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a b s t r a c t 

An Eulerian two-fluid numerical solver with kinetic-frictional theory for granular flows has been imple- 

mented and validated on the open-source code platform OpenFOAM®. Several aspects of the numerical 

treatment are discussed: maximum packing and phase disappearing limits, phase accumulation, cell-face 

fields interpolation and reconstruction practices, drag coupling approaches and different levels of con- 

servativeness of the momentum equations. These last two topics are studied in depth. On the drag cou- 

pling analysis, it is observed that the partially implicit method (PIM) exhibits a convergence performance 

similar to the partial elimination algorithm (PEA) for a Geldart B particulate fluidized bed problem. But, 

for strongly coupled conditions (e.g. smaller particles) the use of the PEA becomes essential to meet a 

prescribed convergence criteria. Secondly, the conservativeness of the advective term of the momentum 

equations is analyzed by comparing three formulations of the advective term (the conservative form , the 

nonconservative form and the phase-intensive form ). The impact of each formulation on the velocity field 

prediction is quantified for a shallow water problem and then extended to two-dimensional gas–liquid 

and gas–particle systems. The results show that the adoption of a conservative formulation is crucial to 

obtain accurate solutions in transient problems. However, for time-averaged analysis, which is often used 

for the study of fluidized bed systems, the nonconservative phase-intensive form is still a useful tool. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

In the last decades, the CFD modeling became a strong tool to

tudy fluidized bed systems and to complement the experimental

easures [1–10] . Among the available numerical techniques, the

ulerian two-fluid model [11,12] with kinetic-frictional theory of

ranular flow closure provides a low-cost approach for the simu-

ation and design of large-scale gas–particles systems. 

Investigations on particulate flows gained attention since the

evelopment of the kinetic theory of granular flow [13–15] derived

rom the general theory of non-uniform dense gases of Chapman

nd Cowling [16] . In this approach, the granular phase is formed by

niform solid spheres and only binary instantaneous collisions are

onsidered. Early granular flow simulations relied on constant solid

iscosity and simple elasticity-type correlations to account for the

olid phase normal stresses [17,18] . In the kinetic theory of granu-

ar flow, the effects of the particles interactions on the phase rhe-
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logy are modeled by means of the granular temperature, which is

elated to the random motion of the particles. This approach has

he advantage of having a deeper phenomenological basis than the

arly theories and several comparisons may be found in the lit-

rature [9,10] . Further on, it became clear that the hypothesis of

nstantaneous collisions of the kinetic theory no longer endure for

igh particle concentration. In these conditions, where rubbing and

riction between particles may occur, the solid phase rheology is

ften modeled by the frictional theory [19–21] . The mathematical

losure of the problem is obtained by the coupling between phases

hrough the interphase forces. Usually, for fluidized bed simula-

ions, the lift and virtual mass effects are neglected and only the

rag force term is considered. Many correlations for the drag coef-

cient are available [15,22–27] and their performance in fluidized

ed problems has been investigated over the years [3,26,28] . 

The Eulerian gas–particle flow model consists of treating both

hases as interpenetrating continua which leads to a system of av-

raged Navier–Stokes equations [12] . These equations are solved

long with the granular energy balance equation based on the

inetic-frictional theory of granular flow and the mass conserva-

ion equations of each phase. There are many factors that com-

romise the stable behavior of the numerical algorithm devised to

http://dx.doi.org/10.1016/j.compfluid.2016.05.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
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solve this system of equations. In particular, the coupling algorithm

through the drag force and the different levels of conservative-

ness of the advective term formulation are still topics of discussion

nowadays. 

The condition at which the solid phase tends to disappear leads

to a singular momentum equation. This translates into highly oscil-

latory solutions of the phase velocity field, which can be managed

in several ways. Oliveira et al. [29] proposed a nonconservative re-

formulation of the phase momentum equations, usually referred as

the phase-intensive form [30,31] . A consequence of this treatment

is the appearance of a singularity in the solid stress tensor term

when the solid volume fraction tends to zero, which can be eas-

ily avoided through numerical manipulation. This improvement has

the cost of leaving behind the conservative form of the momen-

tum equations. Nonconservative formulations could lead to inaccu-

rate predictions of the velocity field when shock waves are present

[32,33] , however, due to the inclusion of the phase volume frac-

tion field αi in the momentum equations, there is more than one

nonconservative formulation possible to be considered (namely the

fully nonconservative form and the phase-intensive form ). It is a pur-

pose of the present work to bring some insight into the impact

of the different advective term formulations in commonly studied

gas–particle problems through a comparative analysis. 

The coupling between phases given by the drag force term may

be handled in several ways to reach a converged solution in a rea-

sonable time. One way is to adopt the partially implicit method

(PIM), which is based on splitting the drag term of the i -phase mo-

mentum equation and treating the i -phase velocity contribution as

an unknown. The computational implementation of this method is

of low complexity and it is currently adopted in many multiphase

flow solvers [34] . But, as it is shown by Oliveira et al. [35] , the

convergence of the iterative procedure for drag dominated prob-

lems could be compromised. Another approach is the partial elim-

ination algorithm (PEA) based on the work of Spalding [36] . This

method allows a partial decouple of each phase momentum equa-

tion which, under certain conditions, has a significant impact on

the solution convergence. This feature has been investigated in the

literature [35,37,38] and the method has been adopted by several

authors [31,39] . 

In this work, a conservative gas–particle flow solver with

kinetic-frictional theory closure has been developed and imple-

mented on the open source code OpenFOAM® [34] . The solver

modules are based on the finite volume method and the PIMPLE

algorithm [40,41] has been used for the pressure–velocity coupling.

Several aspects of the numerical treatment are investigated to rec-

ognize common pathologies of gas–particles flow problems and to

determine some general criteria to avoid them. On the advective

term formulations, three levels of conservativeness are considered

and tested on standard multiphase problems. For the phases cou-

pling, the PEA has been implemented and its convergence perfor-

mance is compared against the PIM. The volume fraction bounding

has been achieved by means of the MULES integrator [42,43] based

on a multidimensional flux corrected transport scheme [44] and

the packing limit condition has been fulfilled with an implicit

treatment of the particle pressure contribution to the flux, given

by the kinetic-frictional theory models. 

As a summary of the present work, the sections are organized

as follows. In Section 2 , the governing equations and closure the-

ories are presented. Section 3 describes the numerical procedure

and the general algorithm. In Section 4 , two gas–particles cases are

simulated and the numerical performance of the solver is tested.

Finally, in Section 5 , a sensitivity analysis of the different levels

of conservativeness of the advective term is performed through

a one-dimensional study and then extended to a series of two-

dimensional multiphase test cases. 
. Multiphase model 

.1. Governing equations 

In this work, an Eulerian gas–particle flow system is considered,

n which both phases are treated as an interpenetrating continua

nd the volumetric phase fractions verify that αs + αg = 1 . Here,

he subscript s represents the solid phase and the subscript g rep-

esents the gas phase. The continuity and momentum equations

or the solid phase are: 

∂ 

∂t 
(ρs αs ) + ∇ · (ρs αs u s ) = 0 (1)

∂ 

∂t 
(ρs αs u s ) + ∇ · (ρs αs u s u s ) = −αs ∇ p − ∇ p s + ∇ · (αs τs ) 

+ ρs αs g + K sg ( u g − u s ) (2)

hile for the gas phase, the equations are: 

∂ 

∂t 
(ρg αg ) + ∇ · (ρg αg u g ) = 0 (3)

∂ 

∂t 
(ρg αg u g ) + ∇ · (ρg αg u g u g ) = −αg ∇p + ∇ · (αg τg ) 

+ ρg αg g + K sg ( u s − u g ) (4)

here the shear stress tensors are modeled as: 

s = μs 

[∇ u s + ∇ u 

T 
s 

]
+ 

(
λs − 2 

3 

μs 

)
( ∇ · u s ) I (5)

g = μg 

[∇ u g + ∇ u 

T 
g 

]
− 2 

3 

μg ( ∇ · u g ) I (6)

Here ρ i is the phase density field, u i the phase velocity field, p

he shared pressure field, p s the particle pressure field, g the grav-

tational acceleration, K sg the global drag coefficient, μi the phase

ynamic viscosity and λi the phase bulk viscosity. 

The lift and virtual mass effects are neglected and the phases

re coupled through the drag force term. Different drag coeffi-

ient correlations have been developed over the years, but only the

odels used in this work are presented. The drag coefficient given

y the Wen–Yu model [23] is: 

 sg = 0 . 75 

C d αs α−1 . 65 
g ρg | u g − u s | 

d p 
(7)

ere d p is the particle diameter, C d is the drag form coefficient de-

ned as: 

C d = 

{ 24 

Re p 
(1 + 0 . 15 Re 0 . 687 

p ) , Re p < 10 0 0 

0 . 44 , Re p ≥ 10 0 0 

(8)

here 

Re p = 

ρg d p | u g − u s | 
μg 

(9)

Also, the drag coefficient for the Gidaspow model [15] is: 

 sg = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

150 

μg α2 
s 

d 2 p α
2 
g 

+ 1 . 75 

ρg αs 

d p αg 
| u g − u s | , αs > 0 . 2 

0 . 75 

C d αs α−1 . 65 
g ρg | u g − u s | 

d p 
, αs < 0 . 2 

(10)

nd the drag coefficient for the Syamlal–O’Brien model [24] is: 

 sg = 0 . 75 

C e αs αg ρg | u g − u s | 
d p v 2 rs 

(11)
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 rs = 0 . 5 

[ 
A − 0 . 06 Re p + 

√ 

(0 . 06 Re p ) 2 + 0 . 12 Re p (2 B − A ) + A 

2 

] 
(12) 

A = α4 . 14 
g , B = 

{ 

0 . 8 α1 . 28 
g , αg ≤ 0 . 85 

α2 . 65 
g , αg > 0 . 85 

(13) 

.2. Kinetic-frictional theory for granular flow models 

In order to have a mathematical closure, the two-phase model,

s it is presented, lacks of an interpretation for the solid phase rhe-

logy. The kinetic and frictional theories for granular flow seeks

o provide a modeling for the rheologic parameters relying on the

arious states of particles concentration. 

For low concentration, the dynamic of the particles is modeled

y the kinetic theory for granular flow [13–15] based on the ki-

etic theory of dense gases presented by Chapman and Cowling

16] , where uniform spherical particles are assumed and only in-

tantaneous binary collisions are considered. For this regime, the

ranular phase properties are defined as functions of the granular

emperature θ , which verifies the following energy balance equa-

ion: 

3 

2 

[
∂ 

∂t 
(ρs αs θ ) + ∇ · (ρs αs u s θ ) 

]
= ( τs − p s I ) : ∇ u s + ∇ · (κs ∇θ ) − γs + J v + J s (14) 

here κ s represents the conductivity of granular temperature, γ s 

he dissipation of granular energy due to particles collisions, J v the

issipation due to viscous damping and J s the production of gran-

lar energy due to slip between gas and particles. 

For high concentration, rubbing and friction between particles

ay occur and the phenomena is modeled by the frictional theory.

n these regimes, an additive approach is usually adopted, where

oth frictional and kinetic contributions are considered [20] . Thus,

he particle pressure and viscosity are defined as: 

s = μs, KTGF + μs, FRIC (15) 

p s = p s, KTGF + p s, FRIC (16) 

For the kinetic regime, the parameters are modeled following

he works of Gidaspow [15] and Lun et al. [14] : 

s, KTGF = 

10 ρs d p 
√ 

θπ

96 g 0 (1 + e ) 

[ 
1 + 

4 

5 

(1 + e ) αs g 0 

] 2 

+ 

4 

5 

α2 
s ρs d p g 0 (1 + e ) 

√ 

θ

π
(17) 

p s, KTGF = ρs αs θ + 2 ρs α
2 
s g 0 (1 + e ) θ (18) 

s = 

4 

3 

ρs α
2 
s d p g 0 (1 + e ) 

(
θ

π

)1 / 2 

(19) 

s = 

150 ρs d p 
√ 

θπ

384 g 0 (1 + e ) 

[ 
1 + 

6 

5 

(1 + e ) αs g 0 

] 2 

+ 2 α2 
s ρs d p g 0 (1 + e ) 

√ 

θ

π
(20) 
s = 3(1 − e 2 ) α2 
s ρs g 0 θ

[ 

4 

d p 

√ 

θ

π
− ∇ · u s 

] 

(21) 

 v = −3 K sg θ (22) 

 s = K sg 

[
3 θ − K sg d p ( u g − u s ) 2 

4 αs ρs 

√ 

θπ

]
(23) 

here e is the restitution coefficient, d p is the particles diame-

er and g 0 is the radial distribution. For this last parameter, the

arnahan–Starling model [45] is adopted, where: 

 0 = 

1 

1 − αs 
+ 

3 αs 

2(1 − αs ) 2 
+ 

α2 
s 

2(1 − αs ) 3 
(24) 

It should be taken into account that this model is independent

f the maximum packing αs , max . Therefore, the use of a frictional

odel is essential to strictly fulfill the maximum packing condition

ithout incurring into numerical manipulation. 

The frictional contribution to the particles rheology may be

odeled following the works of Schaeffer [19] and Syamlal et al.

39] : 

s, FRIC = 0 . 5 p s, FRIC (I 2D ) 
−1 / 2 sin (φ f ) (25) 

p s, FRIC = 10 

25 (αs − αs, min ) 
10 (26) 

here φf is the angle of internal friction and I 2D is the second in-

ariant of the deviator of the strain rate tensor. The minimal phase

raction αs , min at which the frictional effects occur is usually set at

.61. 

The Johnson–Jackson model [20] defines: 

s, FRIC = 0 . 5 p s, FRIC sin (φ f ) (27) 

p s, FRIC = F r 
(αs − αs, min ) 

η

(αs, max − αs ) P 
(28) 

ere the αs, min = 0 . 5 . The empirical coefficients are set at F r =
 . 05 , η = 2 , P = 5 . 

Another commonly used model is the Srivastava and Sundare-

an model [21] , which differs from the Johnson–Jackson model in

he definition of the solid viscosity: 

s, FRIC = 0 . 5 p s, FRIC ( I 
∗
2D ) 

−1 / 2 sin (φ f ) (29) 

here I ∗
2D 

= I 2D + 

θ

d p 

. Numerical treatment 

The model equations are solved using the finite volume method

ith both phases treated under an incompressible flow hypothesis

46,47] and a combination of the SIMPLE [40] and PISO [41] meth-

ds for the pressure–velocity coupling. The algorithm is imple-

ented on the OpenFOAM® platform [34] based on the general

tructure of the twoPhaseEulerFoam solver and the work of

assalacqua et al. [31] . 

Eqs. (1) –(4) are rewritten taking out the constant phase densi-

ies out of the derivative operators and combining both phase con-

inuity equations. Thus, the following system of equations is ob-

ained: 

∂αs 

∂t 
+ ∇ · (αs u s ) = 0 (30) 

g = 1 − αs (31) 
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∂ 

∂t 
(αs u s ) + ∇ · (αs u s u s ) = −αs 

ρs 
∇ p − 1 

ρs 
∇ p s + ∇ · (αs τs ) 

+ αs g + 

K sg 

ρs 
( u g − u s ) (32)

∂ 

∂t 
(αg u g ) + ∇ · (αg u g u g ) = −αg 

ρg 
∇p + ∇ · (αg τg ) + αg g 

+ 

K sg 

ρg 
( u s − u g ) (33)

∇ · (αs u s + αg u g ) = 0 (34)

where μs and p s are computed according to the kinetic-frictional

theory models and the drag coefficient K sg using the drag models

presented in the previous section. 

The solving sequence may be summarized as follows: compute

the phase volume fractions from the solid continuity equation and

volume fraction restriction ( Eq. (31) ), assemble the phase momen-

tum matrices, solve the momentum linear system for an a-priori

velocity estimation (momentum predictor step), compute the pres-

sure field derived from a global volumetric flux conservation ( Eq.

(34) ), correct the face fluxes and velocity fields, and iterate until

convergence. 

3.1. Momentum equation 

Eqs. (32) and (33) may be written in a semi-discrete form as

presented by Passalacqua et al. [31] : 

A s u s = H s − αs 

ρs 
∇ p − 1 

ρs 
∇ p s + αs g + 

K sg 

ρs 
( u g − u s ) (35)

A g u g = H g − αg 

ρg 
∇p + αg g + 

K sg 

ρg 
( u s − u g ) (36)

where the matrix H i includes the off-diagonal implicit contribu-

tions of the advective and diffusive terms, and the explicit contri-

bution of the transient term. The matrix A i includes the diagonal

contributions of the same terms. 

It should be remarked that the discretization practice based on

the finite volume method involves the calculation of face-centered

volumetric fluxes, which are defined as: 

ϕ i = u i, f · S (37)

where i is the phase index and the subscript f indicates a face in-

terpolated value. 

Moreover, each phase flux may be expressed a sum of various

contributions, as: 

ϕ i = ϕ 

S 
i + ϕ 

C 
i + ϕ 

P 
i + ϕ 

PP 
i + ϕ 

G 
i (38)

where the superscript S represents the same phase velocity con-

tribution, C represents the complementary phase velocity contri-

bution, P represents the shared pressure contribution, PP repre-

sents the particle pressure contribution and G represents the grav-

ity contribution. 

The are many ways to enforce the link between phases through

the drag force term [35] . In this work, the attention will be fo-

cused in two widely adopted methods following the nomenclature

of Karema et al. [38] : the partially implicit method (PIM) and the

partial elimination algorithm (PEA). 

The PIM relies on treating the i -phase velocity of the i -phase

drag term implicitly. This means that the cell-centered phase ve-

locities are computed as: 

u s, PIM 

= ζs 

(
H s + 

K sg 

ρs 
u g − αs 

ρs 
∇ p − 1 

ρs 
∇ p s + αs g 

)
(39)
 g, PIM 

= ζg 

(
H g + 

K sg 

ρg 
u s − αg 

ρg 
∇p + αg g 

)
(40)

here 

i = 

1 

A i + 

K sg 

ρi 

(41)

Here, the gradient of the particle pressure is rewritten as: 

 p s = 

(
∂ p s 

∂αs 

)
∇ αs (42)

or the numerical handling. The dependence of p s with θ is omit-

ed for the derivation of Eq. (42) . 

According to Eqs. (37) –(40) , the flux contributions are: 

 

S 
s, PIM 

= ζs, f H s, f · S (43)

 

S 
g, PIM 

= ζg, f H g, f · S (44)

 

C 
s, PIM 

= ζs, f 

(
K sg 

ρs 

)
f 

ϕ 

0 
g (45)

 

C 
g, PIM 

= ζg, f 

(
K sg 

ρg 

)
f 

ϕ 

0 
s (46)

 

P 
s, PIM 

= −ζs, f 

(
αs 

ρs 

)
f 

∇p · S (47)

 

P 
g, PIM 

= −ζg, f 

(
αg 

ρg 

)
f 

∇p · S (48)

 

PP 
s, PIM 

= −ζs, f 

(
1 

ρs 

∂ p s 

∂αs 

)
f 

∇αs · S (49)

 

PP 
g, PIM 

= 0 (50)

 

G 
s, PIM 

= ζs, f αs, f g · S (51)

 

G 
g, PIM 

= ζg, f αg, f g · S (52)

here S represents the face normal vector and the superscript 0

ndicates the stored fields from a previous iteration. 

The final expression for the phase fluxes is obtained by includ-

ng each contribution to Eq. (38) . This coupling method is currently

mplemented in the official distribution of OpenFOAM®[34] 

On the other hand, the PEA incorporates the velocity obtained

n Eq. (39) into Eq. (36) and Eq. (40) into Eq. (35) . This leads to

nother expression for the cell-centered velocities given by: 

 s, PEA = ξs 

{
H s + 

K sg ζg 

ρs 
H g −

[
αs 

ρs 
+ 

K sg αg ζg 

ρg ρs 

]
∇p 

− 1 

ρs 
∇p s + 

[
αs + 

K sg αg ζg 

ρs 

]
g 

}
(53)

 g, PEA = ξg 

{
H g + 

K sg ζs 

ρg 
H s −

[
αg 

ρg 
+ 

K sg αs ζs 

ρs ρg 

]
∇p 

− K sg ζs 

ρs ρg 
∇p s + 

[
αg + 

K sg αs ζs 

ρg 

]
g 

}
(54)

here 

i = 

1 

A i + 

K sg 

ρi 
− K 2 sg ζ j 

ρi ρ j 

(55)

nd j represents the complementary phase of the phase i . 

For this method, the flux contributions are: 
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S 
s, PEA = ξs, f H s, f · S (56) 

 

S 
g, PEA = ξg, f H g, f · S (57) 

 

C 
s, PEA = ξs, f 

(
K sg λg 

ρs 
H g 

)
f 

· S (58) 

 

C 
g, PEA = ξg, f 

(
K sg λs 

ρg 
H s 

)
f 

· S (59) 

 

P 
s, PEA = −ξs, f 

(
αs 

ρs 
+ 

K sg αg λg 

ρg ρs 

)
f 

∇p · S (60) 

 

P 
g, PEA = −ξg, f 

(
αg 

ρg 
+ 

K sg αs λs 

ρs ρg 

)
f 

∇p · S (61) 

 

PP 
s, PEA = −ξs, f 

(
1 

ρs 

∂ p s 

∂αs 

)
f 

∇αs · S (62) 

 

PP 
g, PEA = −ξg, f 

(
K sg λs 

ρs ρg 

∂ p s 

∂αg 

)
f 

∇αg · S (63) 

 

G 
s, PEA = ξs, f 

(
αs + 

K sg αg λg 

ρs 

)
f 

g · S (64) 

 

G 
g, PEA = ξg, f 

(
αg + 

K sg αs λs 

ρg 

)
f 

g · S (65) 

The PEA is based on the work of Spalding [36] and the com-

lete derivation of these expressions is detailed in the work of

assalacqua et al. [31] . It has the advantage of achieving a decou-

ling of each phase velocity from its complementary phase, which

avors the momentum convergence for drag dominated problems

35] . Many authors have adopted this method [31,39,48] and its

onvergence rate and stability conditions have been investigated

37,38] . 

.2. Pressure equation 

The pressure equation is derived from the incompressibility

ondition ( Eq. (34) ), which is rewritten in a discrete form as: 
 

f 

ϕ = 0 (66) 

here ϕ is the global flux defined as: 

 = αs, f ϕ s + αg, f ϕ g (67) 

Replacing ϕ s and ϕ g by Eq. (38) , using Eqs. (43) –(52) (or

qs. (56) –(65) for the PEA) and taking into account that Eqs.

47) and (48) (or Eqs. (60) and (61) ) have terms involving ∇p , the

ressure equation is expressed as: 
 

f 

[
D 

P (∇p · S ) 
]

= 

∑ 

f 

(
αs, f ˆ ϕ s + αg, f ˆ ϕ g 

)
(68) 

here 

 

P 
PIM 

= −
[ 

αs, f ζs, f 

(
αs 

ρs 

)
f 

+ αg, f ζg, f 

(
αg 

ρg 

)
f 

] 

(69) 

 

P 
PEA = −

[ 

αs, f ξs, f 

(
αs 

ρs 
+ 

K sg αg ζg 

ρg ρs 

)
f 

+ αg, f ξg, f 

(
αg 

ρg 
+ 

K sg αs ζs 

ρs ρg 

)
f 

] 

(70

nd 

ˆ  i = ϕ 

S + ϕ 

C + ϕ 

PP + ϕ 

G (71) 
i i i i 
The matrices H s and H g needed to compute ˆ ϕ s and ˆ ϕ g in Eq.

71) are calculated by approximating the velocity field from previ-

usly stored pressure fields. This step is known as the momentum

redictor . The predicted velocity fields are obtained by solving the

ollowing system: 

 

∗
s u s = H 

∗
s + R 

[ 

αs, f g · S −
(
αs 

ρs 

)
f 

∇p 0 · S −
(

1 

ρs 

∂ p s 

∂αs 

)
f 

∇αs · S 

] 

(72) 

 

∗
g u g = H 

∗
g + R 

[ 

αg, f g · S −
(

αg 

ρg 

)
f 

∇p 0 · S 

] 

(73) 

here 

 

∗
i = A i + 

K sg 

ρi 

(74) 

 

∗
i = H i + 

K sg 

ρi 

u j (75) 

nd R [ ... ] is the reconstruction operator of the face-interpolated

elds to cell-centered values. The reader should notice that the

omentum predictors preserve the same form for both coupling

ethods considered, but, for the PEA, the implicit part of the drag

erm contribution must be included after the calculation of the co-

fficients ξ i and ζ i . 

With the updated values of the pressure field, each phase flux

s corrected according to: 

 i, PIM 

= ˆ ϕ i, PIM 

− αi, f ζi, f 

(
αi 

ρi 

)
f 

∇p · S (76) 

r 

 i, PEA = ˆ ϕ i, PEA − αi, f ξi, f 

(
αi 

ρi 

+ 

K sg α j ζ j 

ρi ρ j 

)
f 

∇p · S (77) 

In order to ensure consistency in the correction of the cell-

entered velocity fields, Passalacqua et al. pointed out the need to

econstruct the phase fluxes with the use of cell-centered coeffi-

ients. For the PIM, the corrected cell-centered velocity is: 

 i, PIM 

= u 

0 
i, PIM 

+ ζi R 

[
ϕ i − ˆ ϕ i 

ζi, f 

]
(78) 

The procedure for the PEA is not so straightforward since both

i and ζ i coefficients must be used in its cell-centered form for the

elocity correction. This leads to the following expressions: 

 s, PEA = u 

0 
s, PEA + ξs 

{
R 

[
αs, f g · S −

(
αs 

ρs 

)
f 

∇p · S 

]

−R 

[ (
1 

ρs 

∂ p s 

∂αs 

)
f 

∇αs · S 

] 

+ 

K sg ζg 

ρs 
R 

[ 

αg, f g · S −
(

αg 

ρg 

)
f 

∇p · S 

] } 

(79) 

 g, PEA = u 

0 
g, PEA + ξg 

{ 

R 

[ 

αg, f g · S −
(

αg 

ρg 

)
f 

∇p · S 

] 

− K sg ζs 

ρs 
R 

[ (
1 

ρg 

∂ p s 

∂αg 

)
f 

∇αg · S 

] 

+ 

K sg ζs R 

[
αs, f g · S −

(
αs 

)
∇p · S 

]}
(80) 
f 
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3.3. Continuity equation 

Since Eq. (30) must be verified locally for each time step, it

is unnecessary to solve both phase continuity equations. Instead,

the disperse phase continuity equation is solved and the volume

fraction of the remaining phase is derived from Eq. (31) . Thus, Eq.

(30) can be written in a semi-discrete form as: 

∂αs 

∂t 
+ 

∑ 

f 

αs, f ϕ s = 0 (81)

where the solid phase flux may be expressed in terms of a global

phase flux ϕ and a relative flux ϕ r, s as: 

ϕ s = ϕ + αg, f ϕ r,s (82)

and 

ϕ r,s = ϕ s − ϕ g (83)

Recalling Eqs. (38) , (67) and (83) , the global and relative flux

are rewritten as: 

ϕ = αs, f ϕ̌ s + αs, f ϕ 

PP 
s + αg, f ϕ̌ g + αg, f ϕ 

PP 
g (84)

ϕ r,s = ϕ̌ s + ϕ 

PP 
s − ϕ̌ g − ϕ 

PP 
g (85)

where 

ϕ̌ i = ϕ 

S 
i + ϕ 

C 
i + ϕ 

P 
i + ϕ 

G 
i (86)

Then, using Eqs. (84) and (85) , Eq. (82) becomes: 

ϕ s = ϕ̌ + αg, f ϕ̌ r,s + ϕ 

PP 
s (87)

where 

ϕ̌ = αs, f ϕ̌ s + αg, f ϕ̌ g (88)

ϕ̌ r,s = ϕ̌ s − ϕ̌ g (89)

Finally, Eq. (87) may be included in Eq. (81) leading to the fol-

lowing semi-discrete form of the phase continuity equation: 

∂αs 

∂t 
+ 

∑ 

f 

αs, f ϕ̌ + 

∑ 

f 

αs, f αg, f ϕ̌ r,s −
∑ 

f 

D 

PP 
i ∇αs · S = 0 (90)

where 

D 

PP 
i, PIM 

= −ζs, f 

(
1 

ρs 

∂ p s 

∂αs 

)
f 

(91)

D 

PP 
i, PEA = −ξs, f 

(
1 

ρs 

∂ p s 

∂αs 

)
f 

(92)

Here, the fourth term on Eq. (90) is arranged to represent

the diffusion of the particles fraction with a particle pressure-

dependent diffusivity. The bounding of the phase fraction between

zero and one is achieved using an operator splitting technique

where the first three terms are solved as a pure transport equation

and the effect of the particle pressure is added implicitly. This pro-

cedure is based on the work of Weller [30] and Passalacqua et al.

[31] . 

The solution of the transport terms relies on the MULES inte-

grator [42,43] , which is a flux corrected transport-based scheme

[44] and guarantees that the solution will be bounded between the

global extreme values. If the extremes are selected to be [0, 1], the

maximum packing limit must be enforced by the physical models.

But, if the extremes are selected to be [0, αs , max ] then the MULES

integrator will bound the values towards the packing limit. 

The upper limit for αs imposed through MULES is subject of

discussion. If the upper limit is set at αs , max , this condition will be
atisfied rigorously and much will be gained from a stability point

f view, but the physical effect of the kinetic-frictional model on

he packing limit will be mixed up with the limits imposed nu-

erically. In this work, efforts were made to increase the numer-

cal stability by strictly imposing the bounding limits for αs at [0,

] with MULES and leaving the maximum packing condition to be

andled by the kinetic-frictional models. 

.4. Granular energy equation 

The mathematical closure of the two-phase system relies on the

efinition of μs and p s . These parameters are modeled based on an

dditive approach of the kinetic and frictional contributions. The

inetic contribution is related to the granular energy field which

erifies a balance equation given by Eq. (14) . This equation may

e rewritten in a form that is consistent with the numerical treat-

ent: 

 (θ ) = B (θ ) (93)

 (θ ) = 

∂ 

∂t 

(
3 

2 

ρs αs θ
)

+ ∇ ·
(

3 

2 

ρs αs u s θ
)

(94)

 (θ ) = ∇ · (κs ∇θ ) + [(− ˜ p s I : ∇ u s ) − ˜ γs − ˜ J v + 

˜ J s ] θ + (τs : ∇ u s ) 

(95)

here ˜ φ = 

φ

θ
and φ is a generic parameter. 

It should be noticed that the first term on the right-hand-side

f Eq. (14) is split for the numerical treatment. This generates

 granular energy dissipation term due to shear stress, which is

reated explicitly (last term on Eq. (95) ), and a granular energy dis-

ipation term due to normal stress, which is treated implicitly as a

eactive term (first term of the square brackets on Eq. (95) ). Added

o this, the other dissipative terms γ s , J v and J s are also treated as

eactive terms for the numerical implementation. 

In many applications, the dissipation due to inelastic collisions

s tends to dominate the dissipation-production phenomena near

he packing limit. Due to its negative sign, ˜ γs has a stabilizing ef-

ect on the numerical solution, being: 

˜ γs = 3(e 2 − 1) α2 
s ρs g 0 

[ 

4 

d p 

(
θ0 

π

)2 

− ∇ · u s 

] 

(96)

It is clear, from Eq. (96) , that special care should be taken when

he restitution coefficient e → 1 since ˜ γs → 0 and an off-diagonal

ominance trend may arise in the discrete matrix. In order to avoid

his, a switching scheme treatment is adopted. This treatment con-

ists on setting a maximum restitution coefficient ( e max ) above

hich numerical instabilities are expected. If the real restitution

oefficient of the problem is below this maximum value, the solu-

ion procedure is straightforward. On the other hand, if the restitu-

ion coefficient is above the maximum value, then a diffusive term

s added implicitly and subtracted explicitly. The coefficient corre-

ponding to this term is: 

˜ γ m 

s = 3(e 2 max − 1) α2 
s ρs g 0 

[ 

4 

d p 

(
θ0 

π

)2 

− ∇ · u s 

] 

(97)

Then, the granular energy equation becomes: 

 (θ ) = B (θ ) + ˜ γ m 

s (θ0 − θ ) (98)

Therefore, the numerical difficulties of having small values of

˜ s are avoided by adding extra numerical diffusivity with no dis-

urbance on the calculation of θ . 
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Fig. 1. (a) Uniformly distributed mixture of particles and gas. (b) A transient state 

with pure gas at the top, maximum particles packing at the bottom and mixture 

in the middle. (c) Fully settled state with complete segregation of pure gas and 

particles at maximum packing condition. 
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.5. The PIMPLE algorithm 

The PIMPLE algorithm is a combination of the SIMPLE [40] and

ISO [41] methods, which allows the coupling between phases and

he use of under-relaxation factors to enforce the convergence of

he iterative procedure. The sequence consists of the following

teps: 

1. Read the physical and numerical parameters, boundary condi-

tions and previously stored field 

2. Start the PIMPLE loop and iterate until convergence 

(a) Start the continuity equation loop and iterate until conver-

gence 

i. Solve the solid phase continuity equation ( Eq. (90) ) using

the MULES integrator without the particle pressure flux

contribution. 

ii. Include the particle pressure flux contribution implicitly 

iii. Relax the continuity equation and solve for αs , then

compute αg 

(b) Compute K sg according to the selected drag model 

(c) Compute the granular energy equation coefficients 

(d) Relax and solve the granular energy equation ( Eq. (98) ) 

(e) Compute μs and p s according to the selected kinetic-

frictional models 

(f) Construct each phase momentum matrix 

(g) Relax, add the explicit terms and solve the momentum

linear system for the phase velocity predictors ( Eqs. (72)

and (73) ) 

(h) Start the pressure corrector loop and iterate until conver-

gence 

i. Interpolate the momentum matrix coefficients and the

phase fraction fields on cell faces 

ii. Construct the right-hand-side and the pressure diffusion

coefficient of the pressure equation 

iii. Start the non-orthogonal correction loop and iterate a

predefined number of times 

(1) Construct and solve the pressure equation ( Eq. (68) ) 

iv. Add the pressure contribution and correct the phase

fluxes ( Eq. (76) and (77) ) 

v. Relax the pressure field 

vi. Reconstruct the cell-centered phase velocities ( Eqs. (78) ,

(79) and (80) ) 

3. Restart the sequence for the next time-step. 

. Validation tests 

The following test cases are selected to study the numerical

erformance of the solver. First, a one-dimensional particles set-

ling simulation is carried out. Some numerical challenging condi-

ions arise at the limits of maximum packing and phase disappear-

nce. Secondly, a two-dimensional bubbling fluidized bed problem

s addressed. Here, the time-averaged particles distribution is com-

ared with the results of the literature. 

.1. Particles settling 

This test consists of a vertical tube with a uniformly distributed

oncentration of particles which, under the effect of gravity, start

o settle at the bottom ( Fig. 1 ). The tube has a height of 0.3 m

ith an initial concentration of solids of 0.3. The gas density is

.2 kg/m 

3 with a dynamic viscosity of 1 . 8 × 10 −5 Pa s, while the

olid phase is constituted by particles of 0.4 mm of diameter, has

 density of 20 0 0 kg/m 

3 and a restitution coefficient of 0.6. The Gi-

aspow drag model is used and the granular energy balance equa-

ion is solved along with the Schaeffer frictional model. 
The problem is discretized using 30 uniform cells and a time

tep of 1 × 10 −4 s. A second order scheme is used for the time dis-

retization, while a second order upwind is used for the divergence

erms interpolation. Maximum residuals of 1 × 10 −4 and 1 × 10 −7 

re allowed for the momentum and continuity equations respec-

ively. This is achieved with 20 PIMPLE loop iterations and 3 pres-

ure iterations per time step. No significant difference was found

n the convergence rate using both drag coupling methods. 

In Fig. 2 results for three stages of the settling are presented

nd compared with the results obtained by Passalacqua et al. [31] .

 good level of agreement was achieved with stable transitions and

 complete segregation of phases was reached at t = 0 . 25 s. 

The distribution of particles at the settled state is related to the

ange of applicability of the frictional effects given by the corre-

ponding model. In this case, the Schaffer model was adopted in

hich the frictional effects occur at αs, min = 0 . 61 . This produces

 nearly constant distribution of particles at the bottom of the

ube. Whereas, if the Johnson–Jackson model had been used with

s, min = 0 . 5 , the solids distribution would have a smooth variation

t the middle of the tube. This behavior could also be predicted by

ssuming a force balance at the settled state given by: 

∂(p s, FRIC ) 

∂y 
= 

∂(p s, FRIC ) 

∂αs 

∂αs 

∂y 
� ρs αs g (99) 

ere the forces given by the shared pressure and the kinetic con-

ribution to the particle pressure have been neglected. 

The results of solving Eq. (99) for a prescribed volume fraction

f αs = 0 . 3 at y = 0 . 15 m are shown in Fig. 3 . 

Regarding the onset of the phase settling at both ends of the

ube, the MULES integrator was modified from the original distri-

ution of OpenFOAM®. This was done to allow local maximum val-

es for problems with phase accumulation [43,49,50] . In this par-

icular case, it is expected that the first cell at the bottom of the

ube presents an increasing value of the solid volume fraction field

ntil the maximum packing is achieved. 

.2. Bubbling fluidized bed 

A two-dimensional bubbling fluidized bed problem with Gel-

art B particles based on the experimental setup of Makkawi et al.

4] is studied ( Fig. 4 ). All the system parameters, models adopted

nd dimensions are summarized in Table 1 . 
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Fig. 2. (a) Solid fraction distribution along the tube height at t = 0 . 1 s, (b) at t = 

0 . 15 s, and (c) at t = 0 . 3 s. 

 

 

 

 

 

 

 

 

Fig. 3. Numerical and analytical predictions of the volume fraction profiles at the 

settled state for different frictional models. 

Fig. 4. Bubbling fluidized bed problem scheme. 

Table 1 

Bubbling fluidized bed problem general parameters. 

Description Value 

Gas density 1 .4 kg/m 

3 

Gas viscosity 1 . 8 × 10 −5 Pa s 

Solid density 2500 kg/m 

3 

Particles diameter 350 μm 

Restitution coefficient between particles 0 .8 

Width ( W ) 0 .138 m 

Height ( H ) 1 m 

Bed initial height ( h b ) 0 .2 m 

Grid 14 × 100 cells 

Time step 1 . 0 × 10 −4 s 

Overall simulation time 30 s 

Time discretization 2nd order implicit 

Divergence interpolation limited central difference 

Drag model Gidaspow 

Wall solid velocity Johnson–Jackson BC 

Wall granular energy Johnson–Jackson BC 

Vertical inlet gas velocity ( U IN ) 0 .54 m/s 

Outlet pressure 0 Pa 

Initial bed solid fraction 0 .58 
A grid of 14 × 100 cells is adopted to simulate this problem.

For this configuration, with Geldart B particles, Parmentier et al.

[2] showed that this refinement is high enough to accurately pre-

dict the bed expansion and the solid volume fraction profile in the

cross-axial direction when compared to the experimental predic-

tions of Makkawi et al. [4] . 

The Johnson–Jackson boundary conditions [20] are used to de-

scribe the behavior of the solid phase in contact with the walls: 

∂ u s,w 

∂x 
= 

π

6 

αs,w 

αs, max 
φw 

ρs g 0 

√ 

3 θw 

μs 
u s,w 

(100)

∂θw 

∂x 
= −π

6 

αs,w 

αs, max 
φw 

ρ2 
s 

κs 
g 0 

√ 

3 θw 

μs 
| u s,w 

| 2 

+ 

π

4 

αs,w 

αs, max 
(1 − e 2 w 

) 
ρs 

κs 
g 0 

√ 

3 θ3 
w 

(101)
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Fig. 5. Convergence rate of the velocity field for both drag coupling methods. 
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Fig. 6. Convergence rate of the velocity field for both drag coupling methods with 

d p = 35 μm. 
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These expressions represent Robin boundary conditions and are

sually associated with rough walls, where φw 

is the specularity

oefficient. The fully slip condition correspond to φw 

= 0 , while

w 

= 1 corresponds to very rough walls. The particle-wall restitu-

ion coefficient e w 

is a measure of how elastic is the collision be-

ween particles and the wall, where e w 

= 1 represents a perfectly

lastic collision. Benyahia et al. [51] mentioned the lack of litera-

ure reporting realistic values of such coefficients, and its impact

n the hydrodynamic behavior of fluidized beds is a current topic

f discussion [52] . For the present case, φw 

is set at 0.6 which rep-

esents intermediate rough walls which may be considered more

ealistic than the usual slip conditions corresponding to perfectly

mooth walls. Also, e w 

is taken arbitrarily as 0.8 since it has a

mall impact on the macroscopic results, such as the averaged solid

hase velocity profile and bed height [52] . 

A maximum allowable value of 1 × 10 −8 for the gas phase ver-

ical velocity residuals is taken arbitrarily as a convergence criteria.

or the problem conditions, this criteria is met in less than 20 PIM-

LE loop iterations. The measure was taken at t = 0 . 01 s after the

uidization start-up and the convergence of the velocity residuals

s depicted in Fig. 5 . Only a slight difference between both meth-

ds is appreciated (around one iteration per time step). 

Oliveira et al. [35] showed that, for a one-dimensional air-water

uidized bed problem, the velocity residuals for the PIM and PEA

equire the same number of iterations to converge, under low to

oderate coupling conditions (this behavior is verified in Fig. 5 ).

owever, for higher values of the drag coefficient, the PIM fails

o converge to the prescribed precision. Karema et al. [38] ex-

ended the one-dimensional analysis of Oliveira et al. to a two-

imensional fluidized bed problem and studied the convergence

f both methods for low to moderate coupling regimes. They pro-

osed an estimation of the characteristic time scale of the inter-

hase coupling which was used to calculate a non-dimensional

rag coefficient similar to the one proposed by Oliveira et al. The

ime step adopted by Karema et al. for all the studied conditions

re below the characteristic time scale of the interphase coupling,

herefore, both methods predict reasonably well the coupling be-

ween phases. 

In the present work, the analysis is advocated to stronger cou-

ling conditions. This is achieved by adopting a smaller particle

iameter, which are in the range of practical applications. The use

f the particles diameter as a variable parameter has the advantage
hat, with the exception of some KTGF models, it only affects the

alculation of the drag coefficient. 

The characteristic time scale is calculated according to the cri-

eria of Karema et al. and the most demanding condition is met at

he packed region, where the Ergun model is valid. Therefore, the

haracteristic time scale ( t sc ) and non-dimensional drag coefficient

 C d ) are: 

 sc = 

[
150 

μg 

αm f ρs d 2 p 

+ 1 . 75 

ρg u m f 

ρs d p αm f 

]−1 

(102) 

 d = 

ρs u m f 

t sc g(ρs − ρg ) 
(103) 

here the velocity of minimum fluidization u m f = 0 . 26 m/s and

he gas volume fraction at minimum fluidization αm f = 0 . 39 . For

he problem conditions, Eqs. (102) and (103) lead to: 

 sc = 0 . 041 s , C d = 1 . 66 (104) 

The time step is still below the characteristic time scale and the

on-dimensional drag coefficient is an order of magnitude below

he value at which the convergence problems of the PIM arise (as

eported by Oliveira et al.). This explains the similar convergence

rend of both coupling methods. However, for smaller particles, the

rag force magnitude becomes dominant and the convergence of

he PIM is compromised, as depicted in Figs. 6 and 7 . 

For these conditions, the characteristic time scale and drag co-

fficient are: 

 p = 35 μm → t sc = 4 . 4 × 10 

−4 s , C d = 154 . 48 (105) 

 p = 3 . 5 μm → t sc = 4 . 4 × 10 

−6 s , C d = 15333 . 5 (106) 

The first alternative correspond to Geldart A particles ( d p =
5 μm and ρs = 2500 kg/m 

3 ), for which the characteristic time

cale is slightly higher than the time step adopted, but the drag co-

fficient is beyond the limit of 10, which explains the difficulties in

he velocity convergence for the PIM. This behavior is emphasized

or the extremely fine powder ( d p = 3 . 5 μm), where both the time

cale and the drag coefficient are clearly beyond the limit. In these

onditions, the PEA requires more than 50 iterations to converge

o machine precision, while the PIM cannot converge to the pre-

cribed tolerance. For both particles diameter, a smaller time step

s required to achieved convergence with the PIM. However, due
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Fig. 7. Convergence rate of the velocity field for both drag coupling methods with 

d p = 3 . 5 μm. 

Fig. 8. Time-averaged solid volume fraction profile at y = 0 . 16 m. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Time-averaged solid vertical velocity profile at y = 0 . 16 m. 

Fig. 10. Time-averaged solid volume fraction along a vertical center line compared 

with Passalacqua et al. 

Fig. 11. Time and spatial-averaged solid volume fraction along a vertical line com- 

pared with Parmentier et al. 

a  

W  

w

 

i  

e  
to the low scalability for parallel computing of the problem ( ∼10 3 

to 10 4 cells), the time step reduction makes the adoption of this

method unaffordable. 

In Fig. 8 , time-averaged solid fraction profiles are shown and

compared against the simulations of Passalacqua et al. [31] and

Parmentier et al. [2] with OpenFOAM® [34] and MFIX® [39] re-

spectively. Here the maximum packing is set at αs, max = 0 . 63 and

the angle of internal friction φf is set at 28 °, while the minimal

fraction at which frictional effects occur is αs, min = 0 . 61 accord-

ing to the Schaeffer frictional model. The particles distribution was

taken at a height of 0.16 m from the bottom of the bed and a time

average was done between 10 and 30 s from the start of the sim-

ulation to avoid the effects of the fluidization start-up. 

The solid vertical velocity profile at y = 0 . 16 m is compared

with the simulations performed by Li [53] as it is shown in Fig. 9 .

The predicted results shows a qualitative agreement with a typi-

cal pattern of two counter-rotating loops with particles moving up-

wards in the center region and a downward recirculation near the

walls. Here it is important to remark that, although the original

work of Makkawi et al. [4] does not present experimental results

for the solid phase velocity, differences may arise in time-averaged

solid phase velocity profiles when 2D simulations are compared

with pseudo-2D experiments [54,55] . 

The bed expansion is compared with the results presented by

Passalacqua et al. [31] using the Gidaspow drag model ( Fig. 10 ),
nd with the results presented by Parmentier et al. [2] using the

en–Yu drag model ( Fig. 11 ). The results show a good agreement

ith the simulations done by the reference authors. 

Fig. 12 shows the impact of the drag force models on the flu-

dized bed expansion. Here, the Gidaspow model predicts the high-

st expansion, followed by the Syamlal model and the Wen–Yu
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Fig. 12. Time-averaged solid volume fraction distribution for different drag models. 
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odel, which is in agreement with the observations of Loha et al.

3] . 

. Conservative analysis 

In the previous section, the general performance of the solver

as tested for two standard gas–particle problems and some nu-

erical issues were addressed. The purpose of this section is to

ighlight the differences between the various levels of conser-

ativeness of the advective term formulation on the momentum

quations and its impact on the velocity field predictions. 

.1. One-dimensional approach 

The finite volume method derives from the integral form of

he conservative laws. Thus, in the spirit of obtaining a weak so-

ution of the discrete problem, the use of a conservative method

rovides some degree of consistency in a mathematical sense. The

ax–Wendroff theorem proves that, if the approximation done by

 conservative method converges to some function as the mesh

s refined, then this function is a weak solution [32] . In fact, in

roblems where shock waves are involved, the use of a conserva-

ive method based on the integral form of the conservation laws,

s essential to accurately predict the shock wave velocity. While

o problems should arise for the calculation of smooth functions,

onconservative methods fail to converge to a weak solution when

iscontinuous functions are being transported. This behavior is il-

ustrated by Leveque [32] for a one-dimensional transport of a step

unction using the Burgers equation. It is shown that the conser-

ative method gives a wave velocity prediction in closer agree-

ent to the analytical solution with respect to a nonconservative

ethod. For a single time step, the difference in the predicted so-

ution can be quantified as: 

 I = 

(
u 

n +1 
k 

)
C 

−
(
u 

n +1 
k 

)
NC 

= 

1 

2 

�x �t 

(
u 

n 
k 

− u 

n 
k −1 

�x 

)2 

= 

1 

2 

�x �t (u x ) 
2

(107

here the subscript k is the cell index, n is the time step index,

he subscript C correspond to the conservative formulation and

he subscript NC to the nonconservative formulation. Also, the sub-

cript x represents a discrete spatial derivative. 

Here, upwind and forward-Euler schemes were employed for

he spatial and temporal discretizations, respectively. It is clear

hat the differences in the velocity predictions become small for

mooth solutions. Also, d ≥ 0 which indicates that the nonconser-
I 
ative method always gives a smaller prediction of the shock wave

elocity. 

This conceptual problem clarifies the importance of using a

onservative method to solve problems in presence of shock waves.

owever, the extension of these concepts to the momentum equa-

ions of the Eulerian multiphase model still deserves a discussion.

or a conservative approach, Eq. (32) can be rewritten in the fol-

owing form: 

∂ 

∂t 
(αi u i ) + ∇ · (αi u i u i ) = R i (108) 

here R i represents all the terms on the right-hand-side of Eq.

32) (which do not play a relevant role in this analysis). It is re-

alled that ρ i has been taken out of the derivative operators. This

oes not alter the conservative nature of the expression since ρ i is

lways considered a constant for the purpose of this model. 

It is a common practice to correct the momentum equations

y subtracting the corresponding phase continuity equation. This

s done to avoid errors in the solution of the momentum equation

ue to continuity imbalances [33,56] . 

Then, Eq. (108) becomes: 

∂ 

∂t 
(αi u i ) + ∇ · (αi u i u i ) − u i 

∂αi 

∂t 
− u i ∇ · (αi u i ) = R i (109) 

Eq. (109) will be referred as the conservative form from now on.

he second and fourth term is approximated using the finite vol-

me method as: 

 

V 

∇ · (αi u i u i ) dV −
∫ 

V 

u i ∇ · (αi u i ) dV ≈
∫ 

S 

αi u i u i · dS 

− u i 

∫ 
S 

αi u i · dS ≈
∑ 

f 

(αi u i ) f ϕ i − u i 

∑ 

f 

αi, f ϕ i (110) 

nd the following semi-discrete form is obtained: 

∂ 

∂t 
(αi u i ) − u i 

∂αi 

∂t 
+ 

∑ 

f 

(αi u i ) f ϕ i − u i 

∑ 

f 

αi, f ϕ i = R i (111) 

Here u i and αi have been indistinctly used to represent both

ontinuous and cell-centered discrete variables. This is the formu-

ation currently adopted in many commonly known multiphase

olver codes [34,39,57] . This may be expressed in OpenFOAM code

s: 

Here ddt is the time-derivative operator, Sp is used to refer to

he source or reactive terms and div is the divergence operator.

he Rc term usually represents the diffusive, reactive and source

erms in a Navier–Stokes problem, but here it is expressed as a sin-

le term for the sake of clarity. The advective terms are discretized

xplicitly (with the fvc operator) to simplify the subsequent
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analysis. Also: 

where the interpolate operator takes cell-centered values as

inputs and returns an interpolated value in faces according to the

interpolation scheme selected by the user. In OpenFOAM, the flux

phi is implemented as a linear interpolation of the cell-centered

velocities. 

On the other hand, a nonconservative formulation may be

obtained by operating with the second and fourth term of Eq.

(109) which leads to the following form: 

∂ 

∂t 
(αi u i ) + αi u i · ∇ u i − u i 

∂αi 

∂t 
= R i (112)

Eq. (112) will be referred as the nonconservative form . This form

is somehow unnatural for numerical methods based on the inte-

gral form of the conservative laws since the Gauss theorem does

not simplify the spatial derivative operators and it is unused in the

available codes with few exceptions [58] . The semi-discrete form of

Eq. (112) is obtained by considering: ∫ 
V 

αi u i · ∇ u i dV ≈ αi u i ·
∫ 

V 

∇ u i dV = αi u i ·
∫ 

S 

u i dS ≈ αi u i ·
∑ 

f 

S u i, f 

(113

thus arriving to 

∂ 

∂t 
(αi u i ) − u i 

∂αi 

∂t 
+ αi u i ·

∑ 

f 

S u i, f = R i (114)

In OpenFOAM code this becomes: 

Park [33] showed the differences of using both formulations

( Eqs. (111) and (114) ) in a few test cases, and emphasized on the

importance of using a formulation as conservative as possible to

accurately predict the velocity field. This analysis is resumed in

this work with the incorporation of a different nonconservative for-

mulation: the phase-intensive form [29,30] . This formulation can be

obtained by rewriting the scalar product on the second term of Eq.

(112) : 

∂ 

∂t 
(αi u i ) + αi ∇ · ( u i u i ) − αi u i (∇ · u i ) − u i 

∂αi 

∂t 
= R i (115)

The semi-discrete version of this formulation is obtained by

rewriting the second and third term on Eq. (115) as: ∫ 
V 

αi ∇ · ( u i u i ) dV −
∫ 

V 

αi u i (∇ · u i ) dV ≈ αi 

∫ 
S 

u i u i · dS 

−αi u i 

∫ 
S 

u i · dS ≈ αi 

∑ 

f 

u i, f ϕ i − αi u i 

∑ 

f 

ϕ i (116)

and finally 

∂ 

∂t 
(αi u i ) − u i 

∂αi 

∂t 
+ αi 

∑ 

f 

u i, f ϕ i − αi u i 

∑ 

f 

ϕ i = R i (117)
hich may be written in OpenFOAM code as: 

The analysis done by Leveque for the Burgers equation may be

xtended to the Eulerian two-phase momentum equations for one-

imensional problems. A fully discrete version of the conservative

orm is obtained using an upwind method for the face interpola-

ions (with the exception of the flux ϕ which is always linearly in-

erpolated) and a forward-Euler for the temporal derivatives. Then,

q. (111) becomes: 

V 

�t 
αn 

k (u 

n +1 
k 

− u 

n 
k ) − V 

�t 
u 

n 
k (α

n 
k − αn −1 

k 
) + (αn u 

n ) k + 1 2 
ϕ 

n 
k + 1 2 

+ (αn u 

n ) k − 1 
2 
ϕ 

n 
k − 1 

2 

− u 

n 
k α

n 
k + 1 2 

ϕ 

n 
k + 1 2 

− u 

n 
k α

n 
k − 1 

2 

ϕ 

n 
k − 1 

2 

= R 

n 
k V (118)

here the fractional index represents face interpolations of the

ell-centered values. Thus: 

n 
k (u 

n +1 
k 

− u 

n 
k ) 

(
V 

�t 

)
− u 

n 
k (α

n 
k − αn −1 

k 
) 
(

V 

�t 

)
+ αn 

k u 

n 
k 

(
u 

n 
k +1 

+ u 

n 
k 

2 

)(
V 

�x 

)
+ αn 

k −1 u 

n 
k −1 

(
u 

n 
k 

+ u 

n 
k −1 

2 

)(
V 

�x 

)

−αn 
k u 

n 
k 

(
u 

n 
k +1 

+ u 

n 
k 

2 

)(
V 

�x 

)
− αn 

k −1 u 

n 
k 

(
u 

n 
k 

+ u 

n 
k −1 

2 

)

×
(

V 

�x 

)
= R 

n 
k V (119)

This leads to an expression for the predicted velocity at the

ext time step given by: 

u 

n +1 
k 

)
C 

= u 

n 
k 

(
2 − αn −1 

k 

αn 
k 

)
+ 

�t 

�x 

1 

αn 
k 

R 

n 
k 

− �t 

�x 

αn 
k −1 

2 αn 
k 

[ (
u 

n 
k 

)2 −
(
u 

n 
k −1 

)2 
] 

(120)

The same procedure may be performed for the nonconservative

ormulations ( Eqs. (114) and (117) ), leading to: 

u 

n +1 
k 

)
NC 

= u 

n 
k 

(
2 −αn −1 

k 

αn 
k 

)
+ 

�t 

�x 

1 

αn 
k 

R 

n 
k −

�t 

�x 
u 

n 
k 

(
u 

n 
k − u 

n 
k −1 

)
(121)

u 

n +1 
k 

)
PI 

= u 

n 
k 

(
2 − αn −1 

k 

αn 
k 

)
+ 

�t 

�x 

1 

αn 
k 

R 

n 
k 

− �t 

�x 

1 

2 

[ (
u 

n 
k 

)2 −
(
u 

n 
k −1 

)2 
] 

(122)

here the subscript C correspond to the conservative form , the sub-

cript NC to the nonconservative form and the subscript PI to the

hase-intensive form . The phase index has been omitted for sim-

licity. The reader may notice that Eqs. (120) –(122) are equal but

or the last term. Therefore, any difference between the velocity

redictions would be related to this term. 

In order to illustrate the relative accuracy of the three meth-

ds, a one-dimensional dam break problem is considered. Here, the

hallow water equations are used to predict the velocity u and wa-

er level α (which plays a similar role to the volume fraction in the

wo-phase model): 

∂α

∂t 
+ 

∂ 

∂x 
(αu ) = 0 (123)
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Fig. 13. Liquid level and velocity at t = 2 s for different formulations. 
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∂ 

∂t 
(αu ) + 

∂ 

∂x 
(αu 

2 ) + 

∂ 

∂x 

(
1 

2 

gα2 
)

= 0 (124) 

ith the following initial conditions: 

 = 0 , x ∈ (−5 ; 5) 

= 

{
3 , x ∈ (−5 ; 0) 
1 , x ∈ [0 ; 5) 

(125) 

While this model is much simpler than the two-dimensional

ultiphase Eulerian model, it is possible to obtain an analytical

olution to compare with the numerical predictions. This may be

one through an eigenvalue analysis, which leads to an expression

or the shock wave velocity given by s = u + gα [32] . The solution

t a given time for different advective formulations is shown in

ig. 13 , where a rarefaction wave travels to the left and a shock

ave travels to the right. For smooth variations of the transported

elds (at the rarefaction wave), no difference is appreciated be-

ween formulations. But, at the shock wave, the conservative form

learly gives a higher and more accurate wave velocity prediction. 

The differences on the numerical solutions among the various

evels of conservativeness considered in a single time step can be

uantified by subtracting Eqs. (120) –(122) with each other: 

 C−PI = 

1 

2 

�x �t 

(
1 

αn 
k 

)[ (
u 

n 
k 

)2 −
(
u 

n 
k −1 

)2 

�x 

] (
αn 

k 
− αn 

k −1 

�x 

)

= 

1 

2 

�x �t 

(
1 

α

)
αx (u 

2 ) x (126) 
 PI−NC = 

1 

2 

�x �t 

(
u 

n 
k 

− u 

n 
k −1 

�x 

)2 

= 

1 

2 

�x �t (u x ) 
2 (127) 

 C−NC = d C−PI + d PI−NC = 

1 

2 

�x �t 

[ (
1 

α

)
αx (u 

2 ) x + (u x ) 
2 
] 

(128) 

There are several observations to be made about these expres-

ions. In all cases, these differences increase when there are dis-

ontinuities in u and α. The reader may notice that Eq. (127) is

qual to Eq. (107) . This is expected since the advective terms for

he two-phase model and the Burgers equation are the same, ex-

ept for the presence of αi . However, as it is clear from Eq. (127) ,

his field does not have an impact on the differences between the

elocity predictions of the phase-intensive form and the nonconser-

ative form . Also, this expression is always positive when the ve-

ocity field varies, which means that, for a one-dimensional prob-

em, the phase-intensive form always predicts a higher wave veloc-

ty than the nonconservative form . The analysis of Eqs. (126) and

128) is not as straightforward. The differences of both nonconser-

ative formulations with respect to the conservative form have the

nfluence of the volume fraction field variation. Therefore, these

xpressions may take both positive and negative signs depending

n the relative “jumps” of α and u fields. 

The phase-intensive form has been largely adopted in two-phase

olvers as a robust way of dealing with the phase disappearance in

he momentum equations, but little is said about its accuracy with

espect to a conservative formulation. Park et al. [33] analyzed the

ifferences between the conservative form and nonconservative form
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with practical examples. However, as shown in Eq. (127) , the dif-

ferences between the phase-intensive form and nonconservative form

may be significant. In fact, depending on the studied case, the

phase-intensive form may predict closer results to the conservative

form than the nonconservative form (as shown in the previous ex-

ample). In general: 

αx (u 

2 ) x ≥ 0 ⇒ | d C−NC | ≥ | d C−PI | (129)

which means that, with respect to the conservative form velocity

solution, the phase-intensive form will predict a more accurate re-

sult than the nonconservative form . However, this is not guaranteed

when α and u 2 have opposite variations. In these conditions, small

values of αx with respect to u x will favor the accuracy of the phase-

intensive form since: 

lim 

αx → 0 
| d C−PI | = 0 (130)

and 

lim 

αx → 0 
| d C−NC | = | d PI−NC | (131)

5.2. Phase disappearance treatment 

The limit where αs tends to zero is an issue that is closely re-

lated to the momentum equations handling since, in this condition,

the equations in its conservative form become singular. This trans-

lates into an impediment for the iterative procedure to converge to

a prescribed tolerance. 

This problem may be avoided by setting the disperse phase ve-

locity equal to the velocity of the continuous phase in those cells

where the particles phase fraction gets below a certain critical

value. A natural way to achieve this is to preserve the drag force

as a non-zero term in the momentum equations when αs tends to

zero. Thus, the phase momentum equation is reduced to: 

K sg 

ρs 
( u g − u s ) = 0 (132)

If K sg 
 = 0, then u s = u g , which may be guaranteed by computing

the drag coefficient (for example using the Wen–Yu model) as: 

K sg = 0 . 75 

C d αs , low 

α−1 . 65 
g ρg 

d p 
max(| u g − u s | , U r , low 

) (133)
Fig. 14. Transient evolution of th
here αs, low 

and U r, low 

are some minimal residual values to avoid

ingular expressions. This method is currently implemented in

penFOAM® [34] . While this method may be considered physi-

ally correct (the disperse phase velocity tending to the continuous

hase velocity as the disperse phase tends to disappear) it has its

rawbacks. For example, in a fluidized bed problem, the particles

re carried out of the domain when αs ≤ αs, low 

. In this condition,

he solid phase takes the velocity of the gas phase, which would

e correct when αs → 0. 

An alternative to avoid a singular momentum matrix without

he previous issue is to compute u s from a force balance between

he drag, buoyancy, particle pressure and shared pressure forces.

hus, the particles momentum equation may be written as: 

 = −αs , low 

ρs 
∇ p − 1 

ρs 
∇ p s (αs , low 

) + αs , low 

g 

+ 

K sg (αs , low 

) 

ρs 
( u g − u s ) l abel eq : 5 . 28 (134)

This method is somehow intrusive since all the remaining terms

f the momentum equation are being modified from its correct

ontinuum form. The phase-intensive form gets a relative advan-

age in this issue by following the procedure proposed by Oliveira

t al. [29] . The reader may notice that the first two terms on Eqs.

111) , (114) and (117) can be rewritten as: 

∂ 

∂t 
(αi u i ) − u i 

∂αi 

∂t 
= αi 

∂ u i 

∂t 
(135)

This allows a subsequent division by αs in all terms of Eq. (112) .

hus, the procedure isolates the singularity in the solid stress ten-

or term, which becomes proportional to ∇αs / αs and can be easily

andled by numerical manipulation. 

In this work, in order to maintain the same conditions for

omparison between the different advective term treatments, a

ommon criterion is adopted. The phase disappearing limit is ad-

ressed by setting the phase velocity to zero when the volume

raction gets below certain critical value. This should not be seen

s an ideal solution but as a way to isolate the interest of the cur-

ent study. Moreover, while the different transient term formula-

ions also contribute to differences among the numerical predic-

ions, the transient terms will be formulated as presented in the
e Rayleigh–Taylor problem. 
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Fig. 15. Amplitude growth simulated against the linear prediction. 
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eft-hand-side of Eq. (135) . This is done to isolate the effect of the

pacial term conservativeness. 

.3. Test cases 

The exact difference in the velocity prediction of each formula-

ion has been established and quantified for a given discretization

n a one-dimensional problem. The following test cases are pre-

ented to illustrate how the differences appear on two-dimensional

roblems, where the shock waves are transported in multiple di-

ections. The same conclusions can be extended to this problems

y considering that the discrete system for the phase momentum

alance may be expressed as: 

 

(
u 

v 

)n +1 

= B { C,NC,PI} 

(
u 

v 

)n 

+ 

(
r u 
r v 

)
(136) 

here A and B are the discretization matrices, u and v are the ve-

ocity vectors containing the cell values of the horizontal and verti-

al component respectively and r u and r v contain the source terms
Fig. 16. Contour plots ( αg = 0 . 5 ) with different me
or each component. Following the same explicit discretization in

ime as for the one-dimensional case, different velocity predictions

 

n +1 and v n +1 are expected due to the matrix of coefficients B 

esulting of the different discretization procedures given by Eqs.

111) , (114) and (117) . 

Unlike the one-dimensional dam-break problem, no analytical

olutions are available for the following examples. Nonetheless,

here are still features (i.e. mesh convergence analysis and exper-

mental data) that may be looked into in order to determine the

ccuracy of each formulation. 

.3.1. Rayleigh–Taylor instability problem 

A Rayleigh–Taylor instability problem is addressed using the

ulerian two-phase model. The problem consists of two fluid

hases initially segregated in a vertical enclosure. The dense phase

s purely concentrated in the upper region as depicted in Fig. 14 .

n initial disturbance on the interphase (described by Eq. (137) )

s amplified by the effect of gravity forming a mushroom shape.

he physical parameters of the problem are ρs = 10 . 0 kg/m 

3 , ρg =
 . 0 kg/m 

3 , νs = νg = 0 . 01 m/s 2 and the domain is a rectangular con-

ainer of 1m × 5m. 

0 = −0 . 001 

[ 
cos 

(
2 πx 

L 
− π

)
+ 1 

] 
+ 4 . 5 (137) 

Different mesh refinements have been considered for this prob-

em: 32 × 160 ( 4 ×), 64 × 320 ( 2 ×), 128 × 640 ( 1 ×), 256 × 1280

 1 / 2 ×) and 512 × 2560 ( 1 / 4 ×). 

The initial growth of the interphase amplitude at the initial

tage [59] is given by: 

= δ0 cosh (γ t) (138) 

here γ = 

√ 

A gλ, A = 

ρs − ρg 

ρs + ρg 
is the Atwood number and λ is the

ave number. 

During the linear evolution stage, a good level of agreement is

ound between simulation and theoretical predictions for the 1 ×
esh ( Fig. 15 ). 

The comparison between the conservative and nonconserva-

ive formulations is performed using upwind interpolations and an
sh refinements and formulations at t = 1 . 5 s. 
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Fig. 17. Mushroom amplitude for different formulations and mesh refinements. 

Fig. 18. Single bubble growth problem scheme. 

 

 

 

 

Table 2 

Physical models and parameters. 

Parameter Value 

Gas density 1 .2 kg/m 

3 

Gas viscosity 1 . 84 × 10 −5 Pa s 

Solid density 2660 kg/m 

3 

Particles diameter 500 × 10 −6 m 

Restitution coefficient 0 .95 

Width ( W ) 0 .57 m 

Height ( H ) 1 .0 m 

Initial bed height ( h b ) 0 .5 m 

Jet gap width ( w JET ) 0 .015 m 

Grid 152 × 200 cells 

Time step 1 . 0 × 10 −4 s 

Drag model Gidaspow 

Frictional stress model Srivastava and Sunderasan 

Packing limit 0 .65 

Minimal frictional value 0 .63 

Jet inlet velocity ( U JET ) 10 .0 m/s 

Fluidization velocity ( U MIN ) 0 .25 m/s 

Initial bed solid fraction 0 .598 
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explicit treatment of the advective terms. The solution tends to

differ at the latter stages of the mushroom formation, where no

theoretical solution is available. Nevertheless, the accuracy of each

formulation can be studied through a mesh convergence analysis.
Fig. 19. Transient evolution of a sin
ig. 16 shows the interphase shape for different mesh refinements

nd formulations at t = 1 . 5 s. 

It is clear from Fig. 17 that all formulations tend to the same so-

ution as the mesh is refined, but the conservative form always pre-

icts the fastest growth of the interphase and has closer agreement

ith the mesh converged solution. Moreover, the conservative form

or a coarse mesh of 1 × predicts an amplitude similar to the pre-

ictions of the nonconservative formulations with the finest mesh

 1 / 4 ×). Therefore, the adoption of the conservative form could be

sed to minimize the computational costs involved in predicting

he amplitude evolution for a given accuracy. 

.3.2. Single bubble growth 

A two-dimensional single air bubble growth and detachment in

 particles fluidized bed is now considered. This problem consists

f an air injection at the bottom of a cylindrical container partially

lled with particles at a state of minimum fluidization ( Fig. 18 ). 

The geometry and general setup of the problem are based on

he experiment performed by Kuipers et al. [60] and are summa-

ized in Table 2 . 

Patil et al. [9] showed the need to take into account the fric-

ional contribution to compute the global stress tensor in order

o accurately predict the bubble size and bed expansion. More-

ver, Passalacqua et al. [61] showed that commonly used fric-

ional models fail to correctly predict the bubble diameter, while

 modified Srivastava–Sunderasan model (with αs, min = 0 . 63 and

s, max = 0 . 65 ) exhibits closer agreement with the experimental

esults. 
gle bubble growth problem. 
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Fig. 20. Bubble shapes at t = 0 . 22 s for (a) the conservative form , (b) the nonconservative form and (c) the phase-intensive form 

Table 3 

Detachment time for different mesh refinements and differ- 

ent formulations. 

Exp 0 .170 s 

Mesh refinement C NC PI 

1/2 × (304 × 400 cells) 0 .176 s − 0 .201 s 

1 × (152 × 200 cells) 0 .182 s 0 .182 s 0 .205 s 

2 × (76 × 100 cells) 0 .180 s 0 .196 s 0 .194 s 

4 × (38 × 50 cells) 0 .182 s 0 .200 s 0 .198 s 
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Fig. 21. Averaged solid volume fraction at y = 0 . 16 m for different formulations. 

Fig. 22. Averaged solid vertical velocity at y = 0 . 16 m for different formulations. 
This test case introduces the complexity of the particles inter-

ction to the conservative method analysis. The transient evolution

f the air bubble until the detachment from the bottom is shown

n Fig 19 . 

Fig. 20 shows differences between formulations in terms of

he bubble shape and detachment time. It is appreciated that the

hase-intensive form predicts a more stretched and pointy bubble

hile the nonconservative form predicts a more round bubble. The

onservative form predicts a shape that is in between these two.

oreover, several mesh refinements were tested and, from Table 3 ,

t is appreciated that the conservative form predicts the lowest de-

achment time with the closest agreement with the experimental

ata reported in the literature [60] . 

.3.3. Fluidized bed 

The bubbling fluidized bed problem studied in the previous

ection is now tested using the conservative form and the phase-

ntensive form . Figs. 21–23 show time-averaged particles distribu-

ion and vertical velocity for both formulations. Slight differences

n the particles concentration are observed in the upper region of

he bed. However, the differences are minimal in the mid region,

nd the predicted bed expansion with both formulations are in

greement. Also, the results for both formulations of the averaged

articles velocity and volume fraction in the cross-axial direction

re in an acceptable agreement. 
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Fig. 23. Averaged solid volume fraction along the bed height for different formula- 

tions. 
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Unlike the previous test cases, in this problem, the bubbles for-

mation, growth and coalescence induce velocity waves that travel

in multiple directions. Due to this, the time averaging practice

tends to mitigate any substantial difference between the predic-

tions of the advective term formulations. 

6. Conclusions 

An Eulerian multiphase finite volume-based solver was devel-

oped and implemented on the OpenFOAM® platform. The solver

was tested exhaustively against a particles settling and a two-

dimensional fluidized bed problem. Its numerical performance was

explored under demanding conditions such as single-phase and

maximum packing limits, shock wave transport, among others.

Also, in the fluidized bed problem, various models of the drag co-

efficient were used for which the averaged solutions have a rec-

ognized sensitivity. In all cases, the results were stable during the

transient states and with close agreement with the literature. 

The open-source feature of the code has allowed to implement

and test the performance for different drag coupling methods. The

results showed that the PEA and PIM have a satisfactory perfor-

mance for moderate coupling conditions. However, the use of the

PEA becomes essential for the solution of highly coupled flows,

commonly observed in pneumatic transport problems, bubbling

fluidized bed with Geldart A particles, among others. 

A conservative analysis of the advective term of the momen-

tum equations was also performed. Three different formulations

were tested in problems with discontinuities on the velocity field.

A one-dimensional analysis was addressed and the exact differ-

ence between the velocity predictions was quantified for a single

time step. It was found that the phase-intensive form always pre-

dicts a higher shock wave velocity than the nonconservative form

and the difference with the conservative form prediction depends

on the relative variations of α and u . The conditions at which

these differences minimize were also discussed. Then, the analy-

sis was extended to a series of two-dimensional problems. First, a

Rayleigh–Taylor instability problem was considered. Here, a mesh

convergence analysis was performed to evaluate the development

of the mushroom shape formed by the interphase. It was found

that, for coarse meshes, the conservative form gives closer results

to the mesh converged solution. Next, a bubble growth in a partic-

ulate fluidized bed problem was addressed. Results show that the

phase-intensive form predicts a more stretched bubble while the

non-conservative form predicts a flatter and wider bubble. The con-

servative form falls in between those shapes, but with a time of de-

tachment lower than the other formulations. This is in agreement
ith the experimental results of the literature. Finally, the conser-

ative form and phase-intensive form were compared in a bubbling

uidized bed problem. It was shown that the effects of these for-

ulations have a low impact on macroscopic results, such as the

ime-averaged particles distribution. The analysis of these prob-

ems showed that: 

• The conservative form adoption is essential for unsteady prob-

lems with presence of shock waves (which are commonly found

in many multiphase applications). The implementation of this

formulation has to be done along with a proper handling of the

phase disappearance condition. 
• The nonconservative form is not recommended for multiphase

applications since the predicted velocity field is usually far from

the real solution. 
• The phase-intensive form fails to accurately predict the velocity

fields for detailed unsteady conditions when shock waves are

present, but, for the analysis of averaged particles distributions,

it gets a satisfactory performance in comparison with the con-

servative formulation. Added to this, the issues related to the

phase disappearance are easily handled with this formulation. 
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