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ABSTRACT: Stress relaxation of model poly(dimethylsiloxane) networks with pendant chains and nearly
constant cross-linking density was studied. The networks were obtained by end-linking a mixture of long
chains bearing terminal reactive groups with a trifunctional cross-linker. Long poly(dimethylsiloxane)
chains in the initial mixture contain 90 wt % of difunctional molecules with reactive groups at both ends
and 10 wt % of monofunctional chains with a single reactive terminal group located in one of their ends.
Difunctional chains will be mainly elastically active chains after cross-linking while monofunctional chains
will remain as long pendant molecules. The fitting of the experimental stress relaxation values to the
classic Chasset-Thirion equation shows a strong dependence of the exponent on the molecular mass
distribution of the pendant chains. From these results, a new model for the terminal relaxation of
elastomers is proposed, taking into account the molecular mass distribution of pendant chains. The
dynamics of polymer networks in the terminal relaxation zone is modeled considering the reptation theory.
In the terminal zone, the proposed model behaves similarly to the Chasset-Thirion equation. The model
adequately describes the behavior of networks synthesized by end-linking. On the other hand, when applied
to different networks, it leads to similar conclusions as previous theories developed for networks obtained
by random cross-linking.

Introduction
It is well-known that chain branches, such as those

present in star polymer melts and dangling chains in
polymer networks, dramatically modify the classical
reptation picture. For the kind of chains that we are
considering, branching points prevent the reptation
(motion along the confining tube). Star arms or pendant
chains renew their configuration by retracting along
their tube axes. The decrease in entropy can be ex-
plained by the diffusion of the chain end in a potential
field. Since retraction is entropically unlikely, stress
relaxation will be exponentially slower as the molecular
weight of dangling chains or star arms increases.1-3

In the last few years, several models have been
proposed in order to describe the relaxation of cross-
linked polymer networks.3-14 These models attribute the
long time relaxation of elastomers to the slow diffusion
of pendant chains by arm retraction. With these as-
sumptions, a power law dependence with time is pre-
dicted at long relaxation times. However, current theo-
ries disagree in the dependence of the power law
exponent on the degree of cross-linking.12

On the other hand, in the terminal zone, experimental
data for the relaxation modulus can be represented by
the empirical equation of Chasset and Thirion.11

In this equation, G∞ is the equilibrium modulus, τE is a
characteristic time, and m is a parameter which de-
pends on the network structure. This equation was

proposed by Chasset and Thirion in order to describe
the behavior of networks obtained by random cross-
linking. Experimentally, the dependence of m on the
cross-linking density was studied by Ferry and Dickie.13

In networks obtained by random cross-linking, the
Chasset-Thirion exponent m was typically found to be
a small number in the range 0.1-0.3. In these networks,
stress relaxation rates are also known to strongly
depend on cross-linking density.

It is important to emphasize that in random networks
the power law relationship works well only over a
limited time span and important deviations appear at
long times in highly cross-linked polymer networks.12

The modification in the dynamic behavior of random
networks is not surprising, taking into account that both
its structure and its content of defects change dramati-
cally with the cross-linking density. While at low cross-
linking densities the system contains long dangling
chains and the effects of arm retraction and dynamic
dilution2 dominates the viscoelastic response, at high
cross-linking densities the system contains principally
short pendant chains and the dynamics is dominated
by Rouse-like diffusion1 and arm retraction in a fixed
network.6 On the other hand, some of the dynamic tests
of previous works were carried out at temperatures not
low enough to avoid thermal degradation.11,13 In this
case, the structure of the network could change continu-
ously during the experiments. Then both changes in the
dynamic behavior and changes in the structure could
be responsible for a non-power-like behavior at long
times.

Since networks obtained by random cross-linking
result in a broad distribution of elastic and pendant
chains, they are not very suitable for studies aiming to
understand the relationships between the structure of
pendant chains and the dynamic properties of polymer
networks.14 To study the influence of network defects
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on their properties, it is convenient to work with tailor-
made systems that have a well-defined molecular
structure. One of the most successful techniques to
obtain networks with controlled amounts of defects is
the end-linking technique.16,17 With this procedure, by
mixing long linear chains with reactive groups in one
or both ends, it is possible to obtain networks with a
controlled amount of linear pendant chains of uniform
size. In particular, poly(dimethylsiloxane) networks offer
thermal stability and a very good control of the molec-
ular structure. By contrast with random networks, the
end-linking system allows one to control both the
amount and the length of pendant chains, while the
cross-linking density remains constant.

According to de Gennes, the process of viscoelastic
relaxation for a linear pendant chain in a network is
given by the diffusion of the chain free end.3 This
process is accompanied by creation of a non-entangled
loop. Estimating the probability of creation of an un-
entangled loop of N segments (P(N)), he found

where R is a constant independent of the pendant chain
length (N).

Then assuming that the time required to form the
unentangled loop (τN) is inversely proportional to P(N),
de Gennes obtained

where τ0 is a characteristic time.
After a given time t, l segments, near the free end of

the pendant chain, had been relaxed by diffusion (Figure
1). Then, for analogy with eq 3, the relationship between
l and t is given by

Finally, de Gennes assumed that mechanical stress
σN(t) at time t is proportional to the number of segments
that have not been retraced, given by N - l(t):

From eq 5, it can be concluded that stress relaxes
logarithmically in networks with long pendant chains.

On the other hand, several models have been pro-
posed in order to explain the Chasset-Thirion behavior
in networks obtained by random cross-linking. Consid-
ering the molecular mass distribution and a reptation
mechanism for a pendant chain, those models show a

power law form for stress relaxation experiments

with m ∝ µδ, where µ is the cross-linking density and δ
depends on the model considered. For a randomly cross-
linked network, using de Gennes analysis and taking
into account the distribution of pendant chain lengths,
Curro and Pincus5 and Curro et al.6 found δ ) 1. A later
model, proposed by Thirion and Monnerie, found δ )
1/3.7,8 In their model, Thirion and Monnerie modified the
analysis of Curro-Pincus using the unentangled loop
probability function calculated by Helfand and Pearson.9
On the other hand, calculating the probability density
for the maximum displacement of an one-dimensional
continuous-time random walk with pausing-time dis-
tribution, Gaylord et al. found δ ) 0.10,12 In this model,
the exponent m is not explicitly related to the cross-
linking density.

In this work, we analyze the terminal relaxation of
PDMS model networks with pendant chains obtained
by end-linking. First, we study the dependence of m
with the average molecular mass of pendant chains and
then a new model for the terminal relaxation is pro-
posed.

Experimental Section
To clarify the dependence of m with network structure,

model PDMS networks with controlled amounts of pendant
chains were synthesized.

Model silicone networks were obtained by a hydrosilylation
reaction. The reaction is based on the addition of hydrogen
silanes from the cross-linker molecules to end vinyl groups
present in the prepolymer molecules. A commercial difunc-
tional prepolymer (D2) and five nearly monodisperse mono-
functional prepolymers (M1 to M5) were utilized.

The networks were prepared by reacting known amounts
of the monodisperse linear molecules of different molecular
weights bearing only one vinyl group at the chain end, a
trifunctional cross-linker, and commercial difunctional pre-
polymer containing vinyl groups at both extremes of the
chains.

Table 1 shows the results of the molecular weight charac-
terization of the prepolymers, as well as a description of the
other reactants used in the cross-linking reactions. In this table
D1 (United Chemical Technology Inc.) is the difunctional
prepolymer and M1-M5 are the monofunctional prepolymers.
Monofunctional molecules were synthesized by anionic polym-
erization using n-butyllitium as initiator and n-hexane as
solvent.15 Table 1 shows that the monofunctional prepolymers
present a narrow molecular mass distribution. Phenyltris-
(dimethylsiloxy)silano (A3) (Petrarch Systems, Inc.) was used
as cross-linker and a Pt salt was employed as catalyst for the
cross-linking reaction.

Table 2 shows the nomenclature and composition of the
synthesized networks. In this table MwB1 and wB1 indicate the

Figure 1. Schematic representation of the process of vis-
coelastic relaxation for a linear pendant chain in a network
given by the diffusion of the chain free end.

Table 1. Molecular Characterization of the Linear
Prepolymers and Other Reactants Used for the

Preparation of Model PDMS Networks

polymer
Mn (Da)

FTIR
Mn (Da)

GPC
Mw (Da)
LALLS

Mw (Da)
GPC

Mw/Mn
GPC

D1 7900 7900 22 100 2.80
M1 21 200 24 200 26 900 26 500 1.08
M2 46 300 47 800 52 400 51 300 1.07
M3 61 500 67 600 101 100 83 500 1.24
M4 96 600 97 800 128 700 121 300 1.24
M5 224 700 295 000 269 400 1.20

Cross-Linker: (HSi(CH3)2O)3Si C6 H5 (A3)

Catalyst: cis-(Pt((C2H5)2S)2Cl2)

σN(t) ∼ t-m (6)

P(N) ) exp(-RN) (2)

N ∼ 1
R

ln(τN

τ0
) (3)

l(t) ∼ 1
R

ln( t
τ0

) (4)

σN(t) ∼ N - l(t) ) N - 1
R

ln( t
τ0

) (5)
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mass average molecular mass and the mass concentration of
monofunctional chains (B1) respectively, and r the stoichio-
metric imbalance (r ) [A]/[B]).

Reactants were weighted in order to obtain stoichiometric-
ally balanced mixtures, mixed with a mechanical stirrer and
degassed under vacuum to eliminate bubbles. The reactive
mixture was then placed between the plates of a Rheometrics
Mechanical spectrometer. The cure reaction was carried out
between the plates at 60 °C. After 24 h, final properties were
measured. All measurements were carried out in simple shear
dynamic and stress relaxation experiments with deformations
of up to 10%, within the range of linear viscoelastic response.
Details from sample preparations, network structure, char-
acterization, and dynamic properties can be found in previous
work.16,17

According to the modified rubber elasticity theory, the shear
equilibrium modulus (G∞) for networks prepared in bulk can
be expressed as18-20

where ν is the density of elastically active chains, h an
empirical parameter that can vary between 0 and 1, µ the
density of cross-linking points, R the gas constant, and T the
absolute temperature. Te is the fraction of trapped entangle-
ments in the network and Ge is the maximum contribution to
the modulus due to trapped entanglements. It is expected that
Ge should be close to GN

0 (plateau modulus from experiments
on linear chains). Theoretical calculations as well as experi-
mental measurements indicate that Ge ∼ 0.8GN

0.4,21

Table 2 shows the elastic modulus in the low-frequency limit
G0′ (ω f 0) at T ) 273 K. This polymer system is rheologically
simple and the time-temperature superposition principle was
verified in the temperature range analyzed. Similar behavior
was previously found in other poly(dimethylsiloxane) net-
works.16

The elastic modulus of the different networks was found to
be nearly constant (the variations are smaller than 4%). Then,
assuming that variations in ν, h, Ge, and Te in the different
networks are small, it is reasonable to suppose that µ is nearly
constant.

Figure 2 shows master curves of stress relaxation modulus,
G(t), as a function of time at the reference temperature (273
K). Although more decades in time were analyzed, experimen-
tal values are not included in this study because at long times
the signal becomes very noisy, probably as a consequence of
baseline fluctuations. The networks prepared with almost
constant cross-linking density exhibit relaxation times that
rise with an increase in the molecular mass of monofunctional
chains.

Figure 3 shows experimental values of relaxation modulus
(G(t)) as a function of time (t) for the network labeled as
GP2F310 and the fitting results corresponding to the Chasset-
Thirion model (eq 1). In this figure we can see that experi-
mental data are in good agreement with eq 1. Similar results
were obtained for all the networks studied.

The Chasset-Thirion exponent m obtained by least-
squares fit of experimental data are shown in the last column
of Table 2. The value of m diminishes considerably with the
increase in the average molecular mass of the monofunctional
chains (pendant chains).

The values of the equilibrium relaxation modulus obtained
from the curve fitting procedure (G∞

f) are also included in Table
2. Since the networks analyzed in this work have a content of

pendant chains of approximately 10 wt %, the difference
between the equilibrium modulus determined from the low-
frequency limit of the dynamic experiments and G∞

f is very
small (less than 3%). When the molecular weight of the
pendant chains increases, it is more difficult to precisely
determine the exponent m. In this case, small variations of
G∞

f produce important changes in m values (approximately
40% for network GP5F310). McKenna and Gaylord12 found
similar results in random networks with m ≈ 0.1, where the
value of m obtained from the curve fitting was very sensitive
to the values of G∞

f. On the other hand, the relative error in
the determination of the exponent m decreases when the
molecular weight of the pendant chains decreases.

Theory

In this work, network dynamics is described by a new
model based on tube renewal following the approach
proposed by Curro and Pincus.5 Although the initial
model proposed by de Gennes neglects the effect of
molecular weight on the factor τ0, as it was shown by
the theory of Pearson and Helfand, the dependence of
τ0 with the molecular weight is small (power law). Then,
as a first approximation, we assume that τ0 does not
depend on the molecular weight of the pendant chains.
The proposed model considers that eq 5 is valid only

Table 2. Nomenclature, Composition, Elastic Modulus at
Low Frequency, and Chasset-Thirion Exponent
Obtained from Fitting Experimental G(t) Values

network
MwB1
(Da) WB1 r

G′ωf0
(MPa)

G∞f

(MPa) m

GP1F310 26 700 0.097 1.05 0.194 0.194 ( 0.01 0.77 ( 0.05
GP2F310 51 900 0.097 1.05 0.191 0.191 ( 0.01 0.46 ( 0.05
GP3F310 92 300 0.097 1.06 0.199 0.196 ( 0.01 0.16 ( 0.03
GP4F310 125 000 0.098 1.05 0.202 0.198 ( 0.01 0.12 ( 0.03
GP5F310 282 200 0.104 1.06 0.201 0.195 ( 0.02 0.05 ( 0.03

G∞ ) (v - hµ)RT + GeTe (7)

Figure 2. Master curves of stress relaxation modulus (G(t))
as a function of time at reference temperature (T0 ) 273 K).
The parameter corresponds to the average molecular weight
of monofunctional chains added to the networks.

Figure 3. Experimental values of relaxation modulus (G(t))
as a function of time for the network labeled GP2F310 (open
circles) and the fitting results corresponding to the Chasset-
Thirion model (solid line).

Macromolecules, Vol. 34, No. 13, 2001 Model Poly(dimethylsiloxane) Networks 4593



for times smaller than τN with a distribution of molec-
ular mass of the pendant chains similar to the experi-
mental one.

To analyze the dynamic of networks with pendant
chains, we assume that the contribution of a pendant
chain of N segments to the mechanical stress is given
by eq 5 only for times smaller than τN (t e τN). Then

or

where τ0 is a characteristic time of the system and
H(τN - t) is the Heaviside function (step function).22 For
a lattice model, Pearson and Helfand found that R
depends only on the lattice coordination number, q:9

Equation 3 implies that the complete renewal time τN
depends exponentially on the number of segments N

A network generally contains a distribution of pendant
chain lengths. Then, to obtain the relaxation modulus,
we must average over all pendant chain lengths

where the constant (G0 - G∞) is assumed to be propor-
tional to the mass fraction of pendant chains and PN is
the probability of having a pendant chain of N segments.

Generally, the distribution of pendant chain lengths
cannot be determined. However, in model networks
obtained by end-linking, it is possible to obtain a good
control of network structure.14 In a previous work, Villar
et al. analyzed, by mean field theory, the structure of
networks obtained by terpolymerization of a multifunc-
tional cross-linker Af and monofunctional and difunc-
tional linear chains, B1 and B2, respectively.23 For
stoichiometrically balanced networks, at the maximum
extent of reaction, pendant chains are constituted
exclusively by the monofunctional linear chains B1. On
the other hand, at intermediate extents of reaction, a
considerable amount of difunctional chains B2 may be
present in the pendant material.

Despite all the care taken in the preparation of the
networks, a small fraction of the B2 chains may remain
as pendant chains due to incomplete reaction. The
presence of these undesired chains in the networks may
affect the relaxation experiments. However, as in this
work the monofunctional B1 chains have molecular
weights much higher than the difunctional B2, the
contribution of the B2 chains to the relaxation modulus
at long times (terminal zone) will be negligible. The
result of the relaxation measurements will reflect only
the contribution of the longer B1 chains to the relaxation
modulus.

In this work, we assume that the distribution of
pendant chain lengths is given by the distribution of
molecular mass of monofunctional chains. In a previous

work was shown that molecular mass distribution of
anionic PDMS (B1) can be described by the log-normal
distribution24

where Nm represents the maximum of the distribution,
A is a normalization constant, and z is a parameter
related to the moments of the distribution which can
be obtained from the following equation:25

Mn, Mw, and Mz are the number-average molecular
mass, the mass-average molecular mass, and the z-
average molecular mass, respectively.

Combining eqs 9, 12, and 13, we obtain for the
relaxation modulus

Results and Discussion
Figure 4 shows numerical results from the integration

of eq 15 (open symbols) for two different values of Nm
(5 and 10). The integration of eq 15 was made consider-
ing a fixed polydispersity of 1.1, R ) 0.6 (corresponding
to a coordination number q ) 12),6 and a characteristic
time τ0 arbitrary fixed in 0.01 s. A least-squares fit of
numerical data to the Chasset-Thirion equation (solid
lines) shows a very good agreement with theoretical
values calculated using eq 15. Theoretical calculations
were made using a log-normal distribution of pendant
chains, but similar results were obtained for different
distributions such as exponential or Schulz-Zimm,
among others.

In networks obtained by random cross-linking, the
distribution of pendant chain lengths is assumed to be
geometric5

Figure 4. Numerical results from integration of eq 15, (O)
Nm ) 5 and (0) Nm ) 10, and least-squares fit of numerical
data to Chasset-Thirion equation (solid lines) for Mw/Mn )
1.1

PN ) A
N

exp[-(1zln( N
Nm

))2] (13)

Mw

Mn
)

Mz

Mw
) exp(z2

2 ) (14)

G(t) ) G∞ + (G0 - G∞)∫0

∞[N - 1
R

ln( t
τ0

)]H(τN - t)A
N

exp[-(1z ln( N
Nm

))2]dN (15)

W(N) ∼ p(p - 1)N-1 (16)

fN (t) ∼ {N - (1/R) ln(t/τ0) for t e τN

0 for t > τN
(8)

fN(t) ∼ [N - 1
R

ln( t
τ0

)]H(τN - t) (9)

R ) 1
2
ln[ q2

4(q - 1)] (10)

τN ) τ0 exp(R N) (11)

G(t) ) G∞ + (G0 - G∞)∫0

∞
fN(t) PN dN (12)
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where W(N) represents the probability of having a
pendant chain of N segments and p is the probability
of having a cross-linked segment, which is given by the
ratio of density of cross-linking points to segment
density, p ) µ/F.

The moments and polydispersity (PD) in a geometric
distribution are given by26

Equation 19 is valid to describe the distribution of
pendant chain lengths only if p , 1.5 In this case, we
have

According to the Curro and Pincus theory,5 the Chas-
set-Thirion exponent for the terminal relaxation of
networks obtained by random cross-linking results m
∝ µ. Then, from eq 20 with δ ) 1

Figure 5 shows the behavior of the Chasset-Thirion
exponent as a function of mass average molecular mass
of pendant chains Mw for several narrow polydispersi-
ties. The Chasset-Thirion exponent was obtained by
least-squares fit of the numerical data obtained from
integration of eq 15. The value of m decreases with an
increment in the mass average molecular mass of
monofunctional chains added to the network. A power
law dependence of the Chasset-Thirion exponent m
with the mass average molecular mass of pendant
chains was found

where a and b are constants. From these results, we
observe that the exponent b is close to unity in the range
of polydispersities studied in this work. This result is
in good agreement with the value predicted by Curro
and Pincus model (eq 22).

Figure 6 shows the evolution of the Chasset-Thirion
exponent m as a function of the polydispersity of
pendant chains; m values increase when polydispersity
decreases. The increment is higher when the length of
pendant chain decreases. On the other hand, when the
polydispersity is increased, m becomes nearly indepen-
dent of pendant chain length.

Figure 7 shows the exponent m (obtained from least-
squaresd fit of experimental data shown in Table 2), as
a function of the mass average molecular mass of the
monofunctional chains added. The experimental results
confirm that the exponent b ≈ 1. The slope of m vs MwB1

in a log-log plot is -1 for the set of pendant chains with
similar polydispersity, i.e., GP1F310 and GP2F310 (Mw/
Mn ≈ 1.07) and GP3F310, GP4F310, and GP5F310 (Mw/
Mn ≈ 1.20). Numerical results obtained from eq 15 were
also included in Figure 7. Theoretical calculations were
carried out considering R ) 0.6 and τ0 ) 0.01 s. The

Figure 5. Chasset-Thirion exponent (m) as a function of
mass average molecular mass of pendant chains Mw for
different polydispersities values: (0) Mw/Mn ) 1.01, (O) Mw/
Mn ) 1.1, (4) Mw/Mn ) 1.2, and (3) Mw/Mn ) 1.3. Values of τ0
) 0.01 and R ) 0.6 were used.

Figure 6. Chasset-Thirion exponent (m) as a function of the
polydispersity of pendant chains. Symbols: (0) Mn ) 5, (O)
Mn ) 10, and (4) Mn ) 40.

Figure 7. Chasset-Thirion exponent (m) obtained from least-
squares fit of experimental data, as a function of the mass
average molecular mass of the monofunctional chains (MwB1)
added. Symbols: (0) experimental values; (O) theoretical
model. Values of τ0 ) 0.01 and R ) 0.6 were used.

Nn ) E(N) ) 1
p

(17)

Nn )
E(N2)
E(N)

) 2
p

- 1 (18)

PD ) 2 - p (19)

Nn ≈ Nw

2
∝ 1

µ
(20)

PD ≈ 2 (21)

m ∝ 1
Mw

≈ 1
2Mn

(22)

m ) aMw
-b (23)
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polydispersity and average molecular mass of each
particular monofunctional chain were also used in the
calculations. It is possible to observe that m decreases
when Mw increases with a good agreement between
experimental and theoretical values, even when the
theory underestimates the experimental values. The
insert of Figure 7 shows that the theory predicts a
nearly linear behavior of m vs R. Small changes in the
value of R produces similar variations in the values of
m; increasing R from 0.6 to 0.65 produces a 8% decrease
in the value of m. Then the differences between theory
and experimental values can be attributed to small
variations in the exponent R, although other variables
such as dynamic dilution or nonidealities in the network
structure could be present.

On the other hand, in networks with pendant chains
of high molecular weight the value of m presents the
major uncertainty. Although in the range of molecular
weight of pendant chains covered in this work the
relaxation modulus has, at long times, a power law
behavior, it is not clear from our experiments if this
representation is still valid for networks with pendant
chains of very high molecular weight. More experiments
will be required in order to verify the dynamic behavior
of networks containing pendant chains of higher mo-
lecular weight than those analyzed in the present work.

Conclusions
Terminal relaxation experiments gave a new insight

on the influence of molecular mass distribution of
pendant chains on the Chasset-Thirion exponent in
model networks of PDMS with nearly constant cross-
linking density and controlled amounts of linear pen-
dant chains.

Using a modification to previous theories, we proposed
a model for the terminal relaxation of elastomers. The
model is in good agreement with experimental data
obtained from end-linking model networks. It is also
capable of reproducing values calculated with previous
models for networks prepared by random cross-linking.

We want to emphasize the influence of molecular
mass and distribution of molecular masses of pendant
chains on the Chasset-Thirion exponent m.
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