme with controllable numerical damping over the high fre-
quencies, ˛m and ˛f must be defined as functions of spectral radius �1. In [5], it is established that,
for system with second-order accuracy, one obtains

˛m D
2 � �c1
1C �c1

(36a)

˛f D
1

1C �c1
(36b)

There is an additional dissipation parameter in the GEMM+� that displaces the internal force of the
intermediate level defined by G˛, from tnC˛f ! tnC˛C� . This parameter, which is known as the
Armero–Petocz parameter [18], improves stability and is given by

� D
1 � �1

2C 2�1
(37)

Assuming that the strain and stress tensors and all kinematical quantities are known at the end of
the last time increment t D tn, the solution at t D tnC1 should be computed based on the converged

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 102:1839–1868
DOI: 10.1002/nme



G˛ AND GEMMC� APPLIED TO ISOGEOMETRIC ANALYSIS 1849

solution at the previous time step. An algorithm describing all the calculation steps performed by
the present numerical model is found in the succeeding text.

1. Predictor Phase:

select a predictor according to the Newmark’s formulas estimating
�
d0nC1; v0nC1; a0nC1

�
(38)

2. Corrector Phase: loop over i D 0; : : : ; imax

(a) evaluate
�

dinC˛f ; vinC˛f ; ainC˛m

�
dinC˛f D .1 � ˛f /dn C ˛f dinC1 (39a)

vinC˛f D .1 � ˛f /vn C ˛f vinC1 (39b)

ainC˛m D .1 � ˛m/an C ˛mainC1 (39c)

(b) Assembly the residual vector with variables at the intermediate level

dRi

ddnC1

d D �RinC1 (40)

where

RinC1 D R
�

dinC˛f ; vinC˛f ; ainC˛m

�
G˛RinC1 DMainC˛m C CvinC˛f C

G˛NinC˛f � fext
nC˛f

GEMMC�RinC1 DMainC˛m C CvinC˛f C
GEMMC�NinC˛fC� � fextnC˛f

(41)

N is the internal force vector and fext
nC˛f

D .1 � ˛f /fext
n C ˛f fext

nC1 is the external load
vector evaluated at generalized intermediate point. The following expression

dRi

ddnC1
D

dR
ddnC1

�
dinC˛f ; vinC˛f ; ainC˛m

�
(42)

is the total derivative
�

dR
ddnC1

�
, which is presented in Equations (44) and (45).

(c) with the solution of Equation (40), kinematic variables are updated

diC1nC1 D dinC1 C
d

viC1nC1 D vinC1 C
�

ˇ
t

d

aiC1nC1 D ainC1 C
1

ˇ.
t/2

d

(43)

3. Check convergence: If the criterion is not satisfied, return to step 1, with i D iC1. Otherwise,
go forward to the next time step.

The total derivative of Equation (42) is obtained as follows:

dR
ddnC1

D
dR

ddnC˛f

ddnC˛f
ddnC1

C
dR

dvnC˛f

dvnC˛f
dvnC1

dvnC1
ddnC1

C
dR

danC˛m

danC˛m
danC1

danC1
ddnC1

(44)
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And from Equations (33) and (38), one obtains

dR
ddnC1

D
˛m

ˇ.
t/2
MC

�˛f

ˇ
t
CCKtan (45)

In G˛ method, the internal force and tangent stiffness matrix at generalized intermediate point
are evaluated according to the following expression:

G˛NinC˛f D .1 � ˛f /
Z
O�

OBt . Oun/ O� . Oun/ d O�C ˛f

Z
O�

OBt . OunC1/ O� . OunC1/ d O� (46)

G˛Ktan
nC˛f

D ˛f .Kmat CKgeo/

D ˛f

Z
O�

OBt . OunC1/
�
OCmat C OCgeo . OunC1/

�
OB . OunC1/ d O�

(47)

while in GEMM+� , the internal force and tangent stiffness matrix at generalized intermediate point
are evaluated according to the following expression:

GEMMC�NinC˛fC� D
Z
O�

OBt
�
OunC˛f

� �
.˛f � �/ O� . Oun/C .˛f C �/ O� . OunC1/

	
d O� (48)

GEMMC�Ktan
nC˛fC�

D .˛f C �/Kmat C ˛f Kgeo

D .˛f C �/

Z
O�

OBt
�
OunC˛f

�
OCmat OB . OunC1/ d O�

C ˛f

Z
O�

OBt
�
OunC˛f

�
OCgeo

�
OunC˛f

�
OB
�
OunC˛f

�
d O�

� .˛f C �/

Z
O�

OBt
�
OunC˛f

�
OCmat OB

�
OunC˛f

�
d O�

C ˛f

Z
O�

OBt
�
OunC˛f

�
OCgeo

�
OunC˛f

�
OB
�
OunC˛f

�
d O�

(49)

It is important to notice that material contribution into tangent stiffness matrix is modified in order
to get a symmetry matrix.

Regarding the applications carried out, the convergence criteria adopted here determine that the
maximum tolerance is 2 � 10�8.

The in-house code GNUall was developed for this work (based on libraries GNUiga and
GNUrbs) using FORTRAN (IBM, Armonk, NY, USA).

2.5. Total energy, and linear and angular momentum

There are some quantities that have a great importance in structural dynamics, such as total energy,
and linear and angular momentum, in order to judge the stability and conservative properties. The
total energy E is composed by kinetic energy K and internal strain energy U

E D K C U (50a)

K D
1

2

Z
�

� Pu � Pu d� (50b)

U D
1

2

Z
�

� W � d� (50c)

The linear and angular momentum can be evaluated as

L D
Z
�

� Pu d� (51a)

J D
Z
�

�u � Pu d� (51b)
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3. NUMERICAL APPLICATIONS

In the numerical examples, independent of the continuity class only single patches are used. It is
worth noting that for the cylindrical shell (example 3.5) a NURBS description is used, while a
B-spline is employed in the other examples.

The concept of hpk-refinement was introduced in [31], and several examples have shown that a
high continuity improves the accuracy, specially in the longitudinal vibration problem 3.1. Unlike
the classical k-refinement, where the continuity is increased together with the degree (like a
pk-refinement), one can increase the continuity together with the number of elements (like an hk-
refinement) without changing the polynomial degree. Therefore, one can increase the continuity
until a desired order, i.e., between C 0 to Cp�k , being p the degree and k the knot multiplicity. In
this work, the first three numerical examples are carried out using a fixed degree (quintic-NURBS)
in the space discretization, while the continuity class is increased from zero to four, keeping con-
stant the number of degrees of freedom. Finally, with this procedure only ‘h’ and ‘k’ are refined.
On the other hand, in the last example only two continuity are employed, C 1 and C 4, wherein the
first one has a mesh more refined, i.e., 8 � 8C 1 elements in the shell surface, while only 4 � 4C 4

elements in the second mesh are used.
In order to evaluate the numerical dissipation, the following expression is used: W�E

W
%, where

W is the external work and E is the total energy.

3.1. Dispersion analysis in longitudinal vibrations of an elastic rod: the Helmholtz equation

In order to be brief and concise, as a complement of the work presented in [31], a dispersion anal-
ysis of the longitudinal vibrations of a rod is carried out. These results may be valuable to explain
how the continuity class can improve both the numerical stability and the energy–momentum con-
servation. For additional information about the physical problem and the analytical solution, readers
are addressed to [31].

The classical linear scalar equation governing longitudinal vibrations of a rod is given by

Er2u � � Ru D 0 (52)

being E; �, and u the constant Young’s modulus, density per unit length, and the longitudinal dis-
placement, respectively. Assuming time-harmonic solutions, the following equation (continuous
eigenproblem) is obtained:

Er2u � � !2u D 0 (53)

where ! is the natural frequency.
The continuum problem has infinite nontrivial solutions. The discrete problem can be written as

a generalized eigenproblem as follows:�
K �

�
!hi

�2
M
�
�i D 0 (54)

where homogeneous Dirichlet boundary conditions are employed. !hi and �i are the i-th eigen pair,
eigenvalue and eigenvector, respectively.

The frequencies !hn numerically obtained (being N D 666 the total number of degrees of free-
dom) are compared with the theoretical ones, !n D n�; n D 1; : : : ; N . Therefore, the curve
!h=! D 1 means that the exact solution is obtained. In particular, in Figure 1(a), pk-refinement
and p-refinement are presented from p D 1.C 0/ up to p D 5.C 4/, while in Figure 1(b) for a fixed
quintic-NURBS basis, the continuity class is elevated from C 0 up to C 4, like an hk-refinement.
!h=! with larger values indicates decreased accuracy. From Figure 1(a), it is observed that by
increasing p the accuracy of the lower frequencies are improved while the accuracy of the higher
ones are deteriorated. Unlike p-refinement, pk-refinement improves both ranges, lower and higher
frequencies. On the other hand, hk-refinement shows a similar behavior, i.e., by increasing the num-
ber of elements and the continuity of the basis functions, all frequencies are more close to the
theoretical ones.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 102:1839–1868
DOI: 10.1002/nme



1852 L. F. R. ESPATH ET AL.
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Figure 1. The continuity influences on the eigenproblem. (a) p-refinement and pk-refinement; and (b)
hk-refinement.

By increasing p, strange frequencies at the very end of the spectrum are observed, as noticed in
[31], referred to as ‘outlier frequencies’, whose number and magnitude increase with p.

Higher frequencies and ill-resolved higher modes are the main triggers to yield numerical insta-
bility. Using as a baseline this linear problem, one can expect that when higher frequencies are more
accurate, the more stable will be the nonlinear case. Furthermore, considering that !hi > !i , this dif-
ference is increased when a low continuity is adopted. Any controllable dissipative time integrator
will exhibit less numerical damping over higher frequencies if higher continuity is used. Therefore,
an improvement is expected when higher continuity is employed.

3.2. Clamped beam

A cantilever beam subject to pressure loading and undergoing large displacements is analyzed in this
example, where plane strain state is also assumed. This dynamic problem was proposed by Bathe
and Baig [36] to show the time integration failure in Newmark’s method.

Geometry and boundary conditions are shown in Figure 2(a), while load description is presented
in Figure 2(b). Material properties of the structure as well as the time step adopted in the time
integration procedure are found in Table I. Information on computational parameters used in the
set of numerical analyses carried out here, which correspond to the IsoGeometric formulation and
the time discretization scheme proposed in this work, are summarized in Table II. Number and
distribution .L � h � w/ of elements over the physical space referring to the cantilever beam are

(a) (b)

Figure 2. Geometry, boundary condition, and load description for the clamped beam: L D 0:4 m;
h D 0:001 m. (a) Geometry and boundary conditions; and (b) load q.t/.

Table I. Geometrical and load characteristics for the
cantilever beam analysis.

Young modulus E (N/m2/ 7 � 1010

Poisson coefficient � 0.25
Specific mass � (kg/m3/ 2:7 � 103

Damping coefficient � 0.0
Time step 
t (s) 4:0 � 10�3
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Table II. Computational parameters employed in the cantilever beam analysis.

Control mesh Number of elements Continuity class Spectral radius – �1 Degrees .p; q; r/

G˛

66 � 3 � 2 13 � 1 � 1 C 0 0:95I 0:99I 1:00� 5, 2, 1
66 � 3 � 2 16 � 1 � 1 C 1 0:95I 0:99I 1:00� 5, 2, 1
66 � 3 � 2 21 � 1 � 1 C 2 0:95I 0:99I 1:00� 5, 2, 1
66 � 3 � 2 31 � 1 � 1 C 3 0:95I 0:99I 1:00� 5, 2, 1
66 � 3 � 2 61 � 1 � 1 C 4 0:95I 0:99I 1:00� 5, 2, 1

GEMM+�

66 � 3 � 2 13 � 1 � 1 C 0 0:99I 1:00� 5, 2, 1
66 � 3 � 2 16 � 1 � 1 C 1 0:99I 1:00� 5, 2, 1
66 � 3 � 2 21 � 1 � 1 C 2 0:99I 1:00� 5, 2, 1
66 � 3 � 2 31 � 1 � 1 C 3 0:99I 1:00� 5, 2, 1
66 � 3 � 2 61 � 1 � 1 C 4 0:99I 1:00� 5, 2, 1

.�/� ! simulations carried out with both consistent and lumped mass.

G˛, generalized-˛; GEMM+�, generalized energy–momentum method + �.

(a)
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time

Vertical Displacement

(b)

Figure 3. Generalized ˛ with �1 D 0:95 and C 4. (a) Successive configurations and (b) tip vertical
displacement.

given according to the continuity class, where the element configurations .13 � 1 � 1/; .16 � 1 �
1/; .21� 1� 1/; .31� 1� 1/, and .61� 1� 1/ correspond to the continuity classes C 0; C 1; C 2; C 3,
and C 4, respectively. In each simulation, the same number of degrees of freedom is used.

The motion of the cantilever beam performed during the period of oscillation [0.07 s, 0.15 s]
can be visualized with 
t D 0:01 s in Figure 3(a), while in Figure 3(b), the result in terms of
vertical displacements evaluated at the tip of the cantilever beam during the numerical simulation
is presented using G˛ with consistent mass, �1 D 0:95, and C 4. The time histories referring to
the energy budget during the numerical simulation, obtained when consistent mass is employed, are
shown in Figures 4 and 5 for G˛ method and GEMM+� , respectively.

In order to evaluate the amount of numerical dissipation, several spectral radii are investigated
using continuity class from zero to four. In Table III, the time-to-failure in the time integration shows
that a stable analysis is obtained only for �1 D 0:95 and �1 D 0:99 for G˛ method and GEMM+� ,
respectively, for the adopted time step. Although it is possible to obtain a stable analysis if a small
time step is used, numerical instability allows understanding if there is influence of continuity class
over the time integration algorithm, for both features of interest, numerical stability and energy
conservation.
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Figure 4. Energy of the clamped beam and generalized ˛ with consistent mass. (a) �1 D 0:95; C 0;
(b) �1 D 0:95; C 1; (c) �1 D 0:95; C 2; (d) �1 D 0:95; C 3; (e) �1 D 0:95; C 4; (f) �1 D 1:00; C 0;

(g) �1 D 1:00; C 1; (h) �1 D 1:00; C 2; and (i) �1 D 1:00; C 3; (j) �1 D 1:00; C 4.

Figure 5. Energy of the clamped beam and generalized energy–momentum method + � with consistent mass.
(a) �1 D 0:99; C 0; (b) �1 D 0:99; C 1; (c) �1 D 0:99; C 2; (d) �1 D 0:99; C 3; (e) �1 D 0:99; C 4;
(f) �1 D 1:00; C 0; (g) �1 D 1:00; C 1; (h) �1 D 1:00; C 2; (i) �1 D 1:00; C 3; and (j) �1 D 1:00; C 4.

In Table III, the percentages of numerical dissipation together with time-to-failure (placed in
parentheses in the table) are presented. It is possible to notice that there is a dependence between
the continuity class and the numerical instability. Although this dependence is non-monotonic, it
seems that the instability is postponed when the continuity class is elevated. Indeed, this behavior is
evident when GEMM+� with consistent mass is employed. On the other hand, the instability seems
to be indifferent in front of continuity class for G˛ method.

The present results demonstrate that the time integration process is suddenly interrupted when
the amount of numerical dissipation is insufficient or non-existent .�1 D 1:00/, unlike the finite
element predictions obtained in [14], where numerical instabilities are clearly identified from the
typical increase observed in the energy response. It is important to notice that in [14] a finite element
formulation for eight-node hexahedral elements with one-point quadrature techniques was adopted.
Also, in the analyses presented in [36], [9], and [17], it is always possible to identify a numerical
instability once an oscillation is observed in the energy budget. It is also observed that the range of
spectral radius with stable responses is significantly enlarged when results obtained considering the
IsoGeometric formulation proposed in this work are compared with those obtained in [14] .�1 <

0:3/. The displacement responses referring to �1 D 0:95 and �1 D 0:99 for G˛ method and
GEMM+� are in perfect agreement with numerical predictions presented in [36].

Some important features may be pointed out from this example. First, the total energy is conserved
within a very small tolerance, independently of the spectral radius, time integrator, mass description,
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Table III. Maximum level of the dissipation at the end of each analysis and time-to-failure (Section 3.2).

�1 C 0 C 1 C 2 C 3 C 4

G˛ with consistent mass

0.95 3 � 10�4% 2 � 10�4% 2 � 10�4% 2 � 10�4% 2 � 10�4%
0.99 6 � 10�4% .1:74/ " 3 � 10�2% .1:21/ 4 � 10�3% .1:56/ 1 � 10�2% .1:79/ 8 � 10�4% .1:69/

1.00 4 � 10�6% .1:01/ 1 � 10�3% .1:04/ " 1 � 10�4% .1:02/ " 3 � 10�4% .1:03/ " 6 � 10�4% .1:13/

G˛ with lumped mass

1.00 0.018% (1.08) 0.25% (1.14) 0.11% (1.18) 0.12% (1.21) 0.066% (1.22)

GEMM+� consistent mass

0.99 0:71% 0:71% 0:71% 0:71% 0:71%
1.00 5 � 10�3% .0:35/ " 3 � 10�3% .0:43/ " 4 � 10�3% .0:79/ " 4 � 10�3% .0:79/ 3 � 10�3%

GEMM+� lumped mass

1.00 1 � 10�2% .1:81/ 2 � 10�4% .0:97/ 5 � 10�4% .0:97/ 2 � 10�2% 4 � 10�4% .1:89/

" implies in the growing of the total energy.

.tf /! time-to-failure in seconds.

G˛, generalized-˛; GEMM+�, generalized energy–momentum method + �.

and continuity class. Naturally, for both time integrators, the lumped mass shows a greater amount
of dissipation, as expected, and there is not a deterioration of the solution. Concerning the numerical
stability, as expected, by increasing the numerical dissipation (once the spectral radius is decreased)
a stable analysis is obtained. However, the most important result may be observed when GEMM+�
with consistent mass is employed, i.e., the numerical instability is postponed, increasing the conti-
nuity class. This effect is not observed with G˛ with lumped or consistent mass nor for GEMM+�
with lumped mass.

It was observed that the convergence rate in terms of displacement and force has not any depen-
dence on the continuity class. Also, it was observed that the convergence rate of this analysis is
about 2.2 for both force and displacement in G˛ method, while in GEMM+� , convergence rates
about 1.8 and 1.6 for force and displacement, respectively, are observed. The convergence rate itself
is indifferent when consistent or lumped mass is used.

The energy budget are shown in Figures 13 and 14 using consistent mass for G˛ and GEMM+� ,
respectively.

3.3. Toss rule – plane movement

This problem was studied in [9], where different time integration schemes are employed to under-
stand the numerical dissipation and its stability. A numerical investigation of the plane movement
of a toss rule is performed in this example, where a geometrically nonlinear dynamic analysis is
carried out.

Geometry and boundary conditions are shown in Figure 6(a), while load description is presented
in Figure 6(b). Material properties of the structure as well as the time step adopted in the time inte-
gration procedure are found in Table IV. It is important to notice that distributed loads are applied
to the structure to produce the plane motion of the rule, which is free to fly in the absence of
displacement constraint and gravity action. Computational parameters regarding the numerical anal-
yses performed here are presented in Table V. Number and distribution .L; h;w/ of elements over
the physical space referring to the rule are again given according to the continuity class, where the
element configurations .13� 1� 1/, .16� 1� 1/, .21� 1� 1/; .31� 1� 1/, and .61� 1� 1/ corre-
spond to the continuity classes C 0; C 1; C 2; C 3, and C 4, respectively. In each simulation, the same
number of degrees of freedom is used.
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(a) (b)

Figure 6. Geometry and boundary conditions of the toss rule: L D 0:3 m; h D 0:002 m; and w D 0:06 m.
(a) Geometry and boundary conditions; and (b) load q.t/.

Table IV. Geometrical and load characteristics for
the toss rule analysis.

Young modulus E (N/m2/ 2:06 � 1011

Poisson coefficient � 0.3
Specific mass � (kg/m3/ 7:8 � 103

Damping coefficient � 0.0
Time step 
t (s) 1:0 � 10�4

Table V. Computational parameters employed in the toss rule analysis.

Control mesh Number of elements Continuity class Spectral radius – �1 Degrees .p; q; r/

G˛

66 � 3 � 2 13 � 1 � 1 C 0 0:50I 0:95I 0:99I 1:00� 5, 2, 1
66 � 3 � 2 16 � 1 � 1 C 1 0:50I 0:95I 0:99I 1:00� 5, 2, 1
66 � 3 � 2 21 � 1 � 1 C 2 0:50I 0:95I 0:99I 1:00� 5, 2, 1
66 � 3 � 2 31 � 1 � 1 C 3 0:50I 0:95I 0:99I 1:00� 5, 2, 1
66 � 3 � 2 61 � 1 � 1 C 4 0:50I 0:95I 0:99I 1:00� 5, 2, 1

GEMM+�

66 � 3 � 2 13 � 1 � 1 C 0 1:00� 5, 2, 1
66 � 3 � 2 16 � 1 � 1 C 1 1:00� 5, 2, 1
66 � 3 � 2 21 � 1 � 1 C 2 1:00� 5, 2, 1
66 � 3 � 2 31 � 1 � 1 C 3 1:00� 5, 2, 1
66 � 3 � 2 61 � 1 � 1 C 4 1:00� 5, 2, 1

.�/� ! simulations carried out with both consistent and lumped mass.

G˛, generalized-˛; GEMM+�, generalized energy–momentum method + �.

The dynamic responses obtained from the numerical analyses performed here are shown in
Figure 7 for GEMM+� with consistent mass, �1 D 1:00, and C 4. Successive configurations are
presented in Figure 7(a) and (b) in the intervals [0.01 s, 0.1 s] with
t D 0:01 s and [0.001 s, 0.03 s]
with 
t D 0:001 s, respectively. Linear and angular momentum are also presented in Figure 7(c).

Results shown here demonstrate again a sudden interruption of the time integration process when
a spectral radius equal to �1 D 1:00 is considered (no numerical dissipation), independently of
the continuity class used, for G˛ method with consistent mass, whereas for lumped mass the
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Figure 7. Successive configurations: generalized energy–momentum method + � with �1 D 1:00 and C 4.
(a) Spatial view; (b) plane view; and (c) linear and angular momentum, L and J.

convergence is reached only for C 1 and C 2, and with the increase of continuity the numerical
instability is anticipated. In this sense, the influence of the continuity class on the energy response
was not identified for consistent mass. On the other hand, stable solutions can be obtained even
with small amounts of numerical dissipation, i.e., �1 D 0:99, where the total energy is perfectly
maintained (within a very small tolerance) during the total time interval of the numerical analy-
sis. The same behavior was observed for the components of the angular and linear momentum. For
analyses carried out with GEMM+� using consistent as well as lumped mass, stable analysis with the
conservation of the energy and momentum is achieved. The range of stable spectral radius obtained
with the IsoGeometric model is slightly wider than that presented by the finite element model pro-
posed in [14]. Responses obtained here are in agreement with the numerical predictions presented
in [9].

In Table VI, the numerical dissipation at the end of each analysis and the time-to-failure are
presented. It is observed that there is not a dependence between the conservation of the total energy
and linear, angular momentum on the continuity class. On the other hand, the stability shows a
different behavior with respect to the first example. For G˛ with consistent mass, there is not a
dependence between the stability and the continuity class, while for G˛ with lumped mass, it seems
that the instability is postponed when the continuity class is reduced.

In [9], [16], and [17], a parametric study is carried out as function of spectral radius for
several time integration methods, such as constrained energy–momentum method [9], energy–
momentum method, GEMM [17], modified energy–momentum method, and G˛ method. Unlike
results obtained here with NURBS basis functions, for any time integrator scheme, it is possible to
see a deterioration of the solution in terms of energy budget and momentum conservation with the
increase of the spectral radius.

It was observed that the convergence rates of this analysis are about 1.9 and 2.1 for force and
displacement convergence, respectively, in G˛ method, while in GEMM+� , convergence rates about
1.7 and 1.9 for force and displacement convergence, respectively, are observed. The convergence
rate itself is indifferent when consistent or lumped mass are used.

The energy budget are shown in Figures 8 and 9 using consistent mass for G˛ and GEMM+� ,
respectively. No excessive numerical dissipation is observed. Indeed, as in the previous example,
the numerical dissipation is almost zero.
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Table VI. Maximum level of the dissipation at the end of each analysis and time-to-failure
(Section 3.3).

�1 C 0 C 1 C 2 C 3 C 4

G˛ with consistent mass

0.50 1 � 10�1% 1 � 10�1% 1 � 10�1% 1 � 10�1% 1 � 10�1%
0.95 2 � 10�4% 2 � 10�4% 2 � 10�4% 1 � 10�4% 1 � 10�4%
0.99 1 � 10�2% .0:86/ 3 � 10�3% 5 � 10�5% 1 � 10�4% .0:92/ 3 � 10�3% .0:89/

1.00 7 � 10�7% .0:53/ 0% (0.61) 0% (0.52) 0% (0.54) 0% (0.53)

G˛ with lumped mass

1.00 0.49% 0.45% 0.41% 0.30% 0.41%

GEMM+� with consistent mass

1.00 " 2 � 10�4% " 2 � 10�4% " 2 � 10�4% " 2 � 10�2% " 4 � 10�2%

GEMM+� with lumped mass

1.00 0.46% 0.45% 0.42% 0.37% 0.17%

" implies in the growing of the total energy.

.tf � 10
1/! time-to-failure in seconds.

G˛, generalized-˛; GEMM+�, generalized energy–momentum method + �.

Figure 8. Energy of toss rule and generalized ˛ with consistent mass. (a) �1 D 0:95; C 0; (b) �1 D
0:95; C 1; (c) �1 D 0:95; C 2; (d) �1 D 0:95; C 3; (e) �1 D 0:95; C 4; (f) �1 D 1:00; C 0; (g) �1 D

1:00; C 1; (h) �1 D 1:00; C 2; (i) �1 D 1:00; C 3; and (j) �1 D 1:00; C 4.

3.4. Toss rule – space movement

This problem was studied in [17], where different time integration schemes are employed in order
to show the intrinsic conservative properties of GEMM+� . A numerical investigation of the spatial
movement of a toss rule is performed in this example, where a geometrically nonlinear dynamic
analysis is carried out.

In this example, the previous application is modified in order to demonstrate the computational
performance of the proposed numerical model under three-dimensional motions. Geometry and load
time history presented in Figure 10(a) and (b) are the same as those presented in the previous exam-
ple (Section 3.3). It is important to notice that loads are applied in order to produce the spatial motion
of the rule, which is free to fly. Computational parameters adopted here are shown in Table VII. It is
worth noting that only consistent mass is employed in the remaining examples. Number and distri-
bution .L; h;w/ of elements over the physical space referring to the rule are again given according to
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Figure 9. Energy of toss rule and generalized energy–momentum method + � with consistent mass. (a)
�1 D 1:00; C

0; (b) �1 D 1:00; C 1; (c) �1 D 1:00; C 2; (d) �1 D 1:00; C 3; and (e) �1 D 1:00; C 4.

Table VII. Computational parameters employed in the toss rule analysis.

Control mesh Number of elements Continuity class Spectral radius – �1 Degrees .p; q; r/

G˛ with consistent mass

66 � 3 � 6 13 � 1 � 1 C 0 0.90; 1.00 5, 2, 5
66 � 3 � 6 16 � 1 � 1 C 1 0.90; 1.00 5, 2, 5
66 � 3 � 6 21 � 1 � 1 C 2 0.90; 1.00 5, 2, 5
66 � 3 � 6 31 � 1 � 1 C 3 0.90; 1.00 5, 2, 5
66 � 3 � 6 61 � 1 � 1 C 4 0.90; 1.00 5, 2, 5

GEMM+� with consistent mass

66 � 3 � 6 13 � 1 � 1 C 0 0.99, 0,999, 1.00 5, 2, 5
66 � 3 � 6 16 � 1 � 1 C 1 0.99, 0,999, 1.00 5, 2, 5
66 � 3 � 6 21 � 1 � 1 C 2 0.99, 0,999, 1.00 5, 2, 5
66 � 3 � 6 31 � 1 � 1 C 3 0.99, 0,999, 1.00 5, 2, 5
66 � 3 � 6 61 � 1 � 1 C 4 0.99, 0,999, 1.00 5, 2, 5

G˛, generalized-˛; GEMM+�, generalized energy–momentum method + �.

Figure 10. Geometry and boundary conditions of the toss rule: L D 0:3 m; h D 0:002 m; and w D 0:06 m.
(a) Geometry and boundary conditions; and (b) load q.t/.

the continuity class, where the element configurations .13�1�1/; .16�1�1/; .21�1�1/; .31�1�1/,
and .61� 1� 1/ correspond to the continuity classes C 0; C 1; C 2; C 3, and C 4, respectively. In each
simulation, the same number of degrees of freedom is used.

The dynamic responses obtained from the numerical analyses performed here are shown in
Figure 11 for G˛ with consistent mass, �1 D 0:90, and C 4. Linear and angular momentum
are presented in Figure 11(a) and (b), respectively, while successive configurations are shown in
Figure 11(c) in the interval [0.0 s, 0.04 s] with 
t D 0:004 s.

In Table VIII, the numerical dissipation at the end of each analysis and the time-to-failure are
presented. Also, in Figure 12, the time evolution of the numerical dissipation is shown. From this
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Figure 11. Successive configurations: generalized ˛. (a) Linear momentum, L; (b) angular momentum, J;
and (c) �1 D 0:90 e C 4.

Table VIII. Maximum level of the dissipation at the end of each analysis and time-to-failure (Section 3.3).

�1 C 0 C 1 C 2 C 3 C 4

G˛ with consistent mass

0.90 6.3% 7.5% 6.8% 6.8% 6.0%
1.00 0% (3.2) 0% (3.5) 0% (3.1) 0% (3.0) 0% (3.3)

GEMM+� with consistent mass

0.99 6.9% 6.3% 6.3% 6.4% 5.3%
0.999 " 10:1% .4:8/ " 8:3% .4:5/ " 22:8% .8:6/ " 17:6% .5:8/ " 15:4% .8:7/
1.00 " 7:6% .4:4/ " 10:2% .4:5/ " 13:1% .4:8/ " 14:9% .4:8/ " 26:2% .8:1/

" implies in the growing of the total energy.

.tf � 10
2/! time-to-failure in seconds.

G˛, generalized-˛; GEMM+�, generalized energy–momentum method + �.

figure, one can always observe that a higher continuity exhibits a less amount of numerical dissi-
pation. The convergence rates are about 1.8 and 2.0 for force and displacement, respectively, in G˛
method, while in GEMM+� , a convergence rate about 1.6 and 1.8 for force and displacement are
observed, respectively.

In Figures 13 and 14, results in terms of energy are presented, for both G˛ and GEMM+� , respec-
tively. Results shown here demonstrate again a sudden interruption of the time integration process
when a spectral radius equal to �1 D 1:00 is considered (no numerical dissipation), indepen-
dently of the continuity class used, for G˛ method with consistent mass. On the other hand, when
GEMM+� is employed with spectral radii equal to �1 D 1:00 and �1 D 0:999, the total energy is
continuously increased until the failure in the time integration occurs. Stable solutions with decay
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Figure 12. Numerical dissipation. (a) Generalized ˛; �1 D 0:90; (b) generalized ˛; �1 D 1:00;
(c) generalized energy–momentum method + �; �1 D 0:99; and (d) generalized energy–momentum

method + �; �1 D 1:00.

Figure 13. Energy of toss rule and generalized ˛ with consistent mass. (a) �1 D 0:90; C 0; (b) �1 D
0:90; C 1; (c) �1 D 0:90; C 2; (d) �1 D 0:90; C 3; (e) �1 D 0:90; C 4; (f) �1 D 1:00; C 0; (g) �1 D

1:00; C 1; (h) �1 D 1:00; C 2; (i) �1 D 1:00; C 3; and (j) �1 D 1:00; C 4.

Figure 14. Energy of toss rule and generalized energy–momentum method + � with consistent mass. (a)
�1 D 0:99; C 0; (b) �1 D 0:99; C 1; (c) �1 D 0:99; C 2; (d) �1 D 0:99; C 3; (e) �1 D 0:99; C 4; (f)
�1 D 1:00; C

0; (g) �1 D 1:00; C 1; (h) �1 D 1:00; C 2; (i) �1 D 1:00; C 3; and (j) �1 D 1:00; C 4.

of the total energy are obtained with spectral radii �1 D 0:90 and �1 D 0:99 with G˛ method and
GEMM+� , respectively.

3.5. ‘Snap-through’ of a cylindrical shell

The snap-through phenomenon occurring in a hinge-supported cylindrical shell subject to a con-
centrated load is investigated here. Geometry and boundary conditions are shown in Figure 15(a),
while load description for the present simulation is shown in Figure 15(b). Material properties of the
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Figure 15. Geometry and boundary conditions of cylindrical shell: R D 5:0 m; L D 5:0 m; and � D 60ı.
(a) Geometry and boundary conditions; and (b) load.

Table IX. Geometrical and load characteristics for
the cylindrical shell analysis.

Young modulus E (N/m2/ 2:0 � 1011

Poisson coefficient � 0.25
Specific mass � (kg/m3/ 1:0 � 104

Damping coefficient � 0.0
Time step 
t (s) 5:0 � 10�4

Table X. Computational parameters employed in the cylindrical shell analysis.

Control mesh Number of elements Continuity class Spectral radius – �1 Degrees .p; q; r/

G˛ with consistent mass

18 � 18 � 5 8 � 8 � 2 C 1 0.50; 0.90; 0.95 5, 5, 2
13 � 13 � 5 4 � 4 � 2 C 4 0.50; 0.90; 0.95 5, 5, 2

GEMM+� with consistent mass

18 � 18 � 5 8 � 8 � 2 C 1 0.90; 0.95 5, 5, 2
13 � 13 � 5 4 � 4 � 2 C 4 0.90; 0.95 5, 5, 2

For all simulations C 0 through the thickness is used,
while the continuity class over the surface is indicated in this table.

G˛, generalized-˛; GEMM+�, generalized energy–momentum method + �.

structure as well as the time step adopted in the time integration procedure are found in Table IX.
Information on computational parameters used in the parametric studies carried out here are sum-
marized in Table X. Number and distribution .L;w; h/ of elements over the physical space referring
to the cylindrical shell are given as follows: the continuity class C 1 corresponds to the continuity
class employed over the shell surface, where the element configuration .8�8/ is adopted. The com-
putational mesh related to the continuity class C 4 presents .4 � 4/ elements over the shell surface.
Along the shell thickness, two elements of C 0 continuity are used in both meshes, such that the
control points associated with the middle surface of the cylindrical shell become interpolatory and
the boundary conditions corresponding to hinge supports can be appropriately imposed.
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Figure 16. Successive configurations: generalized energy–momentum method + � with �1 D 0:90 and C 4.

Table XI. Maximum level of the dissipation at the end
of each analysis and time-to-failure.

�1 C 1 C 4

G˛ with consistent mass

0.50 49.2% 49.3%
0.90 5.4% 5.0%
0.95 0.8% (0.27) 0.5% (0.27)

GEMM+� with consistent mass

0.90 54.7% 56.3%
0.95 42.0% 48.2%

" implies in the growing of the total energy.

.tf /! time-to-failure in seconds.

G˛, generalized-˛; GEMM+�, generalized energy–
momentum method + �.

In Figure 16, successive configurations for simulation carried out with GEMM+� are presented. In
this sequence, at early stages of analysis the pre-buckling stage is defined and only lower frequencies
are excited. When stiffness matrix is singular, around t D 0:155, the buckling is identified. After
that, the membrane stiffness is recovered, giving rise to a high-frequency vibration in the post-
buckling stage. In Table XI, the numerical dissipation at the end of each analysis and the time-to-
failure are presented.

When the total number of degrees of freedom is maintained constant, as in the previous examples,
a higher continuity exhibits less amount of numerical dissipation. However, one can expect that
by using higher resolutions (concerning the total number of degrees of freedom), less numerical
dissipation is obtained. Indeed, in this example, when the continuity class is reduced from C 4 to C 1,
the number of elements is duplicated. Nevertheless, most of simulations carried out in this example
show more numerical dissipation when a lower continuity is adopted. As a matter of fact, only when
GEMM+� with �1 D 0:95 is employed can this statement not be verified.

From Figure 17, it may be stated that in general C 4 continuity shows less numerical dissipa-
tion than C 1 continuity. Naturally, the effects induced by the spectral radius are clearly noted,
because the numerical dissipation is increased when the spectral radius is decreased. A stable solu-
tion is obtained for �1 D 0:50 for G˛ method. For GEMM+� , a stable solution is obtained for
�1 D 0:95. Considering that the time step is refined enough at an early stage (pre-buckling stage) of
the simulation where vibration is dominated by lower modes, numerical dissipation is not observed.
After that, the time step becomes marginal once the high frequencies are excited, i.e., the time step
seems to be too large to correctly solve the higher modes; therefore, one can observe numerical
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Figure 17. Numerical dissipation. GEMM+� , generalized energy–momentum method + � .

Figure 18. Energy of cylindrical shell, and generalized ˛ (G˛) and generalized energy–momentum
method + � (GEMM+�) with consistent mass. (a) �1 D 0:50; C 1, G˛; (b) �1 D 0:50; C 4, G˛; (c)

�1 D 0:90; C
1, GEMM+�; and (d) �1 D 0:90; C 4, GEMM+� .

Figure 19. Displacement at point load location of cylindrical shell, and generalized ˛ (G˛) and generalized
energy–momentum method + � (GEMM+�) with consistent mass. (a) �1 D 0:50; C 1, G˛; (b) �1 D

0:50; C 4, G˛; and (c) �1 D 0:90; C 1, GEMM+�; and (d) �1 D 0:90; C 4, GEMM+� .

dissipation, only in buckling and post-buckling stages. Nevertheless, the amount of numerical
damping must be carefully controlled in order to obtain accurate results. It is observed that the con-
vergence rates of this analysis are about 1.5 and 2.0 for force and displacement, respectively, in
G˛ method, while in GEMM+� , convergence rates about 1.7 and 2.0 for force and displacement,
respectively, are observed.

Figure 18(a) and (b) and Figure 18(c) and (d) present results in term of energy, for G˛ method
and GEMM+� with consistent mass, respectively, while Figure 19(a) and (b) and Figure 19(c) and
(d) present the dynamic responses that are given in terms of vertical displacements measured at the
position where the load is applied, for G˛ method and GEMM+� with consistent mass, respectively.
In addition, the displacement response is also evaluated at the middle point on the free edge of the
cylindrical shell.

In Figure 20(a), results obtained in this work are compared with numerical predictions obtained
in [17] and using the commercial package ABAQUS (ABAQUS Inc., Palo Alto, CA, USA) (with
an explicit solver), while in Figure 20(b), it is compared with those obtained in [37] and [9]. In
Figure 20(c), a comparison between G˛ method and GEMM+� is presented. The present results
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Figure 20. Comparisons of vertical displacement of the middle point. (a) Generalized ˛ (G˛) .�1 D
0:50; C 4/ versus [17]; (b) G˛ .�1 D 0:50; C 4/ versus [9, 37]; and (c) G˛ .�1 D 0:50; C 4/ versus

generalized energy–momentum method + � (GEMM+�) .�1 D 0:95; C 4/.

correspond to the numerical analysis performed considering the following spectral radius and con-
tinuity class: �1 D 0:50; C 4 and �1 D 0:95; C 4 for G˛ method and GEMM+� , respectively. An
overall good agreement can be observed, except for the solution presented in [9], where the higher
modes are not present and the energy is concentrated on the lower modes.

3.6. Discussion of results

Several numerical examples are described in the previous sections. Simulations dealing with geo-
metrically nonlinear behavior in elastodynamic field are investigated with respect to numerical
instability and energy–momentum conservation. Both features, numerical stability and energy–
momentum conservation, are parametrically studied with respect to spectral radius and continuity
class as well as with respect to lumped and consistent mass matrices. Furthermore, two time
integrators, G˛ and GEMM+� , based on equilibrium at intermediate level of the time increment
were implemented.

Concerning the energy–momentum conservation, in general it is possible to observe that both,
G˛ method and GEMM+� , show less numerical dissipation when a high continuity class is adopted.
This statement is based on the examples in Sections 3.4 and 3.5 (see, for instance, Figures 12 and 17,
which present the time evolution of the dissipation) where the numerical dissipation are more signif-
icant. On the other hand, for G˛ and GEMM+� , the energy and momentum are perfectly conserved
for the examples presented in Sections 3.2 and 3.3, even when a lumped mass is employed.

A time step size that is several orders of magnitude less than the oscillation period may be con-
sidered a refined time step. From the linear dynamic theory, one can define that a time-step size is
refined enough if, at least, it is lower than one order of magnitude of the oscillation period. There-
fore, in the nonlinear case, in the presence of higher frequencies, if a small time step is not adopted,
an insufficient amount of dissipation may lead to numerical instability, as observed in the exam-
ples Sections 3.4 and 3.5. Also, numerical dissipation is strongly related to the time-step size if a
spectral radius less than the unity is adopted, i.e., for a certain spectral radius, by increasing the
time-step size, the numerical dissipation is also increased. Therefore, the numerical dissipation acts
as a damper of spurious modes and/or ill-resolved scales.

It is worth noting that in the last example (Section 3.5) until t � 0:15 s when lower modes
are excited (and the time-step size is refined enough when compared with the oscillation period),
there is no dissipation and it is possible to solve well all scales, as expected. After this time, higher
frequencies are excited and the time-step size becomes too large when compared with oscillation
period. Therefore, spurious and ill-resolved scales are correctly dissipated. The dissipation grows,
approximately with a constant slope.

Regarding the numerical stability, it is evident that GEMM+� is most robust than G˛, because
of an additional dissipation parameter that leads to more stable algorithms. Also, when GEMM+�
with consistent mass is employed, it is observed that a higher continuity can postpone the numerical
instability, as shown in the examples Sections 3.2 and 3.4. Unfortunately, this behavior cannot be
observed neither when G˛ is employed nor when lumped mass description is used.
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Another important issue is related to numerical model adopted in this work, where a NURBS
solid model was employed. This fact means that in solid models there are more vibration modes
involved and indeed they are more complex than those obtained with beam or shell models. Thus,
stable analysis with conservative properties may be more difficult to obtain with a complete model
obtained from a general theory of continuum mechanics.

In particular, some aspects may be pointed out.

� In the first example Section 3.2, there is a dependence between the numerical stability and
the continuity class when GEMM+� with consistent mass is employed, there is an evident
and monotonic dependence, and by increasing the continuity class, the numerical instability is
postponed. Actually, only for continuity C 4 is the final convergence achieved.
� In the second example Section 3.3, the range of stable spectral radius obtained with the

IsoGeometric model is slightly wider than that presented by the finite element model pro-
posed in [14]. Indeed, a stable analysis with conservation of the energy and momentum was
possible with spectral radii from 0.5 to 0.95 using G˛ and also with a spectral radius equal
to one when GEMM+� is employed. When G˛ with consistent mass is used, there is not a
dependence between the numerical stability and the continuity class. For lumped mass, high
continuity seems to have a detrimental effect on the numerical stability. For simulations carried
out with GEMM+� , numerical instability did not occur. Also, the total energy and momentum
are perfectly conserved.
� In the third example Section 3.4, a marginal time step led to an unstable analysis when a spectral

radius equal to one was used and a stable analysis was only possible with spectral radii �1 D
0:90 for G˛ and �1 D 0:99 for GEMM+� . When G˛ method with �1 D 1:00 was employed,
the numerical instability occurred at t � 0:3 independently of the continuity, however, without
energy losses. On the other hand, when GEMM+� with �1 D 1:00 was employed, the higher
continuity postponed the numerical instability. However, the energy increased, giving rise to
the numerical instability. Nevertheless, higher continuity produced less numerical dissipation
or a lower growth of the total energy.
� In the fourth example Section 3.5, a stable analysis was only possible with spectral radii �1 D
0:90 for G˛ and �1 D 0:95 for GEMM+� , although the total dissipation in any stable analysis
has the same order of magnitude. Also, as in the previous example, simulations carried out with
high continuity exhibited in general less numerical dissipation.

4. CONCLUSIONS

The application of the G˛ method and GEMM+� to nonlinear dynamics using a NURBS-based
element with a corotational approach was presented. Several numerical examples exhibiting highly
nonlinear dynamic behavior were carried out. Improvements provided by the NURBS basis func-
tions produced great impact over the conservation of the energy–momentum and numerical stability
in the nonlinear dynamic field. Particularly, it was shown that high continuity can postpone the
numerical instability when GEMM+� with consistent mass is employed. In addition, it was demon-
strated that by increasing the continuity class, the numerical dissipation is decreased (if the spectral
radius is less than the unity). Regarding the numerical predictions obtained with G˛ and GEMM+� ,
results were approximately the same in most of the cases analyzed here, where the accuracy level
of the present model was also demonstrated taking into account the excellent agreement with
reference results.
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