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when the number of iterations required for convergence is low, the setup cost of the

elimination as well as its implementation may offset the benefits obtained during the

I;fﬁ?éoggf;densmon iteration process. However, as the iteration count (e.g., above 50) or the polynomial order
Finite element method (e.g., above cubics) grows, the benefits of element-level static condensation are significant.
p-FEM © 2015 Elsevier Ltd. All rights reserved.

Iterative solvers

1. Introduction

Within the Finite Element (FE) community, the term static condensation of interior degrees of freedom refers to the
Gaussian elimination of the element interior bubble functions arising from high-order discretizations [1]. Other terms such
as Guyan condensation (reduction) can also be found in the literature to refer to the same set of linear algebra operations [2].
Static condensation can also be interpreted as a partial LU factorization of the interior degrees of freedom, as a first step of
a specific substructuring technique, or as a partial orthogonalization of basis functions [3].

Interpreted in any of these forms, static condensation constitutes a fundamental building block for direct solvers and
delivers significant performance improvements [4-6]. In high-order methods such as the p- and hp-FE methods, interior
degrees of freedom are eliminated first, leading to a reduced system (called Schur complement) that is subsequently LU
factorized. This static condensation step ensures the elimination of interior degrees of freedom before starting the LU
factorization of the skeleton problem, thereby providing often better performance than that achieved with traditional
ordering techniques, as shown in [7]. It also explains why those matrices lacking a structure that enables static condensation
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(e.g., higher-continuous basis functions as those used in meshless methods [8], reconstructing kernel element methods [9],
and isogeometric analysis [10]) typically require a significantly larger number of floating point operations in order to be
factorized [5].

While the use of static condensation in direct solvers is always beneficial [11], its use with iterative solvers is more
controversial. Some authors postulate that static condensation should always be the starting point of any iterative solver,
while others refrain from doing so, since it adds some complexity to the implementation. Even when static condensation is
unused, most iterative solvers for p- and hp-FE methods still perform some type of elimination (or a spectrally equivalent
operation) of local interior bubble functions (cf., [12-17]).

The key point, however, is to determine how profitable it is to explicitly build the Schur complement of element bubble
functions (as performed in static condensation) and eliminate the corresponding unknowns from the global system before
performing iterations with respect to keeping the local LU-factorized matrices as part of the preconditioner without ever
computing the Schur complement. In other words, the distinguishing feature between iterative solvers that employ partial
LU factorizations versus those that perform static condensation before executing an iterative solver is that the latter explic-
itly build the Schur complement and eliminate interior bubble functions from the global matrix rather than only evaluating
their action over a given residual.

This paper provides quantitative estimates about the profitability of using static condensation before employing an
iterative solver. We corroborate these estimates with numerical experiments in two and three spatial dimensions. Numerical
experimentation also enlightens the behavior on the pre-asymptotic regime. As a result, we describe those situations in
which the use of static condensation is most beneficial. To quantitatively compare both methods, we present floating point
operations (FLOPs) estimates that also provide interesting clues for the design of optimal hybrid solvers [18].

In order to make this analysis tractable and easy to follow, we make several assumptions, which are described in Section 2
along with our model problem. Section 3 presents precise theoretical complexity estimates illustrating the advantages
and limitations of using static condensation for each particular discretization. We describe the implementation details in
Section 4 and we present numerical results confirming the estimates in Section 5. Section 6 describes the conclusions of our
study and suggests future research lines in the topic.

2. Model problem and assumptions

Our starting point is the following algebraic system of linear equations:
Ax =b, (M

where A is a non-singular real-valued N x N sparse matrix, b is the right-hand side, and x is the solution vector.

In this work, we assume that the system matrix A is associated to a regular quadrilateral or hexahedral grid coming from
a finite element discretization with uniform order of approximation p and with the same number of elements in each spatial
direction. When the number of elements in each direction is substantially different, then the problem complexity reduces
to that given by a lower dimensional problem.

In our estimates and computations, we avoid taking advantage of orthogonal basis functions, i.e., we consider all
contributions originating from a trial and a test function with shared support as nonzero (a.k.a. “logical nonzero entry”),
despite the fact that the actual values could indeed be zero. In arbitrarily mapped elements (non-affine) and/or in complex
bilinear forms, logical nonzero entries are indeed different from zero.

We assume that the number of iterations needed to solve a given problem before static condensation is of the same order
as that needed after static condensation. A large family of iterative solvers complies with this assumption, as shown in the
Appendix.

We further assume that the cost of building the preconditioner associated to the skeleton problem is negligible, since
the number of unknowns in the skeleton problem is @ (p) times smaller than those in the interiors of the elements. In the
case of a multigrid solver, we also assume that the coarse-grid correction has a negligible cost, since it consists of solving a
smaller-size problem.

For simplicity, we restrict our attention to boundary value problems (with Dirichlet boundary conditions) that are
governed by second order partial differential equations (PDEs) of the form:

—V.(1Vu)+cVu+cu = f in 2,
u=1uy onl =082,

(2)

where ¢y is a symmetric positive definite tensor, ¢, a vector, and c3 a scalar function, f is the right-hand side, u is the solution,
U is the Dirichlet data, and V, V- are the gradient and divergence operators, respectively. c1, ¢, and c3 are bounded and
spatially varying so they may also incorporate the Jacobian of a transformation from the reference elements to a deformed
geometry [19,20]. We also assume that the coefficients are such that the above problem has a unique solution.

The variational formulation of problem (2) is given by (see e.g., [21]):

Find u € ug + V such that, (3)
b(u,v) =1(v) VveV,
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where the bilinear form b(u, v) and the linear form I[(v) are defined as:

b(u,v) = / cVu-Vovd2 +/ o Vuv d§2 +/ c3uv d§2
Io) 2 2
(4)
I(v) = /fv ds2,
2

with v a test function belonging to space V = Hy () = {u € [*(2) : u|p = 0, Vu € L*(2)}.

For the case of multiple equations and/or H(curl), H(div), or L? discretizations, most of the results presented here can
be easily generalized using the same methodology as that shown in this paper. For complexity estimates associated to
isogeometric analysis (IGA) and finite difference (FD) discretizations, we refer to Collier et al. [5,22]. In these cases, it is not
possible to perform static condensation of interior unknowns. Other discretizations such as Discontinuous Galerkin (DG) or
Hybridizable Discontinuous Galerkin (HDG) [23,24] can be analyzed using the same techniques employed here but taking
into account the precise number of element-interior and element-boundary unknowns delivered by each formulation. For
the case of time-domain problems with a single time independent matrix, they can be interpreted as a single problem with
multiple right hand sides, and thus, results shown here can also be trivially extended to that situation.

Our study focuses on moderate values of p, namely,2 < p < 15in2Dand2 < p < 10in 3D. Nonetheless, some tables and
graphics showing higher values of p have also been computed for illustration and verification purposes. For larger values
of p, the costs of integration, memory storage, and solution of the system of linear equations may become prohibitively
expensive, and one needs to employ specific spectral method techniques such as sum factorization [25,26] or the Spectral
Galerkin method [27]. The operation count of both integration and matrix-vector multiplication reduces significantly when
using either of the above techniques for high p. However, in this paper we consider moderate values of p and we avoid the
use of sum factorization techniques. The analysis performed in this paper does not consider the use of sparse representations
of nodes for building the preconditioners [28], which would require a separate study.

This work focuses on operation counts and does not study parallelization costs such as communication. However, under
the assumption that each element is contained only in a single processor (which is typical for the moderate values of p
considered here), the element-level static condensation is performed in a single processor, and no communication costs
occur during such operation.

3. Theoretical complexity estimates

In this section, we derive theoretical complexity estimates to compare the number of FLOPs needed to solve a system of
linear equations with and without static condensation.
The considered iterative algorithm consists of the following steps:

. For the static-condensation case, construct the Schur complement matrix in each element.

. Construct a block Jacobi preconditioner on the fine grid with blocks associated to the unknowns of a single element, as
in [ 13]. For the case with static condensation, bubbles have already been eliminated in the previous step, thus, blocks are
associated to the unknowns of the element skeleton.

3. Construct restriction/prolongation operators and coarse-grid solver for the case of multigrid. As described in the previous

section, this step is assumed to be of lower-order complexity and thus has a negligible computational cost.

4. Iterate (matrix-vector multiplications) until a given error tolerance is reached. For the case with static condensation,

iterations are performed only over the reduced skeleton system.

N =

The computational cost associated to the use of other commonly employed preconditioners such as Incomplete LU (ILU)
factorization with no fill-in - ILU(0) - is of the same order, and thus, the analysis performed here also applies to those cases.

3.1. Notation and preliminary considerations

We express the amount of FLOPs needed to solve the above system of equations using an iterative solver without static
condensation as:

FLOPs = (nj.c + g)M, (5)
where:

e M is the number of nonzero entries in the matrix A,

e n; is the number of iterations, which depends on the structure of A,

e gM is the number of FLOPs required to build the preconditioner, and

e C is a constant that incorporates the number of matrix-vector multiplications that need to be performed within each
iteration.
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Table 1
Number of independent vertices (Nr_Vert), edges (Nr_Edg), faces (Nr_Fac), and volumes (Nr_Vol) for a single element
(quadrilateral in 2D or hexahedron in 3D) with periodic boundary conditions.

Denomination Dimension (d) Nr_Vert Nr_Edg Nr_Fac Nr_Vol
2D 2 1 2 1 0
3D 3 1 3 3 1
X ' . i . '
1 ! 1 ! I 1 1
1 ! I ! 1 I I
| 1 | 1 1 1 1
F----=-- T Q= 1 1 I 1
I 1 1 1 1 1 1
1 1 1
! 1 ! I Z
1 ' ! 1 I
1 | : 1 1
PV, PE PV \ ! !
_______ lmmmmmm = A
! F F
L ey — E— A
E F PE : E
E
X F
_______ R e
v E PV v E

Fig. 1. Quadrilateral (left panel) and Hexahedral (right panel) in a periodic mesh.V = Vertex, E = Edge, F = Face. PV, PE, and PF correspond to vertices,
edges and faces where periodic boundary conditions are imposed, and they are denoted with the red color. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

When using static condensation, the total amount of FLOPs needed to solve the above system of equations is given by:

FLOPssc = (fi;c¢ + )M + 3M, (6)
where:

e M is the number of nonzero entries in the stiffness matrix after static condensation,

e 7 is the number of iterations needed in the statically condensed system,

° §1\7I is the number of FLOPs required to build the preconditioner of the statically condensed system,

e C is a constant that incorporates the number of matrix-vector multiplications performed within each iteration of the
statically condensed system, and

e SM is the number of FLOPs needed to perform static condensation over the original system (independent of ;).

The above formulas depend upon the order of approximation p. In other words, g, M, g, M, and s are p dependent. Addi-
tionally, n;;, and 71;; may depend upon p, but here we assume that the preconditioner is able to keep the number of iterations
almost constant irrespective of p. In fact, there exist several iterative solvers in the literature for which the number of iter-
ations needed to converge is almost independent of p (cf., [12,13,17,15,29]).

The objective of static condensation is to reduce the total cost by reducing the value of the constant M versus M, possibly
at the cost of some small overhead SM needed to build the Schur complement matrix. In other words, our analysis focuses
on the amount of operations needed to build the Schur complement and the savings in terms of number of nonzero entries
that this system may deliver during iterations (matrix-vector multiplications).

The speedup factor in terms of the number of FLOPs due to the use of static condensation is independent of the number of
elements (up to boundary conditions). In order to properly normalize the results, we provide all estimates on a per-element
basis. We assume that a sufficiently large number of elements is used, thus making the effect of the boundaries irrelevant.

To compute the number of independent nodes per element for a problem with infinite number of elements in each
direction, we consider a single hexahedron problem with periodic boundary conditions [4,5]. The element has four different
types of nodes (node_type), namely, vertices, edges, faces, and volumetric interiors. The number of nodes of each particular
type - nr_nodes(node_type) - in an element with periodic boundary conditions is displayed in Table 1, and illustrated in
Fig. 1. The problem size (per element) N is given by:

N = Z nr_nodes(node_type) - dof(node_type), (7)

node_type

where dof(node_type) is the number of degrees of freedom for each node_type. Let e be the node dimension of node_type,
i.e,, 0 for vertices, 1 for edges, 2 for faces, and 3 for volumes. For an H!(C?) element of order p, the number of degrees of
freedom is equal to

dof(node_type) = (p — 1)°. (8)
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3.2. Without static condensation

We first consider the case of an iterative solver built without performing static condensation. Following Eq. (5), we
decompose the total cost into two parts: (a) building the preconditioner, and (b) performing iterations.

Cost of building the preconditioner. For the particular case of a multigrid solver, we assume that the construction of the transfer
operators, smoothers, and the coarsest grid solve are significantly cheaper operations.

Cost of iterations. The number of FLOPs needed to perform each iteration is dominated by two matrix-vector multiplications:
one corresponding to the original matrix A, and the second one corresponding to the preconditioner matrix. Assuming that
the number of nonzero entries in the preconditioner is smaller or proportional to that of the original matrix, we conclude
that the iteration cost is proportional to the number of nonzero entries in the original matrix.

Then, for an infinitely large problem, the number of nonzero entries per element in the original system M is given by:

M= Z nr_nodes(node_type) - dof(node_type) - interact_dof(node_type), 9)
node_type

where interact_dof(node_type) is the number of degrees of freedom interacting with a given node_type, and its formula is
given by:

interact_dof (node_type) = (2p + )4~ - (p + 1)°. (10)

3.3. With static condensation

In this case, we need to first consider the number of FLOPs needed to perform static condensation. Additionally, we also
need to consider the complexity of building the preconditioner and to perform the iterations.

Cost of static condensation. Let matrix A be decomposed as:

Ar  Ags
A= 11
|:A51 Ass] ’ an

where subscript I corresponds to the interior bubble degrees of freedom to be eliminated from the system by static
condensation and S to the remaining skeleton unknowns. Performing the partial LU factorization of the square submatrix
Ay, we obtain:

_ I 0 All 0 1 A_IAIS
A= [ASIA,T 1] ' [0 Ass —As,A,ﬂA,s] ' [o g } (12)
where S = Ags — AS,A,71A,5 is the Schur complement. In practice, a full inversion of A;; should be avoided and replaced by
the corresponding LU factorization. First, because round-off errors are less relevant when performing an LU factorization.
Second, because the number of FLOPs also diminishes, specially, for high values of p. Although both operations (LU
factorization and inversion) exhibit the same scaling in terms of p, the corresponding constants are different. More precisely,
inverting the matrix is about three times more expensive than performing its LU factorization.

Taking the above observation into account, we conclude that the cost of building the Schur complement (per element)
is the sum of the costs associated to: (a) performing the LU factorization of matrix Ay, (b) computing the action A,le,s by
using backward and forward substitutions, and (c) performing a matrix-matrix multiplication. The cost of performing the
LU factorization of matrix Ay is of order © (p®), while the cost of performing backward and forward substitutions is of order
O (p**~1). The remaining operations are of lower order, thus their contribution to the total number of FLOPs is negligible.

Cost of building the preconditioner. As stated in previous sections, we assume that the cost of building the preconditioner for
the skeleton problem is negligible, since the number of unknowns of this problem is @ (p) times smaller than that of the
original problem.

Cost of iterations. As in the previous case, we assume that the number of FLOPs is proportional to the number of nonzero
entries in the Schur complement system S.

If we denote the nodes of type “skeleton” (all except the volumetric interior ones) by —-node_ske-, then, for an infinitely
large problem the number of nonzero entries per element in the statically condensed system M is given by:

M= Z nr_nodes(node_ske) x dof(node_ske) x [interact_dof (node_ske) — Zd’e(p — 9. (13)

node_ske

1 Computing the inverse of a matrix A of size n x n with LAPACK [30] requires two steps: first, compute the factorization A = LU (by calling DGETRF),
next compute A~! out of the LU factors (by calling DGETRI). The LU factorization of a matrix of size n x n has a flop count 0f(9(§n3) and the computation

of the inverse out for the LU factors has a flop count of 0(§n3) (see [31, pp. 120]). Therefore, the computation of the matrix inverse has a total flop count
of ®(2n%), which is three times the one required to compute the LU factors.
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Table 2
2D results for a problem with periodic boundary conditions (infinitely large problem). Number of nonzero entries per element with and without static
condensation.

p 1 2 3 4 5 10 25 100 1000

M/(p+ 13p 1.12 1.19 1.17 1.15 1.13 1.08 1.04 1.01 1.00

M/14p? 0.64 0.84 0.90 0.92 0.94 0.97 0.99 1.00 1.00

M/M 1 1.36 1.99 2.78 3.72 10.6 52.7 745 71735
Table 3

3D results for a problem with periodic boundary conditions (infinitely large problem). Number of nonzero entries per element with and without static
condensation.

p 1 2 3 4 5 10 25 100 1000
M/((p+ 1)°p) 0.84 1.05 1.10 1.11 1.10 1.07 1.04 1.00 1.00
M/(33p%) 0.82 0.87 0.90 0.92 0.94 0.97 0.99 1.00 1.00
M/M 1 1.11 1.40 1.77 222 542 24.2 322 30496

In the above formula, the term “interact_dof (node_ske) — 29~¢(p — 1)¢” corresponds to all interacting nodes of the given
“node_ske” minus those corresponding to volumetric interior nodes already eliminated by the static condensation.

A simple asymptotic expansion shows that M = O (p?%), while M = O (p2@~"), which implies that the number of
nonzero entries in the statically condensed system is @ (p?) times smaller than in the original system. Indeed, we can further
derive the following approximations for the number of nonzero entries per element, whose accuracy are confirmed by
Tables 2 and 3:

M@2D)~ (p+1)°p  M@3D) =~ (p+ 1)°p (14)
M(2D) ~ 14p? M(3D) ~ 33p*. (15)

3.4. Discussion and final estimates

Taking into account all the above estimates, the number of FLOPs needed to solve the original and the statically condensed
systems are respectively of the order:

FLOPs = O(nyp*®) + 0 (p*"),
FLOPsgc = (9(nitp2(d_l)) + (9(p3d) + (9(p3d—1)’

(16)

per element.

Although @ (p**1) can be considered as a lower order term in the above estimates, it sometimes becomes significant
for lg)dw and moderate values of p, since the constant in front of it is significantly higher than that of the higher order term
O(P™).

In any case, we observe that as p —> oo, the number of FLOPs is the same regardless of the use of static condensation.
Thus, for sufficiently high p, perhaps the additional burden of implementing static condensation should be avoided, and the
main effort should be focused on performing some type of incomplete LU factorization (or some alternative iterative solver)
on the bubble degrees of freedom.

On the other hand, for a fixed value of p, we see that as n;; —> 00, the use of static condensation is always recommended.
To determine the exact regions for which the use of static condensation brings any benefit, we complement the above
theoretical estimates with numerical experimentation. These simulation results allow us to estimate the relative significance
of the different contributions of each term in (16).

4. Implementation

To provide further insight to the above theoretical estimates, we built a FE code in one-, two-, and three-spatial dimen-
sions. The method is implemented in MATLAB, and supports any uniform order of approximation p. For its construction,
we have assumed a tensor product structure for the basis functions and the corresponding discretization. To simplify the
implementation, the size of all elements in each direction is selected to be equal to one, and we have chosenc; = 1,¢, = 0,
and c; = 0 everywhere, which produces a constant Jacobian (in fact, equal to one) and facilitates the decomposition of the
bilinear form as the sum of tensor products of one-dimensional problems. Using this identity map for the geometry does
not affect the nonzero pattern of the system, while keeping the implementation simple.
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Table 4

2D numerical results for a problem with a number of elements equal to 1000, 3332, 200?, 100%, 40? and 202 for p equal
to1, 3, 5, 10, 25 and 40, respectively. Number of nonzero entries per element with and without static condensation.

p p=1 p=3 p=>5 p=10 p=25 p =40

M/(p+ 1)%p 1.12 1.17 1.13 1.08 1.03 1.02

M/14p? 0.64 0.89 0.94 0.96 0.97 0.96

M/M 1 1.99 3.73 10.64 53.45 130.98
Table 5

3D numerical results for a problem with a number of elements equal to 1003, 333, 20° and 83 for p equal to 1, 3, 5, and
10, respectively. Number of nonzero entries per element with and without static condensation.

p p=1 p=3 p=5 p=10

M/(p+1)°p 0.84 1.07 1.06 1.01

M/(33p%) 0.81 0.87 0.89 0.86

M/M 1 1.40 224 5.74
Table 6

2D numerical results showing how the number of nonzero entries, with and without static condensation, converges to the
theoretical estimates when the number of elements (N, ) increases.

p=5 N, = 52 N, = 252 N, = 50% N, = 100? N, = 200° Estimate

M/(p+ 1)%p 1.02 1.11 1.12 1.13 1.13 1.13

M /14p? 0.81 091 0.93 093 0.94 0.94

M/M 391 3.76 374 373 373 3.72
Table 7

3D numerical results showing how the number of nonzero entries, with and without static condensation, converges to the
theoretical estimates when the number of elements (N, ) increase.

p=5 N, =33 N, =53 N, = 10° N, = 20° Estimate
M/(p+ 1)°p 0.84 0.94 1.02 1.06 1.10
M/(33p%) 0.66 0.76 0.85 0.89 0.94
M/M 2.41 2.33 2.27 2.24 2.22

5. Numerical results

In this section, we solve the Laplace equation (2) with Dirichlet boundary conditions using the FE method, as described
in the previous section. Numerical results are obtained in a workstation equipped with 94 GB RAM, and an eight-core Intel
Xeon E5620 processor (12 Mb cache, 2.40 GHz).

5.1. Number of nonzero entries

We first report the number of nonzero entries per element for the condensed and non-condensed systems. In Table 4,
we observe that the numerical results for 2D match with the estimates of Table 2. For example, for p = 5, the number
of nonzero entries for the statically condensed and non-condensed systems computed numerically coincide with the
theoretical estimates (1.13 and 0.94, respectively). Their ratio is also the same (3.73 for the numerical value and 3.72 for
the estimate).

In the 3D case (Table 5), the agreement with the estimates (Table 3) is more visible for low p. Estimates correspond to
the case of an infinitely large problem. Therefore, when we solve the Laplace equation with Dirichlet boundary conditions,
in order to obtain a perfect match between the numerical results and the estimates, we need to consider a sufficiently large
problem. For small polynomial orders we are able to solve large problems. This is reflected in the existing good agreement
between numerical results and theoretical estimates (e.g., for p = 3). However, an increase in p limits us from considering
as many elements as needed to observe a perfect agreement (e.g., p = 10).

Tables 6 and 7 illustrate that when the problem size increases, the numerical results converge to the theoretical estimates,
as predicted.

5.2. Time comparison

Assuming that the amount of time needed to execute an algorithm is proportional to the number of FLOPs, we can
reinterpret Egs. (5) and (6) in terms of time instead of FLOPs by rewriting them in the following way:

TIME = T(A-D)ni + T(Ap), (17)
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Table 8

2D numerical results for a problem with number of elements equal to 3332, 200%, 100%, 40% 20% and 22 for p equal to 3, 5, 10, 25 40 and 100,
respectively. Times per element with and without static condensation. Times have been computed 100 times and averaged.

p p=3 p=>5 p=10 p=25 p =40 p = 100
T (Ass) 1.74e—5 3.92e—5 7.02e—4 231e-2 2.23e—1 16.94
T(An) 2.95e—6 1.08e—5 2.09e—4 1.18e—2 1.55e—1 14.79
T(Ass - V) 3.13e—7 8.63e—7 3.26e—6 2.42e—5 5.11e-5 2.13e—4
T(A-v) 6.21e—7 3.56e—6 3.51e-5 1.05e—-3 6.63e—3 2.55e—1
T(Ass)/T(Ay) 5.90 3.63 3.36 1.96 1.44 1.15
T(A-V)/T(Ass - V) 1.98 4.13 10.77 43.39 129.75 1197.2
Table 9

3D numerical results for a problem with number of elements equal to 33*, 20> 83 23 and 1 for p equal to 3, 5 10, 15 and 25, respectively. Times per
element with and without static condensation. Times have been computed 100 times and averaged.

p p=3 p=5 p=10 p=15 p=25
T(Ass) 434e—5 7.48e—4 7.60e—2 1.49 77.76
T(An) 413e—6 8.76e—5 2.09e—2 5.30e—1 36.85
T(Ass - T) 5.580—6 4.19e—5 7.11e—4 2.34e—3 1.02e—2
T(A-v) 7.89e—6 9.70e—5 4.10e—3 3.30e—2 6.23e—1
T(Ass)/T(An) 1051 8.54 364 281 211
T(A-7)/T(Ass - 7) 141 232 5.77 14.10 61.08

and

TIMEsc = T(Ass - v)nie + T (Ass), (18)

where TIME and TIMEsc are the total times without and with static condensation, respectively. Here, n;; is again the number
of iterations the iterative solver requires to converge, T (Ass) is the time required to compute the Schur complement, T (Aj)
corresponds to the time devoted to perform the LU factorization of A;;, and T(A - v) and T (Ass - v) are, respectively, the time
required to multiply the non-condensed stiffness matrix A and the statically condensed stiffness matrix Ass by a vector. As
before, we assume that the time needed to build the preconditioner in the condensed system is negligible.

Since these times scale linearly with the number of elements, all numerical results reported in Tables 8 and 9 are given
in terms of time (seconds) per element.

According to Section 3.3, for a sufficiently large p, the dominant part in terms of number of FLOPs is the LU factorization
of Ay, regardless the decision of using static condensation or not. When the Schur complement is explicitly computed,
additional backward and forward substitutions are required. Since the ratio between interior and skeleton nodes tends to
infinity as p grows, the cost of these forward and backward substitutions becomes negligible for sufficiently large p, and the
quotient T (Ass)/T (Ar) approaches 1. However, for small values of p, the situation may vary considerably, since the number
of interior and skeleton nodes are comparable. This is numerically observed in Tables 8 and 9, where we also appreciate that
the ratio T (Ass) /T (A;) tends to 1 for large p, as expected.

We also know that the time required to multiply a matrix times a vector depends on the number of nonzeros in the
matrix. Therefore, we expect to observe that the ratios T(A - v)/T(Ass - v) and M /1\71 behave in a similar fashion. This is
effectively observed for example by comparing the last row of Table 9 (with values equal to 1.41, 2.32 and 5.77) with the
last row of Table 5 (with values equal to 1.40, 2.24 and 5.74, respectively).

Fig. 2 displays the ratio between the time required to solve a 2D problem without static condensation against that needed
to solve the same problem with static condensation. As predicted by the theory, the use of static condensation is always
recommended for a sufficiently large number of iterations. As the number of iterations grows, the cost of matrix-vector
multiplications becomes dominant, and the savings are of the order of p?, which correspond to T(A - v)/T(Ass - U) row in
Tables 8 and 9. In the pre-asymptotic regime, these savings become substantial when the number of iterations is above 100.
On the other hand, when the number of iterations is below 10, the use of static condensation provides no advantage. We also
observe that as the value of p increases, the number of iterations needed for static condensation to be beneficial diminishes.
Similar conclusions can be depicted from the 3D results displayed in Fig. 3.

6. Conclusions

The use of static condensation in iterative solvers is controversial. That is, some authors defend its use as a starting point
of any iterative solver, while others do not. The key point is to determine whether computing the Schur complement instead
of keeping the local LU-factorized matrices as a preconditioner is profitable or not.

In the present work, we provide quantitative theoretical estimates to determine the situations where it is recommended
to use the static condensation, and illustrated these estimates with numerical experiments. To make the problem tractable,
we have made several assumptions on the mesh regularity and on the behavior of the iterative solver so the number of
iterations becomes independent of the mesh size. Under these assumptions, we show that the use of static condensation
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Fig. 2. Ratio between the time needed to solve a 2D problem without static condensation vs. that using static condensation.
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Fig. 3. Ratio between the time needed to solve a 3D problem without static condensation vs. that using static condensation.

is most beneficial when the number of iterations is sufficiently large, assuming that p > 3. However, when the number of
iterations is below 10, the use of static condensation may be counterproductive.

Therefore, a more nuanced view point is necessary. Instead of using always this technique as a starting point for an
iterative solver, we recommend to use the tables provided in this paper to analyze the profitability of this technique when
dealing with high-order methods. In particular, if the iterative solver converges in over 50 iterations, the use of static
condensation is highly recommended.

This work also provides a first step towards obtaining rigorous computational complexity estimates for hybrid solvers.
Based on existing estimates for uniform and highly refined grids, the construction of further Schur complements (corre-
sponding to a group of elements) before employing an iterative solver seems inadequate for uniform grids, however, quite
profitable and advantageous for certain types of highly refined grids. This will be analyzed in detail in a future contribution.
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Table A.10

Number of iterations required to reduce the residual by five orders of magnitude without (first number within each cell)
and with (second number within each cell) the use of static condensation for a 2D Laplace problem using an overlapping
Block-Jacobi smoother [33].

Order of approximation 16 x 16 elements 32 x 32 elements 64 x 64 elements
p= 23/23 43/43 87/85
p=4 22/22 43/43 87/86
p=6 22/22 44/43 87/86
p=38 23/23 44/44 88/86

Appendix. Effect of static condensation on the required number of iterations

In general, the use of element-level static condensation reduces the condition number of the original matrix in terms of
polynomial order of approximation p, although not in terms of element size h (see, e.g., [3]). However, this positive effect
on the condition number of the unpreconditioned stiffness matrix often has little relevance, since the actual objective is to
reduce the condition number of the preconditioned system.

For poorly designed solvers (e.g., those using no preconditioner or only a diagonal preconditioner), the use of static
condensation may significantly reduce the number of iterations required to achieve a given tolerance error. In such cases, our
results need to be modified to account for the savings on the number of iterations produced by the use of static condensation.

However, for well-designed solvers that incorporate proper preconditioners in terms of p, the savings on the number
of iterations produced by the use of static condensation may vanish. For example, any ILU preconditioner (when properly
ordered by considering first the element interior unknowns) provides a preconditioned system whose condition number is
independent of the use of static condensation, since one obtains the same algebraic system [3] for both cases. Indeed, such
preconditioner is optimal for dealing with the element interior unknowns, since it is equivalent to a full LU factorization on
the element interiors, because the solution of interior unknowns introduces no additional fill in.

Another prominent family of preconditioners that require the same number of iterations to converge irrespectively of
the use (or not) of static condensation when combined with CG or GMRES is an overlapping block Jacobi smoother with
blocks determined by those basis functions whose support is fully contained in the support of a given vertex basis function
(see, for instance, [32,33, page 84]). Numerical experiments confirm this result, as illustrated on Table A.10. In this table,
the number of iterations required to converge without and with static condensation are almost identical in all cases. These
numerical results also confirm that static condensation only improves the condition number with respect to p, and not h.
However, an adequate preconditioner in p will achieve a similar effect.

When the above preconditioners are combined with a multigrid solver, the convergence properties also remain
independent with respect to the use or not of static condensation.
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