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INTRODUCTION

In the modeling of polymer reaction systems, mass
balances for each one of the species involved are

usually set up. However, since in a polymerizing sys-
tem there are infinitely many such species, one ends
up with an infinitely large system of equations. Sev-
eral techniques are available to reduce their number.
If one is only interested in the calculation of average
quantities, the moment method is appropriate (1–3).
Other techniques must be sought if the calculation of
the molecular weight distribution (MWD) is necessary.
For example, it is possible to apply Laplace trans-
forms to the balance equations (4), or other trans-
forms such as generating functions.

Miller et al. (4) inverted Laplace transforms of mass
balances using two different numerical techniques.
They were applied to several theoretical examples: liv-
ing polymerization, simple addition polymerization,

and linear and branched addition polymerization. The
numerical inversion methods required working in the
complex plane. The authors reported that their work
improved on previous applications of Laplace trans-
forms to mass balances, which had been performed
mostly for systems that had an analytical transform
and were therefore limited to relatively simple systems.

A special type of generating function was used by
Jackson et al. (5) to predict the average molecular
weights of a polymer obtained by free radical reaction
in a continuous, perfectly stirred reactor. For two par-
ticular kinetic schemes, recursive expressions for the
number distribution of molecular weight were re-
ported. They solved the system for the average molec-
ular weights. The authors concluded that the most
promising way to obtain the complete molecular size
distribution would be to invert the generating function
presented in their work. They did not perform the pro-
posed inversion.

The z-transform has also been used in several works
(6–8). The z-transform is defined for discrete func-
tions, such as the MWD, but its transformed variable
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is complex. The inversion algorithms require a contour
integration in the complex plane, something difficult to
do numerically except for relatively simple kinetic
schemes, without the presence of branching reactions.

Recently, Whiteley and Garriga (9) analyzed the per-
formance of the inversion algorithm reported by Gaver
(10) and its applicability for obtaining theoretical MWDs
from their Laplace transforms. Using different analyti-
cal functions they tested the sensibility of the method
to the numerical accuracy used to perform the calcu-
lations. They also studied the influence of the order of
quadrature used on the calculated solutions. They ob-
tained good results when applying the method to the
calculation of MWD where the Laplace transforms at
definite values of the transformed variable are ob-
tained by integration of the mass balance equations
for the theoretical polymerization reported in Jackson
et al. (5).

In this work we study the feasibility of using numer-
ical inversion techniques on probability generating
function (pgf) transforms in order to calculate com-
plete polymer MWD. Generating functions in general
have a long history of use in the theory of probability
(11). The probability generating functions have been
used in polymer science either for evaluation of mo-
ments of the MWD and average molecular weights
(12, 13), as a means of evaluating network parameters
(14) or as a tool to model complex polymerization re-
actions (15, 16). They have not, to our knowledge,
been used so far for the calculation of the complete
MWD. The pgf transforms are defined for discrete dis-
tributions, and their transformed variable z is real
and bounded. These characteristics make pgfs an at-
tractive alternative to the Laplace or the z-transforms. 

In practice, the pgf would be obtained from a treat-
ment of the infinitely many mass balance equations
for a given polymerization system, which would be
transformed to yield a finite set of equations. In most
cases there would be no analytical solution to the
transformed equations; a discrete set of values of pgf
would be obtained instead. This leads unavoidably to
numerical inversion. If the inversion method is inap-
propriate, or if it is not correctly applied, this step
may be accompanied by significant error propagation.
The reason is that many inversion procedures require
the subtraction of very large quantities of the same
order of magnitude. 

In order to make the analysis of the inversion tech-
niques independent from the particular details of the
application of pgf transforms to mass balance equa-
tions, in this work we start from known experimental
MWDs obtained in our laboratories. We transform
them, and then apply two different numerical tech-
niques to try to recover the MWD. We use "clean"
transformed MWDs as well as others where errors
have been incorporated, so as to simulate the uncer-
tainty in the transformed domain that would result
from numerical calculation. In particular, we analyze
the numerical inversion techniques originally devel-
oped by Gaver (10) and by Stehfest (17, 18). Both of

them require the user to fix one arbitrary parameter,
the value of which is crucial to obtain appropriate
MWD. We discuss the quality of the recovered distri-
butions and suggest guidelines for establishing the
reliability of a given solution. The fundamentals de-
veloped here served as a base to the successful appli-
cation of this technique to the inversion of pgf ob-
tained in the modeling of industrial autoclave reactors
for polyethylene and EVA production (19). That is a
system where branched polymers are produced, and
where the kinetics are so complex that it is impossible
to find an analytical solution to the transformed equa-
tions with the methods currently available. The pro-
posed method is useful for the treatment of any free
radical polymerization system.

INVERSION ALGORITHMS FOR LAPLACE AND
PGF TRANSFORMS OF MWD

We use in this work the inversion formulas pro-
posed by Gaver (10) and by Stehfest (17, 18) that were
originally intended to treat Laplace transforms.

The well known Laplace transform of any given
function f (t ) is given by Eq 1.

(1)

Formally, the MWD can be considered as a periodic
pulse function, with pulses of unitary width and pe-
riod 1. If this is the case, it can be shown that the cor-
responding Laplace transform is given by Eq 2, where
f *(t ) stands for the periodic function.

(2)

On the other hand, the probability generating func-
tion �(z ) is defined in Eq 3.

(3)

where P *(t ) represents the probability of an event “t”
and z is the transformed variable, defined to be real, 
0 � z � 1. In the case of a molecular weight distri-
bution, P *(t ) would be the probability that the degree
of polymerization of a molecule is t. This probability
could be the weight or number fraction of molecules
with degree of polymerization t. Please note that Eq 3 is

different from the z-transform expression,

where r is the complex dummy variable.
If the expression for �(z ) is known analytically, then

it is possible to recover as many terms of P *(t ) as de-
sired using the expression (20) given in Eq 4:

(4)

If, however, only a finite number of pgf values is known,
as is the case when the pgf is found numerically, the
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former equation is not appropriate. A different strategy
is needed to perform the inversion.

It can be shown that, with an appropriate change
of variables, the probability generating function (pgf)
is equivalent to the Laplace transform of the MWD. If
we look at their definitions (Eqs 2 and 3), if f *(t ) is
the same as P *(t ) the equivalence is obtained when 
z � e –s.

This equivalence allows the use of the same inversion
techniques on Laplace and pgf transforms to recover
the original, untransformed functions. With respect to
the inversion techniques themselves, those employed
here belong to a group of methods that compute a
sample, as explained in an extensive review on inver-
sion of Laplace transforms (21). The numerical inver-
sion is accomplished by solving Eq 5:

(5)

where �n(t,s) is a convergent sequence that approaches
f (t ) as n approaches infinity. Gaver (10) proposed Eq 6
to evaluate �n(t,s).

(6)

As it stands, Eq 6 presents a slow rate of conver-
gence (21). Gaver proposed to expand the expression
in inverse powers of n so the result could be improved
by extrapolation. As a result, the final form of Gaver’s
formula is given by Eqs 7 and 8:

(7)

where F (sk ) is the Laplace transform of the function 
f (t ) to be recovered at the value t of the independent
variable. The values sk are calculated as sk � (n � k )
ln(2)/t.

(8)

Equation 8 corresponds to the asymptotic improve-
ment formula used by Gaver (10), where h, the method
parameter, is the quadrature approximation order.

Stehfest (17, 18) proposed a different extrapolation
formula, given by Eqs 9 and 10.

(9)

where

(10)

Each method has one parameter that has to be fixed:
h for Gaver’s formula, and N for Stehfest’s formula.

The quality of the inversion depends on these param-
eters. Gaver’s and Stehfest’s formulas are equivalent
for h � 1 and N � 4 only. This fact may be easily veri-
fied by expanding both formulas for several values of
h or N.

In order to implement the methods explained above
for the inversion of a pgf that describes a MWD, the
variable t is taken to be the degree of polymerization
(DP), and the transformed function F is the pgf evalu-
ated at the values of the transformed variable required
by the chosen method. These values are z � e –sk for
Gaver’s method and z � e –sn for Stehfest’s method.

TREATMENT OF EXPERIMENTAL
INFORMATION

Several polymers of very different molecular weight
distributions were selected to carry out our work.
Two polyethylenes (PE-1 and PE-2) were produced in
Repsol-YPF’s autoclave reactors as reported in our
previous work (22). Another three polyethylenes (M2,
M3, and M7) and two polystyrene samples (PS-a and
PS-b) belong to the data collection of PLAPIQUI’s
labs. PS-a and PS-b are molecular weight calibration
standards from Polymer Laboratories and TOSOH,
respectively.

Polymer samples were analyzed by Size Exclusion
Chromatography (SEC) in a Waters 150C instrument
with both refractive index and intrinsic viscosity de-
tectors. For polyethylene samples, trichlorobenzene
(TCB) at 145°C was used as solvent, with 0.04 wt% of
Irganox 1010 added as stabilizer. The operating con-
ditions were as follows: flow rate 0.7 mL/min, sample
concentration 5 mg/mL and injection volume 150 �L.
This information was used for calculation of molecu-
lar weight distributions (MWD), molecular weights,
polydispersities, and branching parameters according
to the method proposed by Foster et al. (23). The use
of the Foster method was unnecessary in the case of
the polystyrene samples used, since they are linear
calibration standards.

The experimental molecular weight distributions are
shown in Fig. 1. The abscissas are the molecular
weights of each fraction (Mi ). The distributions are ex-
pressed in chromatographic basis, which means that
the ordinates (ci ) are proportional to the mass times
the molecular weight. The distributions may also be
expressed in number (ni ) or weight fraction (wi ), ac-
cording to the user’s needs. The measured average
molecular weights are reported in Table 1. In what fol-
lows we will refer to the number MWD as MWDn, to
the weight MWD as MWDw and to the chromato-
graphic MWD as MWDc. 

SEC results reported as pairs of data (Ai, Bi ) were
used to perform the conversion of ordinates. Ai corre-
sponds to the decimal logarithm of the molecular
weight of the considered fraction, and Bi to a quantity
proportional to the mass present in that fraction. The
degree of polymerization for each fraction is calculated
as DPi � 10Ai/Mmon, where Mmon is the average molec-
ular weight of the monomer.
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The number, weight and chromatographic fractions
of molecules in the i th fraction of the chromatogram
are shown in Eqs 11–13, respectively.

(11)

(12)

(13)

Here kmx is the total number of fractions in the
chromatogram.

To calculate the pgfs (�j (z) ( j � n, w, c)) of number
(n), weight (w) and chromatographic (c) distributions
Eqs 14–16 were employed. These equations result
from applying the definition of pgf (Eq 3), where the
probability P *(t ) is either the number fraction, the
weight fraction or the chromatographic fraction of

ci �
Bi � 10Ai

a
kmx

k�1
Bk � 10Ak
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Bi

a
kmx

k�1
Bk

ni �
Bi>10Ai

a
kmx

k�1
Bk>10Ak

Fig. 1.  Normalized experimental chromatographic MWDs of seven polymer samples. 
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molecules of length t. It was also taken into account
that the fractions nt, wt and ct only have nonzero val-
ues for DP1 � t � DPmax.

(14)

(15)

(16)

To accomplish the summations indicated in Eqs
14–16 it was necessary to evaluate the distribution
beginning at the lowest available degree of polymeriza-
tion (DP1) and move forward one by one. Cubic splines
(24) were applied to the experimental data to obtain
all the information needed to calculate Eqs 14–16. We
have used cubic splines even when the data points
were not very smooth because we are not interested in
modeling this data, we want to recover as much of it
as possible from its transformed version. Therefore no
attempt at filtering or otherwise improving the data
was made.

The pgfs calculated as described above are consid-
ered clean or noise-free pgfs. Different types of errors
were added to the pgf transforms in an attempt to eval-
uate the incidence of error propagation, inherent in the
pgf calculation through mass balances, on the inver-
sion step. The resulting pgfs were considered “noisy.”

Once either the clean or the noisy pgf transforms
were calculated, they were inverted using the two al-
gorithms described above. When Gaver’s method was
used, we considered all values of h from 1 to 4. For
Stehfest’s method, N was varied from 2 to 24 with
step 2. Using either method, the MWD is recovered at
a finite number of DP points. The recovered distribu-
tions are different depending on the pgf used. From
pgfn, pgfw and pgfc the recovered f (t) are MWDn,
MWDw and MWDc, respectively. Please keep in mind
that the independent variable t corresponds to DP.
Since it is always possible to go from one type of
MWD to any other type by direct calculation (see Eqs
11–13), we not only recovered each MWD from its
own transform, but also calculated it by manipulat-
ing the inversions of the other two. After the inver-
sion step all calculated values were compared with
the experimental data.

RESULTS AND DISCUSSION

We select M7 as an example to demonstrate the
capabilities of both inversion methods. A strategy to
select the optimum solution is also presented. In the
following results, pgfc is inverted to obtain the corre-
sponding MWDc. Knowledge of the molecular weight
range of the sample is assumed. Figure 2a compares
the experimental MWDc with the ones obtained by
means of Stehfest’s formula with parameter N ranging
from 2 to 24. A badly deteriorated solution results for
N � 20. When using N � 20 there is no resolution for
the high molecular weight tail of the MWD. At the
other end of the spectrum, the use of N � 2 results in
an overestimation of the lower molecular weight mate-
rial and an insensibility to the high molecular weight
shoulder. For 2 	 N 	 20 the high molecular weight
shoulder appears in the calculated distributions clearly
and shows reproducibility, while the lower molecular
weight region up to the peak agrees almost exactly
with the experimental distribution. If the experimental
distributions were not known, it would be very diffi-
cult to decide which of the reasonable distributions
obtained for 4 � N � 16 would best represent the ac-
tual polymer.

Figure 2b shows similar results when using Gaver’s
formula. The parameter h, in this case, was varied
from h �1 to h � 4. Larger values of h lead to violently
oscillating solutions. With h � 4 a large peak appears
at the high molecular weight tail, distorting the real
peak and shoulder of the experimental distribution.
Results for h � 1 to h � 3 are very reasonable. The
best curves are obtained for h � 2 and h � 3. Again,
without previous knowledge of the experimental MWD
it is impossible to decide a priori which one of these
two values gives the best calculated MWDc. It is worth
noting that Whiteley and Garriga (9) found that Gaver’s
method implemented in a symbolic mathematical lan-
guage gives better accuracy when using h � 4 and 22
or more significant digits. When using 16 digits the
best results they obtained were for h � 3. In view of
their results, the authors suggested that h � 4 with 22
decimal places would be the best choice. In the pres-
ent work we intend to construct a basis for a more com-
plex and much larger problem, the inversion of pgfs
obtained from the resolution of mass balance equa-
tions in industrial polymerization reactors. A symbolic
language seems inappropriate for such a memory-de-
manding problem, so we are limited to 16 digits, the
maximum precision allowed in the Fortran language.

In order to quantify the goodness of the solutions
for both methods, two errors were evaluated. The first
one corresponds to the sum of squares of the differ-
ences between experimental and calculated curves
(SSQ). The second one corresponds to the sum of the
squares of the differences between two successive cal-
culated curves (SSQ1). Figure 3 shows these errors for
Stehfest’s formula and Fig. 4 for Gaver’s formula. It
appears that the minimum for both SSQ and SSQ1
may fall at similar values of either N or h. In this par-
ticular case the values of N at the minima coincide.

pg fc 1z 2 � �c 1z 2 � a
DPmax

t�DP1

ctz
t

pg fw 1z 2 � �w1z 2 � a
DPmax

t�DP1

wtz
t

pg fn 1z 2 � �n1z 2 � a
DPmax

t�DP1

ntz
t

Table 1.  SEC Characterization of the Polymer Samples.

Sample Mn Mw PD

M2 669 46,000 68.8
M3 4910 114,119 23.2
M7 27,925 438,502 15.7
PS-a 3,395,120 3,751,662 1.1
PS-b 1868 2032 1.1
PE-1 15,574 222,442 14.0
PE-2 15,700 300,840 19.0



The same holds for h. This indicates that in the pre-
sent example N �16 and h � 3 are the best parameter
values. The minimum values of SSQ are very similar
for both inversion methods, indicating that both re-
sult in distributions of comparable quality. The use of
Stehfest’s formula, on the other hand, results in a
smoother transition to the minimum value of SSQ1
than the one provided by Gaver’s formula. This may
be observed by comparing the curves in Figs. 3 and 4.

The same kind of analysis was performed starting
from each one of the pgfs to recover the three types of
distributions. A similar trend to the one shown in Figs.
3 and 4 was obtained when analyzing MWDn and
MWDw predictions. In the case of MWDw and Ste-
hfest’s formula, a larger difference in the location of
minimum SSQ and SSQ1 was observed. Nevertheless

the quality of the prediction was of the same order in
both cases. In consequence, for cases where the real
distribution is not known it seems reasonable to select
the value of the curve for which SSQ1 reaches a mini-
mum. Moreover, Stehfest’s formula appears to be more
robust than Gaver’s formula because it provides a
smoother transition to the minimum of SSQ1. 

Next, we analyze which pgf is the best to employ in
the recovery of each type of MWD. The following anal-
ysis is based on the assumption that no experimental
information is available so SSQ1 is the only measure
of goodness to be considered. Table 2 presents the
minimum SSQ1 values obtained by using Stehfest’s
and Gaver’s formulas for different polymers. We may
observe in Table 2 that the lowest value in SSQ1—
indicated in bold—is found when recovering each
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Fig. 2.  Normalized chromato-
graphic MWDs for M7, with (�) in-
dicating experimental data. (a)
Calculated MWDs as functions of
Stehfest’s parameter N. (b) Calcu-
lated MWDs as functions of
Gaver’s parameter h.



distribution from its own pgf and using Stehfest’s for-
mula. We discussed above that when comparing the
recovered distributions with the experimental values,
the minimum value reached for SSQ was of the same
order of magnitude for either Stehfest’s or Gaver’s for-
mula. However, Stehfest’s formula gave a smoother
transition to the minimum. This may be observed in
Table 2, where for all cases Stehfest’s formula results
in a value of SSQ1 at the minimum that is at least an
order of magnitude lower than the one given by Gaver’s
formula. This only indicates that the recovered curves
are closer to each other when using Stehfest’s formula.
We found the same trends for all other polymers. In
view of these findings, the optimum policy seems to be
to recover each distribution from its own pgf, and use
Stehfest’s formula for the inversion step. We may also
comment that when inverting pgfw reasonable re-
coveries of all types of MWDs are achieved. This may
be important from a computational viewpoint. When
calculating pgf from mass balances, pgfn must be cal-
culated prior to pgfw, which in turn must be calculated
before pgfc. This is so because a system of coupled
equations results. The number of equations in the sys-
tem doubles each time a new type of pgf is added to
the unknowns. If computer storage and time are lim-
ited, one could calculate pgfn and pgfw only, since it
is possible to obtain reasonable recoveries of all types
of MWD from pgfw.

Figures 5 to 7 show the experimental number,
weight and chromatographic distributions of the re-
maining polymers used in this work, compared to
those obtained through inversion of the respective pgf
using Stehfest’s formula. 

Figures 5a to c show the three types of distributions
recovered for PE-1, which presents a polydispersity of
14. The inversion of the pgf was sensitive to special
features of this distribution at the low molecular weight
region. The quality of the recovery was excellent, taking
into account that no experimental information except
the rough molecular weight range was used to decide
which were the best solutions. With respect to PE-2,
which presents a shoulder in the high molecular weight
tail, the recovery was done under the same conditions
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Fig. 3.  Influence of Stehfest’s pa-
rameter N on parameters SSQ and
SSQ1.

Fig. 4.  Influence of Gaver’s parameter h on SSQ and SSQ1.
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as in PE-1. It appears that MWDn is not predicted as
well as the others (Figs. 5d to f ), probably because of
an experimental noise level that becomes more evi-
dent in Fig. 5e. In contrast, the calculated MWDc and
MWDw (Figs. 5e and f ) agreed very well with the ex-
perimental data.

Results presented in Figs. 6a to f show the potential
of the method in recovering very polydisperse distri-
butions. The agreement between all experimental and
calculated distributions is very good for M2 and M3
polyethylenes, which present polydispersities of 69
and 23, respectively. 

With respect to narrow distributions Figs. 7a to f
present the results for PS-a and PS-b, two polystyrene
calibration standards of polydispersity around 1.1.
For both cases, excellent agreement between calcu-
lated and experimental distributions was obtained. 

Setting the molecular weight range may result crucial
to the success of the recovery procedure, especially for
narrow distributions. The results shown in Figs. 5 and 6
were obtained assuming a wide molecular weight range
(1.45 	 log(Mi) 	 7.10). The calculated distributions
shown in Fig. 7 for the polystyrene standards were
obtained assuming 6.0 	 log(Mi) 	 7.0 for PS-a and
2.5 	 log(Mi) 	 3.7 for PS-b. These ranges were
selected in view of our previous knowledge of the 
type of experimental distributions. If there is no pre-
vious information about the possible range of molecu-
lar weights, an iterative procedure must be followed
as explained below. In the case of narrow distribu-
tions such as PS-a and PS-b the problem is more evi-
dent. Figure 8 shows the effect of the range on the
calculated MWDc. For each range, 23 points of the
distribution were evaluated. This requires the calcu-
lation of the pgf at up to 23N distinct values of the
transformed variable z. Both for PS-a (Fig. 8a) and PS-
b (Fig. 8b) we started with the maximum range for
which the inversion method was implemented (� sym-
bols). When comparing with the actual distributions,
only around four � points lay on them, the others
being outside the actual distribution ranges. As the
range became more bounded, more and more calcu-
lated points fell on the actual distribution. It is sur-
prising to find that the experimental distribution is
recovered correctly from points calculated using dif-
ferent molecular weight ranges. When using an inap-
propriate range, computational effort is being wasted.
That may become a particularly bad problem when
calculating all pgf values from mass balances, which

are computationally expensive to evaluate. Similar re-
sults as those shown in Fig. 8 were obtained when an-
alyzing the effect of the range using Gaver’s formulas.
In the latter case the pgf must be evaluated in up to
2h�1 
 23 values of z.

In all the cases presented up to this point the pgfs
were calculated directly from actual experimental in-
formation, and were considered numerically noise-free
even though the small numerical error associated with
any ordinary algebraic calculation is present. If the pgfs
had been obtained through mass balance calcula-
tions, they should have been noisier due to the larger
inherent error involved in the numerical resolution of
a system of equations. In order to estimate the influ-
ence of noise on the quality of the recovered MWD
curves, we added different types of errors to the pgf.
The maximum error at each z was set at 0.5% of the
value of the clean pgf in all cases. We added errors
that were all the same sign and whose absolute values
either increased or decreased with z, both in a linear
and an exponential fashion. No significant difference
was found on the respective recovered MWDs when
analyzed either in raw or in normalized form (ordinates
are normalized to unity, abscissas are left unchanged).
The same result was obtained when constant or bell-
shaped errors were added to the pgfs. When a sign
change was forced in the error added at one particular
value of z, by use of a step function at z�0.5, again no
significant change on the recovered normalized MWDs
was observed. Finally, we solved several problems in
single precision arithmetic, where there are at most 8
significant digits, and compared the results with those
obtained with double precision arithmetic. The recov-
ered MWDs had more extra sudden peaks in the case
of single precision arithmetic, a feature that we also
found when recovering MWD from pgf balances (19).
This suggests that the inversion procedures are sensi-
tive to roundoff error present in the pgf. This is the
kind of error that may change sign from one point to
the next. In order to further evaluate the sensitivity of
the inversion method to this rapidly fluctuating type
of error in the pgf transform solution, random noise
was added to the clean pgfs at two levels: a maximum
of 0.1% or 0.5% of the calculated clean values. Then
we inverted the resulting pgfs using both inversion
methods. In the remainder of the paper, “noisy” pgfs
will be those with random noise added to them. Table 3
shows the optimum method parameters and the cor-
responding value of SSQ1 for both inversion methods

Table 2.  Minimum SSQ1 Values for M7 and Different Combinations of pgf and MWD Types.

To MWDn MWDw MWDc

From SSQ1 N or h SSQ1 N or h SSQ1 N or h

pgfn (S) 7.10 � 10–4 12 6.96 
 10–5 14 1.22 
 10–3 14
pgfn (G) 7.51 
 10–3 3 2.35 
 10–3 3 1.44 
 100– 3
pgfw (S) 8.60 
 10–4 22 5.41 � 10–5 12 2.96 
 10–50 14
pgfw(G) 3.66 
 10–3 4 6.54 
 10–4 3 5.08 
 10–3 3
pgfc(S) 1.03 
 10–3 24 9.38 
 10–5 20 1.01 � 10–5 16
pgfc(G) 1.40 
 10–2 4 3.24 
 10–3 3 2.93 
 10–3 3
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Fig. 5.  Experimental (symbols) and optimum calculated (––––) MWDs using Stehfest’s method. (a) to (c) PE-1, (d) to (f) PE-2.
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Fig. 6.  Experimental (symbols) and optimum calculated (––––) MWDs using Stehfest’s method. (a) to (c) M2, (d) to (f) M3.
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Fig. 7.  Experimental (symbols) and optimum calculated (––––) MWDs using Stehfest’s method. (a) to (c) PS-a, (d) to (f) PS-b.
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Table 3.  Minimum SSQ1 Values for M7 Obtained With Clean and Noisy pgf.

Error MWDn MWDw MWDc

Method � � 100 N or h SSQ1 N or h SSQ1 N or h SSQ1

0.0 12 7.10 
 10–4 12 5.40 
 10–5 16 1.91 
 10–3

Stehfest 0.1 6 8.91 
 10–2 6 6.91 
 10–2 6 1.77 
 10–1

0.5 4 4.43 
 10–1 4 3.07 
 10–1 4 3.23 
 10–1

0.0 3 3.75 
 10–3 3 6.50 
 10–4 3 2.90 
 10–3

Gaver 0.1 2 3.34 
 10–1 2 3.91 
 10–1 2 1.08 
 1000

0.5 2 3.44 
 1000 2 5.63 
 1000 3 6.21 
 1000

Fig. 8.  Experimental (––––) and optimum calculated (symbols) MWDs by Stehfest’s method for different molecular weight ranges. (a)
PS-a, (b) PS-b.
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when applied to clean and noisy pgfs corresponding to
polymer M7. For both methods, the minimum SSQ1
sharply increases as the noise level grows. On the
other hand, the values of the inversion parameters 
(N or h) suffer an important decrease. Similar con-
clusions may be drawn from the analysis of the other
polymer samples.

For Stehfest’s method, optimum N values for noisy
pgf are much lower than those for the clean pgf. Never-
theless, in most cases it is possible to apply the min-
imum SSQ1 criterion. In several cases SSQ1 was an
increasing function of N, so the optimum value was 
N � 4. Very stable solutions in the presence of noise
were obtained with this particular value of N. As we
already mentioned, the same results would be ob-
tained with Gaver’s formula and h �1. As an example,
the three types of distributions calculated in this way
are shown in Figs. 9a to c for M7 and Stehfest’s for-
mula. Even though the solutions show minor “bumps,”
they reflect appropriately each one of the experimental
MWDs.

For Gaver’s method, it may be concluded that: a) if
the pgfs are almost clean, the best values to recover
the MWD are h � 3 or occasionally h � 4. This results
from the application of the minimum SSQ1 criterion;
b) if the pgf are noisy, SSQ1 becomes an increasing
function of h. MWD obtained with h � 2 may be con-
taminated with important oscillations and in that case
it would be preferable to use h �1. Figures 10a to
f include the results for M7 obtained using Gaver’s
formula. The minimum SSQ1 criterion gives as the
optimum parameter h � 2 or h � 3 (Figs. 10a to c).
Important oscillations appear when the level of noise
increases. As h �1 is not part of this selection, it is
interesting to analyze the results obtained with this
particular value. The recovered MWDs are shown in
Figs. 10d to f. Very smooth curves are obtained this
way, which reflect most of the experimental features
of the MWD.

The comments on optimal parameters are applicable
to all the polymer samples considered in this work.

CONCLUSIONS

This work provides a demonstration of the recovery
of experimental MWD from probability generating
functions. Two methods for the numerical inversion of
Laplace transforms were adapted to be used with
probability generating functions. Since Stehfest’s for-
mula gives a smoother transition to the best solution,
it is easier to use in the MWD recovery than Gaver’s
formula, providing a more robust procedure to select
the best solution for practical cases where the distrib-
ution is not known a priori. Nevertheless, the optimal
solutions are of the same degree of accuracy when
using either inversion method.

From the analysis presented in this work it seems
that it is best to calculate each type of MWD from the
inversion of the same type of pgf. If necessary, it is
possible to obtain reasonable inversions of all MWD
types from pgfw only.

Fig. 9.  Experimental (symbols) and optimum calculated
(lines) MWDs for M7 using Stehfest’s method for different lev-
els of noise in the pgfs. �noise� 	 � • pgf, where (–– ––): � � 0,
(- - -): � � 0.001, (––––): � � 0.005.
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Fig. 10.  Experimental (symbols) and calculated (lines) MWDs for M7 using Gaver’s method for different levels of noise in the pgfs.
�noise� 	 � • pgf, where (–– ––): � � 0, (- - -): � � 0.001, (––––): � � 0.005. (a), (b) and (c) obtained with optimum values of h according to
the SSQ1 criterion; (d), (e) and (f) obtained with h � 1.



A. Brandolin, M. Asteasuain, C. Sarmoria, A. López-Rodríguez, K. S. Whiteley, and B. del Amo Fernández

1170 POLYMER ENGINEERING AND SCIENCE, JULY 2001, Vol. 41, No. 7

The addition of noise to the original pgfs and the
subsequent inversion of the noisy transforms show
that rapidly fluctuating errors such as those produced
by rounding off are the ones for which the inversion
method is most sensitive. Error propagation must be
carefully analyzed when starting the inversion from
pgfs obtained through mass balance resolution. In the
case of noisy pgfs good results are obtained using
either Gaver’s formula with h �1 or Stehfest’s formula
with N � 4 or N � 6.

The results and conclusions presented in this paper
may also be applied in the case of the inversion of
Laplace transforms. The corresponding results, which
are completely analogous to the ones for pgf trans-
forms, were not presented here because of space lim-
itations. The choice of transform to be used with a
particular polymerization problem would depend on
the mathematical form of the mass balances.
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