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An Eulerian two-fluid numerical solver with kinetic-frictional theory for granular flows has been imple-
mented and validated on the open-source code platform OpenFOAM®. Several aspects of the numerical
treatment are discussed: maximum packing and phase disappearing limits, phase accumulation, cell-face
fields interpolation and reconstruction practices, drag coupling approaches and different levels of con-
servativeness of the momentum equations. These last two topics are studied in depth. On the drag cou-
pling analysis, it is observed that the partially implicit method (PIM) exhibits a convergence performance
similar to the partial elimination algorithm (PEA) for a Geldart B particulate fluidized bed problem. But,
for strongly coupled conditions (e.g. smaller particles) the use of the PEA becomes essential to meet a
prescribed convergence criteria. Secondly, the conservativeness of the advective term of the momentum
equations is analyzed by comparing three formulations of the advective term (the conservative form, the
nonconservative form and the phase-intensive form). The impact of each formulation on the velocity field
prediction is quantified for a shallow water problem and then extended to two-dimensional gas-liquid
and gas-particle systems. The results show that the adoption of a conservative formulation is crucial to
obtain accurate solutions in transient problems. However, for time-averaged analysis, which is often used

for the study of fluidized bed systems, the nonconservative phase-intensive form is still a useful tool.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In the last decades, the CFD modeling became a strong tool to
study fluidized bed systems and to complement the experimental
measures [1-10]. Among the available numerical techniques, the
Eulerian two-fluid model [11,12] with kinetic-frictional theory of
granular flow closure provides a low-cost approach for the simu-
lation and design of large-scale gas-particles systems.

Investigations on particulate flows gained attention since the
development of the kinetic theory of granular flow [13-15] derived
from the general theory of non-uniform dense gases of Chapman
and Cowling [16]. In this approach, the granular phase is formed by
uniform solid spheres and only binary instantaneous collisions are
considered. Early granular flow simulations relied on constant solid
viscosity and simple elasticity-type correlations to account for the
solid phase normal stresses [17,18]. In the kinetic theory of granu-
lar flow, the effects of the particles interactions on the phase rhe-
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ology are modeled by means of the granular temperature, which is
related to the random motion of the particles. This approach has
the advantage of having a deeper phenomenological basis than the
early theories and several comparisons may be found in the lit-
erature [9,10]. Further on, it became clear that the hypothesis of
instantaneous collisions of the kinetic theory no longer endure for
high particle concentration. In these conditions, where rubbing and
friction between particles may occur, the solid phase rheology is
often modeled by the frictional theory [19-21]. The mathematical
closure of the problem is obtained by the coupling between phases
through the interphase forces. Usually, for fluidized bed simula-
tions, the lift and virtual mass effects are neglected and only the
drag force term is considered. Many correlations for the drag coef-
ficient are available [15,22-27] and their performance in fluidized
bed problems has been investigated over the years [3,26,28].

The Eulerian gas—particle flow model consists of treating both
phases as interpenetrating continua which leads to a system of av-
eraged Navier-Stokes equations [12]. These equations are solved
along with the granular energy balance equation based on the
kinetic-frictional theory of granular flow and the mass conserva-
tion equations of each phase. There are many factors that com-
promise the stable behavior of the numerical algorithm devised to
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solve this system of equations. In particular, the coupling algorithm
through the drag force and the different levels of conservative-
ness of the advective term formulation are still topics of discussion
nowadays.

The condition at which the solid phase tends to disappear leads
to a singular momentum equation. This translates into highly oscil-
latory solutions of the phase velocity field, which can be managed
in several ways. Oliveira et al. [29] proposed a nonconservative re-
formulation of the phase momentum equations, usually referred as
the phase-intensive form [30,31]. A consequence of this treatment
is the appearance of a singularity in the solid stress tensor term
when the solid volume fraction tends to zero, which can be eas-
ily avoided through numerical manipulation. This improvement has
the cost of leaving behind the conservative form of the momen-
tum equations. Nonconservative formulations could lead to inaccu-
rate predictions of the velocity field when shock waves are present
[32,33], however, due to the inclusion of the phase volume frac-
tion field «; in the momentum equations, there is more than one
nonconservative formulation possible to be considered (namely the
fully nonconservative form and the phase-intensive form). It is a pur-
pose of the present work to bring some insight into the impact
of the different advective term formulations in commonly studied
gas—particle problems through a comparative analysis.

The coupling between phases given by the drag force term may
be handled in several ways to reach a converged solution in a rea-
sonable time. One way is to adopt the partially implicit method
(PIM), which is based on splitting the drag term of the i-phase mo-
mentum equation and treating the i-phase velocity contribution as
an unknown. The computational implementation of this method is
of low complexity and it is currently adopted in many multiphase
flow solvers [34]. But, as it is shown by Oliveira et al. [35], the
convergence of the iterative procedure for drag dominated prob-
lems could be compromised. Another approach is the partial elim-
ination algorithm (PEA) based on the work of Spalding [36]. This
method allows a partial decouple of each phase momentum equa-
tion which, under certain conditions, has a significant impact on
the solution convergence. This feature has been investigated in the
literature [35,37,38] and the method has been adopted by several
authors [31,39].

In this work, a conservative gas-particle flow solver with
kinetic-frictional theory closure has been developed and imple-
mented on the open source code OpenFOAM® [34]. The solver
modules are based on the finite volume method and the PIMPLE
algorithm [40,41] has been used for the pressure-velocity coupling.
Several aspects of the numerical treatment are investigated to rec-
ognize common pathologies of gas-particles flow problems and to
determine some general criteria to avoid them. On the advective
term formulations, three levels of conservativeness are considered
and tested on standard multiphase problems. For the phases cou-
pling, the PEA has been implemented and its convergence perfor-
mance is compared against the PIM. The volume fraction bounding
has been achieved by means of the MULES integrator [42,43] based
on a multidimensional flux corrected transport scheme [44]| and
the packing limit condition has been fulfilled with an implicit
treatment of the particle pressure contribution to the flux, given
by the kinetic-frictional theory models.

As a summary of the present work, the sections are organized
as follows. In Section 2, the governing equations and closure the-
ories are presented. Section 3 describes the numerical procedure
and the general algorithm. In Section 4, two gas—particles cases are
simulated and the numerical performance of the solver is tested.
Finally, in Section 5, a sensitivity analysis of the different levels
of conservativeness of the advective term is performed through
a one-dimensional study and then extended to a series of two-
dimensional multiphase test cases.

2. Multiphase model
2.1. Governing equations

In this work, an Eulerian gas—particle flow system is considered,
in which both phases are treated as an interpenetrating continua
and the volumetric phase fractions verify that as+ g = 1. Here,
the subscript s represents the solid phase and the subscript g rep-
resents the gas phase. The continuity and momentum equations
for the solid phase are:

%(Psas) + V. (psasus) =0 (1)

d
&(psasus) + V- (psastsls) = —osVp — Vps 4+ V- (a5 Ts)
+ pstsg + Ksg(ug — ug) (2)

while for the gas phase, the equations are:
ad
a3 (pgotg) + V- (pgorgy) =0 (3)

0
&(pgagug) + V- (pgotgigly) = —agVp+ V- (0gTyg)

+ Pg0te8 + Ksg(us — uag) (4)
where the shear stress tensors are modeled as:
2
75 = jus[ Vus + Vul | + (As - gus) (V -uy)l (5)
T 2
Ty = fig[ Vug + Vug | - FHa(V gl (6)

Here p; is the phase density field, u; the phase velocity field, p
the shared pressure field, ps the particle pressure field, g the grav-
itational acceleration, Ks¢ the global drag coefficient, p; the phase
dynamic viscosity and A; the phase bulk viscosity.

The lift and virtual mass effects are neglected and the phases
are coupled through the drag force term. Different drag coeffi-
cient correlations have been developed over the years, but only the
models used in this work are presented. The drag coefficient given
by the Wen-Yu model [23] is:

Cd“sa§1'650g|ug - Uy
dp

here d, is the particle diameter, C; is the drag form coefficient de-
fined as:

Kig = 0.75 (7)

24
== (1+0.15Re%%%7)  Re, < 1000

¢, =1k, 1" po ). Rep< (8)
0.44 ., Re, > 1000

where

Re, = pgdp|“g — ug] 9)

Mg
Also, the drag coefficient for the Gidaspow model [15] is:

Hgot? Pgls
150 d%oté +1.75 d,tg lug —us|, o5 > 0.2

Cdasa§1‘659g|ug — ugl
dp ’

and the drag coefficient for the Syamlal-O’Brien model [24] is:

Kg = (10)

0.75 o < 0.2

Ceatsatg g|Ug — s

Ksg = 0.75
* dpVs

(11)
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where

Vs = O.S[A — 0.06Re, +/(0.06Re,)2 + 0.12Re, (2B — A) +A2]

(12)
08x!%® &, <0.85

A=o*" B= & TES (13)
af® g >085

2.2. Kinetic-frictional theory for granular flow models

In order to have a mathematical closure, the two-phase model,
as it is presented, lacks of an interpretation for the solid phase rhe-
ology. The kinetic and frictional theories for granular flow seeks
to provide a modeling for the rheologic parameters relying on the
various states of particles concentration.

For low concentration, the dynamic of the particles is modeled
by the kinetic theory for granular flow [13-15] based on the ki-
netic theory of dense gases presented by Chapman and Cowling
[16], where uniform spherical particles are assumed and only in-
stantaneous binary collisions are considered. For this regime, the
granular phase properties are defined as functions of the granular
temperature 6, which verifies the following energy balance equa-
tion:

3[d
3 I:at(psas@) +V. (psasusQ)]

=(Ts—psD) : Vus + V- (k,V0) — ys + Ju + s (14)

where ks represents the conductivity of granular temperature, ¥
the dissipation of granular energy due to particles collisions, J, the
dissipation due to viscous damping and Js the production of gran-
ular energy due to slip between gas and particles.

For high concentration, rubbing and friction between particles
may occur and the phenomena is modeled by the frictional theory.
In these regimes, an additive approach is usually adopted, where
both frictional and kinetic contributions are considered [20]. Thus,
the particle pressure and viscosity are defined as:

s = s KTGF + s FRIC (15)

Ds = Ds KTGF + Ps,FRIC (16)

For the kinetic regime, the parameters are modeled following
the works of Gidaspow [15] and Lun et al. [14]:

_ 10psdyVOT 4 2
Ms KTGF = W[l + g(l + e)asgo]
4 /0

+ gasz,osdpgo(l +e) T (17)

Ps.xrcr = Psttsl + 2psatgo(1+ e)f (18)
172
4 0
hs = g psaidpgo(1+e) (n) (19)
_ 150p5dy 0 2

6
s = 38,1+ e) [l +50+ e>“sg°]

0
+ 202 psdpgo (1 + e),/; (20)

4 /0
ys=3(1—ez)a3psg09[d —V~us} (21)
pY T

Jv = —3Ky0 (22)
Ksgdp (g — us)?

— K| 30 — SlpUg — Us)” 23

% Sg[ dorps 0T (23)

where e is the restitution coefficient, d, is the particles diame-
ter and gy is the radial distribution. For this last parameter, the
Carnahan-Starling model [45] is adopted, where:

1 3o a?

= + +

1—as 2(1—wa5)?2  2(1 —as)3
It should be taken into account that this model is independent
of the maximum packing os, max. Therefore, the use of a frictional
model is essential to strictly fulfill the maximum packing condition
without incurring into numerical manipulation.

The frictional contribution to the particles rheology may be
modeled following the works of Schaeffer [19] and Syamlal et al.
[39]:

s rric = 0.5ps pric (lop) ~'/2sin(¢y) (25)

8o (24)

Ps FRIC = 10% (ots — as,min)m (26)

where ¢y is the angle of internal friction and Ip is the second in-
variant of the deviator of the strain rate tensor. The minimal phase
fraction o, at which the frictional effects occur is usually set at
0.61.

The Johnson-Jackson model [20] defines:

s rric = 0.5Ps pricsin(@y) (27)

(ots — Ot min)"
(ots max — os)P
here the o mi, = 0.5. The empirical coefficients are set at Fr=
0.05,n=2,P=5.

Another commonly used model is the Srivastava and Sundare-
san model [21], which differs from the Johnson-Jackson model in
the definition of the solid viscosity:

s FRIC = 0~5P5.FRIC(1§D)_1/251'"(‘Pf) (29)

Ps.eric = Fr (28)

0
where I5, = Ip + a
p

3. Numerical treatment

The model equations are solved using the finite volume method
with both phases treated under an incompressible flow hypothesis
[46,47] and a combination of the SIMPLE [40] and PISO [41] meth-
ods for the pressure-velocity coupling. The algorithm is imple-
mented on the OpenFOAM® platform [34] based on the general
structure of the twoPhaseEulerFoam solver and the work of
Passalacqua et al. [31].

Egs. (1)-(4) are rewritten taking out the constant phase densi-
ties out of the derivative operators and combining both phase con-
tinuity equations. Thus, the following system of equations is ob-
tained:

aa"‘s +V . (asus) =0 (30)
t
ag=1-—q; (31)
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9
ﬁ(oesus) + V- (asusu5) = ——Vp - —Vps + V. (asTs)

Ksg
+osg + F(ug u;) (32)

0%
3 (otglig) + V - (atgligly) = ——ng + V- (agTyg) + g

ng (us —uy) (33)
,Og
V- (o5 + ogutg) =0 (34)

where s and ps are computed according to the kinetic-frictional
theory models and the drag coefficient Ky using the drag models
presented in the previous section.

The solving sequence may be summarized as follows: compute
the phase volume fractions from the solid continuity equation and
volume fraction restriction (Eq. (31)), assemble the phase momen-
tum matrices, solve the momentum linear system for an a-priori
velocity estimation (momentum predictor step), compute the pres-
sure field derived from a global volumetric flux conservation (Eq.
(34)), correct the face fluxes and velocity fields, and iterate until
convergence.

3.1. Momentum equation

Egs. (32) and (33) may be written in a semi-discrete form as
presented by Passalacqua et al. [31]:

o 1
Asug = H; — ;ZVp - Evps + o8 + ?(ug us) (35)

o K.
Agug = Hg — p—in+agg+ lo—sgg(uS —u,) (36)

where the matrix H; includes the off-diagonal implicit contribu-
tions of the advective and diffusive terms, and the explicit contri-
bution of the transient term. The matrix A; includes the diagonal
contributions of the same terms.

It should be remarked that the discretization practice based on
the finite volume method involves the calculation of face-centered
volumetric fluxes, which are defined as:

Yi=u;-S (37)

where i is the phase index and the subscript f indicates a face in-
terpolated value.

Moreover, each phase flux may be expressed a sum of various
contributions, as:

i =0 +of +oF + o 4o (38)

where the superscript S represents the same phase velocity con-
tribution, C represents the complementary phase velocity contri-
bution, P represents the shared pressure contribution, PP repre-
sents the particle pressure contribution and G represents the grav-
ity contribution.

The are many ways to enforce the link between phases through
the drag force term [35]. In this work, the attention will be fo-
cused in two widely adopted methods following the nomenclature
of Karema et al. [38]: the partially implicit method (PIM) and the
partial elimination algorithm (PEA).

The PIM relies on treating the i-phase velocity of the i-phase
drag term implicitly. This means that the cell-centered phase ve-
locities are computed as:

K. o 1
Uspiv = s (Hs + fug - ;sz - Evps + asg) (39)

K, o
Ugpiv = Gg| Hg + —Eu, — 7gvp + 08 (40)
Pg Pg
where
1
§i=—%— (41)
A+ =%
i
Here, the gradient of the particle pressure is rewritten as:
9ps
Vps = \Y
Ds (3055) s (42)

for the numerical handling. The dependence of ps; with 6 is omit-
ted for the derivation of Eq. (42).
According to Egs. (37)-(40), the flux contributions are:

(PsS,Pn\A =& Hsf-S (43)

90;,1’11\/1 =g fHgf-S (44)
K.

‘PsC,PIM = Q,f( sg) (45)
Ksg

(/’gc,mM = Cgf() (46)
0

Pepm = —Cs, f( ) (47)

‘nglM ( ) Vp-S (48)

1 dp

I (,03 80{?) as-S (49)

<P§$1M = (50)

(psG,PlM = 5. fUs 58-S (51)

(ﬂgc,'PIM = g0 (8-S (52)

where S represents the face normal vector and the superscript 0
indicates the stored fields from a previous iteration.

The final expression for the phase fluxes is obtained by includ-
ing each contribution to Eq. (38). This coupling method is currently
implemented in the official distribution of OpenFOAM®|34|

On the other hand, the PEA incorporates the velocity obtained
in Eq. (39) into Eq. (36) and Eq. (40) into Eq. (35). This leads to
another expression for the cell-centered velocities given by:

K s Ko
U ppp = és{Hs-F Slg{gH - |:S + Sggé.g]Vp

s e
_;Vszr[ochrng/O;fgg}g} (53)
- ﬁssgggs Vps+ [ag+ Ksilgsﬂg} (54)

where

i A+’;l—’;§ (55)

and j represents the complementary phase of the phase i.
For this method, the flux contributions are:
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‘Pss,pEA =& Hs5-S (56)
<P§,PEA = sg,ng,f -S (57)
Ko
(psC,PEA:é}-S,f £2H, ) -S (58)
Ps r
Ko
¢§PEA éfgf( < ) ‘S (59)
K oA
Pspea = 2222 ) Vp-S (60)
,ngs f
K s A,
P — Nsgtts /s \V4 .S 61
Pg pEA < P )f p (61)
1 dp
@spen = —E < zmi) s - S (62)
Ksghs 0P
PP sg/s s Va. .S 63
PgpEA = 5gf<pspg aag) g (63)
Kso0tgh
(psC,'PEA = %-s.f s + e g-S (64)
Ps f
Ksg0ts A
§0§PEA =& (O‘g + Sgss) g-S (65)
,Og f

The PEA is based on the work of Spalding [36] and the com-
plete derivation of these expressions is detailed in the work of
Passalacqua et al. [31]. It has the advantage of achieving a decou-
pling of each phase velocity from its complementary phase, which
favors the momentum convergence for drag dominated problems
[35]. Many authors have adopted this method [31,39,48] and its
convergence rate and stability conditions have been investigated
[37,38].

3.2. Pressure equation

The pressure equation is derived from the incompressibility
condition (Eq. (34)), which is rewritten in a discrete form as:

Y =0 (66)
f

where ¢ is the global flux defined as:

@ :as‘fgps""ag,f(pg (67)

Replacing ¢s and ¢g by Eq. (38), using Egs. (43)-(52) (or
Egs. (56)-(65) for the PEA) and taking into account that Egs.
(47) and (48) (or Egs. (60) and (61)) have terms involving Vp, the
pressure equation is expressed as:

Y [DP(VD-S)] = (0 s + g ) (68)

f f

where
[07 o

Dll;lM = Ots,fgs,f(*s> +ag,f§g,f £ (69)
Ps/ ¢ Pg )¢

I KsgtgC oy Ksg0tsEs
Dl = _|a ®s | Nsg®ee g | Psgss
PEA 5851 (ps Pehs f YrSer\ oy T pus ;
(70)
and
Pi =@} +0f + " +¢f (71)

The matrices Hs; and Hgy needed to compute ¢s and ¢, in Eq.
(71) are calculated by approximating the velocity field from previ-
ously stored pressure fields. This step is known as the momentum
predictor. The predicted velocity fields are obtained by solving the
following system:

o 1 Jdps
A =H' +R| .s—(i)vo.s— L Va,-S
s Us N |:s,fg o) D 0 905 ; s

(72)
Ajug =H; +R| otz ;8-S — <01g> vp®-s (73)
Pg f
where
. K.
A=A+ ﬁ (74)
K.
H:‘ =H,'+£ll] (75)
Pi
and R][...] is the reconstruction operator of the face-interpolated

fields to cell-centered values. The reader should notice that the
momentum predictors preserve the same form for both coupling
methods considered, but, for the PEA, the implicit part of the drag
term contribution must be included after the calculation of the co-
efficients &; and ¢;.

With the updated values of the pressure field, each phase flux
is corrected according to:

®irm = Pipm — O, fflf(p ) Vp-S (76)
or
o Ko
@ipen = Pipen — Ui fEip| — + Keeié; Vp-S (77)
Pi PiPj ¥

In order to ensure consistency in the correction of the cell-
centered velocity fields, Passalacqua et al. pointed out the need to
reconstruct the phase fluxes with the use of cell-centered coeffi-
cients. For the PIM, the corrected cell-centered velocity is:

Uipiv = Wppy + &R |:<p,§ (P1i|
if

The procedure for the PEA is not so straightforward since both
&; and ¢; coefficients must be used in its cell-centered form for the
velocity correction. This leads to the following expressions:

o
U ppA = u_?,PEA + SS {R[asyfg .S — (Tos)pr . Sj|
S

-R 1.9ps Vas-S
Ps 0ats f

(78)

+%R Qg 8-S — (ozg> Vp-S (79)
Ps pg f
Uy ppp = ug,pEA+§g{R|:ag,fg~S (ag> Vp- S:|
IOg f
ngé‘s 1 3175 oS
Pg 30‘g "
1<sg§s [ ) Vp. s“ (80)
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3.3. Continuity equation

Since Eq. (30) must be verified locally for each time step, it
is unnecessary to solve both phase continuity equations. Instead,
the disperse phase continuity equation is solved and the volume
fraction of the remaining phase is derived from Eq. (31). Thus, Eq.
(30) can be written in a semi-discrete form as:

Jo
a—ts—i—xf:oes,f(pszo (81)

where the solid phase flux may be expressed in terms of a global
phase flux ¢ and a relative flux ¢; s as:

Qs =@ + g ;Prs (82)
and
Prs = Ps — Qg (83)

Recalling Eqs. (38), (67) and (83), the global and relative flux
are rewritten as:

@ :as,f‘nbs+as,f(pfp+ag,f¢g+ag,f‘pgp (84)
Prs = Gs + @i — @g — (/’gp (85)
where

Gi= 7 +of +of +of (86)

Then, using Eqgs. (84) and (85), Eq. (82) becomes:

@Os =@+ Qg ;Prs + Ql’fp (87)
where

¢ = as.f(z)s + ag,f(bg (88)
¢r4s = Qz)s - (.Z)g (89)

Finally, Eq. (87) may be included in Eq. (81) leading to the fol-
lowing semi-discrete form of the phase continuity equation:

Jo . .
o+ Do+ Y o oty (Prs— y DffVas-S=0 (90)
f f f

where
1 dp

DEI;IM = _{s,f<'0S 8a§>f (91)
1 dp

Di'pen = —és,f<ps ao;)f (92)

Here, the fourth term on Eq. (90) is arranged to represent
the diffusion of the particles fraction with a particle pressure-
dependent diffusivity. The bounding of the phase fraction between
zero and one is achieved using an operator splitting technique
where the first three terms are solved as a pure transport equation
and the effect of the particle pressure is added implicitly. This pro-
cedure is based on the work of Weller [30] and Passalacqua et al.
[31].

The solution of the transport terms relies on the MULES inte-
grator [42,43], which is a flux corrected transport-based scheme
[44] and guarantees that the solution will be bounded between the
global extreme values. If the extremes are selected to be [0, 1], the
maximum packing limit must be enforced by the physical models.
But, if the extremes are selected to be [0, o5, max] then the MULES
integrator will bound the values towards the packing limit.

The upper limit for s imposed through MULES is subject of
discussion. If the upper limit is set at o5, max, this condition will be

satisfied rigorously and much will be gained from a stability point
of view, but the physical effect of the kinetic-frictional model on
the packing limit will be mixed up with the limits imposed nu-
merically. In this work, efforts were made to increase the numer-
ical stability by strictly imposing the bounding limits for o at [0,
1] with MULES and leaving the maximum packing condition to be
handled by the kinetic-frictional models.

3.4. Granular energy equation

The mathematical closure of the two-phase system relies on the
definition of us and ps. These parameters are modeled based on an
additive approach of the kinetic and frictional contributions. The
kinetic contribution is related to the granular energy field which
verifies a balance equation given by Eq. (14). This equation may
be rewritten in a form that is consistent with the numerical treat-
ment:

A(6) =B(9) (93)

0 /3 3
A@O) = &<§p5a50) +V. (i,osoesuﬁ) (94)

B(0) =V - (ksVO) +[(-psl : Vug) — 75 _ﬁ/ +j;]9 + (5 : Vuy)
(95)

where ¢ = ? and ¢ is a generic parameter.

It should be noticed that the first term on the right-hand-side
of Eq. (14) is split for the numerical treatment. This generates
a granular energy dissipation term due to shear stress, which is
treated explicitly (last term on Eq. (95)), and a granular energy dis-
sipation term due to normal stress, which is treated implicitly as a
reactive term (first term of the square brackets on Eq. (95)). Added
to this, the other dissipative terms ys, Jy and Js are also treated as
reactive terms for the numerical implementation.

In many applications, the dissipation due to inelastic collisions
ys tends to dominate the dissipation-production phenomena near
the packing limit. Due to its negative sign, js has a stabilizing ef-
fect on the numerical solution, being:

5 — 30— 1)a2 4000V ¢
ys=3(e 1)aeg ps8o d\ 7 V- ug (96)
p

It is clear, from Eq. (96), that special care should be taken when
the restitution coefficient e — 1 since 7% — 0 and an off-diagonal
dominance trend may arise in the discrete matrix. In order to avoid
this, a switching scheme treatment is adopted. This treatment con-
sists on setting a maximum restitution coefficient (emax) above
which numerical instabilities are expected. If the real restitution
coefficient of the problem is below this maximum value, the solu-
tion procedure is straightforward. On the other hand, if the restitu-
tion coefficient is above the maximum value, then a diffusive term
is added implicitly and subtracted explicitly. The coefficient corre-
sponding to this term is:

i , , 4 (60\°
P =3(ehax — 1 psgo N (ﬂ) -V . u (97)
Then, the granular energy equation becomes:
A(0) =B(©) + 7"(0° — 0) (98)

Therefore, the numerical difficulties of having small values of
s are avoided by adding extra numerical diffusivity with no dis-
turbance on the calculation of 6.
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3.5. The PIMPLE algorithm

The PIMPLE algorithm is a combination of the SIMPLE [40] and
PISO [41] methods, which allows the coupling between phases and
the use of under-relaxation factors to enforce the convergence of
the iterative procedure. The sequence consists of the following
steps:

1. Read the physical and numerical parameters, boundary condi-
tions and previously stored field
2. Start the PIMPLE loop and iterate until convergence
(a) Start the continuity equation loop and iterate until conver-
gence
i. Solve the solid phase continuity equation (Eq. (90)) using
the MULES integrator without the particle pressure flux
contribution.
ii. Include the particle pressure flux contribution implicitly
iii. Relax the continuity equation and solve for s, then
compute og
b) Compute K¢ according to the selected drag model
¢) Compute the granular energy equation coefficients
d) Relax and solve the granular energy equation (Eq. (98))
e) Compute s and ps according to the selected kinetic-
frictional models
(f) Construct each phase momentum matrix
(g) Relax, add the explicit terms and solve the momentum
linear system for the phase velocity predictors (Egs. (72)
and (73))
(h) Start the pressure corrector loop and iterate until conver-
gence
i. Interpolate the momentum matrix coefficients and the
phase fraction fields on cell faces
ii. Construct the right-hand-side and the pressure diffusion
coefficient of the pressure equation
iii. Start the non-orthogonal correction loop and iterate a
predefined number of times
(1) Construct and solve the pressure equation (Eq. (68))
iv. Add the pressure contribution and correct the phase
fluxes (Eq. (76) and (77))
v. Relax the pressure field
vi. Reconstruct the cell-centered phase velocities (Eqs. (78),
(79) and (80))
3. Restart the sequence for the next time-step.

(
(
(
(

4. Validation tests

The following test cases are selected to study the numerical
performance of the solver. First, a one-dimensional particles set-
tling simulation is carried out. Some numerical challenging condi-
tions arise at the limits of maximum packing and phase disappear-
ance. Secondly, a two-dimensional bubbling fluidized bed problem
is addressed. Here, the time-averaged particles distribution is com-
pared with the results of the literature.

4.1. Particles settling

This test consists of a vertical tube with a uniformly distributed
concentration of particles which, under the effect of gravity, start
to settle at the bottom (Fig. 1). The tube has a height of 0.3 m
with an initial concentration of solids of 0.3. The gas density is
1.2 kg/m3® with a dynamic viscosity of 1.8 x 10~ Pa s, while the
solid phase is constituted by particles of 0.4 mm of diameter, has
a density of 2000 kg/m?3 and a restitution coefficient of 0.6. The Gi-
daspow drag model is used and the granular energy balance equa-
tion is solved along with the Schaeffer frictional model.

(@ (b) (©)

Fig. 1. (a) Uniformly distributed mixture of particles and gas. (b) A transient state
with pure gas at the top, maximum particles packing at the bottom and mixture
in the middle. (c) Fully settled state with complete segregation of pure gas and
particles at maximum packing condition.

The problem is discretized using 30 uniform cells and a time
step of 1 x 10~ s. A second order scheme is used for the time dis-
cretization, while a second order upwind is used for the divergence
terms interpolation. Maximum residuals of 1 x 10~% and 1 x 107
are allowed for the momentum and continuity equations respec-
tively. This is achieved with 20 PIMPLE loop iterations and 3 pres-
sure iterations per time step. No significant difference was found
in the convergence rate using both drag coupling methods.

In Fig. 2 results for three stages of the settling are presented
and compared with the results obtained by Passalacqua et al. [31].
A good level of agreement was achieved with stable transitions and
a complete segregation of phases was reached at t = 0.25 s.

The distribution of particles at the settled state is related to the
range of applicability of the frictional effects given by the corre-
sponding model. In this case, the Schaffer model was adopted in
which the frictional effects occur at o i, = 0.61. This produces
a nearly constant distribution of particles at the bottom of the
tube. Whereas, if the Johnson-Jackson model had been used with
Qs min = 0.5, the solids distribution would have a smooth variation
at the middle of the tube. This behavior could also be predicted by
assuming a force balance at the settled state given by:
3(135,;1{10 _ 3(155551& 38(;5 ~ peatsg (99)
here the forces given by the shared pressure and the kinetic con-
tribution to the particle pressure have been neglected.

The results of solving Eq. (99) for a prescribed volume fraction
of s = 0.3 at y = 0.15 m are shown in Fig. 3.

Regarding the onset of the phase settling at both ends of the
tube, the MULES integrator was modified from the original distri-
bution of OpenFOAM®. This was done to allow local maximum val-
ues for problems with phase accumulation [43,49,50]. In this par-
ticular case, it is expected that the first cell at the bottom of the
tube presents an increasing value of the solid volume fraction field
until the maximum packing is achieved.

4.2. Bubbling fluidized bed

A two-dimensional bubbling fluidized bed problem with Gel-
dart B particles based on the experimental setup of Makkawi et al.
[4] is studied (Fig. 4). All the system parameters, models adopted
and dimensions are summarized in Table 1.
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Fig. 2. (a) Solid fraction distribution along the tube height at t =0.1 s, (b) at t =
0.15s,and (c)at t =03 s.

A grid of 14 x 100 cells is adopted to simulate this problem.
For this configuration, with Geldart B particles, Parmentier et al.
[2] showed that this refinement is high enough to accurately pre-
dict the bed expansion and the solid volume fraction profile in the
cross-axial direction when compared to the experimental predic-
tions of Makkawi et al. [4].

The Johnson-Jackson boundary conditions [20] are used to de-
scribe the behavior of the solid phase in contact with the walls:

0Usy 7T Oy 36y
— = — - u 100
Ix 6 s man bwpsLo TR 5w ( )
00y, _ T s & ,oig ’/39W|u E
ox 6 o5 max v Ks 0 Ms s
T Osw 24 Ps 3
— 1- — 101
+7 as,max( ew) pRd 365 (101)
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Fig. 3. Numerical and analytical predictions of the volume fraction profiles at the

settled state for different frictional models.
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Fig. 4. Bubbling fluidized bed problem scheme.

Table 1

Bubbling fluidized bed problem general parameters.
Description Value
Gas density 1.4 kg/m?
Gas viscosity 1.8x10° Pa s
Solid density 2500 kg/m?
Particles diameter 350 pm
Restitution coefficient between particles 0.8
Width (W) 0.138 m
Height (H) 1m
Bed initial height (hy) 02 m
Grid 14 x 100 cells
Time step 1.0x10%s
Overall simulation time 30s

Time discretization
Divergence interpolation
Drag model

Wall solid velocity

Wall granular energy

2nd order implicit
limited central difference
Gidaspow
Johnson-Jackson BC
Johnson-Jackson BC

Vertical inlet gas velocity (Uyy) 0.54 m/s
Outlet pressure 0 Pa
Initial bed solid fraction 0.58
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Fig. 5. Convergence rate of the velocity field for both drag coupling methods.

These expressions represent Robin boundary conditions and are
usually associated with rough walls, where ¢, is the specularity
coefficient. The fully slip condition correspond to ¢, =0, while
¢w =1 corresponds to very rough walls. The particle-wall restitu-
tion coefficient e, is a measure of how elastic is the collision be-
tween particles and the wall, where e,, = 1 represents a perfectly
elastic collision. Benyahia et al. [51] mentioned the lack of litera-
ture reporting realistic values of such coefficients, and its impact
on the hydrodynamic behavior of fluidized beds is a current topic
of discussion [52]. For the present case, ¢y, is set at 0.6 which rep-
resents intermediate rough walls which may be considered more
realistic than the usual slip conditions corresponding to perfectly
smooth walls. Also, e, is taken arbitrarily as 0.8 since it has a
small impact on the macroscopic results, such as the averaged solid
phase velocity profile and bed height [52].

A maximum allowable value of 1 x 10-8 for the gas phase ver-
tical velocity residuals is taken arbitrarily as a convergence criteria.
For the problem conditions, this criteria is met in less than 20 PIM-
PLE loop iterations. The measure was taken at t = 0.01 s after the
fluidization start-up and the convergence of the velocity residuals
is depicted in Fig. 5. Only a slight difference between both meth-
ods is appreciated (around one iteration per time step).

Oliveira et al. [35] showed that, for a one-dimensional air-water
fluidized bed problem, the velocity residuals for the PIM and PEA
require the same number of iterations to converge, under low to
moderate coupling conditions (this behavior is verified in Fig. 5).
However, for higher values of the drag coefficient, the PIM fails
to converge to the prescribed precision. Karema et al. [38] ex-
tended the one-dimensional analysis of Oliveira et al. to a two-
dimensional fluidized bed problem and studied the convergence
of both methods for low to moderate coupling regimes. They pro-
posed an estimation of the characteristic time scale of the inter-
phase coupling which was used to calculate a non-dimensional
drag coefficient similar to the one proposed by Oliveira et al. The
time step adopted by Karema et al. for all the studied conditions
are below the characteristic time scale of the interphase coupling,
therefore, both methods predict reasonably well the coupling be-
tween phases.

In the present work, the analysis is advocated to stronger cou-
pling conditions. This is achieved by adopting a smaller particle
diameter, which are in the range of practical applications. The use
of the particles diameter as a variable parameter has the advantage

vertical gas velocity residuals - d =35 pm
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Fig. 6. Convergence rate of the velocity field for both drag coupling methods with
dp =35pum.

that, with the exception of some KTGF models, it only affects the
calculation of the drag coefficient.

The characteristic time scale is calculated according to the cri-
teria of Karema et al. and the most demanding condition is met at
the packed region, where the Ergun model is valid. Therefore, the
characteristic time scale (ts) and non-dimensional drag coefficient
(Cq) are:

1
Mg Pglmy

te = [150——=— +1.75———— (102)

sc |: amfpsdf, psdpamf}

= PsUnf (103)

Cj=—-—"—"—
d tscg€(0s — Pg)

where the velocity of minimum fluidization u,,; = 0.26 m/s and
the gas volume fraction at minimum fluidization o,y = 0.39. For
the problem conditions, Eqs. (102) and (103) lead to:

tse = 0.041s, C; = 1.66 (104)

The time step is still below the characteristic time scale and the
non-dimensional drag coefficient is an order of magnitude below
the value at which the convergence problems of the PIM arise (as
reported by Oliveira et al.). This explains the similar convergence
trend of both coupling methods. However, for smaller particles, the
drag force magnitude becomes dominant and the convergence of
the PIM is compromised, as depicted in Figs. 6 and 7.

For these conditions, the characteristic time scale and drag co-
efficient are:

dp =35um — te = 4.4 x 1074, Cy = 154.48 (105)

dp =3.5um — tsc = 4.4 x 107%s, Cy = 15333.5 (106)

The first alternative correspond to Geldart A particles (dp =
35 wm and ps = 2500 kg/m3), for which the characteristic time
scale is slightly higher than the time step adopted, but the drag co-
efficient is beyond the limit of 10, which explains the difficulties in
the velocity convergence for the PIM. This behavior is emphasized
for the extremely fine powder (d, = 3.5 um), where both the time
scale and the drag coefficient are clearly beyond the limit. In these
conditions, the PEA requires more than 50 iterations to converge
to machine precision, while the PIM cannot converge to the pre-
scribed tolerance. For both particles diameter, a smaller time step
is required to achieved convergence with the PIM. However, due
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Fig. 7. Convergence rate of the velocity field for both drag coupling methods with
dy =3.5 pm.
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Fig. 8. Time-averaged solid volume fraction profile at y = 0.16 m.

to the low scalability for parallel computing of the problem (~103
to 10* cells), the time step reduction makes the adoption of this
method unaffordable.

In Fig. 8, time-averaged solid fraction profiles are shown and
compared against the simulations of Passalacqua et al. [31]| and
Parmentier et al. [2] with OpenFOAM® [34] and MFIX® [39] re-
spectively. Here the maximum packing is set at os max = 0.63 and
the angle of internal friction ¢y is set at 28°, while the minimal
fraction at which frictional effects occur is i, = 0.61 accord-
ing to the Schaeffer frictional model. The particles distribution was
taken at a height of 0.16 m from the bottom of the bed and a time
average was done between 10 and 30 s from the start of the sim-
ulation to avoid the effects of the fluidization start-up.

The solid vertical velocity profile at y =0.16 m is compared
with the simulations performed by Li [53] as it is shown in Fig. 9.
The predicted results shows a qualitative agreement with a typi-
cal pattern of two counter-rotating loops with particles moving up-
wards in the center region and a downward recirculation near the
walls. Here it is important to remark that, although the original
work of Makkawi et al. [4] does not present experimental results
for the solid phase velocity, differences may arise in time-averaged
solid phase velocity profiles when 2D simulations are compared
with pseudo-2D experiments [54,55].

The bed expansion is compared with the results presented by
Passalacqua et al. [31] using the Gidaspow drag model (Fig. 10),

0.8
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Fig. 9. Time-averaged solid vertical velocity profile at y = 0.16 m.
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Fig. 10. Time-averaged solid volume fraction along a vertical center line compared
with Passalacqua et al.
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Fig. 11. Time and spatial-averaged solid volume fraction along a vertical line com-
pared with Parmentier et al.

and with the results presented by Parmentier et al. [2] using the
Wen-Yu drag model (Fig. 11). The results show a good agreement
with the simulations done by the reference authors.

Fig. 12 shows the impact of the drag force models on the flu-
idized bed expansion. Here, the Gidaspow model predicts the high-
est expansion, followed by the Syamlal model and the Wen-Yu
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Fig. 12. Time-averaged solid volume fraction distribution for different drag models.

model, which is in agreement with the observations of Loha et al.

3]
5. Conservative analysis

In the previous section, the general performance of the solver
was tested for two standard gas-particle problems and some nu-
merical issues were addressed. The purpose of this section is to
highlight the differences between the various levels of conser-
vativeness of the advective term formulation on the momentum
equations and its impact on the velocity field predictions.

5.1. One-dimensional approach

The finite volume method derives from the integral form of
the conservative laws. Thus, in the spirit of obtaining a weak so-
lution of the discrete problem, the use of a conservative method
provides some degree of consistency in a mathematical sense. The
Lax-Wendroff theorem proves that, if the approximation done by
a conservative method converges to some function as the mesh
is refined, then this function is a weak solution [32]. In fact, in
problems where shock waves are involved, the use of a conserva-
tive method based on the integral form of the conservation laws,
is essential to accurately predict the shock wave velocity. While
no problems should arise for the calculation of smooth functions,
nonconservative methods fail to converge to a weak solution when
discontinuous functions are being transported. This behavior is il-
lustrated by Leveque [32] for a one-dimensional transport of a step
function using the Burgers equation. It is shown that the conser-
vative method gives a wave velocity prediction in closer agree-
ment to the analytical solution with respect to a nonconservative
method. For a single time step, the difference in the predicted so-
lution can be quantified as:

n

1 w -t \* 1
1= (047~ )= Savar( B ) S
(107)

where the subscript k is the cell index, n is the time step index,
the subscript C correspond to the conservative formulation and
the subscript NC to the nonconservative formulation. Also, the sub-
script x represents a discrete spatial derivative.

Here, upwind and forward-Euler schemes were employed for
the spatial and temporal discretizations, respectively. It is clear
that the differences in the velocity predictions become small for
smooth solutions. Also, d; > 0 which indicates that the nonconser-

vative method always gives a smaller prediction of the shock wave
velocity.

This conceptual problem clarifies the importance of using a
conservative method to solve problems in presence of shock waves.
However, the extension of these concepts to the momentum equa-
tions of the Eulerian multiphase model still deserves a discussion.
For a conservative approach, Eq. (32) can be rewritten in the fol-
lowing form:

%(aiui) + V. (uu) =Ry (108)
where R; represents all the terms on the right-hand-side of Eq.
(32) (which do not play a relevant role in this analysis). It is re-
called that p; has been taken out of the derivative operators. This
does not alter the conservative nature of the expression since p; is
always considered a constant for the purpose of this model.

It is a common practice to correct the momentum equations
by subtracting the corresponding phase continuity equation. This
is done to avoid errors in the solution of the momentum equation
due to continuity imbalances [33,56].

Then, Eq. (108) becomes:

%(aiui) + V. (quu;) —u; oo; _ w;V - () =R, (109)

ot
Eqg. (109) will be referred as the conservative form from now on.

The second and fourth term is approximated using the finite vol-
ume method as:

/ V. (ot,-u,-u,v)dV - / u,-V . (ot,-ui)dV ~ /ot,-u,—ui -dS
v v S

_ui/aiui dS~ ) (W) i — W Y g (110)
s 1 f
and the following semi-discrete form is obtained:
d 8C(j
a7 (@) — Wi + ) ()i —w; Yy a0 =R (111)
f f

Here u; and «; have been indistinctly used to represent both
continuous and cell-centered discrete variables. This is the formu-
lation currently adopted in many commonly known multiphase
solver codes [34,39,57]. This may be expressed in OpenFOAM code
as:

fvVectorMatrix UEqn

(

fvm::ddt (alpha, U)

- fvc::Sp(fvc::ddt(alpha), U)

+ fvc::div(alphaf*phi, U)

- fvc::Sp(fvc::div(alphaf*phi), U)
- fvc::8p(Rc)

)

Here ddt is the time-derivative operator, Sp is used to refer to
the source or reactive terms and div is the divergence operator.
The Rc term usually represents the diffusive, reactive and source
terms in a Navier-Stokes problem, but here it is expressed as a sin-
gle term for the sake of clarity. The advective terms are discretized
explicitly (with the fvc operator) to simplify the subsequent
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analysis. Also:

surfaceScalarField alphalf = fvc::

(alphal);

interpolate

surfaceScalarField phi =
& mesh.Sf();

linearInterpolate (U)

where the interpolate operator takes cell-centered values as
inputs and returns an interpolated value in faces according to the
interpolation scheme selected by the user. In OpenFOAM, the flux
phi is implemented as a linear interpolation of the cell-centered
velocities.

On the other hand, a nonconservative formulation may be
obtained by operating with the second and fourth term of Eq.
(109) which leads to the following form:

80{,’
ot

Eq. (112) will be referred as the nonconservative form. This form
is somehow unnatural for numerical methods based on the inte-
gral form of the conservative laws since the Gauss theorem does
not simplify the spatial derivative operators and it is unused in the
available codes with few exceptions [58]. The semi-discrete form of
Eq. (112) is obtained by considering:

/ oiu; - Vu,-dV ~ oiu; - / Vu,-dV =o;u; - /uidS ~oiu; - ZSui,f
v v S I

d
pr (aw) + o - Vu; —u;— =R; (112)

(113)

thus arriving to

ad 0w
ﬁ(aiui) — Uiaitl + o5u; - ZSui_f =R (114)
f

In OpenFOAM code this becomes:

fvVectorMatrix UEqn
(

fvm::ddt (alpha, U)

- fvc::Sp(fvc::ddt(alpha), U)

+ fvc::div(alphaf#*phi, U)

- fvc::8p(fvc::div(alphaf*phi), U)
- fvc::Sp(Rc)

)

Park [33] showed the differences of using both formulations
(Egs. (111) and (114)) in a few test cases, and emphasized on the
importance of using a formulation as conservative as possible to
accurately predict the velocity field. This analysis is resumed in
this work with the incorporation of a different nonconservative for-
mulation: the phase-intensive form [29,30]. This formulation can be
obtained by rewriting the scalar product on the second term of Eq.
(112):

w 3% _

"ot

The semi-discrete version of this formulation is obtained by
rewriting the second and third term on Eq. (115) as:

/ aiV . (u,-ui)dV — f a,-ui(V . u,-)dV ~ ai/u,-u,» -dS
14 Vv S

d
ﬁ(aiui) +o; V- (uu) — i (V-wy) - R; (115)

_aiui/ui'ds%aizui,ﬂoi -y g (116)
s f f
and finally
d Bai
7 (@) — Ui+ D i — oy ¢ =R (117)
f

f

which may be written in OpenFOAM code as:

fvVectorMatrix UEqn
(
fvm::ddt (alpha, U)
- fvc::Sp(fvc::ddt(alpha), U)
+ ((alpha*U) & fvc::grad(U))
- fvc::Sp(Rc)
);

The analysis done by Leveque for the Burgers equation may be
extended to the Eulerian two-phase momentum equations for one-
dimensional problems. A fully discrete version of the conservative
form is obtained using an upwind method for the face interpola-
tions (with the exception of the flux ¢ which is always linearly in-
terpolated) and a forward-Euler for the temporal derivatives. Then,
Eq. (111) becomes:

4 n¢,n+l n 4 n¢yn n-1 nyn n
Ap% it —up) - Euk(ak —ap )+ (@"u )k+5‘/’1<+%
+ (a”u”)kf%wl':_% - u;}al’:+%<p£+% - u,’ja,’g_%go,’:_% =R}V (118)
where the fractional index represents face interpolations of the

cell-centered values. Thus:
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This leads to an expression for the predicted velocity at the
next time step given by:
At 1,

05"71
n+1 __qn k =/ 0
(u" )C - u"<2_ of )+ Axap
k k

At altg—l n)2 n 2
~ e |0 ()]
K
The same procedure may be performed for the nonconservative
formulations (Eqs. (114) and (117)), leading to:

or! At 1 At
n+1 __n Tk =2t Y opn o &/
(u" )NC =t <2 of ) T Ax of Ry AX

an—l
n+1 _ qn _ 'k
() = U (2 an ) *

At 1 2 2

- Ej[(“Z) — (uiy) ]

where the subscript C correspond to the conservative form, the sub-

script NC to the nonconservative form and the subscript PI to the

phase-intensive form. The phase index has been omitted for sim-

plicity. The reader may notice that Eqs. (120)-(122) are equal but

for the last term. Therefore, any difference between the velocity
predictions would be related to this term.

In order to illustrate the relative accuracy of the three meth-
ods, a one-dimensional dam break problem is considered. Here, the
shallow water equations are used to predict the velocity u and wa-
ter level o (which plays a similar role to the volume fraction in the
two-phase model):

dar
ot

(119)

(120)

up(up —up_y) (121)

Aty
Axafl k

(122)

+ %(au) =0 (123)



C.M. Venier et al./Computers and Fluids 133 (2016) 151-169 163
| . T -
Ii-_- —— e e . I
| H
h LI '
.................... analytical solution / | v | |
conservative form / : | |
——————— nonconservative form | : i
— = — - phase-intensive form ! | ! | I
1
/ I : ; |
/ | 1 | I
I | : [
41 / | :_1_ I
1 N |
3 I =%
/ _ - -
IEA 24 I— = .= - -
=] | - T
[ | _ -
14 | _ 'L—_ =
0 T T T T T
-4 =2 0 2 4
x [m]
11
0.8 1
% 0.6
E
= 0.4
0.2 1
0 T T T T T
—4 -2 0 2 4
x [m]
Fig. 13. Liquid level and velocity at t = 2 s for different formulations.
2
a 9, 5, 0 /1 1 up —uy 4 1 )
g () + o () + ﬁ(55,@[ ) —0 (124)  dpr e = 5 AxAL( H ) = D AXAE () (127)
with the following initial conditions: 1 1
u=0, xe (=5;5) de_nc = de_pr + dp_nc = EAXAt[(&) ay (u?)y + (ux)z] (128)
3, xe (-5;0) (125) There are several observations to be made about these expres-

-

While this model is much simpler than the two-dimensional
multiphase Eulerian model, it is possible to obtain an analytical
solution to compare with the numerical predictions. This may be
done through an eigenvalue analysis, which leads to an expression
for the shock wave velocity given by s = u + g [32]. The solution
at a given time for different advective formulations is shown in
Fig. 13, where a rarefaction wave travels to the left and a shock
wave travels to the right. For smooth variations of the transported
fields (at the rarefaction wave), no difference is appreciated be-
tween formulations. But, at the shock wave, the conservative form
clearly gives a higher and more accurate wave velocity prediction.

The differences on the numerical solutions among the various
levels of conservativeness considered in a single time step can be
quantified by subtracting Eqs. (120)-(122) with each other:

1Aw< 1 ) ()"~ ()" ( )

1, xe€[0;5)

n n
O =04
AX

de-pr =5 al AX

(126)

1 1
iAxAt (&> o (U)x

sions. In all cases, these differences increase when there are dis-
continuities in u and «. The reader may notice that Eq. (127) is
equal to Eq. (107). This is expected since the advective terms for
the two-phase model and the Burgers equation are the same, ex-
cept for the presence of «;. However, as it is clear from Eq. (127),
this field does not have an impact on the differences between the
velocity predictions of the phase-intensive form and the nonconser-
vative form. Also, this expression is always positive when the ve-
locity field varies, which means that, for a one-dimensional prob-
lem, the phase-intensive form always predicts a higher wave veloc-
ity than the nonconservative form. The analysis of Eqs. (126) and
(128) is not as straightforward. The differences of both nonconser-
vative formulations with respect to the conservative form have the
influence of the volume fraction field variation. Therefore, these
expressions may take both positive and negative signs depending
on the relative “jumps” of « and u fields.

The phase-intensive form has been largely adopted in two-phase
solvers as a robust way of dealing with the phase disappearance in
the momentum equations, but little is said about its accuracy with
respect to a conservative formulation. Park et al. [33] analyzed the
differences between the conservative form and nonconservative form



164 C.M. Venier et al./Computers and Fluids 133 (2016) 151-169

with practical examples. However, as shown in Eq. (127), the dif-
ferences between the phase-intensive form and nonconservative form
may be significant. In fact, depending on the studied case, the
phase-intensive form may predict closer results to the conservative
form than the nonconservative form (as shown in the previous ex-
ample). In general:

(129)

which means that, with respect to the conservative form velocity
solution, the phase-intensive form will predict a more accurate re-
sult than the nonconservative form. However, this is not guaranteed
when « and u? have opposite variations. In these conditions, small
values of oy with respect to uy will favor the accuracy of the phase-
intensive form since:

ox(u?)x = 0 = |de_nc| = |dc_pi]

lim |dc_p]| =0 (130)
ay—0
and
lim |dc_nc| = |dpi_nc] (131)
ax—0

5.2. Phase disappearance treatment

The limit where «; tends to zero is an issue that is closely re-
lated to the momentum equations handling since, in this condition,
the equations in its conservative form become singular. This trans-
lates into an impediment for the iterative procedure to converge to
a prescribed tolerance.

This problem may be avoided by setting the disperse phase ve-
locity equal to the velocity of the continuous phase in those cells
where the particles phase fraction gets below a certain critical
value. A natural way to achieve this is to preserve the drag force
as a non-zero term in the momentum equations when «; tends to
zero. Thus, the phase momentum equation is reduced to:
Kﬁ(ug—us) =0 (132)
Ps
If Ks¢ # 0, then us = ug, which may be guaranteed by computing
the drag coefficient (for example using the Wen-Yu model) as:

—1.65
Cdas,lowag Pg

Kig = 0.75 0,

max(lug - l.l5|, Unlow) (133)

t=0s t=0.25s t=0.5s t=0.75s

t=1s

T

where o 1o and U, 1o, are some minimal residual values to avoid
singular expressions. This method is currently implemented in
OpenFOAM® [34]. While this method may be considered physi-
cally correct (the disperse phase velocity tending to the continuous
phase velocity as the disperse phase tends to disappear) it has its
drawbacks. For example, in a fluidized bed problem, the particles
are carried out of the domain when o < a1, In this condition,
the solid phase takes the velocity of the gas phase, which would
be correct when as — 0.

An alternative to avoid a singular momentum matrix without
the previous issue is to compute us from a force balance between
the drag, buoyancy, particle pressure and shared pressure forces.
Thus, the particles momentum equation may be written as:

S

o 1
0= _%VP - ;Vps (as.low) + s 1ow8
s

+ Ks‘g(iﬂ(ug — ug)labeleq : 5.28
S

This method is somehow intrusive since all the remaining terms
of the momentum equation are being modified from its correct
continuum form. The phase-intensive form gets a relative advan-
tage in this issue by following the procedure proposed by Oliveira
et al. [29]. The reader may notice that the first two terms on Egs.

(111), (114) and (117) can be rewritten as:

P TR

(134)

(135)

This allows a subsequent division by «; in all terms of Eq. (112).
Thus, the procedure isolates the singularity in the solid stress ten-
sor term, which becomes proportional to Va/as and can be easily
handled by numerical manipulation.

In this work, in order to maintain the same conditions for
comparison between the different advective term treatments, a
common criterion is adopted. The phase disappearing limit is ad-
dressed by setting the phase velocity to zero when the volume
fraction gets below certain critical value. This should not be seen
as an ideal solution but as a way to isolate the interest of the cur-
rent study. Moreover, while the different transient term formula-
tions also contribute to differences among the numerical predic-
tions, the transient terms will be formulated as presented in the

t=1.25s t=1.5s t=1.75s t=2s

Fig. 14. Transient evolution of the Rayleigh-Taylor problem.
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Fig. 15. Amplitude growth simulated against the linear prediction.

left-hand-side of Eq. (135). This is done to isolate the effect of the
spacial term conservativeness.

5.3. Test cases

The exact difference in the velocity prediction of each formula-
tion has been established and quantified for a given discretization
on a one-dimensional problem. The following test cases are pre-
sented to illustrate how the differences appear on two-dimensional
problems, where the shock waves are transported in multiple di-
rections. The same conclusions can be extended to this problems
by considering that the discrete system for the phase momentum
balance may be expressed as:

u n+1 u n .
(i) een(i) +(2)

where A and B are the discretization matrices, u and v are the ve-
locity vectors containing the cell values of the horizontal and verti-
cal component respectively and ry and ry contain the source terms

(136)

conservative form
————— nonconservative form
————— phase-intensive form

2x 1x

for each component. Following the same explicit discretization in
time as for the one-dimensional case, different velocity predictions
u™1 and v"*! are expected due to the matrix of coefficients B
resulting of the different discretization procedures given by Egs.
(111), (114) and (117).

Unlike the one-dimensional dam-break problem, no analytical
solutions are available for the following examples. Nonetheless,
there are still features (i.e. mesh convergence analysis and exper-
imental data) that may be looked into in order to determine the
accuracy of each formulation.

5.3.1. Rayleigh-Taylor instability problem

A Rayleigh-Taylor instability problem is addressed using the
Eulerian two-phase model. The problem consists of two fluid
phases initially segregated in a vertical enclosure. The dense phase
is purely concentrated in the upper region as depicted in Fig. 14.
An initial disturbance on the interphase (described by Eq. (137))
is amplified by the effect of gravity forming a mushroom shape.
The physical parameters of the problem are ps = 10.0kg/m3, pg =
1.0kg/m3, vs = vy = 0.01m/s? and the domain is a rectangular con-
tainer of 1m x 5m.

2mX

89 = —0.001 [cos(T - n) + 1] 445 (137)

Different mesh refinements have been considered for this prob-
lem: 32 x 160 (4x), 64 x 320 (2x), 128 x 640 (1x), 256 x 1280
(1/2x) and 512 x 2560 (1/4x).

The initial growth of the interphase amplitude at the initial
stage [59] is given by:
8 = §p cosh(yt) (138)
Ps — Pg
Ps + Pg

is the Atwood number and A is the

where y =,/ AgA, A=

wave number.

During the linear evolution stage, a good level of agreement is
found between simulation and theoretical predictions for the 1x
mesh (Fig. 15).

The comparison between the conservative and nonconserva-
tive formulations is performed using upwind interpolations and an

1/2x 1/4x

Fig. 16. Contour plots (g = 0.5) with different mesh refinements and formulations at t = 1.5 s.
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Fig. 18. Single bubble growth problem scheme.

explicit treatment of the advective terms. The solution tends to
differ at the latter stages of the mushroom formation, where no
theoretical solution is available. Nevertheless, the accuracy of each
formulation can be studied through a mesh convergence analysis.

t=0s t=0.25s t=0.1s

Table 2

Physical models and parameters.
Parameter Value
Gas density 1.2 kg/m?
Gas viscosity 1.84x10° Pas
Solid density 2660 kg/m?
Particles diameter 500 x 1075 m
Restitution coefficient 0.95
Width (W) 0.57 m
Height (H) 1.0 m
Initial bed height (h;) 0.5 m
Jet gap width (wjer) 0.015 m
Grid 152 x 200 cells
Time step 1.0x10%s

Drag model
Frictional stress model

Gidaspow
Srivastava and Sunderasan

Packing limit 0.65
Minimal frictional value 0.63

Jet inlet velocity (Ugr) 10.0 m/s
Fluidization velocity (Upn) 0.25 m/s
Initial bed solid fraction 0.598

Fig. 16 shows the interphase shape for different mesh refinements
and formulations at t = 1.5 s.

It is clear from Fig. 17 that all formulations tend to the same so-
lution as the mesh is refined, but the conservative form always pre-
dicts the fastest growth of the interphase and has closer agreement
with the mesh converged solution. Moreover, the conservative form
for a coarse mesh of 1x predicts an amplitude similar to the pre-
dictions of the nonconservative formulations with the finest mesh
(1/4x). Therefore, the adoption of the conservative form could be
used to minimize the computational costs involved in predicting
the amplitude evolution for a given accuracy.

5.3.2. Single bubble growth

A two-dimensional single air bubble growth and detachment in
a particles fluidized bed is now considered. This problem consists
of an air injection at the bottom of a cylindrical container partially
filled with particles at a state of minimum fluidization (Fig. 18).

The geometry and general setup of the problem are based on
the experiment performed by Kuipers et al. [60] and are summa-
rized in Table 2.

Patil et al. [9] showed the need to take into account the fric-
tional contribution to compute the global stress tensor in order
to accurately predict the bubble size and bed expansion. More-
over, Passalacqua et al. [61] showed that commonly used fric-
tional models fail to correctly predict the bubble diameter, while
a modified Srivastava-Sunderasan model (with oy, = 0.63 and
os max = 0.65) exhibits closer agreement with the experimental
results.

t=0.15s t=0.2s t=0.25s

Fig. 19. Transient evolution of a single bubble growth problem.
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Fig. 20. Bubble shapes at t = 0.22 s for (a) the conservative form, (b) the nonconservative form and (c) the phase-intensive form

Table 3
Detachment time for different mesh refinements and differ-
ent formulations.

Exp 0.170 s

Mesh refinement C NC PI

1/2 x (304 x 400 cells) 0.176 s - 0.201 s
1x (152 x 200 cells) 0182s 0.182s 0.205 s
2x (76 x 100 cells) 0.180s 0.196 s 0.194 s
4x (38 x 50 cells) 0.182s 0200s 0.198s

This test case introduces the complexity of the particles inter-
action to the conservative method analysis. The transient evolution
of the air bubble until the detachment from the bottom is shown
in Fig 19.

Fig. 20 shows differences between formulations in terms of
the bubble shape and detachment time. It is appreciated that the
phase-intensive form predicts a more stretched and pointy bubble
while the nonconservative form predicts a more round bubble. The
conservative form predicts a shape that is in between these two.
Moreover, several mesh refinements were tested and, from Table 3,
it is appreciated that the conservative form predicts the lowest de-
tachment time with the closest agreement with the experimental
data reported in the literature [60].

5.3.3. Fluidized bed

The bubbling fluidized bed problem studied in the previous
section is now tested using the conservative form and the phase-
intensive form. Figs. 21-23 show time-averaged particles distribu-
tion and vertical velocity for both formulations. Slight differences
in the particles concentration are observed in the upper region of
the bed. However, the differences are minimal in the mid region,
and the predicted bed expansion with both formulations are in
agreement. Also, the results for both formulations of the averaged
particles velocity and volume fraction in the cross-axial direction
are in an acceptable agreement.

0,7
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=
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Fig. 21. Averaged solid volume fraction at y = 0.16 m for different formulations.
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Fig. 22. Averaged solid vertical velocity at y = 0.16 m for different formulations.
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Fig. 23. Averaged solid volume fraction along the bed height for different formula-
tions.

Unlike the previous test cases, in this problem, the bubbles for-
mation, growth and coalescence induce velocity waves that travel
in multiple directions. Due to this, the time averaging practice
tends to mitigate any substantial difference between the predic-
tions of the advective term formulations.

6. Conclusions

An Eulerian multiphase finite volume-based solver was devel-
oped and implemented on the OpenFOAM® platform. The solver
was tested exhaustively against a particles settling and a two-
dimensional fluidized bed problem. Its numerical performance was
explored under demanding conditions such as single-phase and
maximum packing limits, shock wave transport, among others.
Also, in the fluidized bed problem, various models of the drag co-
efficient were used for which the averaged solutions have a rec-
ognized sensitivity. In all cases, the results were stable during the
transient states and with close agreement with the literature.

The open-source feature of the code has allowed to implement
and test the performance for different drag coupling methods. The
results showed that the PEA and PIM have a satisfactory perfor-
mance for moderate coupling conditions. However, the use of the
PEA becomes essential for the solution of highly coupled flows,
commonly observed in pneumatic transport problems, bubbling
fluidized bed with Geldart A particles, among others.

A conservative analysis of the advective term of the momen-
tum equations was also performed. Three different formulations
were tested in problems with discontinuities on the velocity field.
A one-dimensional analysis was addressed and the exact differ-
ence between the velocity predictions was quantified for a single
time step. It was found that the phase-intensive form always pre-
dicts a higher shock wave velocity than the nonconservative form
and the difference with the conservative form prediction depends
on the relative variations of o and u. The conditions at which
these differences minimize were also discussed. Then, the analy-
sis was extended to a series of two-dimensional problems. First, a
Rayleigh-Taylor instability problem was considered. Here, a mesh
convergence analysis was performed to evaluate the development
of the mushroom shape formed by the interphase. It was found
that, for coarse meshes, the conservative form gives closer results
to the mesh converged solution. Next, a bubble growth in a partic-
ulate fluidized bed problem was addressed. Results show that the
phase-intensive form predicts a more stretched bubble while the
non-conservative form predicts a flatter and wider bubble. The con-
servative form falls in between those shapes, but with a time of de-
tachment lower than the other formulations. This is in agreement

with the experimental results of the literature. Finally, the conser-
vative form and phase-intensive form were compared in a bubbling
fluidized bed problem. It was shown that the effects of these for-
mulations have a low impact on macroscopic results, such as the
time-averaged particles distribution. The analysis of these prob-
lems showed that:

o The conservative form adoption is essential for unsteady prob-
lems with presence of shock waves (which are commonly found
in many multiphase applications). The implementation of this
formulation has to be done along with a proper handling of the
phase disappearance condition.

o The nonconservative form is not recommended for multiphase
applications since the predicted velocity field is usually far from
the real solution.

o The phase-intensive form fails to accurately predict the velocity
fields for detailed unsteady conditions when shock waves are
present, but, for the analysis of averaged particles distributions,
it gets a satisfactory performance in comparison with the con-
servative formulation. Added to this, the issues related to the
phase disappearance are easily handled with this formulation.
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