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a b s t r a c t 

In previous works [S. R. Idelsohn, J. Marti, P. Becker, E. Oñate, Analysis of multifluid flows with large time 

steps using the particle finite element method, International Journal for Numerical Methods in Fluids 75 

(9) (2014) 621–644. doi:10.1002/fld.3908. URL http://dx.doi.org/10.1002/fld.3908 , Juan M. Gimenez and 

Leo M. González, An extended validation of the last generation of particle finite element method for 

free surface flows, J Comput Phys 284 (0) (2015) 186–205. doi: http://dx.doi.org/10.1016/j.jcp.2014.12.025 . 

URL http://www.sciencedirect.com/science/article/pii/S0 0219991140 08420 ], the authors have presented a 

highly efficient extension of the Particle Finite Element Method, called PFEM-2, to solve two-phase flows. 

The methodology which uses X-IVS [S. Idelsohn, N. Nigro, A. Limache, E. Oñate, Large time-step explicit 

integration method for solving problems with dominant convection, Comp Methods in Appl Mech Eng 

217–220 (2012) 168–185.] to treat convection terms allowing large time-steps was validated for problems 

where the gravity forces and/or the inertial forces dominate the flow. Although that is the target range 

of problems to solve with PFEM-2, most of real problems that fall in these categories also includes other 

flow regimes in certain regions of the domain. Maybe the most common secondary regime is when the 

surface tension dominates, as an example when drops or bubbles are released from the main flow, and 

this feature must be taken into account in any complete numerical strategy. 

Attending to that, in this work the treatment of the surface tension to PFEM-2 is included. An implicit CSF 

methodology is employed together with a coupling between the marker function with a Level Set func- 

tion to obtain a smooth representation of the normal of the interface which allows an accurate curvature 

calculation. Examples for curvature calculation and isolated bubbles and drops are presented where the 

accuracy and the computational efficiency are analyzed and contrasted with other numerical method- 

ologies. Finally, a simulation of a jet atomization is analyzed. This case presents the above mentioned 

features: it is a inertia-dominant flow with a surface tension phenomena on drops and ligaments break 

up that can not be neglected. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Solving efficiently multi-phase flows is still an open challenge.

Although the dynamics of single phase flows are well understood

and can be solved accurately without loss of efficiency, the compu-

tational modeling of two or more phases is an underdevelopment

field with growing interest. In multi-phase flows the behavior of
� Fully documented templates are available in the elsarticle package on CTAN . 
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http://dx.doi.org/10.1016/j.compfluid.2016.04.026 

0045-7930/© 2016 Elsevier Ltd. All rights reserved. 
he fluid at each phase depends on the interface and its shape de-

ends on the flow, then solving this complex coupling is a chal-

enging task. 

According to the framework used to derive the formulation,

he numerical methods can be split into two main approaches,

amed Eulerian (fixed framework) and Lagrangian (mobile frame-

ork). Former formulations were the first ones to be developed

nd they provide a natural evolution from single-phase flows since

ost of Computational Fluid Dynamics (CFD) software are formu-

ated within a fixed framework, while latter formulations offer a

ore natural choice for simulations in which deformations are not

egligible, such as in multi-phase problems. 

http://dx.doi.org/10.1016/j.compfluid.2016.04.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
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http://www.sciencedirect.com/science/article/pii/S0021999114008420
http://www.ctan.org/tex-archive/macros/latex/contrib/elsarticle
mailto:jmarcelogimenez@gmail.com
mailto:sergio@cimne.upc.edu
http://dx.doi.org/10.1016/j.compfluid.2016.04.026


J.M. Gimenez et al. / Computers and Fluids 141 (2016) 90–104 91 

 

a  

c  

t  

a  

t  

d  

n  

d  

t  

[  

t  

c  

[  

t  

fi  

f  

p  

V  

f  

s  

o  

v

 

n  

i  

r  

c  

i  

s  

u  

t

 

d  

f  

c  

S  

i  

p  

i

 

a  

t  

b  

i  

s  

l  

t  

c  

b  

f  

a

 

t  

t  

s  

f  

c  

b  

a  

s  

t  

s  

w  

t  

m  

a  

p

 

n  

T  

w  

n  

t  

t  

t  

p  

s

S  

p  

c  

[  

f  

c  

m  

u  

t  

c  

t  

b  

t  

e  

a

 

h  

p  

p  

i  

r  

f  

(  

t  

m  

L  

p  

l  

c  

a  

i  

m  

t  

i  

t  

t  

i  

i  

l  

d  

r  

h  

[  

o  

c  

H  

a  

t

 

m  

S  

t  

f  

c  
In the Eulerian strategies, the Finite Element Method (FEM) is

 standard tool to solve both structural and fluid problems. In the

ase of standard FEM, the exact solution cannot be represented in

he space spanned by the shape functions, then they will not be

ble to capture it accurately, but an averaged solution will be ob-

ained. This is particularly important for multi-phase models, since

omains composed by different phases usually lead to disconti-

uities in the properties along the interface, which translates into

iscontinuities in the unknowns or in their gradients. An alterna-

ive to overcome this limitation is to use Enriched Finite Elements

4–7] , which adds degrees of freedom to elements that are cut by

he interface in order to capture the part of the solution that es-

apes from the standard shape function field. Coppola-Owen et al.

8] proposed a simple enrichment functions that is capable of cap-

uring accurately gradient discontinuities (kinks) in the pressure

eld. Moreover, Ausas et al. [9] proposed a set of three enrichment

unctions that are able to capture both kinks and jumps in the

ressure. Another option in the Eulerian framework is the Finite

olume Method (FVM), which has more followers than the FEM

or fluid dynamics. The domain is discretized with cells, and the

olution is obtained by calculating fluxes through the faces of each

f them. This leads to a formulation that is automatically conser-

ative on the fluxes, unlike FEM. 

No matter which Eulerian strategy is used to solve the fluid dy-

amics, an accurate and efficient simulation of interface evolution

s of fundamental importance. For example, in FEM, the use of en-

iched space is still insufficient to simulate multi-fluids unless it is

oupled with a second tool to locate precisely the position of the

nterface, necessary to build the extra shape functions. It is pos-

ible to distinguish two broad classes of computational methods

sed to describe the evolution of interfaces, namely: interface cap-

uring and interface tracking methods. 

Purely Eulerian algorithms, which solve the fluid in a fixed un-

erlying mesh, use capturing methods. In this approach the inter-

ace is determined by an implicit function that is advected in the

omputational domain. Popular methods of this type are the Level

et Method (LSM) [10] , which has become widely used when the

nterface undergoes extreme topological changes, e.g., merging or

inching off; and the Volume of Fluid (VOF) technique [11] , which

s naturally employed with FVM. 

The LSM consists in using a distance function that is convected

ccording to the fluid velocity. This function represents the dis-

ance from a point to the interface. By definition, the interface will

e located where its value is zero. This level function is variable

n the space, but if it has large variations in time, after some time

teps it does not represent the distance to the interface anymore,

eading to diffusion of the interface and mainly loss of mass. For

his reason a reinitialization of the level set must be done to re-

over a distance function which guarantees that the properties are

etter conserved. Moreover, an Eulerian advection of the level set

unction produces large diffusion and requires small time-steps to

chieve accurate solutions. 

On the other hand, VOF is based on the conservative nature of

he FVM, where instead of tracking an interface, it is more natural

o save the content of different phases at each cell and define the

hape and position from this data later on. The method defines a

unction that is the fraction occupied by one of the phases in each

ell of the domain. Therefore the interface position is not tracked,

ut the fraction of fluid instead. Once fluids have been convected

mong cells, the interface position can be reconstructed (accepting

ome accuracy loss). This exchange between cells, inherited from

he conservative nature of the FVM, allows to guarantee mass con-

ervation. This is an important advantage respect to the LSM, in

hich mass loss is a critical topic which must be addressed and

reated. Moreover, the FVM is very robust and is likely to be the

ost used one in commercial/widespread codes. As an example of
pplication, OpenFOAM 

® [12] uses this strategy to solve multi-fluid

roblems. 

Formulations clustered in the Lagrangian framework are a more

atural choice for simulations where there are large deformations.

he original idea, proposed by Monaghan et al. [13] and later

orks applied to fluid mechanics [14] , was a meshless method

amed Smoothed Particle Hidrodynamics (SPH). Using particles

hat are advected carrying its own properties over the domain,

hey are able to almost avoid the numerical diffusion. In the con-

ext of incompressible flow, the Lagrangian perspective makes it

ossible to use a material derivative formulation where the ab-

ence of the non-linear convective terms transform the Navier–

tokes system into a transformed linear coupled problem between

oints and velocities. In the case of multi-phase problems, the cal-

ulation of the interface evolution is naturally done using particles

15,16] . However most of Lagrangian formulations have the uncom-

ortable drawback of requiring a particle position treatment. In the

ase of meshless methods a constant track of all the moving points

ust be kept where searching algorithms have to be used to speed

p the computational time to calculate the interaction forces. On

he other hand, the mesh-based methods must lead with the ne-

essity of constructing or controlling the mesh quality during each

ime-step of the simulation if the accuracy of the solution has to

e maintained. Searching algorithms, evaluation of the mesh dis-

ortions or the re-meshing processes are always computationally

xpensive and it would be interesting to explore the possibility of

voiding those steps. 

Alternatives, that combines both Eulerian and Lagrangian tools,

ave provided to be a good alternative to pure methods. In [17] a

ure Eulerian solver for the fluid is used, but Lagrangian marker

articles are used to improve the LSM, then the interface track-

ng. This method proves to be more accurate than the pure Eule-

ian or pure Lagrangian counterpart in the tracking of the inter-

ace. Another option is the named Particle Finite Element Method

PFEM) [18] which consists of using a set of particles that define

he nodes of a finite element mesh. Since fluids have no defor-

ation limit, remeshing must be done at each time step. As all

agrangian methods, the PFEM offers a more natural solution to

roblems where the particles of the domain can move freely. Un-

ike LSM, there is no need to recalculate the surface since the lo-

ation of the interface is obtained trivially; since each particle is

ssociated with a material no extra function is needed. Combin-

ng the original idea of Particle in Cell (PIC) [19] where a fixed

esh is used to calculate forces and pressures and moving par-

icles to convect properties, the PFEM method was extended lead-

ng to a novel strategy so-called PFEM-2 [3,20] . Among the advan-

ages of the method, the Lagrangian formulation employed allows

o convect material properties such as density, viscosity, etc., elim-

nating the need of the non-linear convective term. Also, using an

mproved explicit integration named X-IVS (eXplicit Integration fol-

owing the Velocity Streamlines) added to an implicit correction of

iffusive terms, there is no limitation in the time step, being the

equired precision the only bound for the time-step [21] . The en-

anced PFEM-2 version to solve multiphase problems, presented in

1] and validated in [2] , preserves the large time-step goodnesses

f the single-phase strategy, also includes enrichment strategies to

apture discontinuities in the pressure gradient, i.e., pressure kinks.

owever, the range of application of this strategy does not cover

n important group of two-phase problems such as those where

he surface tension is dominant. 

In those problems, a surface tension model must be imple-

ented at the interface being a validated strategy the Continuous

urface Force model (CSF) [22] which is based on an approxima-

ion of the interface curvature from the gradient of the marker

unction. In the case of VOF function, the gradient cannot be cal-

ulated accurately since it is a discontinuous step function, and its
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Fig. 1. Discretization employed in PFEM-2. A cloud of Lagrangian particles are ad- 

vected over a fixed FEM mesh. Nodal states are projected from neighbor particles 

states. The neighbor particles are those which are inside the grey region. 
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discrete approximations are known to generate unphysical spuri-

ous currents at the interface [23] . Strategies to reduce the spuri-

ous currents based on either interface reconstruction or smoothing

kernels are available, a literature review can be found in [24] , but

most of them must be employed only on structured meshes. The

coupling achieved by advecting the interface using the conservative

VOF function, calculating the interface normal using the smoothed

LS function and updating the physical properties from a smoothed

Heaviside function is an improved strategy called CLSVOF [25] .

In [26] , Albadawi et al. present a less expensive option called S-

CLSVOF which uses an one-way coupling strategy. This approach

was successfully applied on surface tension dominant problems. 

The current work proposes a strategy to enlarge the capabili-

ties of PFEM-2 adding the S-CLSVOF method so as to improve the

solution of surface tension dominant problems. In Section 1 the

governing equations are presented together with the numerical

methodology proposed to solve it, doing focus on the interface

and surface tension term treatment. Next sections present a set

of test properly chosen to show the capabilities of the strategy:

starting from pure-convective tests to show the goodness of the La-

grangian framework to transport with neither diffusion nor distor-

tion an arbitrary shape, next surface tension dominant cases where

the interface treatment and the method accuracy are quantitatively

tested, being PFEM-2 forced to enlarge the time-step where other

numerical approaches can not work. Finally, a preliminar simula-

tion of a jet atomization problem is presented. In this type of in-

ertial dominant problem PFEM-2 has demonstrated to be the best

numerical option, however a proper treatment of surface tension

must be taken into account if an accurate solution of ligaments

and droplets formation is searched. 

2. Equations and numerical formulation 

2.1. Governing equations 

The problem to solve is the case of unsteady laminar flow of

two immiscible incompressible fluids. Both phases are assumed to

be viscous and Newtonian. Isothermal conditions are assumed, and

reaction mass transfer and phase transition are not considered.

Taking into account all the physical assumptions, both the flu-

ids are then governed by the incompressible Navier–Stokes equa-

tion with additional surface tension force along the interface. The

governing equations include the continuity, momentum, and inter-

face capturing advection equations which, written in the Eulerian

framework, read: ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

ρ

[
∂V 

∂t 
+ V · ∇V 

]
= ∇ · σ + ρg + F �

∇ · V = 0 

∂λ

∂t 
+ ∇ · ( λV ) = 0 

(1)

where ρ is the fluid density, V the fluid velocity vector, g the grav-

itational acceleration, and σ = −pI + μ(∇V + (∇V ) T ) with p the

scalar pressure and μ the dynamic viscosity of the fluid. The fluid

domain is defined for a single mixture where the function λ is

used to distinguish between the two phases. The calculation of the

fluid physical properties, the density ρ and viscosity μ, vary ac-

cording to the scalar field λ. The surface tension force F � is the

concentrated load along the interface, defined as 

F � = σκδ�n � (2)

where σ is the surface tension coefficient between the two phases,

κ is the local curvature of the interface, δ� is the Dirac delta func-

tion that localizes the surface tension force to point load on the

interface and n as the unit normal to the interface. 
�
Employing the material derivative instead of the temporal

erivative plus the convective term, the Eq. (1) can be reformulated

n its Lagrangian version. In this framework, a kinematic problem

as to be solved in order to follow the particle trajectories, which

eads to a equation system as: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ρ
D V 

Dt 
= ∇ · σ + ρg + F �

∇ · V = 0 

Dλ

Dt 
= 0 

D x 

Dt 
= V 

(3)

Due to the multiplication of the velocity and its gradient, the

onvective term in Eq. (1) is non-linear. The presence of this non-

inear term demands iterative algorithms to converge to the solu-

ion including linearisation techniques to solve the system. On the

ther hand, the Navier–Stokes equations written in a Lagrangian

ramework lead to a system of linear equations due to the absence

f the convective term. Moreover, the resulting system changes the

on-symmetric equations in the Eulerian frame into a symmetric

nd positive definite one. 

.2. Discretization strategy 

The PFEM-2 algorithm consists of solving the equations pre-

ented in Section 2.1 using a mixed Eulerian–Lagrangian discretiza-

ion. This choice leads to a simplification of complex terms, as

he convective one, and to a higher accuracy in the results due

o lower error in the approximation comparing with its pure La-

rangian or pure Eulerian counterparts [27] . As it was mentioned,

ince material points move and the configuration changes contin-

ously in time, it is necessary to couple this set of equations with

 strategy that solves for the movement of the material points.

his is achieved in PFEM-2 by using a set of Lagrangian parti-

les combined with a fixed FEM mesh as is shown in Fig. 1 . The

ain advantage of using the Lagrangian particles is that the con-

ection is obtained by simply moving the particles across the space

nd therefore the system to be solved does not have the convec-

ive term. The remaining set of equations will be calculated on the

esh employing a typical fractional step strategy. 

It must be remarked that the particles used in the scheme

o not represent a fixed amount of mass but rather material

oints with certain properties and velocity. This allows for differ-

nt amount of particles to be used depending on the zone to en-

ure a better accuracy on those areas. Also, it should be noted that

n the algorithm presented in this document, the particles are only

sed to transport the information (solve convective terms of equa-

ions). However, in certain cases where the viscosity is low and

here is only one fluid phase, it is possible to solve partially the
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omentum equation in the particles, as explained by [20] . Al-

hough this strategy leads to higher accuracy in the cases analyzed

n the article, it lacks the generality that is required for the simu-

ation of two-phase problems. Readers interested in a deep expla-

ation of method basis can read [3,20] and the extension to two-

hase problems in [1,2] or to fluid-structure interaction in [28] . 

.3. Interface treatment and surface tension 

In a PFEM-2 simulation, the Lagrangian particles are integrated

ollowing a strategy called X-IVAS [3] , where the streamlines fixed

t time n are employed to update the particle movements and ve-

ocities. In order to extend this approach to track the interface,

ach particle is initially marked with a sign function λp depending

f it belongs to the first or second phase, and this value is pre-

erved over the particle during the entire simulation guarantee-

ng boundedness. After X-IVS step, the particle data, i.e., velocity

nd marker function, must be projected to the nodes to continue

ith next algorithm steps. Although projection strategies are out

f scope of this work (a review and recent improvements of this

tep can be found in [29] ), in order to fix ideas the original algo-

ithm used by PFEM-2 [2] to project a given field φ between nodes

sing subindices ( j ) and particles using subindices ( p ) is presented

n this work, which is of the following form: 

j = 

∑ 

P φp W j (x p ) ∑ 

P W j (x p ) 
(4) 

here the function W j , associated with the node j , can be either

he typical kernel functions used in particle methods such as SPH

13] or the linear shape functions elevated to a power α (it is

 j (x ) = N j (x ) α), while x p is the position of the particle p with

tate φp and P is the number of particles in a region around the

ode j . The region around the node j can be selected in differ-

nt ways, being a possibility choosing the zone colored with grey

n Fig. 1 . Mesh nodes thus obtain real values after the projection

hich can be different to the integer values ± 1 that the particles

ransport. Finally, the interface is defined as the set of points that

atisfy the equation λ = 0 . 

Once projected over nodes, the function λ has similar proper-

ies to a VOF function: the mass is preserved but the discontin-

ous shape impossibilities an accurate gradient calculation then a

oor curvature is estimated which often lead to unphysical flows

round the interface when surface tension is included, resulting in

nrealistic interface shapes. As it was mentioned, there are sev-

ral strategies to overcome this limitation, and in this work the

pproach called S-CLSVOF [26] is selected. An advantage of this ap-

roach is that only the λ function is needed to advect (in contrast

ith CLSVOF), then the initial level set-like function φ0 is obtained

ollowing: 

0 = 

3 

4 

�xλ (5) 

he main criterion in choosing this value is to satisfy an initial

alue of φ which is close to the mesh step size. This initial function

s a signed function since it has a positive value in the denser fluid

nd a negative value in the lighter. However, in order to obtain a

∇φ| = 1 around the interface, the function is then re-distanced by

olving the re-initialization equation: 

∂φ

∂τ
= sign (φ0 )(1 − |∇φ| ) (6)

ith the initial condition of φ(x , 0) = φ0 (x ) , being τ an artificial

ime discretized with �τ = 0 . 1�x . Because the re-distancing starts

rom the initial interface and moving towards both fluids, and we

re interested only on the zone around the interface, only few it-

rations φcorr = 

ε
�τ are required, with ε representing the width

round the interface, typically 1.5 �x . 
After solving (6) the φ is now a continuous smooth function

round the interface, which helps in determining accurately the in-

erface normal n as usual in LSM, it is 

 = 

∇φ

|∇φ| (7) 

ence, it provides a more precise and smoother interface curvature

= ∇ · n (8) 

ome details are important to remark when Eqs. (7) and (8) are

olved in the FEM framework. An initial strategy is to replace

7) into (8) , and to use weighted residuals with the linear piece-

ise trial functions N solving directly for κ , it is 
 

�
N κ d� = −

∫ 
�

∇ N 

∇ φ

|∇ φ| d� −
∫ 
�

N 

∇φ

|∇φ| · η d� (9)

owever this approach leads to spurious results because ∇φ is dis-

ontinuous between the elements. A further option which obtain

etter results is first obtain a field ˆ n with continuous ∇φ between

he elements (linear field in the elements), doing 
 

�
N ̂  n d� = 

∫ 
�

N ∇φ d� (10) 

hen, obtain the curvature as usual 
 

�
N κ d� = −

∫ 
�

∇Nn d� −
∫ 
�

Nn · η d� (11) 

ith n = 

ˆ n 
| ̂ n | and η the normal to the boundary �. 

One of the most difficult tasks in front-capturing techniques is

o accurately identify the interface to directly impose the term F � .

his difficulty can be alleviated by interpreting the surface ten-

ion as a continuous body force spread across a transition region

f thickness avoiding the need of reconstructing the interface ex-

licitly. In this way, the continuum surface force model (CSF) of

rackbill et al. [22] provides an approach to approximate the term

f surface tension force F � as a force per unit volume as 

 σ = σκ∇φδs (φ) (12) 

here δs is the regularized interface delta function defined as fol-

ows: 

s (φ) = 

⎧ ⎨ ⎩ 

0 , φ > | ε| 
1 

2 ε

(
1 + cos 

(
πφ

ε

))
, φ ≤ | ε| (13) 

It has been presented [22,30] that if the surface tension term on

q. (12) is discretized explicitly, i.e. the surface tension forces are

valuated on the interface at the previous time step, the stability

f the scheme imposes the following restriction on the time step

ize �t max : 

t max = 

√ 

ρ�x 3 

σ
(14) 

ith this restriction the propagation of capillary waves is resolved

nd their unstable amplification avoided. The Eq. (14) can be rather

imiting for fine meshes and large surface tension coefficients then

s a relevant issue in order to preserve the large time step pro-

osed by PFEM-2. A solution to partially overcome this limitation

s to treat the force term (12) implicitly. In this proposal, the sur-

ace tension term is included into the implicit calculation of the

omentum equation over the mesh using the updated interface

osition. This helps to extend the time step limitation but is not a

ully implicit approach because the interface movement is not cou-

led with the surface tension imposition. An analysis of the stabil-

ty of this proposal is presented in Section 4.1 . 
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Algorithm 1 - Time-Step PFEM-2 for two-phase incompressible 

fluids. 

1. Convective Stage: ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

x 

n +1 
p = x 

n 
p + 

∫ n +1 

n 

V 

n (x 

τ
p ) dτ

̂ ̂ V 

n +1 

p = V 

n 
p 

λn +1 
p = λn 

p 

2. Projection Stage: 

M i j ̂
 ̂ V 

n +1 

j = M ip ̂
 ̂ V 

n +1 

p 

M 

L 
i j λ

n +1 
j 

= M ip λ
n +1 
p 

3. Momentum Stage: (
M 

(
ρ

�t 

)
+ K (μ) 

)̂ V 

n +1 = M 

(
ρ

�t 

)̂ ̂ V 

n +1 

− θp G p 

n + F 

n +1 

4. Poisson Stage: 

K 

(
�t 

ρ
+ τ

)
p 

n +1 = B ̂

 V 

n +1 + θp 

(
K 

(
�t 

ρ

)
p 

n + B (τ ) πn 

)
5. Correction Stage: 

M (ρ) V 

n +1 = M (ρ) ̂  V 

n +1 − �tG (p 

n +1 − θp p 

n ) 

+ θμK 

(
μ

ρ

)
(V 

n +1 − ̂ V 

n +1 ) 

ρp V 

n +1 
p = ρp ̂

 ̂ V 

n +1 

p + 

∑ 

j 

δV 

n +1 
j 

N j (x 

n +1 
p ) 

i  

p  

a  

t  

a  

l  

r  

s  

t  

t

3

 

c  

t  

p  

a  

a  

b  

6

u  

v  

T  

s  

i  

i  

a  
Finally, the material properties are calculated with the

smoothed Heaviside function H 

H(φ) = 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

0 , φ < ε

1 

2 

[
1 + 

φ

ε
+ 

1 

π
sin 

(
πφ

ε

)]
, φ ≤ | ε| 

1 , φ > ε

(15)

ρ(φ) = ρ1 + (ρ2 − ρ1 ) H(φ) (16)

μ(φ) = μ1 + (μ2 − μ1 ) H(φ) (17)

It must be noticed the relevance of the parameter ε in this

strategy. This parameter, which determines the extent of the in-

terface smearing, has been analyzed in other works [26] , conclud-

ing on the necessity of using the previously mentioned value that

preserves a narrow thickness. There are alternative sharp interface

methods such as the Ghost Fluid approach [31] which respects

jump discontinuities across the interface and avoids an interface

thickness. However, in these type of strategies the extension to

unstructured meshes is far from straightforward. A FEM frame-

work strategy to treat surface tension without thickness is employ-

ing enriched shape functions to treat pressure jumps as proposed

by Ausas [9] . In spite of the possibility of capturing jumps, the

curvature calculation still being a difficult task. Height functions

[32] seems to be the best option, but its formulation for 3d un-

structured meshes is still an open challenge. The Laplace–Beltrami

formulation [33] appears as an interesting alternative because the

curvature does not appear explicitly. However, this strategy also

presents drawbacks: it is only accurate with small surface defor-

mations, and requires the computing of the interfacial mesh lead-

ing to expensive computations. 

2.4. PFEM-2 with surface tension 

In order to decouple the unknown fields: velocity and pres-

sure, the projection method known as fractional step [34] is cho-

sen in PFEM-2. This segregated strategy consist on three main

steps: velocity predictor, pressure calculation and velocity correc-

tor. The particularity of this predictor step is that the convective

term is decoupled from the rest of the momentum equation: the

Lagrangian formulation allows to solve it only transporting the par-

ticles, which is done employing X-IVS. Then, the particles states

are projected to nodal positions, and the remaining terms (includ-

ing surface tension) are solved implicitly over the mesh, finishing

the predictor step with a predictor velocity ̂ V 

n +1 that satisfies the

boundary conditions. Pressure calculation p n +1 and velocity correc-

tion to obtain V 

n +1 (a divergence free field) are done as usual, but

the latter step also includes the particle velocity updating. 

It is assumed that all fluid variables are known at time t n for

both the particles and the mesh nodes. Subindexes () j y () p repre-

sent a generic mesh node j and a generic particle p respectively ( P

represents the number of particles). Let N the finite element linear

basis functions. According to this notation, the steps are presented

in Algorithm 1 , where x is a spatial coordinate, δp = p n +1 − p n ,

δV = V − ̂ ̂ V , θp can be 0 or 1 depending on the pressure restart

choice. Also, θμ can be 0 or 1 depending on the necessity or not of

an accurate diffusion calculation when large Fourier numbers are

employed, F = 

∫ 
� N j ( ρg + F σ ) d�, and M and K are the standard

mass and stiffness matrices of any FEM assembling. The compu-

tational implementation was done extending the high performing

library presented in [21] and each test presented in this work was

simulated with that house-made code. 

3. Interface evolution tests 

This section will deal with an exhaustive validation of the pro-

posed PFEM-2 method to transport arbitrary shapes with neither
nterface disturbances or mass loss. It is well known that em-

loying the Lagrangian scheme is relatively easy to solve pure-

dvective problems as presented in this section, but we consider

hat it is important for the reader to reach a strong conclusion

bout the goodness of this framework in contrast with the prob-

ems observed with the typical Eulerian schemes. The latter are

epresented by the suite OpenFOAM 

®which implements a VOF

trategy with interface compression. As will be shown, the larger

ime step is employed, the more relevant are the differences be-

ween the frameworks. 

.1. Rigid body rotation of Zalesak’s disk 

This test consists in the advection of a region composed of a cir-

le with a slot [35] . If the interface tracking is accurate enough, af-

er several revolutions, the shape must remain identical. The com-

utational domain employed is � ∈ R 2 : [0; 100] × [0; 100]. The

dvected region is a circle centered at (50; 75) with a radius of 15

nd a slot of width 5 and height 25. The velocity field is a rigid

ody rotation around the center of the domain with a period of

28 time units: 

 = (π/ 314)(50 − y ) , (18)

 = (π/ 314)(x − 50) (19)

he grid has 100 points in each direction, conforming a carte-

ian mesh (in the case of PFEM simulations the mesh was split

nto 20 0 0 0 triangles). The Courant number used in simulations

s aproximately CF L = 4 . 5 . Both the initial field and the solution

fter two revolutions are shown on Fig. 2 . In the case of PFEM
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Fig. 2. Zalesak’s disk results after two full revolutions with 100 grid point per di- 

rection and CF L = 4 . 5 . The grey region represents the initial condition. 
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imulation, approximately five particles by element were used.

ost relevant OpenFOAM 

®settings are: SuperBee as the diver-

ence scheme for the linear term in volume fraction advection

quation, MULES as the time integration scheme, the number of

lphaSubCycles is 20 (to guarantee interface Courant number

ess than 0.5) and the interface-compression factor cAlpha is set

o 1. 

PFEM evolution shows a good agreement with the expected

esult (shape preservation). Some small errors, which are more

vident when the magnitude of velocity is higher, appear due

o approximate a curve with a sequence of straight trajectories.

ven though in OpenFOAM 

®simulation the interface-compression

ethod combined with the advection scheme avoids numerical

iffusion, they modify the disk shape excessively, finishing in a

oor prediction of the final status. 

.2. Single vortex case 

While Zalesak’s disk test is a good indicator of numerical diffu-

ion in an interface-capturing method, it does not test the ability to

reserve small scale structures of the fluid flow. A well known test
Fig. 3. Single vortex test using 256 grid points per direction and C
o evaluate the ability of the method to solve structures of differ-

nt sizes and their evolution is given by the vortex-in-a-box prob-

em introduced by Puckett et al. [36] . The difficulty of this tests is

hat requires the solution of an interface stretching problem. The

omputational domain is � ∈ R 2 : [0; 1] × [0; 1], where the inter-

st region is a circle centered at (0.5; 0.75) with a radius of 0.15,

dvected with a velocity field defined by the stream function 

(x ) = 

1 

π
sin 

2 (πx ) sin 

2 (πy ) cos 

(
πt 

T 

)
eing the velocity components 

 = ψ x = sin 

2 (πx ) sin (2 πy ) cos 

(
πt 

T 

)
 = −ψ y = − sin 

2 (πy ) sin (2 πx ) cos 

(
πt 

T 

)
he grid has 256 points in each direction, and the Courant number

sed in simulations is aproximately CF L = 4 . 8 . 

The setting employed for each numerical method in this case

s almost equal to the previous test, with the only one difference

hat in OpenFOAM 

®the interface-compression factor cAlpha is set

o 0.25 to give more stability through relaxing in some level the

trong sharpness imposition. Using a larger factor, the simulation

urns unstable. 

The results presented in Fig. 3 show, for PFEM-2, good agree-

ent with the expected result (shape preservation) after the cy-

le. Although the first half of the evolution is well captured by

penFOAM 

®, the reconstruction of the original shape is not good

nough. 

.3. LeVeque deformation case 

LeVeque [37] proposed a three dimensional incompressible flow

eld which combines a deformation in the x − y plane with one in

he x − z plane. This problem can be considered an extension of

he previous case, requiring the correct capturing of the stretching

henomenon in three dimensions. 

• The computational domain is � ∈ R 2 : [0; 1] × [0; 1] × [0; 1]. 
• The advected region is a circle centered at (0.35; 0.35; 0.35)

with a radius of 0.15. 
• The velocity field is given by 

u = 2 sin 

2 (πx ) sin (2 πy ) sin (2 πz) cos 

(
πt 

T 

)

F L = 4 . 8 ( T = 8 ). Grey region represents the initial condition. 
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Fig. 4. Snapshots of 3D deformation field test with PFEM-2. There were used 50 

points per direction and CF L = 4 . Results were smoothed by post-processing pur- 

poses. 
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v = − sin (2 πx ) sin 

2 (πy ) sin (2 πz) cos 

(
πt 

T 

)
w = − sin (2 πx ) sin (2 πy ) sin 

2 (πz) cos 

(
πt 

T 

)
• The grid has 50 points in each direction. 
• Courant number used in simulations is aproximately CF L = 4 . 

Since the flow is reversed for t > T /2, after one period the func-

tion must return to its original shape. Fig. 4 shows that PFEM-2

successfully recovers almost the initial shape, which is a very com-

plicated task for other numerical strategies [38,39] . 

4. Surface tension test cases 

In this section several two-phase incompressible tests are pre-

sented. The selected cases are focused in problems where the sur-

face tension play an important role. Therefore, the Algorithm 1 is

exhaustive tested in different situations. The preliminary case an-

alyzes the stability of the surface tension modeling measuring the

spurious currents and its dissipation level. Being the advection al-

most negligible, this case allows to show that the Eulerian parts

of the algorithm works as other standard codes. Next case consists

in a bubble which rises due to buoyancy force under two differ-

ent regime, one more rigid where the surface tension is stronger

and other more inertial where a skirted shape must be found. An

analysis of the parasitic currents and mesh convergence is done for

the case where the gravity is neglected. Moreover, the same cases

simulated with larger time-steps are stable but with more errors

when surface tension increases, in contrast to Eulerian algorithms

which tends to turn unstable. The second test is a standing wave

dominated by capillarity. Although this problem is not the most

indicated to be solved by PFEM-2 due the lack of inertial dom-

inance, the method shows good accuracy even using reasonable

large time-steps. Finally, a preliminary simulation of a primary at-

omization of a liquid jet is done. Being an inertia dominated case,

large time-steps can be employed but a proper capture of drops

and ligaments depends on the local Weber number. 

Herein, the efficient distributed-memory implementation pre-

sented in [21] and extended to the free-surface treatment (see

Algorithm 1 ) is used to simulate each of next cases presented. Also,

the numerical parameter θp is set to 0 in every case so as to restart

the pressure at each time step to allow larger time-steps and three

iterations of steps 4 and 5 are done to improve the global first or-

der [2] . On the other hand, the parameter θμ is set to 0 except

when the Fourier number F o = μ�t/ �x is greater than 10 where

is set to 1. The latter allows to increase the accuracy of the frac-

tional step strategy for highly diffusive problems. 
.1. Stability analysis 

The most critical numerical artifact introduced by the modeling

f the surface tension is the generation of spurious currents which

ppear in the form of vortices around the interface. The employed

ethod, CSF, is not excepted from that drawback. These flows, also

amed as parasitic currents, are generated solely due to numerical

rtifacts through the discrete approximation of the interface which

cts as a perturbation on the physically smooth interface. 

If the surface tension term is discretized explicitly, i.e., the sur-

ace tension forces are evaluated at the interface at the previous

ime step, the stability of the scheme places a stability condition

n a time step [22] as 

t < 

√ 

ρ�x 3 

σ
(20)

hich results in a limiting for fine meshes and large surface ten-

ion coefficients. The implicit treatment of surface tension terms

s shown to alleviate this restriction [40] . Instead of evaluating the

urface tension with the interface at the previous time-step n , the

FEM-2 employs the interface at time n + 1 . However, the interface

ovement is not coupled with the surface tension force calcula-

ion leading to a sort of semi-implicit scheme. Then, to evaluate

he range of stability of this methodology, an analysis similar to

hat presented by Deshpande et al. [41] is done here. 

In order to include the effect of viscosity in the case of low

eynold number, Galusinski and Vigneaux [42] have revisited the

ime step constrain leading to the following generalized time step

riterion 

t ≤ τσ = 

1 

2 

⎧ ⎨ ⎩ 

C 2 
μ�x 

σ
+ 

√ (
C 2 

μ�x 

σ

)2 

+ 4 C 1 
ρ�x 3 

σ

⎫ ⎬ ⎭ 

= 

1 

2 

{
C 2 τμ + 

√ (
C 2 τμ

)2 + 4 C 1 τ 2 
ρ

}
(21)

ith τμ and τρ two independent time-scales depending on the

iscosity and density respectively. The constants C 1 and C 2 are in-

ependent of fluid properties and are only solver specific and in

his work are determined experimentally from the simulations. 

Following [41] , the proposed case has a domain of 1 × 1 mm dis-

retized with a uniform grid of �x = 10 μm . Centered is a droplet

f radius R = 0 . 25 mm . Both density ρ and viscosity μ are the same

or the fluid inside or outside the drop and their value depend

n the time scale considered. The coefficient of surface tension

 σ = 0 . 01N / m ) and simulation time step ( �t = 10 −4 s ) are always

aintained constant. Gravity is neglected in all simulations. The

nal simulation time is set to T f = 10s . 

The set of cases simulated covers the values of τρ / �t and

μ/ �t desired varying ρ and μ properly. The Fig. 5 presents the

tability charts for the behavior of each test. Three categories of

imulations are taken into account: 

• Stable: kinetic energy calculated over the entire domain decays

and center of mass of the droplet remains fixed. 
• Unstable type 1: simulation ends, but the center of mass of the

droplet finishes displaced more than the size of one element of

the mesh and/or the kinetic energy does not decay. 
• Unstable type 2: simulation crashes after completion. 

From the results, the constants C 1 = 0 . 1 and C 2 = 1 can be ob-

ained. It should be noted that this set of simulations has an ideal

umber of Reynolds of Re = 0 which is in the opposite side of a

roper application range of Lagrangian strategies. Then, which is

ctually tested is the performance of the fractional step method

mployed by PFEM-2 to couple velocity and pressure plus a con-

tant projection/interpolation from/to particles. Comparing with
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Fig. 5. Stability chart for integration times T f = 10[s] . Dashed lines represent the 

boundary between the stable and unstable computations found by Deshpande 

[41] and by the current work with PFEM-2. 

Table 1 

Physical parameters for the rising bubble case. 

Test ρ1 ρ2 μ1 μ2 g σ Re Eo 

1 10 0 0 100 10 1 0 .98 24 .5 35 10 

2 10 0 0 1 10 0 .1 0 .98 1 .96 35 125 
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Fig. 6. Rising bubble case configuration and boundary conditions. 
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he reference work of Deshpande et al. [41] , PFEM-2 is more robust

gainst the density time scale than FVM + VOF, but it is weaker

egarding to viscosity time scale. The former is expectable because

he density is related to the unsteady and inertia terms. The latter

an be understood due to either excessive noise at interface be-

ause of the use of particles, which requires more viscosity to dis-

ipate that phenomena than Eulerian strategies and due to failures

f the first order fractional step where the iterations do not recom-

ose the solution. Anyway, it has been shown by Deshpande that

he generation of spurious currents is only secondary for a moving

nterface, therefore the time step analysis shown here represents

 conservative estimate. It is expected when the convection takes

art in the simulation, the advantages of PFEM-2 will be clearer. 

.2. Rising bubble case 

A widely used surface-tension benchmark is the case of an air

ubble rising in a liquid column. Beyond qualitative results, as the

ubble shape, Hysing et. al. [43] have presented a set of quanti-

ative results obtained with several CFD multiphase codes solving

wo cases varying some physical properties. The first one consid-

rs a bubble in the ellipsoidal regime which undergoes moderate

hape deformation, while in the second one the bubble belongs to

he skirted regime and experiences much larger deformation. Both

uids are Newtonian, incompressible and isothermal, with proper-

ies listed in Table 1 . 

In the Fig. 6 the case configuration and the boundary condi-

ions are presented. The initial condition is null velocity with the

hase marker imposed as shown. In comparison with other re-

orted works, for example [44] , where the initial condition had

o be relaxed in order to smooth the interface between the two

egions, with the current strategy this pre-processing is not neces-

ary because the initial marker field is imposed over particles then

rojected to the nodes, obtaining a naturally smoothed field over

he mesh which diminishes, but not remove, the typical parasitic

urrent of staircase profiles. 
The reference solutions presented in [43] have been run with

hree different numerical approaches: the TP2D of Turek [45] , the

reeLIFE of Parolini & Burman [46] , and the MooNMD of Ganesan

t al. [47] . They all use the finite element method, but the two

rst approaches describe the interface with the level set, while

he latter tracks it in an arbitrary Lagrangian-Eulerian way. In

44] Klostermann et al. validated the results of the open source

ibrary OpenFOAM 

®, which implements the finite volume method,

nd particularly for two-phase flows a VOF strategy with interface

ompression. The following bubble quantities are used to compare

he results: 

• Shape at the final time t = 3 [s] 

• Center of mass: x c = 

∫ 
�2 

x d�2 ∫ 
�2 

1 d�2 

• Rise velocity: V c = 

∫ 
�2 

V d�2 ∫ 
�2 

1 d�2 

The computations have been performed on structured meshes

ivided in triangles with element sizes of h = 1 / 40 , 1 / 80 , 1 / 160

levels 1, 2 and 3 respectively), to reach the final simulation time

 T f = 3 s ). During the first group of tests a grid size-dependent

ime-step of �t = h/ 2 is employed in order to calibrate the sim-

lation to obtain similar results to the reference. Once proved, the

ime step is increased to analyze the stability and accuracy of the

ethod when it is enforced. 

.2.1. Zero gravity condition 

In order to estimate some first errors and uncertainties of the

umerical model a transient simulation with surface tension but

ithout gravity is carried out. The simulations were done up to

each T f inal = 3 s . The pressure jump over the droplet interface and

arasitic velocities are analyzed in the simulation. The value of the

ressure jump over the interface due to surface tension in two di-

ensions can be analytically calculated as 

p = 

σ

R 

(22) 

here R = 0 . 25 is the bubble radius. Using the physical conditions

f the most surface-tension dominant case (Test 1), it leads to

p = 98 Pa . A normalized pressure P can be obtained in the case

f a static bubble, it should read in �1 : P = 0 and in �2 : P = 1

ith a sharp pressure jump at the surface. 

Various numerical methods are known to generate spurious ar-

ificial numerical flows instead of keeping steady cylindrical drops

48] . The order of magnitude of parasitic velocities u p can be esti-

ated according to the surface tension coefficient σ and dynamic
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Table 2 

Pressure jump and parasitic currents comparison between 

PFEM-2 and the simulations of [44] . 

Method 1/ h P C p 

PFEM-2 with κ as Eq. (9) 40 0 .975 1 . 9 10 −3 

PFEM-2 with κ as Eq. (11) 40 0 .95 4 . 1 10 −4 

PFEM-2 with κ as Eq. (11) 80 0 .954 5 . 3 10 −4 

PFEM-2 with κ as Eq. (11) 160 0 .955 5 . 8 10 −4 

VOF quads (ref [44] ) 40 0 .83 4 . 6 10 −4 

VOF quads (ref [44] ) 320 0 .7 2 . 1 10 −4 

VOF triangles 40 0 .78 6 . 7 10 −3 

PFEM-2 with no smoothing 40 1 .81 3 . 0 10 −3 

Fig. 7. Zero Gravity test with a mesh of 1 /h = 40 . Analytical pressure is shown in 

grey. 
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viscosity μ of the bubble: 

u p = 

C p σ

μ
(23)

where C p is a numerical constant, a characteristic of the qual-

ity of the numerical modeling of surface tension forces (a non-

dimensional number similar to a capillary number). The optimal

value of C p is zero. Typical values of C p are found between 10 −3 

and 10 −10 . 

A set of simulations were done employing different numeri-

cal strategies and various meshes in order to calculate the curva-

ture and comparing results. The Table 2 presents the tests and its

numerical results, while Fig. 7 shows the final pressure field for

some simulations. In the set of cases presented, spurious veloci-

ties are found on both sides of the interface, which are interpreted

as parasitic currents. These observations are in agreement with

those found in, for example, [44,48] for a static viscous droplet

in equilibrium. The current proposal of PFEM-2 with S-CLSVOF +

CSF was tested employing both curvature FEM calculation strate-

gies above cited, i.e., using discontinuous and continuous normals

( Eqs. (9) and ( 11 )) showing a clear advantage for the latter option

in the parasitic current indicator, i.e., C p , and similar results about

the pressure jump found P . On the other hand, the strategy that

solves with VOF + interface compression + CSF is also included in

the analysis. This approach, employed by the open source library

OpenFOAM 

®and analyzed in [44] , shows acceptable accuracy only

when grids composed by quads are used. In the case of meshes

of triangles, the curvature results are noisy leading to unphysical

spikes (overshoots and undershoots) of the pressure and large spu-

rious currents. 

So as to completion, the Table 2 also presents the results ob-

tained with PFEM-2 + CSF but without smoothing, i.e. calculating

the normal and curvature directly with the marker function λ. As

expected, the spurious currents are one order above than the re-

sults with smoothing and the pressure jump is over estimated. 
The employment of meshes composed by triangles leads to

ore efficient implementations of the PFEM-2 method, therefore

 solution for the curvature in this type of meshes is essential so

s not to resign performance. The results presented in this sub-

ection guarantee accurate enough solutions for PFEM-2. However,

ne of the most important drawbacks of this strategy is that al-

ost no grid convergence was found because the values of P and

 p remain almost constant even the mesh is refined. It is known

hat the integral effect of curvature (i.e., average pressure jump)

ctually converges to a value that is systematically different from

he analytical value [41] . 

As a footnote comment, in contrast with the set of simulations

resented in [44] , in our case we did not found the noisy behavior

f OpenFOAM 

®with the quads mesh when finer meshes are used.

owever, as in that publication, there is not found grid conver-

ence of the method. 

.2.2. Ellipsoidal regime test 

For the Test 1, Fig. 8 b shows the PFEM-2 bubble shapes at fi-

al time T f for the meshes h = 1 / 40 , 1 / 80 , 1 / 160 , the convergence

o the shape of the finest mesh can be observed, which is in

ood agreement with the OpenFOAM 

®solution reported in [44] as

hown in Fig. 8 a. PFEM-2 shape is less similar to FreeLIFE solution,

ut keeps good agreement. The plots of the bubble rise velocity in

ig. 8 c show that our bubble reaches a slightly larger maximum,

ut the evolution of the center of mass in Fig. 8 d is again in good

greement. 

.2.3. Skirted regime test 

The same type of results are shown for test 2 in Fig. 9 a and b.

lthough the bubbles in both test cases rise with similar velocity,

he decrease in surface tension as well as higher viscosity and den-

ity ratios causes bubble 2 to undergo a much larger deformation

nd to develop thin filaments. In both FreeLIFE and OpenFOAM so-

utions these filaments break up, which also happens in PFEM-2

imulation ( Fig. 9 c). In the physical reality, breakup occurs due to

apillary waves present on the interface, which trigger the three-

imensional Plateau–Rayleigh instability when the filament radius

s small enough. Thus, capillary waves can cause the skirt filament

o fragment during flow, though this response requires very large

longations, typically greater than 20 times the initial bubble ra-

ius [30] . The Fig. 9 b shows that the PFEM-2 solution converges to

he shape of the finest mesh, mainly the size of the two bubbles

etached from the filaments (the coarser mesh is employed the

arger unphysical satellite bubbles are obtained). The problem here

s the use of the interface thickness parameter ε which is mesh-

ependent and introduce several distortions in coarser ones. 

.2.4. Extending time-step 

In order to emphasize the capability of the method to manage

arge time-steps, the current case is also simulated with a range

f �t using the in-house implementation of PFEM-2 and compar-

ng with results obtained by the widely known OpenFOAM 

®suite

hich implement, as it was mentioned, VOF with interface com-

ression. The problem setup and domain discretization is the same

s presented above. In the case of OpenFOAM 

®, the solver and

he configuration used in [44] is used in this subsection, which

nsured good results in the rising bubble case. Compression flux

reatment, time schemes and momentum predictor employment

re analyzed in the mentioned work, deriving a recommended

olver configuration for this case. The time-step employed is �t =
 h, which enforce to obtain CF L = | V | �t/ �x > 1 number that is

ritical for Eulerian framework solvers, mainly when it is measured

t the interface. 

Fig. 10 presents PFEM-2 solutions with �t = h/ 2 , 3 h and 6 h

olving the most surface-tension dominant case, i.e., Test 1. Al-
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Fig. 8. Rising bubble Test 1. Comparison of benchmark quantities: PFEM-2 vs. FreeLIFE and OpenFOAM results. Mesh size h = 1/160, excepting in the mesh convergence. 
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hough the solution is stable for each time-step, the higher surface

ension relevance respect to Test 2 generates non accurate solu-

ions in the interface zone: unphysical disturbances like Rayleigh–

aylor instabilities are observed showing that the surface tension

erm is not imposed properly when the largest time-step is used.

owever, the solution with �t = 3 h is good enough and can be

sed as an accurate initial appearance of the solution. This prelim-

nary and fast solution can not be done with OpenFOAM 

®, because

he solution diverges when �t > h is employed, due to the strong

nterface compression imposition. 

On the other hand, Fig. 11 the solutions obtained at T f = 3 s for

he Test 2 can be shown. PFEM-2 solution when the time-step is

ncreased is stable and keeps similar shape and quantitative values

s rise velocity and center of mass, but loosing some definition of

he satellite bubbles. On the other hand, OpenFOAM 

®(OF) solution

ith large time-step diverges approximately at t = 1 . 1 s because of

he disturbance introduced by the interface compression term try-

ng to force a sharp interface. Reducing the interface compression

oefficient could preserve the stability, but the final shape is highly

iffusive, as presented by [44] . 

Fig. 12 shows an application of the stability analysis to the case

f the rising bubble. Same axis are presented and in this case

he simulations presented correspond to the ellipsoidal and skirted

P  
egimes with the three time step employed. As it was mentioned

efore, the stability limits are a conservative estimation due the

eneration of spurious currents is only secondary for a moving in-

erface. The simulated cases prove this fact: although every test fall

nto the unstable region (see Fig. 5 ), when convective term is in-

luded these numerical artifacts, which are not dissipated in unsta-

le type 1 simulations, does not produce large errors in the results.

herefore, a stronger limit is used here which separates divergent

crashing) and non-divergent (no crashing) simulations. 

It should be noted that the region of divergence of PFEM-2 is

maller than the obtained with OpenFOAM 

®. Therefore, almost ev-

ry rising bubble simulation falls over the non-divergent region

n PFEM-2, but only those that use the smallest time-step do not

low-up with OpenFOAM 

®. This results is proven experimentally

n the cases presented above. Although both large time-step tests

heoretically are almost into the unstable region in PFEM-2, only

he ellipsoidal test is experimentally unstable. The inclusion of new

ests around that region could improve the determination of this

imit. 

.3. Standing capillary wave 

In previous work [2] , authors have presented the results of the

FEM-2 method solving the case of the standing gravity wave. In
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Fig. 9. Rising bubble Test 2. Comparison of benchmark quantities: PFEM-2 vs. FreeLIFE and OpenFOAM results. Mesh size h = 1/160, excepting in the mesh convergence. 

Fig. 10. Rising bubble Test 1. Comparison of PFEM-2 solutions when the time step 

is increased. 
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those simulations, several number of Reynolds were analyzed ob-

taining good agreement with analytical solutions. The flow were

dominated by the gravity force, therefore the enrichment strategy
o capture properly the density jump (the pressure gradient) was

andatory. 

In the current work, the case to analyze is governed by a totally

ifferent force but leading to similar results. In this test the density

ump is secondary, instead a good resolution of the surface tension

orces, which dominate the flow behavior, is of transcendental rel-

vance. 

The setup used is taken from [41] in this simulation is shown

n Fig. 13 . A perturbation of amplitude A = λ/ 20 where λ is the

avelength width is imposed as initial condition of the phases po-

itioning, which is allowed to evolve under the influence of sur-

ace tension alone. The heavier phase (fluid I ) has a density of

I = 10 0 0 kg/m 

3 and a kinematic viscosity of νI = 10 −6 m 

2 /s, while

he lighter phase has ρII = 1 kg/m 

3 and νII = 0 m 

2 /s respectively.

egarding to boundary conditions, bottom is set as slip, left and

ight sides have a symmetry conditions and the top is considered

s atmosphere fixing the pressure as p = 0 . 

Lamb [49] presented an analytical solution of this problem

hen small-amplitude waves are considered. In this regime, the

tanding wave evolution can be obtained through the linearization

f the Navier–Stokes equations for traveling waves. Therefore, the

requency of oscillation in this linear limit is 

 = 

√ 

σκ3 

ρI + ρII 

(24)
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Fig. 11. Rising bubble Test 2. Comparison of solutions when the time step is increased. 

Fig. 12. Rising bubble simulation in the stability chart. Filled line represent the 

boundary between the non divergent and divergent computations (unstable type 

2 simulations) found by Deshpande [41] and by the current work with PFEM-2. 

Points represent the placement of ellipsoidal and skirted tests employing different 

time-steps. 

Fig. 13. Configuration setup of standing capillary wave case. 

Fig. 14. Comparison of the period of kinetic energy for the configuration in Fig. 13 , 

with the analytical solution of [49] . 
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here κ = 2 π/λ. Analytically, the frequency of change in kinetic

nergy K is twice the frequency of oscillation of the free surface.

he analytical period of oscillation of kinetic energy is therefore

A = 1 / 2(2 π/ω) = 2 . 385 × 10 −5 s . In addition, the rate of decay of

inetic energy due to viscous effects is given as 

K(t) 

K(0) 
= e −4 ν∗t ∗ (25) 

here ν∗ = νI κ
2 
√ 

ρI / (κ3 σ ) and t ∗ = t/ 
√ 

ρI / (κ3 σ ) . 

Three different grid densities were tested with λ/ �x = 40 , 80

nd 160. In order to obtain a more accurate dissipative forces cal-

ulation, the numerical parameter θμ is set to 1. This selection in-

roduces a diffusion term in the equation of the corrector step as

roposed Blasco, Codina and Huerta [50] . Under our experience,

ithout that term would not be possible to obtain the proper de-

ay of kinetic energy with the classical fractional step method used

ue to the large Fourier number involved in this case. 

The evolution of kinetic energy for these grids is plotted in

ig. 14 along with the exponential decay of kinetic energy due to

iscous effects, calculated from Eq. (25) . 

The numerical parameters employed in each test with its cor-

esponding computed oscillation periods, averaged over eight cy-

les, are shown in Table 3 . The period of oscillation for the coarsest

rid has the largest error and it is reduced employing finer meshes,

chieving an error in period with respect to the analytical solution
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Table 3 

Errors of the computed period of kinetic energy for 

different grids. Case: standing capillary wave. 

Name λ/ �x �t [s] τ A [s] calculated 

Test A 40 5 10 −7 2 . 56 10 −5 

Test B 80 2 . 5 10 −7 2 . 49 10 −5 

Test C 160 6 . 25 10 −8 2 . 47 10 −5 

Table 4 

Simulation parameters. 

Parameter Symbol/Unit Value 

Gas density ρg [kg/m 

3 ] 25 

Liquid density ρ l [kg/m 

3 ] 696 

Gas viscosity μg [kg/m s] 1 × 10 −5 

Liquid viscosity μl [kg/m s] 1 . 18 × 10 −3 

Surface tension coefficient σ [N/m] 0 .06 

Injection diameter D 0 [ μm] 100 

Liquid reynolds Re l 4659 

Liquid weber We l 7239 

Turbulent intensity u ′ u ′ /U 2 0 .05 

Turbulent Scale L t [m] 0 .1 D 0 
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Fig. 15. Geometry and boundary conditions for the case of the 3D jet. 
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of 3% with the finer grid. The last shows that, in spite of the inac-

curacies in curvature, the results show trends of convergence to a

value close to the theory. The observed loss in rate of convergence

can be explained as a combination of systematic error in curvature,

as it was shown in the zero gravity test, and also the fact that the

analytical solution also contains a systematic error, since it is based

on the linearized version of the equations, whereas PFEM-2 solves

the full version of the Navier–Stokes equations. 

4.4. Towards a simulation of 3D jet atomization 

Liquid atomization is an important process which found interest

in several engineering applications such as aerospace propulsion

systems, automotive engines, food processing, and ink-jet printing.

Its numerical simulation allows to investigate physical processes

of the atomization because our understanding on physical mech-

anisms of such phenomena is still not sufficient. Our investigation

group is doing its first steps in this research area and we report in

this work our early results using the numerical method presented

in this work contrasted with the use of the widely validated tool

OpenFOAM 

®[12] . 

The main properties of the case analyzed are the following:

the size of the domain is ( 2 . 1 mm , 0 . 3 mm , 0 . 3 mm ), where the

first dimension is the streamwise direction and the other two, the

spanwise directions. At the injection level, the jet diameter D is

equal to 0 . 1 mm , while the liquid jet Reynolds number is equal to

Re = 4659 . A summary of the physical parameters, for this config-

uration, can be found in Table 4 . Also, the geometry and boundary

conditions are presented in Fig. 15 . Boundary condition over bor-

ders is slip, over bottom zero gradient velocity and pressure equal

to zero. Top boundary has two patches: on inlet a mean inlet of
ˆ 
 z = −100m / s is imposed and over wall no-slip condition is set. 

As a first reference result, we can cite the work of Ménard et al.

[51,52] , which employ the LSM to track the interface added to the

Ghost Fluid Method (GFM) to describe the interface discontinu-

ites and manage the pressure, density and viscosity jumps. Also,

the Level Set method is coupled with the VOF method to ensure

mass conservation. The mesh used by Chesnel and Ménard and

co-workers in [52] is a 2048 × 256 × 256 Cartesian grid with

regularly spaced nodes ( �x = 1 . 17 μm ). Liquid surface instabilities

close to the injector are visible. Their deformation leads to the for-

mation of ligaments and droplets of various sizes. At the end of

the domain, the liquid core has almost disappeared and a dense
pray of droplets leaves the computational domain. The key of the

uickly drop production is the use of a space-time correlated tur-

ulent flow at the inlet: Ménard uses a syntetized correlated tur-

ulence with a method proposed by Klein et al. [53] . In the work

f Desjardins et al. [54] , authors employ a forerunner simulation to

mpose the inlet turbulent boundary condition, obtaining similar

esults to the above mentioned. Both works have a relevant con-

lusion: by the end of the computational domain, the liquid core

as been fully disintegrated. 

Another approach in the numerical characterization of jet at-

mization is reported by Shinjo et al. in [55,56] . In this work, the

uthors report that the grid resolution used by Ménard was coarse

or the chosen Reynolds and Weber numbers, so this was not a

irect numerical simulation in a true sense: the produced liga-

ents and droplets did not exhibit smooth shapes or wave dy-

amics driven by surface tension, but the overall liquid jet motion

as captured in that simulation. Shinjo solved with a mesh with

00 million of cells ( �x = 0 . 3 μm ). In contrast to Ménard, the lig-

ment drop is done far from the inlet, being the main responsible

he plain velocity front imposed at the inlet by Shinjo instead of

sing a turbulent-induced flow [57] . 

Our initial simulations using PFEM-2 and OpenFOAM 

®employ

lain inlet, therefore more similarities with Shinjo results are

ound. It must be taken into account that in the most refined case

imulated with OpenFOAM 

®, the geometry was meshed with a

artesian base grid of 32 × 32 × 256 but the solver employed,

amed interDyMFoam , works with adaptive refinement at inter-

ace reaching a minimum grid size of �x ≈ 1 . 15 μm . On the other

and, PFEM simulation has an uniform mesh size of �x ≈ 2 . 75 μm

onforming a mesh with 24 millons of tetrahedra, but even far

rom the refinement degree used in reference works. 

Fig. 16 shows a comparison at simulation time t = 17 . 5 μs . The

icture shows that the droplet formation and the like-mushroom

hape are comparable, but the minimum drop size is better de-

cribed using a finer mesh. The great advantage of using PFEM-2

s when the computing time is analyzed because simulation was

one employing a Courant number at interface CFL int ≈ 10 while

penFOAM 

®crashes when CFL int > 1 was tried. As it was shown

n the rising bubble case, the simulation of drops can not be accu-

ate when these large time-steps are used, however the stability of

he method allows to obtain a very approximate solution, mainly
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Fig. 16. Overall shape of the liquid jet atomization. Figures correspond to iso-surfaces of λ = 0 (interface). PFEM-2 simulation with CFL int ≈ 10 and OpenFOAM 

®

with CFL int < 1 
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f the jet core, even spending 10% of time comparing with Eulerian

ethodologies. 

Future works must enhance the simulation with PFEM-2,

referably employing finer meshes to contrast more adequately

ith reference works. An analysis of droplet size distribution is a

elevant pending task which must be done in a future analysis. 

. Conclusions 

In this work, the PFEM-2 methodology for two-phase fluids has

een extended to the case of problems with surface tension dom-

nant where the surface tension term is solved with the CSF ap-

roach. A strategy, which is based in a simple coupling between

evel Set and Volume of Fluid approaches, allows to calculate ac-

urate curvatures then reducing the spurious velocities produced

y the surface tension term in the case of sharp interfaces. 

Despite obtaining a smooth mesh solution at interface, the pri-

ary data set in PFEM-2 are the particles, which advects a sharp

nterface. This feature makes PFEM-2 a method with several good-

ess in inertia dominant flows that distinguish it from other nu-

erical alternatives: the interface is moved without diffusion, the

ass is automatically conserved and the time-step can be enforced

o CFL int > 1 resigning some accuracy, mainly in zones where the

urface tension is relevant, but not losing stability. The results for

ure advective, surface tension dominant, and a jet atomization

ests presented in the current work, together with the facts men-

ioned above, locate PFEM-2 as one of the fastest algorithms to

olve two-phase flow problems. 
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