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Inelastic electron scattering in aggregates of transition metal atoms on metal surfaces
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Inelastic spin excitations, as observed with a scanning tunneling microscope for Co/Co and Fe/Fe dimers on
a Cu2N/Cu(100) surface, have been analyzed theoretically in this paper. In our approach, we use an extended
ionic Hamiltonian for the magnetic atom that takes into account first, the role played by the first Hund rule in
the atomic states, and second, the cotunneling processes associated with the atomic excitations and the tunneling
conductance. This Hamiltonian is solved using the equation of motion method that yields the appropriate Green’s
functions allowing us to calculate the differential conductance, the inelastic atomic excitations, and possible
Kondo resonances. We also analyze an ideal dimer with spin ½ in each atom and discuss the differences and
similarities this model has with the Co-Co case.
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I. INTRODUCTION

Inelastic spin spectroscopy with low-temperature scanning
tunneling microscopy [1–5] has been used to explore for
magnetic atoms on metals, the intrinsic properties of the
corresponding atomic spin in its interaction with the metal
free electrons [6]. That interaction might create an antiferro-
magnetic coupling between the magnetic atom and the metal
[7] giving rise to a Kondo resonance, the favorite many-body
effect of condensed matter physicists [6].

The conductance spectra obtained by positioning the tip
over the magnetic adatom and recording the differential
conductance, dI/dV , as a function of the bias potential,
V , show different regimes depending on the transition metal
located below the tip. Two paradigmatic examples are Fe or Co
adsorbed on a Cu2N surface [1–4]: in the case of Co on Cu2N
[3], the crystalline field experienced by the atom develops a
doublet ground state which is revealed by a Kondo resonance
having a temperature of a few degrees. For Fe on Cu2N [2],
the magnetic atom develops a singlet ground state, so that the
inelastic tunneling differential conductance only shows some
steps associated with the internal excitations of the atomic spin
and no Kondo resonance.

The success in controlling and understanding the behavior
of those individual atoms has stimulated the interest in
systems of several units [8,9],which seems to offer interesting
developments regarding the understanding of the properties of
magnetic systems [10], as well as the building of quantum bits
useful for quantum computation [11].

Systems of two units, quantum dots or atoms, interacting
with a metal have also attracted broad attention [8] due to
the interplay between the possible Kondo resonance of each
unit and the ferromagnetic or antiferromagnetic coupling of
the spins of the two components. In particular, the cases of
two magnetic atoms, such as Co-Fe, Co-Co, or Fe-Fe [12–15],
have been analyzed with a scanning tunneling tip showing an
important interatomic coupling effect that depends crucially
on the distance between atoms; in particular, the tunneling
spectroscopy of Fe and Co aggregates reveals the influence
of the crystal environment over the atomic magnetocrystalline

anisotropy [16]. The interest in analyzing these dimers also
stems from the different properties of each individual atom
since only Co seems to develop a Kondo resonance.

Several authors have theoretically analyzed this inelastic
tunneling problem using different techniques [16–30]. In most
of those works an effective interaction between the tunneling
electron and the spin of the magnetic atom is introduced; this
interaction is described by means of an exchange coupling
[16,28], a spin-assisted Hamiltonian [17–19,22–27], or using
strong-coupling theory [20,21]. All these approaches are
reminiscent of the one used by Kondo [31] to explain the
resistivity of dilute magnetic impurities in metals. We can
refer to all these cases as approaches that use a kind of
effective Kondo Hamiltonian. A different approach to this
problem, which has some similarities with our own work, is
the one taken by Delgado and Fernández-Rossier [27]; in this
paper, the authors start from the Hamiltonian of the isolated
magnetic atom for its relevant charge states which include the
configurations with a charge q0, and the ones associated with
the charges q0 ± 1, since the atom is fluctuating between q0 and
q0 ± 1 in its interaction with the metal; then, after introducing
a metal-atom tunneling Hamiltonian, they use degenerate
perturbation theory to reduce the initial charge states of the
system to an effective Hamiltonian that includes the hopping
between the electrodes assisted by the excitation of the atom
between the states of the q0 manifold. This perturbation theory
yields a kind of generalized Kondo Hamiltonian where, instead
of the spin states, |S,M〉, one finds the q0-configurational
states. Using the authors’ own words: “this approach provides a
microscopic justification of earlier phenomenological works”.

It is also appropriate to mention that in Refs. [29,30] a
similar proposal as in Ref. [27] is solved for a single atom by
using a nonperturbative treatment of the generalized Anderson
Hamiltonian within the so-called one-crossing approximation
[32].

Our approach to analyze this problem also starts from
the atomic Hamiltonian for the q0 and q0 ± 1 charges; but,
instead of integrating out the q0 ± 1 states, we introduce
an ionic Hamiltonian [33] that reduces the q0 and q0 ± 1
configurational states to those associated with the first Hund

2469-9950/2017/96(11)/115439(13) 115439-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.115439


E. C. GOLDBERG AND F. FLORES PHYSICAL REVIEW B 96, 115439 (2017)

rule. In a second step, we use the spin symmetry of those states
to obtain the atom-metal interaction as a function of only one
parameter that defines the coupling between the metal and
the atom. Finally, we analyze our Anderson-like Hamiltonian
using an equation of motion (EOM) method combined with
Green’s function techniques which keep, in principle, all the
possible cotunneling processes associated with the q0 and
q0 ± 1 charge states. We stress that, up to now, all the different
theoretical approaches to this inelastic electron tunneling
problem for a dimer use a kind of Kondo Hamiltonian;
our approach is the only one that keeps track of all the
atomic fluctuating processes in a very detailed Anderson-like
Hamiltonian. In other words, in our Anderson-like approach,
the tunneling conductance is the result of a cotunneling process
[27], whereby electrons jump successively first from one
electrode to the atom and, in a second step, from the atom to
the other electrode; in the Kondo-like Hamiltonians, electrons
jump between electrodes simultaneously exciting the magnetic
atom along this jump.

We should mention that using this formalism we have
already successfully analyzed individual Co or Fe magnetic
atoms [34] as well as the Fe/Co dimer [35]. In these works,
we introduced for each atom the above-mentioned ionic
Hamiltonian complemented with other terms that take into
account the Zeeman and the magnetocrystalline anisotropy
effects, as well as the Heisenberg coupling between spins. In
this work we theoretically analyze the Fe/Fe and the Co/Co
dimers using a similar approach, and discuss the differential
conductance across the system as measured by the tip of a
scanning tunnel microscope. The major interest in analyzing
these cases comes from the Co-Co dimer, because due to
the degenerate states responsible for the Kondo resonance
appearing for the individual Co atoms, the approximations
used in [35] for calculating the appropriate Green’s functions
are not good enough, and we have been forced to go to a higher
approximation, as discussed below in detail.

We also present results for a dimer formed by equal atoms
which are assumed to each have a 1/2 spin; this case might be
considered a simplified model of the Co-Co case, since each
atom presents a doublet ground state. Apparently, the doublet
might be simulated by a ½ spin, and the Co-Co dimer by a
1/2-1/2 system; we will discuss, however, the similarities and
differences between these two cases.

The paper is organized as follows: in Secs. II and III we
present our basic Hamiltonian for one magnetic atom and an
aggregate of atoms interacting with a metal surface. In Sec. IV
the equation of motion method for solving those Hamiltonians
is discussed. In Sec. V, we show how to obtain the tunneling
current across the magnetic atom from the previous solution.
Then, the formalism is applied to the 1/2-1/2 case in Sec. VI.
In Sec. VII we discuss the similarities and differences between
the 1/2-1/2 case and a simplified Co/Co dimer. In Sec. VIII
we present our results for the Co-Co and Fe-Fe dimers; and
finally, in Sec. IX we present our conclusions.

II. ONE ATOM INTERACTING WITH METAL SURFACES

We start presenting our Hamiltonian for describing the
atomic orbitals, the metal states, and the interaction between

the atom and those states:

Ĥ =
∑
kασ

εkαn̂kασ + Ĥatom + Ĥint. (1)

In Eq. (1), the first term describes the substrate (α = s)
and tip (α = t). These metal surfaces are described by the
conduction-band energies εkα and their occupation number
given by n̂kασ = ĉ+

kασ ĉkασ [index k may include more than one
band: k ≡ (k1,k2, . . .)]. The atomic part, Ĥatom, in the extended
version appropriate for treating any multielectron atom [36],
is given by

Ĥatom =
∑
m,σ

εmn̂mσ +
∑
m

Udn̂m↑n̂m↓

+ 1

2

∑
m�=m′,σ

Jd n̂mσ n̂m′−σ

+ 1

2

∑
m�=m′,σ

(
Jd − J x

d

)
n̂mσ n̂m′σ

− 1

2

∑
m�=m′,σ

J x
d ĉ†mσ ĉm−σ ĉ

†
m′−σ ĉm′σ . (2)

Here ĉ
†
mσ (ĉmσ ) are the fermionic operators creating

(annihilating) an electron with spin projection σ in the orbital
m and n̂mσ = ĉ

†
mσ ĉm−σ ; the intra-atomic Coulomb interactions

Ud and Jd , as well as the intra-atomic exchange interaction J x
d ,

are assumed to be constants independent of the m-orbital index,
and εm = ε0 also independent of m. The last term, related to
spin-flip processes, restores the invariance under rotation in
spin space. Other contributions, such as crystal field effects and
the Zeeman energy terms associated with an applied magnetic
field are not included in Eq. (2), but will be discussed below.

The interaction term, Ĥint, contemplates the charge ex-
change between the atom and the metal surfaces through a
one-electron tunneling mechanism described by the following
expression:

Ĥint =
∑

kα,m,σ

[Vkαmĉ
†
kασ ĉmσ + Vmkαĉ†mσ ĉkασ ]. (3)

In the case of the d orbitals of metal transition atoms, it
is a good approximation to assume the exchange interaction,
J x

d , large enough to make the first Hund-rule operative. On the
other hand, we also assume that the orbital contribution to the
angular moment is quenched due to crystal-field effects and
the low symmetry of the atom environment. These conditions
imply that the ground state of the atom is an orbital singlet,
and that its lower energy configurations correspond to the states
of maximum electron spin, S, associated with its number of
electrons, N , that in the Introduction was mentioned as the
equivalent q0 states [27].

Based on these arguments, the atomic Hamiltonian [Eq. (2)]
is projected over the Hund’s states of total spin S and spin
projection M , |S,M〉. Notice that by introducing Hund’s states
|S,M〉 we reduce the full configuration space spanned by
Hamiltonian (2) to the one spanned by those states, so that
in our calculations it is assumed that

∑
S,M |S,M〉〈S,M| =

1.This is the main simplification introduced in our
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approach:

Ĥatom =
∑
S,M

ES |S,M〉〈S,M|. (4a)

The total energies ES calculated from the atomic Hamilto-
nian, Eq. (2), are given by

ES =
∑
m,σ

εm〈n̂mσ 〉S,M +
∑
m

Ud〈n̂m↑n̂m↓〉S,M

+ 1

2

∑
m�=m′,σ

Jd〈n̂mσ n̂m′−σ 〉S,M

+ 1

2

∑
m�=m′,σ

(
Jd − J x

d

)〈n̂mσ n̂m′σ 〉S,M

− 1

2

∑
m�=m′,σ

J x
d 〈ĉ†mσ ĉm−σ ĉ

†
m′−σ ĉm′σ 〉S,M, (4b)

〈· · · 〉S,M being the average value in the |S,M〉 state.
Regarding the interaction term, Eq. (3), we assume that

in the most general case, the ground state with N electrons,
|S,M〉, may fluctuate not only to a state with N − 1 electrons,
|S − 1/2,M〉, but also to a state with N + 1, |S + 1/2,M〉
(N < 5):

Ĥint =
∑

kα,M,σ

[
V S∗

kαMσ ĉ
†
kασ |S − 1/2,M − σ 〉〈S,M|

+V S
kαMσ |S,M〉〈S − 1/2,M − σ |ĉkασ

]
+

∑
kα,M,σ

[
V

′S+1/2∗
kαMσ ĉ

†
kασ |S,M − σ 〉〈S + 1/2,M|

+V
′S+1/2
kαMσ |S + 1/2,M〉〈S,M − σ |ĉkασ

]
. (5)

A similar equation holds for N > 5. The different spin states
|S,M〉 are calculated by rotating the spin, which means
that they are generated from the state |S,S〉 by successive
applications of the operator Ŝ−. In this way the following
expression for the coupling terms, V S

kMσ in Eq. (5), is obtained
for the case of a half-filled or less than half-filled shell (N � 5
for a d shell) [34]:

V S
kMσ =

√
S + (−1)pM

2S
Vkd, (6)

while for an occupation larger than a half-filled shell (N > 5
for a d shell), we arrive at the expression

V S
kMσ = (−1)p

√
S − (−1)pM

2S
Vkd . (7)

In Eqs. (6) and (7), p is equal to 0 if σ = 1/2 and equal to
1 if σ = −1/2.

We should stress that Eq. (5) for N < 5 defines
an Anderson-like Hamiltonian, where different terms
have one ĉ

†
kσ -creation (or ĉkσ -annihilation) operator and

a |S − 1/2,M − σ 〉〈S,M|-annihilation (or a |S〉〈S − 1/2|-
creation) operator. The operators |S − 1/2〉〈S| destroy one
electron, for N < 5, in state |S〉, making the atom jump to

state |S − 1/2〉; likewise the operators |S + 1/2〉〈S| create one
electron, for N < 5, in state |S〉 making the atom jump to the
state |S + 1/2〉. Notice that those operators are fermionlike
because |S〉 and |S ± 1/2〉 differ by one electron. However, op-
erators such as |S,M〉〈S,M ′| or |S ± 1/2,M〉〈S ± 1/2,M ′| are
bosons (see Ref. [37] to see the properties of these operators).
Consequently, Eqs. (5)–(7) define an Anderson-like interacting
Hamiltonian that depends only on one parameter,Vkd , very
much like the simplest Anderson Hamiltonian introduced for
a 1/2-spin particle. This is the main advantage of our ionic
Hamiltonian [38], namely, that it does not depend on so many
parameters as the initial ionic model.

The interaction Hamiltonian, Eq. (5), depicts the cotunnel-
ing processes in which one electron or one hole can tunnel
from one lead to the atom and at the same time, another
electron or hole can tunnel from the atom to the other lead. An
inelastic scattering process occurs when the initial and final
states of total spin S have different energies. The transitions
to the virtual intermediate states with either total spin S + 1/2
or S − 1/2 do not conserve energy, but the time spent in
these intermediate states is coherent with that predicted by
the uncertainty principle [39].

In general, the electronic and chemical properties of the
atom-surface system, as described by our Hamiltonian, depend
on the coupling parameter Vkd and the one-electron energies
involved in the charge-exchange process: ES − ES−1/2 =
Jd − J x

d + ε0 for N � 5 and ES − ES−1/2 = −(Jd − J x
d ) −

ε0 for N > 5.
The atom-surface coupling, Vkd , in Eqs. (6) and (7) depends

on the atomic configurations associated with the metal/atom
charge-exchange processes. In order to substantiate further
these assumptions, consider the Fe/CuN(100) case; some
density functional theory calculations [2,40] indicate that the
largest occupation for the minority spins appears for the dx2−y2

and dz2 orbitals with occupancies of 0.72 and 0.49 electrons,
respectively (assuming the z axis in the direction perpendicular
to the surface).

On the other hand, the excited configurations with S = 2
obtained by considering the crystal-field effects are separated
more than 300 meV from the ground state and can be
disregarded as possible inelastic channels in the conductance
spectra around the surface Fermi energy, that only extends
up to 50 mV [14]. Therefore, by considering the following
orbital ordering |dx2−y2 ,dz2 ,dzy,dxy,dzx〉, the Fe ground state is
|S = 2,M = 2〉 = |↑↓,0↑,0↑,0↑,0↑〉 and the atom can fluc-
tuate to the state |S = 3/2,M = 3/2〉 = |↑↓,↑↓,0↑,0↑,0↑〉
by exchanging one electron with the metal (spin rotation
states are understood to be included in the space spanned
by |S = 2,M〉 and |S = 3/2,M ′〉). Then, in this case Vkd

represents the coupling between the dz2 orbital and the metal
k state. An explicit calculation of the interacting hopping
elements between the different |S = 3/2,M〉 and |S = 2,M ′〉
states yields the values of Eq. (7) (N > 5).

We should say that independent calculations by Etzkorn
et al. [41] indicate that there are some small contributions
from the spin-orbit interaction to the angular moment of Fe
and Co deposited on the Cu site (the most likely adsorption
site). That orbital momentum is calculated to be around 0.2 μB

for Fe and 0.4 μB for Co; these values suggest that assuming
that the ground state of those atoms is an orbital singlet is a
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fair approximation, as confirmed independently by the good
agreement we find with the experimental results.

All eigenstates ES of Hamiltonian (4) are degenerate in
M . This degeneracy is, however, partially lifted when the
following terms are added to the atomic Hamiltonian:

Ĥp = gμBB̂ · Ŝ + DS2
z + E

(
S2

x − S2
y

)
. (8)

The first term in Eq. (8) is associated with the Zeeman
energy (g is the gyromagnetic factor and μB the Bohr magne-
ton); the other two with the effective anisotropy interaction
�ij Ŝi · Ŝj which comes from a second-order perturbative
calculation of the atomic spin-orbit coupling λL̂.Ŝ. We should
stress that this perturbation treatment includes contributions
coming from virtual transitions between states with L = 0 and
L �= 0 which are not included in our simplified Hamiltonian
[14,15]; this means that the effective anisotropy interaction
can be viewed as an extra term to be added to our Hamiltonian
(4a).

Leaving apart Hamiltonian (8), Ĥp, our ionic Hamiltonian
as defined by Eqs. (4) and (5) leads to an effective metal/atom
exchange coupling that keeps the rotational symmetry of the
problem, giving an independent confirmation to the validity of
this approach. This can be proved by applying the Schrieffer-

Wolf transformation [42], assuming Ĥint small and using a
second-order perturbation theory [7].

III. AGGREGATES OF ATOMS INTERACTING
WITH A METAL SURFACE

In this section we consider the case of many atoms (α =
1,2, . . . ,n), distributed parallel to the surface, then, if for each
atom α, we have the electronic configuration |SαMα〉, we also
have the completeness condition �α|SαMα〉〈SαMα| = 1. The
extension of Eqs. (4) and (5) to the case of many noninteracting
atoms is straightforward by considering the direct product of
the different states for each atom:

|SaMa; SbMb; ScMc; . . .〉
= |SaMa〉 ⊗ |SbMb〉 ⊗ |ScMc〉 ⊗ . . . .

The one-electron tunneling mechanism of charge transfer
[Eq. (3)] means in this case that the charge fluctuation in atom b

is occurring without change in the electronic configurations of
the other atoms. Then, the interaction Hamiltonian, Eq. (5), in
the particular case of two atoms, is straightforwardly extended
to the form

Ĥint =
∑

kβ,M1,M2,σ

[
V

S1∗
kβM1σ

ĉ
†
kβσ |S1 − 1/2M1 − σ ; S2M2〉〈S1M1; S2M2| + c.c.

]

+
∑

kβ,M1,M2,σ

[
V

′2S1+1/2∗
kβM1σ

ĉ
†
kβσ |S1M1 − σ ; S2M2〉〈S1 + 1/2M1; S2M2| + c.c.

]

+
∑

kβ,M1,M2,σ

(−1)2S1
[
V

S2∗
kβM2σ

ĉ
†
kβσ |S1M1; S2 − 1/2M2 − σ 〉〈S1M1; S2M2| + c.c.

]

+
∑

kβ,M1,M2,σ

(−1)2S1
[
V

′2S2+1/2∗
kβM2σ

ĉ
†
kβσ |S1M1; S2M2 − σ 〉〈S1M1; S2 + 1/2M2| + c.c.

]
. (9)

Equation (9) is written in the basis set which diagonalizes the system of noninteracting atoms. In the next step we write the
interaction Hamiltonian in the basis set {ψS1,S2

j } that diagonalizes the following atomic Hamiltonian:

Ĥatom =
∑
Si ,Mi

ESi |Si,Mi〉〈Si,Mi | +
∑

i

[
DiS

2
iz + Ei

(
S2

ix − S2
iy

)] +
∑

i

giμBB̂ · Ŝi +
∑
i �=j

Jij Ŝi · Ŝj , (10)

which includes the anisotropy term, the interaction with an external magnetic field B̂(third term), and a Heisenberg exchange
interaction between atoms (fourth term). It should be commented that this last interaction is in principle contemplated by our
Hamiltonian. However, this interaction can be shown to be of fourth order in the interaction Vkd [43], while the calculations we
are going to present in the next sections are performed to second order in Vkd ; therefore, there is no inconsistency in our approach.
If our calculations were extended to all the fourth-order terms in Vkd , one should take away the interaction

∑
i,j Jij Ŝi · Ŝj .

Let us consider from now on the case of two atoms and assume that we have in each atom only spin fluctuations from S

to S-1/2; then, the interaction Hamiltonian (9), projected over the basis set that contemplates the mixing of the noninteracting
many-body states, |ψS1,S2

j 〉 = ∑
M1,M2

a
j (S1,S2)
M1,M2

|S1M1,S2M2〉, takes the form

Ĥint =
∑

kα,σ,i,j

[
T

S1→S1−1/2,S2∗
kασ ij ĉ

†
kασ

∣∣ψS1−1/2,S2
i

〉〈
ψ

S1,S2
j

∣∣ + c.c.
]

+
∑

kα,σ,i,j

[
T

S1→S1−1/2,S2−1/2∗
kασ ij ĉ

†
kασ

∣∣ψS1−1/2,S2−1/2
i

〉〈
ψ

S1,S2−1/2
j

∣∣ + c.c.
]

+
∑

kα,σ,i,j

(−1)2S1
[
T

S1,S2→S2−1/2∗
kασ ij ĉ

†
kασ

∣∣ψS1,S2−1/2
i

〉〈
ψ

S1,S2
j

∣∣ + c.c.
]

+
∑

kα,σ,i,j

(−1)2(S1−1/2)
[
T

S1−1/2,S2→S2−1/2∗
kασ ij ĉ

†
kασ

∣∣ψS1−1/2,S2−1/2
i

〉〈
ψ

S1−1/2,S2
j

∣∣ + c.c.
]
. (11)
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This is an Anderson-like Hamiltonian, where
ĉ
†
kασ |ψS1−1/2,S2

i 〉〈ψS1,S2
j |, for example, is the product

of a creation operator, ĉ
†
kασ , and an annihilation one

|ψS1−1/2,S2
i 〉〈ψS1,S2

j |; with this term, the many-body atom

system changes from the state |ψS1,S2
j 〉 to the state |ψS1−1/2,S2

i 〉,
due to the electron transfer from the atom 1 with total spin S1

to the surface. The coupling parameters are redefined as

T
S1→S1−1/2,S2
kασ ij =

∑
m1m2M2

aj (S1,S2)∗
m1m2

a
i(S1−1/2,S2)
m1−σM2

V
S1
kαm1σ

. (12)

This Anderson-like Hamiltonian allows us to calculate the
tunneling current through the Co-Co or the Fe-Fe dimers,
as well as the electronic properties associated with their
Kondo resonances; this is at variance with many other ap-
proaches where a phenomenological Kondo-like Hamiltonian
depending on different parameters has been used [22–24]. The
accuracy of the results obtained from Eq. (11) depends on the
quality of the approach used to solve it.

We analyze Hamiltonian (11) by means of a
Green’s function approach, combined with an EOM
technique, associated with the different annihilation and
creation operators: |ψi

S−1/2,S ′ 〉〈ψj
S,S ′ |,|ψi

S,S ′−1/2〉〈ψj
S,S ′ |,

. . . ,|ψi
S,S ′ 〉〈ψj

S,S ′−1/2| . . ., appearing in that Hamiltonian. It
is convenient to realize that the spin fluctuation S ↔ S − 1/2
in atom A can occur in the presence of the other atom B with
either spin s or spin s-1/2; and the same is valid for the spin
fluctuation in atom B (S is used now for atom A and s for
atom B, instead of S1 and S2). These two possibilities can
be identified with the following “creation” operators (N < 5):

Â
(1)†
ij = ∣∣ψS,s

i

〉〈
ψ

S−1/2,s

j

∣∣;
Â

(2)†
ij = ∣∣ψS,s−1/2

i

〉〈
ψ

S−1/2,s−1/2
j

∣∣

B̂
(1)†
ij = ∣∣ψS,s

i

〉〈
ψ

S,s−1/2
j

∣∣;
B̂

(2)†
ij = ∣∣ψS−1/2,s

i

〉〈
ψ

S−1/2,s−1/2
j

∣∣. (13)

Then, the appropriate Green’s functions for calculating the
electronic transport properties for each atom, close to the
equilibrium, must contemplate the two-atom system with the
two possible spin fluctuations in each atom. That means one
has to solve a matrix of 16 elements (see below) defined by
the blocks [A(α)A(β)], [A(α)B(β)], [B(α)B(β)], and [B(α)A(β)].
In other words, we need to calculate Green’s functions such as
those defined in the first two blocks (for the second two blocks
the Green’s functions are completely similar):

GAα
ij

(
Â(β)

qp

) = i
(t ′ − t)
〈{

Â
(α)†
ij (t ′); Â(β)

qp (t)
}〉

, (14a)

GAα
ij

(
B̂(β)

qp

) = i
(t ′ − t)
〈{

Â
(α)†
ij (t ′); B̂(β)

qp (t)
}〉

, (14b)

where {. . .} is the anticonmutator of the two operators inside
the brackets.

The first ones [Eq. (14a)] are diagonal in site, and for α = β,
are also diagonal in the spin configuration that fluctuates; while
the second, Eq. (14b), corresponds to off-diagonal atomic
Green’s functions.

The normalization of the space of configurations requires
fulfilling the following relation:∑

i

〈∣∣ψS,s
i

〉〈
ψ

S,s
i

∣∣〉 + ∑
j

〈∣∣ψS−1/2,s

j

〉〈
ψ

S−1/2,s

j

∣∣〉

+
∑

j

〈∣∣ψS,s−1/2
j

〉〈
ψ

S,s−1/2
j

∣∣〉 + ∑
j

〈∣∣ψS−1/2,s−1/2
j

〉

× 〈
ψ

S−1/2,s−1/2
j

∣∣〉 = 1.

IV. EOM METHOD FOR CALCULATING THE GREEN’SFUNCTIONS

Here, we describe the procedure for calculating one particular Green’s function. We assume that the interaction of the atom
with the tip is negligible compared with the interaction with the substrate (tunneling regime). In this case the atom spectral density
is determined by the atom-substrate interaction, while the current through the atom is determined by the coupling between the
tip and the atom. Then, from now on we will only refer to the atom interaction with the substrate band states in the calculation
of the Green’s functions and by simplicity, we omit the subindex α = s.

Taking into account the time-dependent evolution of the Heisenberg operators, dÂ(1)
qp/dt = −i[Â(1)

qp,Ĥ ], and the orthonormality

of the many-body functions ψ
S1,S2
i , we can write (Zα

ij corresponds to either A or B)

idGZα
ij

(
Â(1)

qm

)
/dt = δ(t − t ′)

〈{
Ẑ

(α)
ij ,Â(1)

qm

}〉 + i
(t ′ − t)
〈{

Ẑ
(α)
ij ,

[
Â(1)

qm,Ĥ
]}〉

,

where [. . .] is the commutator of the operators inside the brackets, in such a way that the time derivative of the Green’s function
GZα

ij
(Â(1)

qm) is

idGZα
ij

(
Â(1)

qm

)
/dt = δ(t − t ′)

〈{
Ẑ

(α)
ij (t ′),Â(1)

qm(t)
}〉 + (

ES,s
q − ES−1/2,s

m

)
GZα

ij

(
Â(1)

qm

) +
∑
k,σ,n

T A1

kσnqGZα
ij

(∣∣ψS−1/2,s
m

〉〈
ψS−1/2,s

n

∣∣ĉkσ

)

+
∑
k,σ,n

T A1

kσmnGZα
ij

(∣∣ψS,s
n

〉〈
ψS,s

q

∣∣ĉkσ

) + (−1)2S
∑
k,σ,n

T B1

kσnqGZα
ij

(∣∣ψS−1/2,s
m

〉〈
ψS,s−1/2

n

∣∣ĉkσ

) − (−1)2S−1

×
∑
k,σ,n

T B2

kσnmGZα
ij

(
ĉ
†
kσ

∣∣ψS−1/2,s−1/2
n

〉〈
ψS,s

q

∣∣). (15)
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Notice that the different Green’s function components of this equation come from different transitions like such as Â(1)
mq =

|ψS−1/2,s
m 〉〈ψS,s

q | → ĉ
†
kσ |ψS−1/2,s−1/2

n 〉〈ψS,s
q |, where an electron k is transferred to the metal from the state |ψS−1/2,s

m 〉 which jumps

to the state |ψS−1/2,s−1/2
n 〉.

In the next step, we calculate the time derivative of each new Green’s function which appears in Eq. (15). After introducing
mean-field approximations like this one:

GZα
ij

(
B̂(2)

pn n̂kσ

) ≈ 〈n̂kσ 〉GZα
ij

(
B̂(2)

pn

)
,

for example, the equation for the Green’s function GZα
ij

(ĉ†kσ |ψS−1/2,s−1/2
n 〉〈ψS,s

q |) yields

idGZα
ij

(
ĉ
†
kσ

∣∣ψS−1/2,s−1/2
n

〉〈
ψS,s

q

∣∣)/dt = δ(t − t ′)
〈{

Ẑ
(α)
ij ,ĉ

†
kσ

∣∣ψS−1/2,s−1/2
n

〉〈
ψS,s

q

∣∣}〉
+ (

ES,s
q − ES−1/2,s−1/2

n − εk

)
GZα

ij

(
ĉ
†
kσ

∣∣ψS−1/2,s−1/2
n

〉〈
ψS,s

q

∣∣)
−

∑
p

T A1

kσpq〈n̂kσ 〉GZα
ij

(
B̂(2)

pn

) − (−1)2S
∑

p

T B1

kσpq〈n̂kσ 〉GZα
ij

(
Â(2)

pn

)

−
∑

p

T A2

kσnp〈1 − n̂kσ 〉GZα
ij

(
B̂(1)

qp

) − (−1)2S−1
∑

p

T B2

kσnp〈1 − n̂kσ 〉GZα
ij

(
Â(1)

qp

)
, (16)

where, again, new Green’s functions appear due to transitions from ĉ
†
kσ |ψS−1/2,s−1/2

n 〉〈ψS,s
q | to annihilation operators such as

B(2)
pn = |ψS−1/2,s−1/2

n 〉〈ψS−1/2,s
p | and Â(1)

pq = |ψS−1/2,s
n 〉〈ψS,s

q |. By Fourier transforming Eq. (16) and inserting it in the Fourier
transform of Eq. (15), we finally obtain the following equation (Zα

ij = A1
ij ):

g−1
0

(
Â(1)

qm

)
GA1

ij

(
Â(1)

qm

) = 〈∣∣ψS,s
q

〉〈
ψ

S,s
i

∣∣δjm + ∣∣ψS−1/2,s

j

〉〈
ψS−1/2,s

m

∣∣δiq

〉

+
∑
k,σ,n

T A1

kσnq

〈
Â

(1)†
in ĉkσ

〉
ω − εk − E

S−1/2,s
n + E

S−1/2,s

j

δjm + (−1)2S
∑
k,σ,p

T B1

kσpq

〈
B̂

(1)†
ip ĉkσ

〉
ω − εk − E

S,s−1/2
p + E

S−1/2,s

j

δjm

−
∑
k,σ,p

T A1

kσmp

〈
Â

(1)†
pj ĉkσ

〉
ω − εk − E

S,s
i + E

S,s
p

δqi − (−1)2S−1
∑
k,σ,l

T B2

kσ lm

〈
ĉ
†
kσ B̂

(2)
j l

〉
ω + εk − E

S,s
q + E

S−1/2,s−1/2
l

δqi

+
∑
p �=m

A1(I )
qp (ω)GA1

ij

(
Â(1)

qp

) +
∑
p �=q

A1(II )
pm (ω)GA1

ij

(
Â(1)

pm

) −
∑
p,l

A2

pl (ω)GA1
ij

(
Â

(2)
pl

)

+ (−1)2S
∑

p

B1

qp (ω)GA1
ij

(
B̂(1)

qp

) + (−1)2S−1
∑
l,p

B2

lp (ω)GA1
ij

(
B̂

(2)
lp

)
(17)

where we have defined

g−1
0

(
Â(1)

qm

) = ω − ES,s
q + ES−1/2,s

m −
∑
k,σ,n

∣∣T A1

k,σ,n,q

∣∣2〈1 − n̂kσ 〉
ω − εk − E

S−1/2,s
n + E

S−1/2,s
m

−
∑
k,σ,n

∣∣T A1

k,σ,m,n

∣∣2〈n̂kσ 〉
ω − εk − E

S,s
q + E

S,s
n

−
∑
k,σ,n

∣∣T B1

k,σ,n,q

∣∣2〈1 − n̂kσ 〉
ω − εk − E

S,s−1/2
n + E

S−1/2,s
m

−
∑
k,σ,l

∣∣T B2

k,σ,l,m

∣∣2〈1 − n̂kσ 〉
ω + εk − E

S,s
q + E

S−1/2,s−1/2
l

. (18)

The expressions of the crossed atom-band state terms
such as 〈Â(1)†

in ĉkσ 〉 and of the self-energies quantities (ω)
introduced in Eq. (17) are given in the Appendix. In all the
expressions above ω ≡ (ω − iη)η→0, because of the advanced
Green’s functions used [Eq. (14)].

Equation (17) relates the Green’s function GA1
ij

(Â(1)
qm) to

other components such as GA1
ij

(Â(1)
qp), GA1

ij
(Â(2)

pl ), GA1
ij

(B̂(1)
np ),

and GA1
ij

(B̂(2)
lp ); these off-diagonal terms are second order

compared with the original Green’s function, GA1
ij

(Â(1)
qm), and

one is tempted to neglect them for calculating the original one.

This is what we did in Ref. [35] to calculate the properties
of the Fe-Co dimer. However, we have checked that this is
a bad approximation for calculating the Co-Co dimer, the
reason being the degenerate states that one finds around the
Fermi energy in the atomic Hamiltonian (10). In Ref. [35]
we also neglected in Eq. (18) the last two terms; both are
important when analyzing the Co-Co case. In particular,
the term like 1/(ω − εk − E

S,s−1/2
n + E

S−1/2,s
m ) is associated

with the transfer of an excitation in one atom to the other;
its contribution is important for the Co-Co case because
(−E

S,s−1/2
n + E

S−1/2,s
m ) can be zero for this case.
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We should comment that, although the EOM equations
are solved up to second order in the atom-surface coupling
(T αT β∗), the Green’s functions, as calculated in Eqs. (17) and
(18), go to a higher order, as can be easily checked by realizing
that those second-order terms appear in g−1

0 (Ẑ(α)
qm) [Eq. (18)].

Notice that the one-electron problem for an atom-surface
interaction, without many-body effects, can be calculated
exactly by using the second-order EOM method.

On the other hand, it is interesting to realize that the different
self-energy terms of Eqs. (17) and (18) are proportional
to either (T AT A∗), (T BT B∗), (T AT B∗), or (T BT A∗). The
last two factors, (T AT B∗) or (T BT A∗), are proportional to
exp(±i�k · �R), �R being the vector joining atoms A and B.
Then, notice that for �kexp(±i�k · �R), the angular integration
yields (taking k constant and assuming the energy band to
be spherically symmetric) the following factor:sin(kR)/kR.

For the Cu Fermi energy, kF = 1.36/A, so that for the
expected distances of R > 2A we find |sin(kF R)/kF R| < 0.2,
indicating that the terms with the off-diagonal contributions,
(T AT B∗) or (T BT A∗), should be much smaller than the
diagonal ones, (T AT A∗) or (T BT B∗). As discussed below,
calculations with (T AT B∗) and (T BT A∗) smaller than 0.2|T A|2
and 0.2|T B |2 yield results similar to taking (T AT B∗) =
(T BT A∗) = 0; therefore, we are going to assume this condition
to be satisfied in most of the cases presented in this paper.
Notice that in this limit the atoms see each other only through
the interaction J �S ÷ �s, in such a way that for J = 0 one
should recover the case of independent atoms; this suggests to
approximate Eqs. (17) and (18) by including spin fluctuations
in atom A, and neglecting contributions from spin fluctuations
in atom B that is assumed to keep its spin s. This approximation
reduces Eqs. (17) and (18) to the following expression:

⎡
⎢⎣ω − ES,s

q + E
S−1/2,s
m

− ∑
k,σ,n

∣∣T A1
k,σ,n,q

∣∣2
〈1−nkσ 〉

ω−εk−E
S−1/2,s
n +E

S−1/2,s
m

− ∑
k,σ,n

∣∣T A1
k,σ,m,n

∣∣2
〈nkσ 〉

ω−εk−E
S,s
q +E

S,s
n

⎤
⎥⎦GA1

ij

(
Â(1)

qm

)

= 〈∣∣ψS,s
q

〉〈
ψ

S,s
i

∣∣δjm + ∣∣ψS−1/2,s

j

〉〈
ψS−1/2,s

m

∣∣δiq

〉 + ∑
k,σ,n

T A1

kσnq

〈
Â

(1)†
in ĉkσ

〉
ω − εk − E

S−1/2,s
n + E

S−1/2,s

j

δjm

−
∑
k,σ,p

T A1

kσmp

〈
Â

(1)†
pj ĉkσ

〉
ω − εk − E

S,s
i + E

S,s
p

δqi +
∑
p �=m

A1(I)
qp (ω)GA1

ij

(
Â(1)

qp

) +
∑
p �=q

A1(II)
pm (ω)GA1

ij

(
Â(1)

pm

)
. (19)

In this approximation, the information about the magnetocrystalline field and the exchange interaction between atoms is only
introduced in the calculation of the eigenvalues and eigenstates of the corresponding atomic Hamiltonian. Equation (19) will
be used in some specific cases to be discussed below; a further approximation to Eq. (19) will be introduced by neglecting the
off-diagonal Green’s functions, GA1

ij
(Â(1)

qm).

V. THE TUNNELING CURRENT

The tunneling current, when the tip is positioned simultaneously over the two atoms (A) and (B), is calculated as I σ
A + I σ

B =
− e

h̄

∑
kt

d〈n̂kt σ 〉/dt ; this equation takes into account the transfer processes between the ktσ electrons of the tip and the magnetic
atoms (we are now discriminating k into the two possibilities, kt for the tip and kS for the surface). A direct calculation of
[n̂kt σ ,Ĥ ] leads to the expression for I σ

Z (Z = A,B):

I σ
Z = −2e

h̄
Im

⎡
⎣∑

kt ,i,j

T Z1∗
kt σji

〈
Ẑ

(1)†
ij ĉkt σ

〉 + ∑
kt ,i,j

T Z2∗
kt σji

〈
Ẑ

(2)†
ij ĉkt σ

〉⎤⎦. (20)

Following the same procedure as that in Ref. [34], the conductance G = dI/dV , measured with the tip over the atom A in
the limit of low temperatures and small bias voltages V , but considering the interference terms due to the possibility of the tip
seeing the atom B too, is given by (G0 is the quantum of conductance)

GA/G0 =
∑

σ ijqm

�(A1A1)ijqmImGA1
ij

(
Â(1)

qm

) +
∑

σ ijqm

�(A1A2)ijqmImGA1
ij

(
Â(2)

qm

)

+ (−1)2S
∑

σ ijqm

�(A1B1)ijqmImGA1
ij

(
B̂(1)

qm

) + (−1)2S−1
∑

σ ijqm

�(A1B2)ijqmImGA1
ij

(
B̂(2)

qm

)

+
∑

σ ijqm

�(A2A1)ijqmImGA2
ij

(
Â(1)

qm

) +
∑

σ ijqm

�(A2A2)ijqmImGA2
ij

(
Â(2)

qm

)

+ (−1)2S
∑

σ ijqm

�(A2B1)ijqmImGA2
ij

(
B̂(1)

qm

) + (−1)2S−1
∑

σ ijqm

�(A2B2)ijqmImGA2
ij

(
B̂(2)

qm

)
. (21)
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The quantities � in Eq. (21) define an effective broadening
given by

�(AαZβ)ijqm = 2�AαZβ

σjimq(t ip), (22a)

where

�AαZβ

σjimq(t ip)(ε) = π
∑
kt

T Aα∗
kt σjiT

Zβ

kt σmqδ(ε − εkt
). (22b)

Notice that Eq. (21) has the conventional form of a tunneling
current [44,45]: the terms like ImG are associated with the
density of states of the magnetic atom in its interaction with the
metal (because the tip-atom interaction is negligible), in such a
way that the tunneling current is proportional to that density of
states and to a factor like �(Z1Z2) = πT

Z1∗
t T

Z2
t ρt (ε), which

includes the tip density of states and a second-order term (T 2)
in the tip-atom interaction.

If Z = B in Eq. (22b), we find a contribution like
�kVk

A∗Vk
B , which is small for the reasons given above.

Neglecting these contributions, we find, for the conductance
measured in atom A, the simplified expression:

GA/G0 = 4
∑
ijqm

�A1A1

jimq(t ip)ImGA1
ij

(
Â(1)

qm

)

+ 4
∑
ijqm

�A1A2

jimq(t ip)ImGA1
ij

(
Â(2)

qm

)

+ 4
∑
ijqm

�A2A1

jimq(t ip)ImGA2
ij

(
Â(1)

qm

)

+ 4
∑
ijqm

�A2A2

jimq(t ip)ImGA2
ij

(
Â(2)

qm

)
. (23)

And in the case of neglecting the fluctuations in atom A

in the presence of atom B with spin s-1/2, the conductance
reduces to the first term of Eq. (23).

VI. TWO ATOMS WITH SPIN s = S = 1/2

In this section we analyze the conductance for a symmetric
dimer with S = s = 1/2; this simple case will allow us to
compare the complete description provided by Eq. (18) with
other simplifications discussed above [see Eq. (19) and the
ensuing discussion].

As mentioned above, we consider an interaction between
the two atoms provided by a Heisenberg term J Ŝ · ŝ, in such a
way that positive (negative) values of the exchange parameter
J mean an antiferromagnetic (ferromagnetic) interaction
between atomic spins.

In the case of a dimer formed by atoms with equal spin,
we will suppress the total spin of each atom in the notation
|SM,sm〉. Then, different configurations will be denoted by
|σ,σ ′〉,|σ,0〉,|0,σ ′〉 and |0,0〉.

When the Heisenberg interaction between atoms is turned
on, we have the triplet state with total spin 1:

ψ
1/2,1/2
1 = 1√

2
[|↑,↓〉 + |↓,↑〉];

ψ
1/2,1/2
2 = |↑,↑〉; ψ

1/2,1/2
3 = |↓,↓〉

FIG. 1. The complete calculation [Eq. (17)] for the 1/2-1/2
dimer. The thin lines correspond to the conductance neglecting
the crossed interaction term (�AB

(surface) = 0) and the thick lines to
the conductance calculated by considering �AB

(surface) = 0.2�AA
(surface),

for several values of the exchange interaction between atoms, J .
(a) Ferromagnetic interaction. (b) Antiferromagnetic interaction
(εd = 1 eV and �AA

(surface) = 0.05 eV).

with energy E
1/2,1/2
1,2,3 = 2εd + (1/4)J , and the singlet,

ψ
1/2,1/2
4 = 1√

2
[|↑,↓〉 − |↓,↑〉] with energy E

1/2,1/2
4 = 2εd −

(3/4)J . Obviously, for J < 0 (> 0) the ground state is a
triplet (singlet). In these equations, 2εd is the energy of the
two electrons for the noninteracting atoms.

The other spin dimer configurations involving spin fluctua-
tion in one atom are ψ

0,1/2
1 = |0,↑〉; ψ

0,1/2
2 = |0,↓〉; ψ

1/2,0
3 =

|↑,0〉 and ψ
1/2,0
4 = |↓,0〉 with energy εd ; finally, the configu-

ration ψ
0,0
1 = |0,0〉 corresponds to having spin fluctuations in

both atoms.
The results we are going to show correspond to εd = 1 eV

and two possible values of �AA
(surface) [Eq. (22c)]: 0.05 and

0.1 eV. We consider first the cases for which �AB = 0 or
�AB = 0.2�AA, and calculate the differential conductance
across the atom A using the first term of Eq. (24) and
�AA

(surface) = 0.05 eV. Comparing both cases in Fig. 1, we see
that �AB

(surface) = 0.2�AA
(surface) yields a differential conductance

very close to that calculated for �AB
(surface) = 0. This result

substantiates our claim that the �AB interaction, for �AB
(surface) <
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FIG. 2. The 1/2-1/2 dimer case taking the crossed interac-
tion term �AB

(surface) = 0. Complete version, Eq. (17), (thick lines)
compared with the approximated version, Eq. (19), (thin lines);
�AA

(surface) = 0.1 eV. (a) Ferromagnetic interaction. (b) Antiferromag-
netic interaction.

0.2�AA
(surface), has a very small effect on the conductance;

therefore, we are going to assume from now on for all the
calculations presented in this paper that �AB

(surface) = 0; we
stress, however, that this assumption does not imply that J , in
J Ŝ · ŝ, proportional to |Vk

A|2|Vk
B |2, is also negligible, because

even if J is small it has an important effect on the degeneracy
of the levels around the Fermi energy, degeneracy that is
associated with the fine structure located for the differential
conductance around that Fermi level. We should also comment
that the case �AB = �AA = �BB (not discussed here in detail)
decouples the singlet and the triplet states of the 1/2-1/2 dimer,
in such a way that its differential conductance spectrum only
shows a kind of Kondo resonance at the Fermi energy [46].

In particular, the conductance steps, located at around ±J in
Figs. 1(a) and 1(b), are associated with the excitations between
the singlet and triplet states.

In Fig. 2 we compare the conductance calculated by
using Eq. (24) for (a) the Green’s functions obtained from
Eqs. (17) and (18) (complete version), and (b) the Green’s
functions given by Eq. (19) (approximate version). Figure 2(a)
corresponds to a ferromagnetic interaction (J = −0.05, −0.1,
−0.2, −0.6, −1, and −2 meV) and Fig. 2(b) to an antiferro-
magnetic one (J = 0.05, 0.1, 0.2, 0.6, 1, and 2 meV).

The first thing to notice is that both solutions are very close
to each other for small values of � and J ; only for the largest
values of � and J some small discrepancies between both
solutions appear. On the other hand, regarding the general
properties of the results shown in Fig. 2, notice the following
points: (a) the solution for J = 0 shows a Kondo peak that
corresponds to the case of an isolated atom, because in this
limit there is no interaction between the two atoms. (b) For
the ferromagnetic case, that Kondo peak evolves into a dip
around the Fermi energy as J increases, but for large values
of J (between 0.5 and 2 meV) a new Kondo resonance
appears associated with the degeneracy of the triplet ground
state. Moreover, the solution also shows the conductance steps
associated with the excitations between the triplet and the
singlet states. (c) For the antiferromagnetic case, the Kondo
resonance found for J = 0 evolves, for large values of J , into
a single dip between the conductance steps associated with
the singlet-triplet excitation. We should stress that for both
the antiferromagnetic and the ferromagnetic cases the Kondo
peak appearing for J → 0 disappears for very small values
of J , namely, as far as the triplet-singlet splitting is larger
than the Kondo resonance width. This indicates that there are
channels mixing the singlet and triplet states that are crucial
in the destruction of the Kondo state.

We conclude from these calculations that taking �AB = 0 is
a good approximation to our general solution, and that Eq. (19)
represents a fair approximation to Eqs. (17) and (18).

VII. A SIMPLE APPROXIMATION TO THE Co/Co case

We start analyzing this dimer by taking the minimum basis
set that allows us to describe within a reasonable approxima-
tion the tunneling current around the Fermi energy. In this
approximation we consider Hamiltonian (8) for a Co atom
(S = 3/2) with D = 2.8 meV and E = 0 [8], and realize that
its eigenstates and eigenvalues are |3/2, ± 3/2〉, E3/2,±3/2 =
9D/4 and |3/2, ± 1/2〉, E3/2,±1/2 = D/4; as E3/2,±3/2 −
E3/2,±1/2 = 2D (5.4 meV) we neglect the |3/2, ± 3/2〉 levels
and consider only the |3/2, ± 1/2〉 states in this approxima-
tion, valid only for energies close to the Fermi level (<3 meV).
This implies that the Co/Co dimer is analyzed by means of
the following four states: |3/2, ± 1/2; 3/2, ± 1/2〉, which is
reminiscent of the 1/2-1/2 case discussed above. As in this
case, we introduce the triplet and singlet states and use a similar
notation, so that

�1
1/2,1/2(S = 3/2) = 1/

√
2[|↑,↓〉 + |↓,↑〉];

�2
1/2,1/2(S = 3/2) = |↑,↑〉;

�3
1/2,1/2(S = 3/2) = |↓,↓〉;

and �4
1/2,1/2(S = 3/2) = 1/

√
2[|↑,↓〉 − |↓,↑〉];

the corresponding energies associated with J Ŝ1 · Ŝ2 are

E1
1/2,1/2(S = 3/2) = 7J/4; E2

1/2,1/2(S = 3/2) = J/4;

E3
1/2,1/2(S = 3/2) = J/4; and

E4
1/2,1/2(S = 3/2) = −9J/4;

notice that the energies E2 and E3 are the same as before,
but E1 and E4 are different due to the matrix element
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FIG. 3. The conductance spectra for a simplified Co dimer in the
case of an antiferromagnetic interaction for the J values indicated in
the figure and the same energy level and width parameters of Fig. 2
(�AA

(surface) = 0.1 eV and εd = 1 eV).

〈↑,↓|J Ŝ1 · Ŝ2|↓,↑〉 that changes because we are now working
in the 3/2-spin space.

As the Co atoms with spin 3/2 jump to the states
having spin 1, we have to consider the different states
|1,1〉; |1,0〉 and |1, − 1〉 for each atom; however, Hamiltonian
(8) locates states |1,1〉 and |1, − 1〉, 2.8 meV above the |1,0〉
state. Consistently with the previous approximation for S =
3/2, we only keep the state |1,0〉 for S = 1, and work in the
S = 3/2∗S = 1 or the S = 1∗S = 3/2 space with the states

|1/2; 0〉; |−1/2; 0〉 and |0; 1/2〉; |0; −1/2〉,

where components |0〉 and |±1/2〉 refer to the |S = 1,0〉 and
the |S = 3/2, ± 1/2〉 states.

Finally, if both atoms jump from S = 3/2 to S = 1, we work
in the S = 1∗S = 1 space and consider only, in consistency
with previous approximations, the state (S = 1,m = 0; S =
1,m = 0) which we represent by |0; 0〉.

It is interesting to realize that this approximation for the
Co/Co dimer yields a similar Hamiltonian to that discussed
above for the 1/2-1/2-case; the only difference appears in
the energies of the states �i

1/2,1/2, because we now have the
triplet states �2

1/2,1/2 and �3
1/2,1/2 degenerate but different

from the other triplet state �1
1/2,1/2: E1

1/2,1/2(S = 3/2) −
E2

1/2,1/2(S = 3/2) = 3J/2; moreover, E2
1/2,1/2(S = 3/2) −

E4
1/2,1/2(S = 3/2) = 5J/2.
These results show how the doublet associated with the

individual Co atoms is broken by the J Ŝ1 · Ŝ2 interaction.
In Fig. 3 we show the differential conductance behavior

around the Fermi level in the case of an antiferromagnetic
interaction between the Co atoms, calculated using the simpli-
fied model described before. When compared with the same
calculation for the dimer of atoms with spin 1/2 [Fig. 2(b)],
we observe that the steps associated to the excited states in the
Co dimer begin to be visible at J values larger than 0.1/meV;
this indicates that to model the Co-Co system as a typical
spin-½ system does not reproduce the correct structure of the
conductance spectra for relatively large values of J .

FIG. 4. Conductance through a Co atom as a function of the
applied voltage for zero magnetic field. Isolated Co atom: the
calculated results (solid line) and the experimental results (crossed
circles). The theoretical results considering J = 0.22 meV for Co-Co
dimer (0,2) of Ref. [13]: black solid line corresponds to the calculation
including only the diagonal Green’s function components GA1

ij
(Â(1)

ij );

gray solid line corresponds to the calculation including diagonals
and nondiagonals GA1

ij
(Â(1)

pq ) but within a reduced space of (10,4,4,1)

states. The crossed circles are the experimental results [13]. The inset
is a zoom of the calculated conductance behavior close to zero energy.

VIII. GENERAL CALCULATIONS FOR
Co-Co AND Fe-Fe DIMERS

A. Co-Co dimer

We analyze this case in several steps. First, we calculate
the case of a single Co atom: as discussed in Ref. [34], in
this case we use Eq. (19) by neglecting all the off-diagonal
Green’s functions and keeping only the diagonal components
GA1

ij
(Â(1)

ij ). We find for this single atom that the experimental
curve is well fitted [see Fig. 4(a)] by using a level width
�AA

(surface) = 200 meV; this quantity and the phenomenological
anisotropy parameters D = 0.28 meV, E = 0 [2] were used
in this calculation and in all the others presented below.

For the Co dimer we have calculated the differential conduc-
tance, and compared with the experimental results of Ref. [13]
for the dimer (0,2), using two different approximations since
a complete calculation with all the diagonal and off-diagonal
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Green’s functions goes beyond our computational capabilities:
(i) we consider the complete configurational A

(1)
ij space, but

including only the diagonal Green’s function components
GA1

ij
(Â(1)

ij ), and (ii) also considering the configurational A
(1)
ij

space but including both the diagonal and off- diagonal Green’s
function components, within a reduced space including only
the ten lowest energy configurations for spins (S, s), the four
lowest ones for spins (S, s-1/2) or (S-1/2,s), and the lowest
one for (S-1/2,s-1/2). This calculation, which we will refer to
as (10,4,4,1), provides a better description of the conductance
spectra for J = 0.22 meV in the energy region around the
Fermi energy [see Fig. 4(b)].

Notice that for the isolated atom the agreement between the
theoretical calculation and the experimental data [Fig. 4(a)] is
good except near the Fermi energy, because our approximation
does not reproduce with good accuracy the Kondo resonance
[34]. On the other hand, our results for the Co-Co case and
the (10,4,4,1) approximation [Fig. 4(b)] are in very good
agreement with the experimental data around the Fermi energy,
although a small discrepancy appears for V = 3−5 meV; in
the inset of this figure we can observe the conductance steps
at (5/2)J and 4J associated with the broken degeneration
for an antiferromagnetic interaction of the quadruplet states
of the isolated Co atoms (as already found for the simple
case discussed in Sec. VII). The results calculated using only
the diagonal Green’s function components GA1

ij
(Â(1)

ij ) are only
reasonable even if they reproduce the main characteristics of
the experiments.

Notice also in Fig. 4, some kinks in the spec-
tra around ±3 meV; they are associated with the term
�kT

2〈1 − n̂k〉/(ω − εk − E
S−1/2,s
n + E

S−1/2,s
m ) and the con-

dition ω = E
S−1/2,s
n − E

S−1/2,s
m . In other words, the kink is

due to the excited states in the magnetic atom for S = 1; as
discussed above in Sec. VII, the energy difference between
the degenerate states |1,1〉 and |1, − 1〉 and the state |1,0〉, is
2.8 meV, in perfect agreement with the energy position of the
observed kink.

In the following figure we examine the behavior of the
conductance vs applied voltage, when there is a magnetic

FIG. 5. The same as in Fig. 4 for a magnetic field applied in the
x direction. The symbols are the experimental results of Ref. [13].

FIG. 6. Theory (lines) vs experiment (symbols) for the Fe-Fe
dimer in the geometry (2,0) of Ref. [14]. In absence of a magnetic
field (black curves) and in the presence of a magnetic field in the z

direction Bz = 2 T (gray curves).

field applied in the x direction (Fig. 5). Both calculations use
the same parameters as in Fig. 4, and are compared with the
experimental data for 4 and 8 T.

Our theoretical results are again in very good agreement
with the experiments for B = 8 T and the (10,4,4,1) approxi-
mation; the jumps in the differential conductance are related
to the excited eigenstates of the atomic Hamiltonian. For
B = 4 T, our results are not so good; this is probably related
to the Kondo resonance that appears in this problem for a
magnetic field of 3.1 T [13]; this Kondo resonance effect
makes the dip near the Fermi energy too deep in our theoretical
calculation, although the (10,4,4,1) approximation seems to be
in better agreement with the experimental data.

B. Fe-Fe dimer

In the case of two Fe atoms, where the ground state is
a singlet state in any case, for interacting or noninteracting
atoms, the conductance spectra only show a rather smooth
structure less rich around the Fermi energy than the one
found for the Co-Co case, due to the smaller number of
atomic excitations found in this case. In Fig. 6 we can
observe that the simplest calculation (i) which considers the
complete configurational A

(1)
ij space, but including only the

diagonal Green’s function components GA1
ij

(Â(1)
ij ), reproduces

adequately the experimental results for the dimer (2,0) of
Ref. [14], which corresponds to an antiferromagnetic inter-
action J = 0.7 meV either for zero magnetic field or for
B = 2 T. In our calculations we use the anisotropy parameters
D = −1.87 meV and E = 0.31 meV of Ref. [9], and a level
width �AA

(surface) = 160 meV [29].

IX. CONCLUSIONS

In this paper we have presented an analysis of the differen-
tial conductance across the Co/Co and Fe/Fe dimers deposited
on a metal surface. Our approach is based on the analysis
of an Anderson Hamiltonian which is introduced following
these steps: (i) First, we introduce an ionic Hamiltonian
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describing the electron charge transfer between the atom and
the metal assuming that, due to the low symmetry of the atom
environment, the ground state of the magnetic atom is an orbital
singlet. (ii) In a second step, this Hamiltonian is extended
to a dimer configuration including also an anisotropy term
and a Zeeman energy. (iii) That basic Hamiltonian for the
dimer is solved calculating some appropriate Green’s functions
using an equation of motion method. (iv) In a final step, the
differential conductance across the dimer is calculated in terms
of the Green’s functions provided by the equation of motion
method.

Then, we apply that formalism to the ideal 1/2-1/2 dimer,
a case that presents interesting similarities and differences
with a simplified Co/Co model; the main difference between
these two cases comes from the different excited states the
systems have around the Fermi energy. Finally, we consider
the full Co/Co and Fe/Fe cases; our results for these dimers

show a good agreement with the experimental evidence. We
only find some discrepancies with the experiments when a
Kondo resonance appears in the problem; in those cases, our
calculations based on the EOM solution are not good enough to
collect the subtleties of the problem, otherwise our theoretical
differential conductance reproduces well the experimental data
and the electron excitations of the magnetic atom.
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APPENDIX

The self-energies introduced in Eqs. (17) and (18) have the following expressions:

A1(I)
qp (ω) =

∑
k,σ

[∑
n

T A1

kσmnT
A1

kσpn〈n̂kσ 〉
ω − εk − E

S,s
q + E

S,s
n

+
∑

l

T B2

kσ lmT B2

kσ lp〈1 − n̂kσ 〉
ω + εk − E

S,s
q + E

S−1/2,s−1/2
l

]
,

A1(II)
pm (ω) =

∑
k,σ

[∑
n

T ∗B1

kσnqT
B1

kσnp〈1 − n̂kσ 〉
ω − εk − E

S,s−1/2
n + E

S−1/2,s
m

+
∑

n

T ∗A1

kσnqT
A1

kσnp〈1 − n̂kσ 〉
ω − εk − E

S−1/2,s
n + E

S−1/2,s
m

]
,

A2

pl (ω) =
∑
k,σ

T B1

kσpq〈n̂kσ 〉
[

T B2

kσ lm

ω − εk − E
S,s−1/2
p + E

S−1/2,s
m

+ T B2

kσ lm

ω + εk − E
S,s
q + E

S−1/2,s−1/2
l

]
, (A1)

B1

qp (ω) =
∑
k,σ

[∑
l

T A1

kσmlT
B1

kσpl〈n̂kσ 〉
ω − εk − E

S,s
q + E

S,s
l

−
∑

n

T A2

kσnpT B2

kσnm〈1 − n̂kσ 〉
ω + εk − E

S,s
q + E

S−1/2,s−1/2
n

]
,

B2

lp (ω) =
∑
k,σ

T A1

kσ lq〈n̂kσ 〉
[

T B2

kσpm

ω − εk − E
S−1/2,s

l + E
S−1/2,s
m

+ T B2

kσpl

ω + εk − E
S,s
q + E

S−1/2,s−1/2
p

]
.

The atom-band crossed terms needed for calculating the Green’s functions [see Eq. (17)] are calculated in terms of them in
the equilibrium condition:

〈
Â

(1)†
in ĉkσ

〉 =
∑
l,p

T A1

kσ lp

Im

π

∫ ∞

−∞
dω′ GÂ

(1)
in

(
Â

(1)
pl

)
ω′ − ω

+
∑
l,p

T A2

kσ lp

Im

π

∫ ∞

−∞
dω′ GÂ

(1)
in

(
Â

(2)
pl

)
ω′ − ω

+ (−1)2S
∑
l,p

T B1

kσ lp

Im

π

∫ ∞

−∞
dω′ GÂ

(1)
in

(
B̂

(1)
pl

)
ω′ − ω

+ (−1)2(S−1/2)
∑
l,p

T B2

kσ lp

Im

π

∫ ∞

−∞
dω′ GÂ

(1)
in

(
B̂

(2)
pl

)
ω′ − ω

. (A2)
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