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On homogeneous warped product Einstein metrics

Ramiro A. Lafuente

Abstract

In this article, we study homogeneous warped product Einstein metrics and their connections
with homogeneous Ricci solitons. We show that homogeneous (λ, n + m)-Einstein manifolds
(which are the bases of homogeneous warped product Einstein metrics) are one-dimensional
extensions of algebraic solitons. This answers a question from a paper of He, Petersen and Wylie,
where they prove the converse statement. Our proof is strongly based on their results, but it
also makes use of sharp tools from the theory of homogeneous Ricci solitons. As an application,
we obtain that any homogeneous warped product Einstein metric with homogeneous base is
diffeomorphic to a product of homogeneous Einstein manifolds.

1. Introduction

A (λ, n + m)-Einstein manifold is a complete Riemannian manifold (Mn, g, w) where w is a
positive smooth function on M satisfying

Hess w =
w

m
(Ric−λg). (1)

If m = 1, then the additional assumption Δw = −λw is made. These spaces have been
previously studied in [3–6, 9], among others, sometimes with the additional hypothesis that
∂M �= ∅ (which we do not consider in this article). Note that when w is constant, (1) is simply
the Einstein equation. A natural geometric interpretation for this equation is that (M, gM , w)
satisfies (1) for m > 1 if and only if there is an (n + m)-dimensional warped product Einstein
metric gE of the form

gE = gM + w2gF m with RicgE
= λgE ,

see [5, Proposition 1.1]. These (λ, n + m)-Einstein manifolds are also called m-quasi-Einstein
manifolds in the literature, because if one defines f by e−f/m = w, then the (λ, n + m)-Einstein
equation becomes

Ricm
f = Ric + Hess f − df ⊗ df

m
= λg.

The operator Ricm
f is sometimes called the m-Bakry–Emery–Ricci tensor and it is a general-

ization of the notion of Ricci curvature for the smooth metric measure space (M, g, e−fd volg).
In this article, we are interested in the case of non-compact homogeneous manifolds. These

spaces have been extensively studied in the last two decades, see the survey [13] and the
references therein. Recently, a close link between non-compact homogeneous Einstein manifolds
and algebraic homogeneous Ricci solitons has been found in [6, 11], generalizing the previous
work by Lauret in the case of solvmanifolds [12]. It basically states that an algebraic soliton
always admits a one-dimensional Einstein extension. It is also proved in [11] that any simply
connected, non-compact Einstein homogeneous manifold is the one-dimensional extension of
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an algebraic soliton, provided it admits a transitive non-unimodular group of isometries (recall
that all known examples admit such a transitive group). These results imply in particular that
the Alekseevskii conjecture (cf. [2, 7.57]) is equivalent to its much more general analogue for
algebraic solitons.

Since the (λ, n + m)-Einstein equation can be interpreted as the Einstein equation for
the m-Bakry–Emery–Ricci tensor, and usually many topological and geometric results for
Ricci curvature can be extended to this tensor (see, for example, [17] and the references
therein), it is expected that there should also be an analogous link between algebraic
solitons and homogeneous (λ, n + m)-Einstein manifolds. Indeed, it was also proved by He,
Petersen and Wylie that an algebraic soliton always admits a homogeneous (λ, n + m)-Einstein
one-dimensional extension, and this result implies in particular that these spaces can be
isometrically embedded into a homogeneous Einstein manifold with arbitrary codimension.
Our main aim in this article is to prove the converse of this result.

Theorem 1.1. Any homogeneous (λ, n + m)-Einstein manifold is a one-dimensional
extension of an algebraic homogeneous Ricci soliton.

This answers a question in [6] (see Remark 1.10 from that paper). Using the fact that
algebraic solitons admit Einstein one-dimensional extensions we get the following corollary.

Corollary 1.2. Let (E, gE) = (M ×w F, gM + w2gF ) be a homogeneous warped product
Einstein metric with homogeneous base (M, gM ). Then, M admits a homogeneous Einstein
metric, and thus E is diffeomorphic to a product of homogeneous Einstein manifolds.

We observe that all the structural results for algebraic solitons given in [11, Theorem 4.6]
can now be applied to study homogeneous (λ, n + m)-Einstein spaces.

The tools used in the proof of Theorem 1.1 include a structure theorem for homogeneous
(λ, n + m)-Einstein manifolds given in [6] (Theorem 3.1), an inequality for the Ricci curvature
from [11] that comes from geometric invariant theory (Lemma 2.4) and a technical lemma from
[8] about derivations and the Ricci curvature of certain homogeneous spaces (Lemma 2.5).

The article is organized as follows. In Section 2, we recall some definitions and results about
the Ricci curvature of a homogeneous manifold, one-dimensional extensions of homogeneous
manifolds and algebraic homogeneous Ricci solitons. Then, in Section 3, we prove Theorem 1.1.

2. Preliminaries

In this section, we review the basic facts about the Ricci curvature of homogeneous manifolds,
as well as some recent techniques related to it that will be used in the proof of Theorem 1.1.
We will also briefly introduce algebraic solitons and one-dimensional extensions of Riemannian
homogeneous spaces.

2.1. The Ricci curvature of a homogeneous manifold

Let (G/K, g) be a connected, almost effective Riemannian homogeneous space, and let g = k ⊕ p
be the Ad(K)-invariant decomposition for g = Lie(G) where p is the orthogonal complement
of k with respect to the Killing form B of g (which is negative definite on k). The metric g is
thus identified with an Ad(K)-invariant inner product 〈·, ·〉 on p � TpG/K. According to [2],
the Ricci operator (or (1,1)-Ricci tensor) at the point eK is the symmetric map given by

Ricg = Mp −1
2

Bp −S(adp H) ∈ End(p).
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Here, Bp is the restriction of the Killing form to p × p, that is, 〈Bp X,Y 〉 = tr adX ad Y for
X,Y ∈ p. The vector H ∈ p, which is usually called the mean curvature vector, is defined by
the formula 〈H,X〉 = tr ad X, X ∈ p, and (adp H)X = [H,X]p, where [·, ·]p is the Lie bracket
[·, ·] of g restricted to p × p and projected onto p. For an endomorphism E ∈ (p, 〈·, ·〉), we denote
by S(E) and A(E) its symmetric and skew-symmetric parts, respectively, that is,

S(E) = 1
2 (E + Et), A(E) = 1

2 (E − Et).

Finally, the map Mp has a complicated formula (see [11, Equation (13)]), but surprisingly it
can be associated with the moment map for the natural left action of GL(p) on Λ2p∗ ⊗ p, thus
it can be implicitly defined by

tr Mp E = 1
4 〈π(E)[·, ·]p, [·, ·]p〉, E ∈ End(p), (2)

where 〈·, ·〉 here denotes the inner product on Λ2p∗ ⊗ p induced by the inner product 〈·, ·〉
on p, and π is the derivative of the aforementioned GL(p) action (which has the property
that π(E)[·, ·]p = 0 if and only if E ∈ Der(p, [·, ·]p)). In other words, we have that m([·, ·]p) =
(4/‖[·, ·]p‖2)Mp, where m : Λ2p∗ ⊗ p → sym(p) is the moment map for the natural action of
GL(p) on that space; see [11, Section 2] for more details on this matter.

In general, a map T ∈ End(g) that preserves k induces an endomorphism of p which we will
denote by Tp ∈ End(p). Moreover, if T ∈ Der(g), then Tp ∈ Der(p, [·, ·]p).

Lemma 2.1. If D ∈ Der(g) preserves k, then tr(Ric +S(adp H))Dp = 0.

Proof. The Ad(G)-invariance of the Killing form implies that Bp Dp + Dt
p Bp = 0. This,

together with equation (2) and the fact that π(Dp)[·, ·]p = 0 imply that tr(Mp − 1
2 Bp)Dp = 0,

as claimed.

In [14], a very powerful tool to tackle problems related with the Ricci curvature of
homogeneous manifolds was introduced. This tool was further developed in [11, 15, 16], and
we present it here in a brief version; we refer the reader to [11, Appendix] for a more gentle
presentation of these topics.

Let n ⊆ p be the nilradical of g (which is in p since it lies in the radical of the Killing form),
and let n = dim n. Fixing an appropriate orthonormal basis for n (see Remark 2.3), we can
view its Lie bracket [·, ·]n as an element of the vector space V = Λ2n∗ ⊗ n. Recall that there is
a natural GLn(R)-action on this vector space. Coming from deep results in geometric invariant
theory, there is a GLn(R)-invariant stratification of V given by the disjoint union

V \ {0} =
⋃
β∈B

Sβ ,

where the strata Sβ are indexed by a finite set of diagonal matrices B whose trace is −1. Thus,
if [·, ·]n �= 0, then we can associate to it an operator β, and this operator has many interesting
properties which we summarize in the following theorem.

Theorem 2.2 [14, 16]. Let (n, [·, ·]n, 〈·, ·〉n) be a nilpotent Lie algebra endowed with an
inner product. There exists an orthonormal basis of n such that the following holds: If [·, ·]n �= 0,
let β ∈ End(n) be the associated symmetric map, with tr β = −1 (that is, [·, ·]n ∈ Sβ). If n is
abelian, then formally take β = ∞, and assume by convention that the expression β/‖β‖2 is 0
in this case. Then, the symmetric map β/‖β‖2 + I satisfies the following properties:

(i) tr((β/‖β‖2 + I)[D,Dt]) � 0, ∀D ∈ Der(n, [·, ·]n) (equality holds if and only if [β/‖β‖2 +
I,D] = 0);

(ii) β/‖β‖2 + I is positive definite;
(iii) ‖β‖ � ‖m([·, ·]n)‖ (equality holds if and only if m([·, ·]n) is conjugate to β);
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(iv) tr(β/‖β‖2 + I)D = trD, ∀D ∈ Der(n, [·, ·]n);
(v) 〈π(β/‖β‖2 + I)[·, ·]n, [·, ·]n〉 � 0, with equality if and only if β/‖β‖2 + I ∈ Der(n, [·, ·]n).

Remark 2.3. The precise way in which the orthonormal basis for n has to be chosen is
so that the technical condition β[·,·]n = β is satisfied; see [11, Appendix], and recall that the
GLn(R) action on Lie brackets is simply given by the change of basis.

We define the operator Eβ on p = h ⊕ n as follows:

Eβ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
0

β/‖β‖2 + I

]
if β �= ∞,

[
0

I

]
if β = ∞.

The following result is essentially [11, Lemma 2.3], but we are stating it here in a different
and slightly more general way, so we provide a proof for completeness.

Lemma 2.4 [11]. tr(Ric +S(adp H))Eβ � 0, with equality if and only if [ 0 0
0 Eβ

] ∈ Der(g).

Proof. Since Bp |n = 0, we only have to prove that trMp Eβ � 0. The case [·, ·]n �= 0 is
precisely the content of [11, Lemma 2.3]. If [·, ·]n = 0, then arguing as in the proof of that
lemma we see that

tr Mp Eβ = 1
4 |λ1|2 � 0,

where λ1 : h × h → n is the restriction of [·, ·] to h × h projected onto n.
Concerning equality, if

[
0 0
0 Eβ

] ∈ Der(g), then Eβ ∈ Der(p, [·, ·]p) and thus trMp Eβ = 0 by
(2). Conversely, assume that equality holds. In the case [·, ·]n �= 0, we see from the proof of [11,
Lemma 2.3] and Theorem 2.2 that we must have

λ1 = 0, β/‖β‖2 + I ∈ Der(n, [·, ·]n), [β/‖β‖2 + I, ad Y |n] = 0 ∀Y ∈ h.

These conditions imply that Eβ ∈ Der(p, [·, ·]p). But we also observe that

tr[β, ad Z|n] ad Z|n = 0 ∀Z ∈ k,

since β is symmetric and ad Z|n is skew-symmetric. Hence by Theorem 2.2(i), we deduce that
[Eβ , ad k|p] = 0, and this gives us

[
0 0
0 Eβ

] ∈ Der(g).
The case of equality when [·, ·]n = 0 is completely analogous, because we also have that

λ1 = 0, and conditions [Eβ |n, ad h|n] = 0, Eβ |n ∈ Der(n, [·, ·]n) and [Eβ , ad k|p] = 0 are trivially
satisfied.

Finally, another interesting property of the Ricci operator of certain Riemannian homoge-
neous spaces is the following lemma, which is crucial in the proof by Jablonski of the fact
that all homogeneous Ricci solitons are algebraic. We note that it holds in a more general
context than homogeneous Ricci solitons. Namely, one needs only an orthogonal semidirect
sum decomposition g = u � n, where n is the nilradical of g.

Lemma 2.5 [8, Lemma 4]. Let (G/K, g) be a Riemannian homogeneous space such that g
admits a semidirect sum decomposition g = u � n, where n is the nilradical of g, u = k ⊕ h is
thus a reductive subalgebra, p = h ⊕ n is an Ad(K)-invariant complement for k in g and h ⊥ n
with respect to the inner product induced by g on p. Then, for any Y ∈ h such that [Y, k] ⊆ k,

tr
[
ad Y |h 0

0 0

]
Ric = 0.
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2.2. One-dimensional extension of a Riemannian homogeneous space

Given a Riemannian homogeneous space (G/K, g), a derivation D ∈ Der(g) that preserves k,
and α ∈ R, its one-dimensional extension is defined as the Riemannian homogeneous space
(G̃/K, g̃), where G̃ = R � G is the semidirect product whose Lie algebra is given by g̃ = R � g,
and the adjoint action of a distinguished element ξ ∈ R on g is given by the derivation αD. In
addition, the Ad(K)-invariant inner product induced by g on p extends to an Ad(K)-invariant
inner product on p̃ = Rξ ⊕ p, by making that decomposition orthogonal and requiring ξ to be
of unit norm. This inner product on p̃ defines a G̃-invariant metric g̃ on G̃/K.

This construction has been used in the case of solvable Lie groups in [12], and more recently
in [6, 11], to establish a close link between Einstein homogeneous manifolds and algebraic
solitons. We refer the reader to [6, Section 2.2] for the calculations of the curvature of the
extension in terms of the curvature of the original manifold and the data D, α.

2.3. Algebraic solitons

Homogeneous Ricci solitons are self-similar solutions to the Ricci flow which are also homoge-
neous Riemannian manifolds. They are generalizations of homogeneous Einstein metrics, and
in fact they share many interesting properties with those metrics. Recently, these spaces have
been extensively studied (see, for instance, [1, 6–8, 10, 11], among many others).

A homogeneous Ricci soliton (M, g) is called an algebraic soliton with respect to a transitive
group of isometries G if for its presentation as a homogeneous space (M, g) = (G/K, g) we have
that the Ricci operator (that is, the Ricci tensor of type (1,1)) at the point eK satisfies

Ric = cI + Dp, D ∈ Der(g),

where p denotes an Ad(K)-invariant complement for k = Lie(K) in g = Lie(G). This algebraic
condition is very nice and useful to construct examples, and also to obtain structural properties.
Remarkably, by using the structural results obtained in [11] together with a brand new
approach, it was recently shown in [8] that all homogeneous Ricci solitons are indeed algebraic
with respect to its isometry group.

3. Proof of Theorem 1.1

We proceed in this section with the proof of our main result. First observe that if the (λ, n + m)-
Einstein manifold is trivial (that is, if it is Einstein), then the theorem follows immediately
from [11, Proposition 6.1(ii)], so we will focus on the non-trivial case from now on.

Let us recall the following construction for non-trivial homogeneous (λ, n + m)-Einstein
manifolds, on which our proof is mainly based.

Theorem 3.1 [6, Theorem 5.1]. Let (M̃ = G̃/K̃, g̃) be a homogeneous (λ, n + m)-Einstein
space which is not Einstein. Then, (M̃, g̃) is the one-dimensional extension of a homogeneous
space (M = G/K, g) with a derivation D ∈ Der(g) and α2 = 1/tr S(Dp) − λm, satisfying the
following conditions:

(1) Ricg = λI + S(Dp) + (1/tr S(Dp) − λm)[S(Dp), A(Dp)];
(2) div S(Dp) = 0;
(3) tr S(Dp)2 = −λ tr S(Dp);

for some λ < 0 (in condition (2), we are thinking of S(Dp) as a tensor on M, see [6,
Remark 2.8]). Moreover, the warping function w ∈ C∞(M̃) is given by w(r) = eλαr, where
r is the signed distance function on M̃ to the hypersurface M .
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Our main aim is to prove that the conditions on the Ricci curvature given in that theorem
imply that the homogeneous space (G/K, g) is actually an algebraic soliton. To do that, we
establish a series of technical lemmas that basically imitate the proof of the main structural
results for homogeneous Ricci solitons given in [11], and after that we use a result of Jablonski
(Lemma 2.5) to conclude that the derivation used to build the one-dimensional extension must
indeed be normal.

We begin with an analogue of [11, Lemma 4.2]. The proof, however, is slightly different in this
case, and makes heavy use of the fact that there exists a (λ, n + m)-Einstein one-dimensional
extension.

Lemma 3.2. Let (M = G/K, g) be a Riemannian homogeneous space with reductive
decomposition g = k ⊕ p, mean curvature vector H ∈ p, p = eK ∈ G/K, and assume that it
admits a one-dimensional extension by a derivation D ∈ Der(g) and a constant α ∈ R which
is a (λ, n + m)-Einstein manifold (M̃ = G̃/K, g̃) with warping function w(r) = eλαr, where r
is the signed distance function on M̃ to the hypersurface M . Also, let F = S(adp H + Dp) ∈
End(TpM). Then,

tr F 2 + λ tr F � 0,

with equality if and only if D(H) = 0.

Proof. We will follow the notation of Subsection 2.2. We have that G̃ = R � G, the action
of R on G is induced by α and D, p̃ = Rξ ⊕ p is a reductive complement for k in g̃, and observe
that the mean curvature vector H̃ of the extension (G̃/K, g̃) is given by

H̃ = (α tr S(Dp))ξ + H.

Thus, we have that

S(adp̃ H̃) = S(adp̃ H) + (α2 tr S(Dp))
[

0 0
0 S(Dp)

]
(3)

=
[
0 ∗
∗ S(adp H)

]
+ (α2 tr S(Dp))

[
0 0
0 S(Dp)

]
,

where the blocks are with respect to the decomposition p̃ = Rξ ⊕ p. Also, for the adjoint action
of H + ξ ∈ g̃ restricted to p̃ one has

S(adp̃(H + ξ)) =
[
0 ∗
∗ F

]
. (4)

On the other hand, by the proof of [6, Theorem 3.3] we have that α2 = 1/(tr S(Dp) − λm).
Using also the formula for Hess w given in that proof we have that, at the point p ∈ M̃ , the
tensor Hess w is given by

m

w
Hess w = 〈A·, ·〉 where A = mλα2

[
λ 0
0 −S(Dp)

]
∈ End(p̃).

So, the fact that (M̃, g̃) is (λ, n + m)-Einstein implies that its Ricci operator at p satisfies

R̃ic = λI + mλα2

[
λ 0
0 −S(Dp)

]
,

and so by using (4) and the formula α2 = 1/(tr S(Dp) − λm) we get

R̃ic + S(adp̃ H̃) = λI +
[
mλ2α2 0

0 0

]
+ S(adp̃(H + ξ)). (5)
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Finally, putting together equations (4), (5) and using Lemma 2.1 with the derivation ad(H +
ξ) ∈ Der(g̃) we obtain

0 = tr(R̃ic + S(adp̃ H̃))S(adp̃(H + ξ))

= λ tr S(adp̃(H + ξ)) + tr S(adp̃(H + ξ))2

� λ tr F + trF 2.

It is clear that we have equality if and only if S(adp̃ H) =
[

0 0
0 S(adp H)

]
, which is in turn

equivalent to saying that [H, ξ] = 0, or D(H) = 0.

With this inequality for F and the condition on the Ricci curvature given in [6, Theorem 5.1],
we see in the following lemmas how these spaces resemble algebraic solitons.

Lemma 3.3. Let (G/K, g) be a Riemannian homogeneous space with reductive decompo-
sition g = k ⊕ p, with p = h ⊕ n as in Subsection 2.1, and assume that its Ricci operator at the
point p = eK ∈ G/K satisfies

Ricg = λI + S(Dp) + α2[S(Dp), A(Dp)], (6)

where α, λ ∈ R, λ < 0 and D ∈ Der(g). Furthermore, assume that tr F 2 + λ tr F � 0, where
F = S(Dp + adp H). Then,

(i) [h, h]p ⊆ h, or equivalently, u is a Lie subalgebra of g;
(ii) β/‖β‖2 + I ∈ Der(n) and [Eβ , ad h|p] = [Eβ ,Dp] = 0;
(iii) S(Dp + adp H) = −λEβ ;
(iv) adp H + Dp is a normal operator.

Proof. Let us rewrite the condition on Ricg as
1
2α2[Dp,D

t
p] + Ricg +S(adp H) = λI + F.

By taking traces against Eβ and using Lemma 2.4 and Theorem 2.2(i), we obtain

tr(λI + F )Eβ � 0. (7)

Using the previous inequality, together with trF 2 + λ tr F � 0, tr FEβ = trF (which follows
from [11, Lemma 2.6] and Theorem 2.2(iv)) and tr E2

β = tr Eβ , we obtain that

(tr FEβ)2 �(−λ tr Eβ) tr F = trE2
β(−λ tr F )

� tr E2
β tr F 2,

which is a ‘reverse’ Cauchy–Schwartz inequality. Thus, we must have equality everywhere, and
conditions (i)–(iii) are easily obtained as in the proof of [11, Proposition 4.1]. Condition (iv)
follows immediately from (ii) and (iii).

The previous result implies that the operators adp H and S(Dp) have the following forms
with respect to the orthogonal decomposition p = h ⊕ n:

adp H =
[
ad H|h 0

0 ad H|n
]

, S(Dp) =
[−S(ad H|h) 0

0 S(Dn)

]
, (8)

with S(ad H|n) + S(Dn) = −λ(β/‖β‖2 + I).

Lemma 3.4. For any Y ∈ h, we have that (ad Y |n)t ∈ Der(n), and Dt
n ∈ Der(n). Moreover,∑

[(ad Yi)|n, (ad Yi)|tn] + α2[Dn,Dt
n] = 0 and Mn = λI + F |n, where Mn is the map defined in

(2) corresponding to the Lie algebra (n, [·, ·]n, 〈·, ·〉|n).
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Proof. The proof of the first two claims is analogous to that of [11, Lemma 4.9]. The only
difference here is that equation (36) in that paper translates to

Mn +
1
2

∑
[(ad Yi)|n, (ad Yi)|tn] +

1
2
α2[Dn,Dt

n] +
λ

‖β‖2
β = 0. (9)

Note that the term 1
2α2[Dn,Dt

n] can be treated as if it were one of the form [(ad Yi)|n, (ad Yi)|tn].
To prove the last assertion, one argues as in the proof of [11, Theorem 4.6], using that

in equation (9) the maps 1
2

∑
[(ad Yi)|n, (ad Yi)|tn] + 1

2α2[Dn,Dt
n] and Mn +(λ/‖β‖2)β are

mutually orthogonal by the first part of the proof.

Lemma 3.5. The operator S(adp H) satisfies S(ad H|h) = 0.

Proof. Lemma 3.3(i) allows us to use Lemma 2.5, which we will use for Y = H ∈ h. The
fact that the operators

[
S(ad H|h) 0

0 0

]
and S(Dp) commute (which follows from (8)), together

with Lemma 2.5, and (6) imply that

0 = tr
[
S(ad H|h) 0

0 0

]
Ric = λ tr S(ad H|h) − tr S(ad H|h)2

+ α2 tr
[
S(ad H|h) 0

0 0

]
[S(Dp), A(Dp)]

= − tr S(ad H|h)2 + tr
[[

S(ad H|h) 0
0 0

]
, S(Dp)

]
A(Dp)

= − tr S(ad H|h)2,

thus S(ad H|h) = 0 as claimed. Note that in the second equality we are using that tr adH|h = 0,
which follows from [11, Lemma 2.6].

To conclude the proof of the theorem, let us show that condition S(ad H|h) = 0 implies that
adp H and Dp are both normal operators. This will follow in a way analogous to the proof of
[11, Proposition 4.14]. Indeed, now we have that

S(adp H) =
[
0 0
0 S(ad H|n)

]
.

On the other hand, using Lemma 3.4 and [11, Lemma 4.4] we have that Mp |n = Mn. Therefore,
1
4‖π((adp H)t)[·, ·]p‖2 = tr Mp[adp H, (adp H)t]

= tr Mn[ad H|n, (ad H|n)t]

= 1
4‖π((ad H|n)t)[·, ·]n‖2 = 0,

and thus (adp H)t ∈ Der([·, ·]p). Besides, we have that (adp H)tH = 0, since

〈(adp H)tH,X〉 = 〈H, [H,X]〉 = tr[ad H, ad X] = 0 ∀X ∈ p.

Hence,

(adp H)t([H,X]) = [(adp H)tH,X] + [H, (adp H)tX] = [H, (adp H)tX],

and this says that adp H is normal.
Also, since we have equality in Lemma 3.2 we obtain D(H) = 0, so

[D, ad H] = ad(D(H)) = 0,

and in particular [Dp, adp H] = 0. Finally, using this fact together with Lemma 3.3(iv) and the
fact that adp H is normal, we can conclude that Dp is normal, which implies that (G/K, g) is
an algebraic soliton.
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