
International Journal of Solids and Structures 69–70 (2015) 45–59
Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsols t r
Sensitivity of the thermomechanical response of elastic structures to
microstructural changes
http://dx.doi.org/10.1016/j.ijsolstr.2015.06.009
0020-7683/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: vfachino@intec.unl.edu.ar (V.D. Fachinotti).
Víctor D. Fachinotti a,⇑, Sebastián Toro a, Pablo J. Sánchez a,c, Alfredo E. Huespe a,b

a Centro de Investigación de Métodos Computacionales (CIMEC), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET),
Predio CCT-CONICET Santa Fe, Ruta 168, Paraje El Pozo, 3000 Santa Fe, Argentina
b International Center for Numerical Methods in Engineering (CIMNE), Campus Nord UPC, Edifici C-1, c/Jordi Girona 1-3, 08034 Barcelona, Spain
c Grupo de Investigación en Métodos Numéricos en Ingeniería (GIMNI), Universidad Tecnológica Nacional (UTN), Facultad Regional Santa Fe, Lavaise 610, 3000 Santa Fe, Argentina
a r t i c l e i n f o

Article history:
Received 26 July 2014
Received in revised form 14 May 2015
Available online 18 June 2015

Keywords:
Microstructural material design
Structural optimization
Sensitivity to microstructural changes
Computational homogenization of materials
Response surface methodology
a b s t r a c t

This paper is focused on the analysis of the sensitivity of the thermomechanical response of a macroscopic
elastic body to changes that occur at the microstructure. This problem is a key issue in material design.

The sensitivity analysis relies on an accurate determination of the effective properties of the heteroge-
neous material. These effective properties are determined by computational homogenization. And their
sensitivities, with respect to the parameters defining the microstructure, are then computed.

For an efficient evaluation of the thermomechanical response, we propose to build response surfaces for
the effective material properties. The surfaces are generated in an offline stage, by solving a series of homog-
enization problems at the microscale. In such a way, the fully online multiscale response analysis reduces to
a standard problem at the macroscale. Thus, an important reduction in computational time is achieved,
which is a crucial advantage for material design.

The capability of the proposed methodology is shown in light of its application to the design of a
thermally-loaded structure with variable microstructure. Considerable improvements in the structural
response are achieved.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

As stated by Torquato (2010), the deep knowledge of the sensi-
tivity of the observable macroscopic response of a body to changes
in the structure of its constituent material at one or more subscales
is the holy grail of materials science. Traditionally, the engineers
used to choose from a catalog the best material to build a structure
or mechanism with a desired response. In recent years, thanks to
the ever-growing power of computers and the maturity of
Computational Multiscale Modeling (CMM), an alternative
approach is emerging, specially for high-performance applications:
the Materials by Design (MbD) approach (McDowell and Story,
1998). MbD consists in designing the structure of a material at a
subscale in order to make this material (or the body made of this
material) the best-suited for a specific application.

In general, the term subscale refers to a wide range of length
scales, from atomistic or molecular to microscopic and mesoscopic,
whenever the length scale be much smaller than the dimensions of
the structure made of the considered material. This paper is
focused on the design of heterogeneous materials, typically com-
posites, by altering their structure at one (and only one) subscale
where the material can still be assumed to be a continuum. For
the sake of convenience, let us refer to the material at such scale
as ‘‘microstructure’’.

Further, we are currently interested in ‘‘quantitatively charac-
terized’’ materials (Kachanov and Sevostianov, 2005), those whose
macroscopic or effective physical properties can be expressed as
functions of identified microstructural parameters: e.g., fiber ori-
entation in fiber-reinforced polymers (Lund and Stegmann,
2005), density and irregularity factors in materials with isolated
inhomogeneities (Kachanov and Sevostianov, 2005; Tsukrov and
Kachanov, 2000), size of particles or beads in coating of dental
implants (Rungsiyakull et al., 2010; Chen et al., 2013).

From the computational point of view, MbD can be formulated
as a structural optimization problem where the cost function is
defined at the macrostructure level. The goal is to obtain the distri-
bution of microstructures along the macrostructure domain pro-
viding the minimum cost. This approach has been addressed by
Rodrigues et al. (2002) and Bendsøe and Sigmund (2003). The
so-determined material can be seen as a functionally graded mate-
rial (FGM) in the sense that the microstructure changes smoothly
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from point to point at the macroscale. Paulino et al. (2009) have
studied the microstructural optimization problem for a FGM.

Based on this MbD paradigm, the key point for developing an
admissible computational procedure relies on the concept of hier-
archical optimization (Rodrigues et al., 2002): the microstructural
design problem (the inner problem) is uncoupled from the problem
of finding the minimum cost function at the macroscale (the outer
problem). Then, the sensitivity analysis addressed in this work
plays an extremely important role during the process of obtaining
the minimum cost function of the outer problem.

In our case, the inner problem consists on determining the way
the effective properties of quantitatively characterized materials
depend on microstructural parameters. In order to solve this prob-
lem, recourse can be made to experiments (the most expensive
option), homogenization techniques for specific materials having
simple microstructural topologies like analytical solutions
(Kachanov and Sevostianov, 2005; Tsukrov and Kachanov, 2000),
the effective field methods of the Mori–Tanaka type and variational
estimates of the Hashin–Shtrikman type, or numerical methods like
computational homogenization (CH) (Rungsiyakull et al., 2010;
Chen et al., 2013). CH, the most general approach, is preferred in this
work.

Then, we proceed to solve the inner problem applying CH over a
parameterized Representative Volume Element (RVE). In this way,
we build a grid of points (microparameters vs. homogenized property)
for each one of the independent tensorial components of the physi-
cal properties involved in a steady-state thermomechanical prob-
lem: the fourth-order elasticity tensor, the second-order thermal
expansion tensor, and the second-order thermal conductivity
tensor.

After that, recourse is made to the response surface methodol-
ogy (RSM) in order to fit the grid points for each effective property
by a polynomial function of the microparameters. Then, the sensi-
tivity of such property to microstructural changes (i.e., its deriva-
tive with respect to the microparameters) is also a polynomial.
Let us remark that, using RSM, we do not need either to interpolate
a property when the microparameters do not coincide with grid
points or to use numerical differentiation. Kamiński (2009) has
presented a similar approach to evaluate the sensitivity gradients
of the computationally-homogenized properties of random com-
posites. He has considered as microparameter the randomness of
the mechanical properties of the microcomponents, and has con-
structed a response function for each of them.

Regarding the computational cost, let us remind that the seek of
the optimal macroscopic response of a structure uses to be a long
iterative process. At each iteration, a multiscale problem has to be
solved: given the distribution of the microstructure throughout the
structure, we obtain the macroscopic distribution of the homoge-
nized properties (solving the inner problem at each sampling
point), and then we solve a standard structural problem (the outer
problem) to obtain the corresponding macroscopic response. In
this work, since the inner problem is solved in an offline way,
the outer problem becomes the only online stage, making each
iteration as expensive as the solution of a standard problem at
the macroscopic scale, i.e., considerably cheaper than the solution
of a multiscale problem. This is a major contribution of this paper
to the MbD approach.

Further, by accounting for the thermal coupling, this work con-
stitutes a step further in sensitivity analysis of purely mechanical
multiscale problems (Fish and Ghouali, 2001; Kamiński, 2014).

Finally, as an example of application, the current technique of
sensitivity analysis is applied to determine the effect of
microstructural changes on the compliance of a thermally loaded
structure made of a bi-material. As result, a considerable improve-
ment of the compliance or the stiffness of the structure can be
achieved.
2. The two-scale thermomechanical problem

Let us consider a body X � Rdim, Fig. 1, undergoing a steady
state thermomechanical loading process: the heat flux qwall and

the temperature Twall are prescribed on the boundaries @Xq and
@XT , respectively, while the traction twall and the displacement
uwall are prescribed on the boundaries @Xr and @Xu, respectively.
Considering these boundary conditions, the sets of admissible tem-
perature and displacement fields are

T ¼ fTðXÞ jT 2 H1ðXÞ and T ¼ Twall on @XTg; ð1Þ

U ¼ fuðXÞ ju 2 H1ðXÞ and u ¼ uwall on @Xug; ð2Þ

whereH1ðXÞ is the space of functions having square-integrable first
derivatives. The spaces of admissible temperature and displacement
variations are

T̂ ¼ fT̂ðXÞ jT̂ 2 H1ðXÞ; and T̂ ¼ 0 on @XTg; ð3Þ

Û ¼ fûðXÞ jûi 2 H1ðXÞ; and û ¼ 0 on @Xug: ð4Þ

Then, the current macroscopic thermomechanical problem can
be stated in the standard variational format as follows: find
T 2 T and u 2 U satisfyingZ

X
qðTÞ � rX

bT dV �
Z
@Xq

qwallbT dS ¼ 0; 8bT 2 T̂ ; ð5Þ

Z
X
rðu; TÞ � rs

Xû dV �
Z
@Xr

twall � û dS ¼ 0; 8û 2 Û; ð6Þ

where q is the macroscopic heat flux vector and r is the macro-
scopic Cauchy stress tensor. Eq. (5) represents the steady-state heat
balance equation in absence of internal heat source, while (6) is the
momentum balance equation in absence of body forces and inertial
terms.

The problem is completed by the constitutive laws for q and r
at any point X 2 X, which are determined in this work from the
analysis of the microstructure at this point.

Let the body have a heterogeneous microstructure that, at any
point X 2 X, is described by a Representative Volume Element
(RVE), denoted Xl, shown in Fig. 1. Points in Xl are denoted y.
From now on, any quantity ð�Þ described in the domain Xl will
be denoted as ð�Þl.

As stated in Appendix A, the macroscopic terms q and r at
X 2 X are defined by the homogenization formulas

q ¼ 1
jXlj

Z
Xl

qldVl; ð7Þ

r ¼ 1
jXlj

Z
Xl

rldVl; ð8Þ

where jXlj is the volume of Xl.
The constitutive response of the material components at the

microscopic level is assumed to be known. Further, for the purpose
of this work, the behavior of these microcomponents is assumed to
be linear. In such a case, ql and rl are respectively defined by the
Fourier’s and Hooke’s laws:

ql ¼ �klryTl; ð9Þ

rl ¼ Clrs
yul þ dl Tl � T0

� �
; ð10Þ

where kl is the thermal conductivity tensor, Cl is the elasticity ten-
sor, dl is the stress increment per unit temperature, all of them are



Fig. 1. Two-scale thermomechanical problem.

V.D. Fachinotti et al. / International Journal of Solids and Structures 69–70 (2015) 45–59 47
assumed to be known properties of the material at y 2 Xl; T0 is the
reference temperature for zero-thermal stress, assumed to be com-
mon to all the microcomponents.

For the sake of clarity, the computation of the homogenized
fields q and r is detailed in Appendix A. As shown there, the linear-
ity of the constitutive laws (9) and (10) for the microscopic fields
ql and rl is inherited by the constitutive laws for the homoge-
nized fields q and r, given by

q ¼ �krXT; ð11Þ

r ¼ Crs
Xuþ dðT � T0Þ; ð12Þ

where we introduce the effective thermal conductivity k, the effec-
tive elastic moduli C, and the effective stress increment per unit
temperature d, defined by Eqs. (AI-22), (AI-27) and (AI-32) in the
Appendix, respectively.

A multiscale mechanical problem accounting for thermal
expansion in FGM was studied by Yin et al. (2007). Unlike the cur-
rent work, they did not use computational homogenization and
they did not discuss the sensitivity of the effective material prop-
erties to microstructural changes.

3. Finite element model

The thermomechanical problem described in the previous sec-
tion will be solved using the Finite Element Method (FEM). Let us
note that, once the homogenized flux q and stress r (Eqs. (7) and
(8), respectively) are introduced in the heat balance Eq. (5) and
the momentum balance Eq. (6), their solution by FEM is completely
standard and has been widely discussed in the classic literature
(see Zienkiewicz and Taylor, 2000 for instance). For the sake of
completeness, it will be summarized in this section.

Using FEM, the unknown temperature and displacement fields
are approximated for all X 2 X by

TðXÞ ¼ UiðXÞTi ¼ UðXÞT; ð13Þ

uðXÞ ¼ UiðXÞui ¼ UmðXÞU; ð14Þ

where Ti and ui are the temperature and displacement unknowns at
the node Xi (i ¼ 1;2; . . . ;#nodes) of the finite element mesh, and Ui

is the shape function associated to this node, such that UiðXjÞ ¼ dij

at any node Xj of the mesh, dij denoting the Kronecker delta; Ti

and ui are grouped in the column vectors T and U, respectively,
while the shape functions Ui are grouped either in the row vector
U for thermal analysis or in the matrix Um for mechanical analysis.
Using standard Galerkin FEM, the shape functions Ui also define
the basis functions for the finite-dimensional spaces approximat-
ing T̂ and Û . Then, the weak form of the thermal problem (5), after
replacing the macroscopic Fourier’s law (11), can be written as

KT ¼ �F; ð15Þ

with

K ¼
Z

X
BT kB dV ; ð16Þ

F ¼
Z
@Xq

UT qwalldS; ð17Þ

where Bij ¼ @Ui=@Xj is the matrix of the shape function gradients.
In a similar way, the weak form of the mechanical problem (6),

after replacing the constitutive Eq. (12), can be written as

KmU ¼ �Ftm; ð18Þ

where

Km ¼
Z

X
Bm� �T CBmdV ; ð19Þ

Ftm ¼ Fm þ Ft; ð20Þ

Fm ¼
Z
@Xr

Umð ÞT twalldS; ð21Þ

Ft ¼ �
Z

X
Bm� �T d T � T0

� �
dV ð22Þ

with Bm denoting the strain–displacement matrix.

4. Sensitivity of the macroscopic thermomechanical response to
microstructural changes

For the sake of generality, let the microstructure vary through-
out the macroscopic domain X. Using FEM, X is represented by a
mesh of finite elements, giving rise to a finite number of sampling
points Xa. Each point Xa has an associated RVE denoted XðaÞl .

Let us remind that we deal with ‘‘quantitatively characterized
materials’’ (Kachanov and Sevostianov, 2005), those where the

microstructure at any RVE XðaÞl can be described by a finite (usually

reduced) number of parameters pðaÞ1 ; pðaÞ2 ; . . .. These are the so-called
microstructural parameters or, simply, microparameters. Examples
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of microparameters are the fiber orientation in fiber-reinforced
polymers (Lund and Stegmann, 2005), the porosity and the eccen-
tricity in solids with elliptic holes (Kachanov and Sevostianov,
2005), the size and the volume fraction of particles in dental coat-
ing (Rungsiyakull et al., 2010), etc.

For such materials, any effective property at a point Xa 2 X is

ultimately a function of the parameters pðaÞ1 ; pðaÞ2 ; . . . corresponding
to the RVE at Xa; for instance, the effective conductivity at Xa is

kðXaÞ ¼ kðpðaÞ1 ; pðaÞ2 ; . . .Þ. Considering that the macroscopic response
of the whole body is made of contributions from all the sampling
points X1;X2; . . . of the finite element mesh, the macroscopic fields
T and u depend on all the microparameters defining the RVEs at all
these points, i.e. T ¼ TðPÞ and u ¼ uðPÞ, with

P ¼ pð1Þ1 ;pð2Þ2 ; . . . pð2Þ1 ; pð2Þ2 ; . . .
h i

: ð23Þ

The thermomechanical macroscopic response is defined by a
given function R, the so-called objective or cost function in struc-
tural optimization problems (Bendsøe and Sigmund, 2003), which
depends on global nodal temperature and displacement vectors as
primal variables, i.e.

R ¼ RðU;TÞ; ð24Þ

where U and T satisfy their respective balance Eqs. (15) and (18).
Hence, the balance equations are implicit in the objective function
R, that is, they are not regarded as constraints in the current sensi-
tivity analysis. This approach is favored by the linearity of the bal-
ance equations (15) and (18).

The sensitivity of the macroscopic response (24) to a change in
the microparameter Pi is

dR
dPi
¼ @R
@Uj

@Uj

@Pi
þ @R
@Tj

@Tj

@Pi
; ð25Þ

where ð�Þj denotes the jth entry of the vector ð�Þ.
The computation of the sensitivity of T and U to microstructural

changes is the goal of Sections 4.1 and 4.2, respectively.

4.1. Sensitivity of the macroscopic temperature to microstructural
changes

Since the effective thermal conductivity tensor k depends on
the parameterized microstructure according to Eq. (AI-22), a vari-
ation dP of the microstructure induces the following variation in
the conductivity matrix (Eq. (16)):

dK ¼
Z

X
BTdkB dV : ð26Þ

The variations of (any nonsingular matrix) K and its inverse are
related by

d K�1
� �

¼ �K�1dK K�1: ð27Þ

Then, the variation of the nodal temperature vector T, solution of
the linear heat balance Eq. (15), can be expressed as

dT ¼ d K�1
� �

F ¼ �K�1dK K�1F ¼ �K�1dKT: ð28Þ

Therefore, the sensitivity of the nodal temperature vector T to a
change in Pi is

@T
@Pi
¼ �K�1si; ð29Þ

where si is the column vector

si ¼
@K
@Pi

T ð30Þ
and the derivative of K, obtained by differentiation of Eq. (26), is

@K
@Pi
¼
Z

X
BT @k
@Pi

B dV : ð31Þ

Now, the sensitivity of the macroscopic temperature field (given in
FEM form by Eq. (13)) to a change of Pi is

@T
@Pi
¼ �UK�1si; ð32Þ

which, evaluated at the node Xj, takes the form

@Tj

@Pi
¼ �j � si; ð33Þ

where j refers to the jth row of K�1. Let us note that @Tj=@Pi is gen-
erally non null for any node Xj R @XT , even if Pi describes the
microstructure at a point far from the node Xj. This non-local effect
of microstructural changes is detrimental to the computational cost
of sensitivity analysis in thermomechanical problems, as it will be
realized in Section 4.2.1. Let us note that this effect is disregarded
if the thermal expansion is assumed to be homogeneous throughout
the macroscopic body (as done by Bendsøe and Sigmund, 2003). To
the authors’ opinion, this is generally an excessively restrictive
hypothesis.

4.1.1. FEM implementation details
If Pi (totally or partially) defines the microstructure at a sam-

pling point Xa inside a given finite element Xe, then @k=@Pj ¼ 0
at Xa when Pj is associated to any other sampling point.
Therefore, only the sampling point Xa 2 Xe contributes to the glo-
bal matrix @K=@Pi, Eq. (31), i.e.:

@K
@Pi
¼ BT @k

@Pi
B

� �
Xa

wa ðno summation over aÞ; ð34Þ

where wa is the weight associated to the sampling point Xa 2 Xe.
Therefore, @K=@Pi is markedly sparse and can be computed based
on only one element, and these properties are inherited by the glo-
bal vector si given by Eq. (30).

4.2. Sensitivity of the macroscopic displacement to microstructural
changes

In Eq. (19) defining the stiffness matrix Km, the elasticity tensor
C depends on the parameterized microstructure. Then, a variation
dP induces the following variation in the stiffness matrix:

dKm ¼
Z

X
Bm� �T

dCBmdV : ð35Þ

On the other hand, in the definition of the nodal load vector Ftm (Eq.
(20)), only the thermal-stress contribution Ft (Eq. (22)) depends on
microstructure through the effective property d and the macro-
scopic temperature field T. Thus, a variation dP produces the
variation

dFtm � dFt ¼ �
Z

X
Bm� �T

dd T � T0
� �

dV �
Z

X
Bm� �T ddT dV : ð36Þ

Then, the variation of the nodal displacement vector U (solution of
the linear equilibrium equation (18)) is

dU¼ d Km� ��1
h i

Ftm þ Km� ��1
dFtm ¼� Km� ��1

dKm Km� ��1Ftm � dFtm
h i

¼� Km� ��1
dKmU� dFtm� �

; ð37Þ

from which it can be derived that the sensitivity of the global nodal
displacement vector U to a change in the microparameter Pi is
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@U
@Pi
¼ � Km� ��1sm

i ; ð38Þ

where sm
i is the column vector

sm
i ¼

@Km

@Pi
U� @Ftm

@Pi
ð39Þ

with

@Km

@Pi
¼
Z

X
Bm� �T @C

@Pi
BmdV ; ð40Þ

@Ftm

@Pi
¼ @Ftm

@Pi

����
T¼constant

þ @Ftm

@Pi

����
d¼constant

; ð41Þ

@Ftm

@Pi

����
T¼constant

� @Ft

@Pi

����
T¼constant

¼ �
Z

X
Bm� �T @d

@Pi
T � T0
� �

dV ; ð42Þ

@Ftm

@Pi

����
d¼constant

� @Ft

@Pi

����
d¼constant

¼ �
Z

X
Bm� �T d

@T
@Pi

dV : ð43Þ
4.2.1. FEM implementation details
Like in Section 4.1.1, if the microparameter Pi is associated to a

sampling point Xa inside a given finite element Xe, only this sam-
pling point contributes to the global matrix @Km=@Pi (Eq. (40)), that
is

@Km

@Pi
¼ Bm� �T @C

@Pi
Bm

� �
Xa

wa ðno summation over aÞ: ð44Þ

Similarly, the global vector (42) is built by the contribution of only
this sampling point, i.e.

@Ftm

@Pi

����
T¼constant

¼� Bm� �T @d
@Pi
ðT�T0Þ

� �
Xa

wa ðno summation over aÞ:

ð45Þ

However, this is not the case for the global vector (43) since its
integrand has the factor

@T
@Pj

� �
Xb

¼ �UðXbÞK�1sj; ð46Þ

which is generally non null for any microparameter Pj and for any
sampling point Xb R @XT , even if Pj describes the microstructure
at a point far from Xb, as discussed after Eq. (33). Hence, the global
vector @Ftm=@Pijd¼constant must be built by assembling the contribu-
tions of all the finite elements of the mesh, and it is not sparse.
Therefore, when the thermal expansion is sensitive to microstruc-
tural changes, the computation of the sensitivity of the macroscopic
mechanical response requires considerably more computational
resources (memory to store all the non-sparse vectors
@Ftm=@Pijd¼constant , and time for solving the operations involving
these non-sparse vectors) than the case where the thermal expan-
sion is fixed (see Bendsøe and Sigmund, 2003).

5. Offline computation of the effective properties and their
sensitivities

The microstructure of the materials addressed in the current
paper are assumed to be adequately characterized by a few num-
ber of parameters p1; p2; . . . ; pn. Then, we propose to use an offline
strategy based on the response surface methodology (RSM). This
strategy circumvents the solution of the microscopic problem of
determining the effective properties during the online solution of
the macroscopic problem. In this way, the time needed to compute
the macroscopic response (24) for variable microstructure is
hugely reduced.

Let f be a scalar component of an effective material property,
either kij; Cijkl or dij as defined by Eqs. (AI-22), (AI-27) and
(AI-32), respectively. First, we compute f for a n-dimensional grid
of predefined points ðpg

1; p
g
2; . . . ; pg

nÞ. Once the grid for f is built,
the values of f for intermediate points ðp1; p2; . . . ; pnÞ can be com-
puted by interpolation and the sensitivity @f=@pi can be computed
by numerical differentiation.

For the purpose of convenience, the grid data is used in this

paper to build a closed-form response surface function ~f to approx-
imate f. The procedure is illustrated in Fig. 2: at a point Xa 2 X,
where the microstructure is characterized by the parameters

ðpðaÞ1 ; pðaÞ2 ; . . . pðaÞn Þ, the value of the effective property f is assumed

to be f ðXaÞ � ~f ðpðaÞ1 ; pðaÞ2 ; . . . pðaÞn Þ. Consequently, the sensitivity of f

to a change in the microparameter pðaÞi is the closed-form function

@~f=pðaÞi . This procedure is detailed for a particular microstructure in
Section 6.1.

Finally, let us note that some authors (Rungsiyakull et al., 2010;
Chen et al., 2013; Hou et al., 2008) use the RSM to approximate the
macroscopic response of the body rather than the effective proper-
ties. Such strategy is discouraged for the design of a body with
heterogeneous microstructure, since its response depends gener-
ally on so many variables (the whole set of microparameters) that
RSM becomes unaffordable.
6. Application

Let us consider the cantilever plate depicted in Fig. 3(a),
deformed by keeping its top surface at temperature T top and its

bottom surface at temperature Tbottom < Ttop.
For the sake of simplicity, the plate is assumed to be under

plane strain conditions. The macroscopic domain X is the rectangle
B� H representing a slice of unit width of the whole plate, parallel
to the plane X1–X2. We adopt the same finite element mesh to rep-
resent X for thermal and mechanical analysis. We use standard Q1
finite elements, which have a quadrangular geometry, four nodes
located at the vertices and bilinear shape functions. The whole
macroscopic mesh contains 80� 20 Q1 finite elements of constant
size DX1 � DX2. All the parameters defining the macroscopic prob-
lem are listed in Table 1.

The plate is made of a composite, which is manufactured with
two materials, say Mlayer and Mmatrix, arranged according to
Fig. 3(b). Horizontal and vertical layers of Mlayer are sandwiched
using the support material Mmatrix. The distance between two suc-
cessive vertical or horizontal layers is ll ¼ constant, with ll � H.

Let us allow the microstructure to change from node to node
throughout X. Then, every node Xa 2 X has its own microstructure

and, consequently, its associated RVE, say XðaÞl . Due to the nearly

periodic microstructure, XðaÞl can be taken as a square cell of side
ll ¼ constant, subjected to periodic boundary conditions, as shown
in Fig. 3(c). This RVE is made of Mmatrix as support material, crossed
by one vertically centered layer of thickness ba and one horizontal
centered layer of thickness ha of material Mlayer. Let us assume that
the materials Mmatrix and Mlayer are given. Therefore, the RVE at Xa

is completely defined by two microparameters: pðaÞ1 ¼ ba and

pðaÞ2 ¼ ha.
Both materials Mmatrix and Mlayer are assumed to be isotropic

and to obey the Fourier’s heat flow law (9) and the linear thermoe-

lastic law (10). The mechanical properties at a point y 2 XðaÞl are



Fig. 2. Offline computation of the response surface ~f for the effective property f. The effective property is given hereafter by the response surface function ~f for the online
computation of the macroscopic thermomechanical response.

Fig. 3. Multiscale analysis of a cantilever plate: (a) macroscopic domain X with thermal and mechanical boundary conditions, (b) microstructure around the point Xa 2 X, (c)
RVE XðaÞl at the point Xa 2 X, with periodic boundary conditions.

Table 1
Parameters for the macroscopic problem.

B 3 m
H 0.3 m
DX1 3.75 cm
DX2 1.5 cm
Ttop 50 �C

Tbottom 0 �C

Table 2
Material properties.

Property Mmatrix (steel) Mlayer (copper)

Young’s modulus 200 GPa 120 GPa
Poisson ratio 0.30 0.34
Linear thermal expansion coefficient 1:0� 10�5/�C 1:7� 10�5/�C
Thermal conductivity 36.5 W/(m �C) 384.0 W/(m �C)
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Clijkl
¼ Em
ð1þ mÞð1� 2mÞ dijdkl þ

E
2ð1þ mÞ dikdjl þ dildjk

� �
; ð47Þ

dlij
¼ � E

1� 2m
adij; ð48Þ
where E is the Young’s modulus, m is the Poisson ratio and a is the
linear thermal expansion coefficient, all of them are known proper-
ties of the material at y (either Mmatrix or Mlayer). In this example, we
adopt steel as Mmatrix and copper as Mlayer, whose properties are
listed in Table 2. The reason for this choice lies in the considerable
difference between the thermomechanical properties of such



Fig. 4. Finite element model of the RVE used for the offline homogenization of the
material properties.
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materials, emphasizing the influence of microstructural parameters
on the macroscopic response.

6.1. Offline homogenization of the thermomechanical properties

For the homogenization of the material properties, we define a
generic RVE, Xl, geometrically equal to a square of side ll, subject
to periodic boundary conditions in temperature and displacement
fluctuations, as shown in Fig. 4. This RVE has Mmatrix as support
material, a vertical layer of variable thickness b and a horizontal
layer of variable thickness h, being Mlayer the material in the layers.

In order to obtain adequately accurate solutions, it is conve-
nient to make each layer in the RVE at least one-element thick,
which is unfeasible when the thickness of the layer is too small
but positive. In this paper, this is circumvented by choosing b

and h from the discrete sets f0; bð1Þ; bð2Þ; . . . ; bðn
pÞg and

f0;hð1Þ;hð2Þ; . . . ;hðn
pÞg, where bðiÞ ¼ hðiÞ ¼ iDp; bðn

pÞ ¼ hðn
pÞ ¼ l, and

np is a large-enough integer.
Table 3
Parameters for the microscale problem.

ll 1 cm

nl 2
np 50
Dy 0.01 cm
Dp 0.02 cm

Fig. 5. Grids for effective properties as functions of b and h (0 6 b; h 6 ll): (a) k11 in (W/
d11 in (Pa/�C) computed using Eq. (AI-32).
Then, a unique mesh is used to represent the RVE resulting from

any pair fbðiÞ;hðjÞg. This is a rectangular mesh of Q1 square finite
elements of side Dy ¼ ll=ðnlnpÞ, with nl ¼ 2;4; . . .. In this way, there
are nl elements across the layer at the worst case (when the thick-
ness of one of the layers is equal to Dp and the thickness of the
other layer is less than ll), as shown in Fig. 4. Table 3 lists all the
parameters adopted here to define the current RVE.

By the way, if the sampling points of Q1 elements are located –
as usual – strictly inside the elements, this approach eliminates the
ambiguity when defining the material at sampling points, since
they never lie on a material interface.

For each point fbðiÞ; hðjÞg of the grid, we build the corresponding

RVE with a bðiÞ-thick vertical layer and a hðjÞ-thick horizontal layer
of material Mlayer. We use this RVE to compute the effective mate-

rial properties kðbðiÞ;hðjÞÞ using Eq. (AI-22), CðbðiÞ;hðjÞÞ using Eq.

(AI-27) and dðbðiÞ;hðjÞÞ using Eq. (AI-32). This produces a set of

ðnp þ 1Þ2 triplets fb;h; f ðb;hÞg, one set for each independent com-
ponent of the tensors k;C and d. Fig. 5 shows the so-computed
grids for f � k11; f � C1111 and f � d11 respectively.

6.1.1. Validation of the macroscopic analysis with offline-homogenized
properties

For the purpose of validation of the current strategy, let us solve
the problem of the thermally-loaded composite cantilever plate
shown in Fig. 3 using direct numerical simulation (DNS). In this
case, the finite element mesh of the macroscopic domain X is
fine-enough to capture the microscale morphology, avoiding in
such a way the need of homogenizing the material properties.

A large set of tests were run for the plate made of different com-
posites. In any case, the composite has Mmatrix as support material,
and either vertical, horizontal or crossed layers (two layers of equal
thickness, one vertical and one horizontal) of Mlayer; the thickness
of the layers changes from test to test. Then, all the tests were
solved using DNS as well as the current multiscale strategy with
offline-homogenized effective properties. The DNS mesh has
225000 Q1 finite elements, while the mesh for the current strategy
has 1600 Q1 elements.

Fig. 6 shows the magnitude of the maximum deflection of the
plate, v tip, which occurs at the right lower edge. As seen there,
the results obtained using both methods are in very good
agreement.

The major difference between DNS and the current proposal lies
in their computational demands. Both methods were implemented
in the MatLab� environment using its vectorization capability, and
all the tests were run employing an Intel� Core™ i7-3770K CPU.
The average time for a DNS run was 152.2 s, while the average time
for a run using the current strategy was 0.2 s. This enormous saving
(m �C)) computed using Eq. (AI-22); (b) C1111 in (Pa) computed using Eq. (AI-27); (c)



Fig. 6. Maximum deflection of the thermally-loaded plate, as computed using direct numerical simulation (DNS) and the current multiscale model.

Fig. 7. Derivatives of effective properties as functions of b and h (0 6 b; h 6 ll), numerically computed using the grids in Fig. 5: (a) @k11=@b in (W/(m2 �C)); (b) @C1111=@b in
(Pa/m); (c) @d11=@b in (Pa/(m�C)).
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in computational time opens the way to sophisticated industrial
applications of the Material by Design approach.

6.2. Response surfaces for the effective properties

Once the grid for a generic effective property f is built, as
explained in Section 6.1, the value of f at intermediate values of
b and h can be computed using interpolation methods. At the same
time, the derivatives of f with respect to b or h can be computed
using numerical differentiation techniques. For instance, let us
compute the derivatives in the interior points of the grid using cen-
tral differences, and the derivatives in the boundary points using
either backward or forward differences. The so-computed numeri-
cal derivatives @k11=@b; @C1111=@b and @d11=@b are shown in Fig. 7.

Once @f=@b and @f=@h are computed using numerical differenti-
ation at all the grid points, the derivatives @f=@b and @f=@h at inter-
mediate points of the grid can be determined by interpolation. For
instance, let f and its derivatives be computed for intermediate
points using linear interpolation. In such a case, the interpolated
derivatives of f are not the derivatives of the interpolated f, which
is actually discontinuous at the grid points.

In order to avoid this, let us approximate f using a

smooth-enough, closed-form function ~f ðb;hÞ (the response surface)
defined for real values of b and h between 0 and ll. A simple choice

for ~f is the polynomial function:

~f ðb;hÞ ¼
XN

n¼0

XN

m¼0

anmbnhm
: ð49Þ
The coefficients anm are computed such that ~f be the least-squares
best approximation to all the points of the f-grid for different values
of N. Polynomial of different degrees are necessary in order to
approximate different material properties. This approach is similar
to that of Kamiński (2009), who proposed a one-dimensional poly-
nomial as response function for the elastic moduli.

Fig. 8(d)–(i) shows the response surfaces for C1111; k11 and d11

using different polynomial degrees N (their respective grids
depicted in Fig. 8(a)–(c), which have already been shown in
Fig. 5, are included for comparison purposes). The agreement of
the polynomial fitting is measured by the relative error

ei ¼
f i � ~f i

f i

�����
�����; ð50Þ

where the subscript i identifies any point of the f-grid. The maxi-
mum values of ei for those non-zero effective properties and for dif-
ferent polynomial degrees N are listed in Table 4. Although such
errors are acceptably small for lower values of N, we finally adopt
the largest N listed in Table 4, a choice that will be justified in
Section 6.3.

6.3. Computation of the sensitivity of effective properties using the
response surfaces

Once a generic effective property f is approximated by the poly-

nomial (response surface) function ~f , Eq. (49), the sensitivity of this
effective property to changes in the microstructure parameters is
given by the polynomials



Fig. 8. Effective properties as functions of b and h (0 6 b; h 6 ll): (a)–(c) grids for k11 (in (W/(m �C))), C1111 (in (Pa)) and d11 (in (Pa/�C)), respectively, already depicted in
Fig. 5; (d)–(i) response surfaces approximating these properties for different polynomial degrees N.

Table 4
Maximum relative error ei for different degrees N of polynomial approximations to
the tensorial non-zero components of the effective material properties.

Effective property N maxðeiÞ (%) N maxðeiÞ (%)

k11 4 24.52 8 1.78
6 6.82 10 0.58

k22 4 24.52 8 2.06
6 6.83 10 1.61

C1111 1 2.40 3 0.11
2 0.25 4 0.03

C1122 1 1.93 3 0.08
2 0.22 4 0.03

C2222 1 2.40 3 0.11
2 0.25 4 0.03

C3333 1 6.98 3 0.15
2 1.16 4 0.04

d11 1 2.11 3 0.04
2 0.24 4 0.01

d22 1 2.11 3 0.04
2 0.24 4 0.01
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@~f ðb; hÞ
@b

¼
XN

n¼1

XN

m¼0

nanmbn�1hm
; ð51Þ
@~f ðb;hÞ
@h

¼
XN

n¼0

XN

m¼1

manmbnhm�1
: ð52Þ

Fig. 9(d)–(i) shows the so-computed derivatives

@~k11=@b; @~C1111=@b and @~d11=@b, for two values of N (once again,
Fig. 9(a)–(c) are identical to those already depicted in Fig. 7, but
are included in Fig. 9 for the purpose of comparison). Taking the
grid of numerical derivatives as reference, it is apparent from
Fig. 9 that only the polynomial approximations having the highest
degree in Table 4 provide qualitative and quantitatively acceptable
results when their derivatives are considered.

6.4. Sensitivity of the macroscopic response to microstructural changes

A common choice to characterize the macroscopic response R
of a structure, widely used in purely mechanical problems
(Bendsøe and Sigmund, 2003), is the total work performed by the
external loads:

R ¼ UT KU ¼ UT Ftm: ð53Þ

For given external loads, to minimize R implies to maximize the
stiffness of the whole structure. Respectively, to maximize R
implies to maximize the compliance of the structure. The sensitivity
of the response (53) to microstructural changes is



Fig. 9. Derivatives of effective properties as functions of b and h (0 6 b; h 6 ll): (a) numerical derivative @k11=@b in (W/(m2 �C)); (b) numerical derivative @C1111=@b in (Pa/m);
(c) numerical derivative @d11=@b in (Pa/(m �C)); (d)–(i) derivatives @~k11=@b; @~C1111=@b and @~d11=@b, analytically computed from the polynomial approximation of the
respective properties, for different degrees of the polynomials.

Table 5
Magnitude of the vertical displacement of the free end of the plate (v tip) and total
external work (UT Ftm) for three different homogeneous microstructures.

Property b ¼ h ¼ 0 b ¼ h ¼ ll=2 b ¼ h ¼ ll

v tip 9.80 mm 15.26 mm 17.21 mm

UT Ftm 9:709� 104 Nm 1:839� 105 Nm 2:171� 105 Nm
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@R
@Pi
¼ @U

@Pi

	 
T

Ftm þ UT @Ftm

@Pi
¼ UT 2

@Ftm

@Pi
� @Km

@Pi
U

	 

ð54Þ
with @U=@Pi, @Km=@Pi, and @Ftm=@Pi given by Eqs. (38), (40) and
(41), respectively. As mentioned in Section 4.2.1, the computation
of the sensitivity according to Eq. (54) is more expensive than in
the case of fixed thermal expansion, because of the non-sparsity
of the vector @Ftm=@Pi.

Let us consider the plate with three different homogeneous
microstructures: b ¼ h ¼ 0 (i.e., fully made of Mmatrix=steel),
b ¼ h ¼ ll=2 and b ¼ h ¼ ll (i.e., fully made of Mlayer=copper). The
external work done by the thermal loads shown in Fig. 3(a), for
these three cases, is listed in Table 5. Fig. 10 shows the sensitivity
of this response to changes in the microstructure throughout the
macroscopic domain.
6.5. Sensitivity of the macroscopic response to microstructural changes

Alternatively, the response of the thermally-loaded plate can be
characterized by the magnitude of the X2-displacement of the node
located at X1 ¼ L; X2 ¼ 0 (lower right corner), say v tip, i.e.

RðU;TÞ ¼ v tip: ð55Þ

Let j be the degree of freedom corresponding to the X2-displace-
ment of such node. According to the X1-X2 frame adopted in

Fig. 3(a), it holds that Uj < 0 for T top > Tbottom, hence
v tip ¼ jUjj ¼ �Uj. Using Eq. (56), the sensitivity of v tip to microstruc-
tural changes is

@R
@Pi
¼ � @Uj

@Pi
¼ jm � sm

i ; for given j; ð56Þ

where jm is the jth row of the inverse of the matrix Km. Once again,
the sensitivity analysis is more expensive than in the case of pre-
scribed thermal expansion, since the vector sm

i , Eq. (39), inherits
the non-sparsity of @Ftm=@Pi.

The values of v tip for three different homogeneous microstruc-
tures are listed in Table 5. Fig. 11 shows the sensitivity of v tip to
microstructural changes for these three cases.



Fig. 10. Sensitivity of the total external work to microstructural changes, for three different homogeneous microstructures (b ¼ h ¼ 0; b ¼ h ¼ ll=2, and b ¼ h ¼ ll).

Fig. 11. Sensitivity of the vertical displacement of the lower free corner of the plate to microstructural changes, for different homogeneous microstructures
(b ¼ h ¼ 0; b ¼ h ¼ ll=2; b ¼ h ¼ ll).
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6.5.1. Increasing the compliance/stiffness of the plate
The compliance of the considered thermally-loaded plate

increases or decreases as R (given either by Eq. (53) or by Eq.
(55)) increases or decreases, respectively. Then, the compliance
of the plate can be modified by modifying Pi according to the sign
of @R=@Pi.

From the finite difference approximation

@R
@Pi
� R

new �R
Pnew

i � Pi
; ð57Þ

we can update Pi using the expression

Pnew
i ¼ Pi þ

@R
@Pi

	 
�1

ðRnew �RÞ; ð58Þ

subject to the constraint

0 6 Pnew
i 6 ll: ð59Þ
Further, since the RVE at Xa is fully made of Mmatrix if either
P2a�1 � ba ¼ ll (irrespectively of the value of ha) or P2a � ha ¼ ll
(irrespectively of the value of ba), two additional constraints arise:

Pnew
2a�1 ¼ ll if Pnew

2a ¼ ll; ð60Þ
Pnew
2a ¼ ll if Pnew

2a�1 ¼ ll: ð61Þ

Let us consider for instance the plate with a homogeneous
microstructure Pi ¼ b ¼ h ¼ ll=2. Seeking for a more compliant
plate, we adopt DR ¼ Rnew �R positive and large enough such
that Eq. (58) reduces to:

Pnew
i ¼

0 if @R=@Pi < 0
ll=2 if @R=@Pi ¼ 0
ll if @R=@Pi > 0

8><>: to increase compliance; ð62Þ

subject to the constraints (60) and (61).



Fig. 12. Distribution of material for increased compliance (left) and stiffness (right) using sensitivity analysis, starting from b ¼ h ¼ ll=2. The color-bars depict
0 6 b=ll ¼ h=ll 6 1.
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Considering the macroscopic response given by R ¼ UT Ftm, the
sensitivities @R=@b and @R=@h when b ¼ h ¼ ll=2 all over the plate
are those shown in Fig. 10(c) and (d), respectively. As apparent
from these figures, both derivatives have equal sign throughout
the plate. Consequently, the Eq. (62) gives an identical solution
for b and h, which is shown in Fig. 12(a). It consists of an upper
layer of pure Mlayer and a lower layer of pure Mmatrix. In this case,
the external work is UT Ftm ¼ 2:704� 105 Nm, that is 25% greater
than the external work in the case of the plate completely made
of Mlayer (see Table 5), which is the material with the lower
stiffness.

For R ¼ v tip; @R=@b and @R=@h for b ¼ h ¼ ll=2 throughout the
plate are shown in Fig. 11(c) and (d), respectively. Once again, both
derivatives have the same sign all over the plate. Therefore, Eq.
(62) gives the same solution for the distribution of b and h, which
is shown in Fig. 12(c). In this case, the solution consists of three
layers: a core of Mmatrix and upper and lower layers of Mlayer. The
maximum deflection of this plate is v tip ¼ 22:96 mm, that is 33%
greater than the maximum deflection of the plate fully made of
Mlayer (see Table 5).

Analogously, to increase the stiffness (i.e., to decrease the com-
pliance of the plate), we adopt DR ¼ Rnew �R negative and large
enough, such that Eq. (58) reduces to

Pnew
i ¼

ll if @R=@Pi < 0
ll=2 if @R=@Pi ¼ 0
0 if @R=@Pi > 0

8><>: to increase stiffness; ð63Þ

subject to the constraints (60) and (61).
For R ¼ UT Ftm, Eq. (63) gives rise to the solution shown in

Fig. 12(b), consisting of an upper layer of pure Mmatrix and a lower
layer of pure Mlayer. In this case, the external work is
UT Ftm ¼ 4:939� 104 Nm, which is sensibly smaller than the exter-
nal work in the case of the plate fully made of Mmatrix (see Table 5),
which is the stiffer material.

For R ¼ v tip, the solution of Eq. (63) is shown in Fig. 12(d): a
plate with a core of Mmatrix and upper and lower layers of Mlayer.
The maximum deflection of a such a plate is v tip ¼ 6:02 mm, which
is considerably smaller than v tip for the plate made of Mmatrix (see
Table 5).
7. Conclusions

In this work, we present a methodology for the sensitivity anal-
ysis of the thermomechanical response of macroscopic bodies with
variable microstructure. The response of the body at the macro-
scale, influenced by the microstructure, has been analyzed using
a semi-concurrent multiscale approach. Therefore, this evaluation
requires the solution of a microscopic problem at each integration
point, which makes the computation hardly affordable.

We propose to address this challenge for the wide range of
‘‘quantitatively characterized’’ materials by performing the micro-
scale analysis in an offline stage. To this end, recourse is made to
the response surface methodology in order to define the effective
thermal and mechanical properties as polynomial functions of
the parameters that define the microstructure. In this way, the sen-
sitivities of the effective material properties to microstructural
changes are also defined by polynomial functions.

Note that, given the microstructure distribution throughout the
body, the response surface methodology allows us to predefine all
the material properties as known functions of positions. Then, the
determination of the macroscopic response becomes a standard
problem at the macroscopic scale, which can be solved using most
of the available FEM codes.

The reduction of the starting fully-online multiscale problem to
one at the macroscale implies a huge reduction in computational
time. This fact is a crucial contribution of this work, since it enables
the optimal design of complex structures made of ‘‘quantitatively
characterized’’ materials with spatially variable microstructure.
The proposed methodology makes now affordable to solve a mul-
tiscale problem at each iteration of an optimization process.
Actually, this is the purpose of our future works.
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Appendix A. Thermomechanical computational
homogenization based on variational principles

This Appendix describes the main aspects characterizing the
homogenization methodology adopted in this work: the
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variational formulation and the equations governing the scale tran-
sition technique. Similar multiscale techniques for mechanical
problems have been presented by Feyel and Chaboche (2000),
Miehe and Koch (2002) and de Souza Neto and Feijóo (2008).
Additional aspects of the methodology can be seen there.

A.1. Scale transition technique

Let us consider a material whose microstructure is statistically
homogeneous at the macroscale. Every point X 2 X has associated
a given RVE, which is identified with the domain Xl having a
piecewise smooth boundary Cl and outward normal unit vector
nl, see Fig. 1. Hereafter, ð�Þl denotes an object described in Xl.
The separation scale condition is also assumed: the characteristic
length of the RVE, denoted ll, is much less than the corresponding
characteristic size, say L, of the macro scale domain: ll � L.

A.1.1. Thermal problem
The thermal response at X 2 X is computed by means of a

homogenization technique on the associated RVE, which domain
is denoted Xl. The temperature field in Xl is defined as the sum
of three contributions, as follows:

Tl ¼ T þrXT � y þ ~Tl; ðAI-1Þ

where T and rXT are given inputs defined from the macroscale
analysis, and ~Tl is the micro-fluctuation of the temperature field.

From Eq. (AI-1), the temperature gradient is

ryTl ¼ rXT þry
~Tl: ðAI-2Þ

Using the Fourier’s law, the heat flux vector ql at the microscale
is

ql ¼ �klryTl; ðAI-3Þ

where the conductivity tensor kl ¼ klðyÞ is given for each material
component at the microscopic scale.

Consistent formulations for scale transition procedures should
satisfy specific constraints between fields described at the macro
and microscopic domains. Accordingly, we postulate two basic
admissibility requirements between both descriptions, considered
as fundamental hypotheses of our approach: (i) the thermal admis-
sibility and (ii) the energetic admissibility. Requirement (i) fixes the
minimal consistent boundary conditions to be imposed on the RVE
problem, while requirement (ii) determines a heat balance equa-
tion at the micro scale, as well as the homogenization formula
for the macroscopic heat flux vector. Both requirements are further
discussed below.

A.1.1.1. Thermal admissibility requirement. This requirement
imposes the identity between the temperature gradient at the
macroscale and the volumetric average of the temperature gradi-
ent at the microscale, i.e.

rXT ¼ 1
jXlj

Z
Xl

ryTldVl; ðAI-4Þ

where jXlj is the volume of Xl. Considering ryTl given by Eq.
(AI-2) and using the Gauss’s theorem, Eq. (AI-4) yieldsZ

Cl

~TlnldSl ¼ 0; ðAI-5Þ

which introduces a constraint on the temperature micro-fluctuation
field at the RVE. This constraint is the minimum one to be imposed
on ~Tl in order to define an admissible micro-fluctuation field.

A multiscale model that adopts temperature micro-fluctuation
fields satisfying Eq. (AI-5) is called minimally constrained thermal
multiscale sub-model. Alternative sub-models using
micro-fluctuation fields with additional constraints can be postu-
lated. Typical choices are: Taylor sub-model or rule of mixtures
(~Tl is null in Xl), linear sub-model (~Tl is null on Cl) or periodic

sub-model (~Tl is periodic on sub-boundaries of Cl with opposite
normal vectors).

The vector space T l that collects all admissible functions ~Tl is
defined as

T l ¼ vðyÞ jv 2 H1ðXlÞ and
Z

Cl

vðyÞnldSl ¼ 0

( )
: ðAI-6Þ

In this case, T l defines also the vector space for the thermally
admissible virtual actions in temperature micro-fluctuations at
the microscale.

A.1.1.2. Energetic admissibility requirement. We postulate the fol-
lowing variational sentence:

q � rXT̂ ¼ 1
jXlj

Z
Xl

ql � ryT̂ldVl ðAI-7Þ

for all rXT̂ and ryT̂l related by the constraint (AI-4).
Considering ryTl as given by Eq. (AI-2), the fulfillment of the

variational expression (AI-7) necessarily implies two conse-
quences, namely:

1. the homogenization formula for the heat flux vector:
q ¼ 1
jXlj

Z
Xl

qldVl; ðAI-8Þ

2. the heat balance equation at the RVE-level, which is enunciated
as: given rXT , find ~Tl 2 T l such that:
Z

Xl

ql � ry
~̂TldVl ¼ 0; 8~̂Tl 2 T l: ðAI-9Þ

A.1.2. Mechanical problem
Similar to the thermal field Tl, Eq. (AI-1), the displacement field

ulðyÞ on Xl is defined as the sum of three contributions:

ul ¼ uþ e � y þ ~ul; ðAI-10Þ

where u and e are given inputs from the macroscale, and ~ul is the
displacement micro-fluctuation field in Xl. Then, the linear strain
tensor on the microscale, defined in the conventional form, is

el ¼ rs
yul ¼ eþrs

y
~ul|fflffl{zfflffl}

~el ;

ðAI-11Þ

~el being the strain micro-fluctuation tensor.
Let us assume that the mechanical behavior of each microcom-

ponent obeys a linear thermoelastic law:

rl ¼ Cl el þ dlðTl � T0Þ; ðAI-12Þ

where Cl is the tensor of elastic moduli and dl is the stress incre-
ment per unit of temperature, which are both of them given prop-
erties of the microcomponents; T0 denotes the temperature for
zero-thermal stress, assumed to be common to all the
microcomponents.

Considering that Tl, as given by Eq. (AI-1), satisfies

Tl ¼ T þOðll=LÞ; ðAI-13Þ

where ll=L� 1 according to the separation scale condition, we fur-
ther assume that



58 V.D. Fachinotti et al. / International Journal of Solids and Structures 69–70 (2015) 45–59
Tl � T0 � T � T0: ðAI-14Þ

Therefore, the dependence of rl on the temperature
micro-fluctuation field can be disregarded in the constitutive law
at the microscopic scale, Eq. (AI-12), which finally takes the form

rl ¼ Cl el þ dlðT � T0Þ: ðAI-15Þ

Thanks to this assumption, the classical thermoelastic constitutive
Eq. (12) is recovered at the macroscopic scale.

Like in the thermal problem, additional constraints have to be
imposed on the mechanical problem for a correct definition of
the scale transition procedure. Analogously, we postulate two
mechanical admissibility requirements: (i) the kinematic admissibility
and (ii) the power admissibility. Requirement (i) provides consistent
boundary conditions for the RVE, while requirement (ii) provides
the variational equilibrium problem on the microscale along
together with the corresponding homogenization formula for the
macroscopic stress tensor r, as discussed in the following
paragraphs.

A.1.3. Kinematic admissibility requirement
It imposes the equivalence between the strain e at the macro-

scale and the volumetric average of the strain el at the microscale,
i.e.

e ¼ 1
jXlj

Z
Xl

eldVl: ðAI-16Þ

In view of Eq. (AI-11), and using the Gauss’s theorem, Eq. (AI-16)
can be rewritten asZ

Cl

~ul	snldSl ¼ 0 ðAI-17Þ

and represents the minimum constraint to be imposed on the field
~ul in order to satisfy the kinematic admissibility condition. A mul-
tiscale (mechanical) model satisfying (AI-17) is a minimally con-
strained kinematical (mechanical) multiscale sub-model (de Souza
Neto and Feijóo, 2008). Alternative submodels with additional kine-
matical constraints on the displacement micro-fluctuation field can
be postulated. Typical choices are: Taylor sub-model or rule of mix-
tures (~ul is null in Xl), linear sub-model (~ul is null on Cl) or peri-
odic sub-model (~ul is periodic on boundary parts having opposite
normal vectors).

The vector space Ul that collects all admissible functions ~ul is
defined as

Ul ¼ vðyÞ jv 2 H1ðXlÞ and
Z

Cl

vðyÞ	snldSl ¼ 0

( )
: ðAI-18Þ

Note that Ul coincides with the space of kinematically admissible
virtual actions in displacement micro-fluctuations.

A.1.4. Power admissibility requirement
This is the well-known Hill-Mandel principle of macrohomo-

geneity, which imposes the following identity:

r � ê ¼ 1
jXlj

Z
Xl

rl � êldVl ðAI-19Þ

for all the virtual fields ê and êl related by the constraint (AI-16).
Two consequences are derived from this identity, namely:

1. the homogenization formula for the stress tensor:
r ¼ 1
jXlj

Z
Xl

rldVl; ðAI-20Þ
2. the mechanical equilibrium problem at the RVE-level, which is
enunciated as: given TðXÞ and eðXÞ, find ~ul 2 Ul such that:
Z

Xl

rl � rs
y
~̂uldVl ¼ 0; 8~̂ul 2 Ul: ðAI-21Þ

A.1.5. Effective thermal conductivity tensor
After introducing expressions (AI-2) in (AI-3), and the resulting

expression into (AI-8), we obtain the effective thermal conductivity
tensor

k ¼ @q
@ðrXTÞ ¼ kþ ~k ðAI-22Þ

with

k ¼ 1
jXlj

Z
Xl

kldVl; ðAI-23Þ

~k ¼ 1
jXlj

Z
Xl

ei � klryðrrT
~TlÞj

� �
dVl

" #
ei 	 ej; ðAI-24Þ

where ei is the ith vector of the canonical basis in R3, and

ðrrT
~TlÞj¼

: @~Tl

@ðrXTÞ � ej ðAI-25Þ

is computed after solving the linear problemZ
Xl

klryðrrT
~TlÞj � ry

~̂TldVl ¼ �
Z

Xl

klej � ry
~̂TldVl; 8~̂Tl 2 T l:

ðAI-26Þ
A.1.5.1. Effective elasticity and thermal stress tensor. By replacing Eq.
(AI-11) in Eq. (AI-15), and the resulting expression in (AI-20), the
effective elasticity tensor C is

C ¼ @r
@e
¼ Cþ ~C ðAI-27Þ

with

C ¼ 1
jXlj

Z
Xl

CldVl; ðAI-28Þ

~C ¼ 1
jXlj

Z
Xl

ei 	 ej
� �

� Clrs
yðre~ulÞkl

� �
dVl

" #
ei 	 ej 	 ek

	 el; ðAI-29Þ

where

ðre~ulÞkl¼
: @~ul

@e
� ðek 	 elÞ ðAI-30Þ

is the solution of the linear problemZ
Xl

Clrs
yðre~ulÞkl � r

s
y
~̂uldVl ¼ �

Z
Xl

Clðek 	 elÞ � rs
y
~̂ul dVl;

8 ~̂ul 2 Ul: ðAI-31Þ

On its turn, introducing the constitutive Eq. (AI-15) at the
microscale into the homogenization formula (AI-20) for r and dif-
ferentiating with respect to the macroscopic temperature, we
obtain the effective stress tensor increment per unit temperature

d ¼ @r
@T
¼ dþ ~d ðAI-32Þ

with



V.D. Fachinotti et al. / International Journal of Solids and Structures 69–70 (2015) 45–59 59
d ¼ 1
jXlj

Z
Xl

dldVl; ðAI-33Þ

~d ¼
Z

Xl

Clrs
yðrT ~ulÞdVl; ðAI-34Þ

where rT ~ulis the solution of the linear equationZ
Xl

Clrs
yðrT ~ulÞ � rs

y
~̂uldVl ¼ �

Z
Xl

dl � rs
y
~̂uldVl; 8 ~̂ul 2 Ul:

ðAI-35Þ

More details about the derivation, from a variational point of
view, of the tangent operators k; C and d, can be found in the
works of Michel et al. (1999) and Giusti et al. (2009).
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