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Epilepsy is a neurological disorder which affects nearly 1.5% of the world's total population. Trained
physicians and neurologists visually scan the long-term electroencephalographic (EEG) records to
identify epileptic seizures. It generally requires many hours to interpret the data. Therefore, tools for
quick detection of seizures in long-term EEG records are very useful. This study proposes an algorithm to
help detect seizures in long-term iEEG based on low computational costs methods using Spectral Power
and Wavelet analysis. The detector was tested on 21 invasive intracranial EEG (iEEG) records. A
sensitivity of 85.39% was achieved. The results indicate that the proposed method detects epileptic
seizures in long-term iEEG records successfully. Moreover, the algorithm does not require long
processing time due to its simplicity. This feature will allow significant time reduction of the visual
inspection of iEEG records performed by the specialists.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Epilepsy is a neurological disorder that affects people of all ages
all over the world [1]. This disorder is characterized by recurrent
seizures, which are clinical manifestations of sudden and brief
electrical shocks of a group of brain cells. Different brain areas may
be the source of these seizures. Approximately, 0.5-1.5% of the
world's population suffers from epilepsy [2].

Electroencephalography (EEG) is the standard procedure to record
electrical brain activity in patients with neuro-pathologies. The
rhythmic activity of EEG signals is typically characterized by fre-
quency bands, such as: Delta (8; 0.5-4 Hz), Theta (0; 4-8 Hz), Alpha
(o; 8-12 Hz), Beta (3; 12-30 Hz) and Gamma (y; > 30 Hz) [3]. When
epileptic activity begins, synchronized and abnormal electrical activ-
ities in small areas of the brain are observed [3]. Consequently, this
process is reflected in the EEG record and characterized as a seizure.

Surgery is often prescribed for refractory epilepsy where patients
have high chances to reduce the amount of seizures. The typical
procedure for these patients is hospitalization due to the necessary
evaluation of localization and main source of seizure. The pre-
surgical procedure consists in placing an intracranial grid of electro-
des on the suspected epileptogenic zone to record the brain activity
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during the seizures. This recording practice usually lasts between 24
to 72 h obtaining EEG records to be analyzed. Medical specialists
and neurologists visually scan the EEG records looking for epileptic
seizures to identify the epileptogenic zone to be removed. This visual
inspection has some negative effects, is quite complex, highly time
consuming and, more often than not, it leads to disagreement
between the physicians. Taking into account that some patients have
intracranial grids in the brain it is vital to diagnose due to the risk of
infections or even death. Once these steps are completed, the source
resection surgery can be performed. Therefore, it is necessary to
improve the exactitude often diagnostic stage and expedite the
procedure.

In order to provide clinical tools to contribute to more accurate
diagnosis, several EEG signal processing algorithms have been devel-
oped. Some recent studies perform the analysis for single-channel
EEG signals [4,5] while others carry out a multichannel analysis
evaluating the synchronization between the EEG channels [6]. These
detection methods are based on different features calculated from
time and frequency domains [7,8]. Time domain features are usually
combined with other parameters in seizure detection algorithms. The
relative average amplitude, the relative average duration and the
coefficient of variation of the amplitude were implemented in a
commercial seizure detection monitor [9,10]. The Welch method and
the Short Time Fourier Transform (STFT) are commonly used to
estimate the power spectrum of a time sequence in EEG [11,12]. Some
common features extracted from the frequency domain are max-
imum power [12,13]; the central, mean and peak frequencies [14]
and the dominant frequency [7]. Besides, time-frequency (T-F)
analysis has been used to calculate energy distribution in the T-F
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plane [14-16]. In the post, feature extraction by Principal Component
Analysis (PCA) was done by De Lucia et al. [17], and Acharya et al. [18].
On the other hand, wavelet features [19-23] and chaotic features
such as entropies [5,24] were also used. Generally, those authors
performed combination of two or more techniques. Then, they test
the same set of features with more than one classifier [25-27].

The Empirical Mode Decomposition (EMD) is another method
used for epileptic seizure detection [14,19,28,29] but EMD has a
high computational cost and requires excessive processing time.

The present work presents an automatic algorithm that is
capable of detecting segments with epileptic seizures in long term
iEEG records. The proposed method is based on the relative energy
of the iEEG bands extracted from the power spectrum and the
wavelet decomposition of such iEEG bands. Specifically, the
relative energies of the iEEG bands (Theta, Alpha and Beta) are
used to detect the seizure and, then the wavelet decomposition is
used to obtain the time position of the seizure in the iEEG record.

The proposed algorithm is simpler than other related algo-
rithms and achieves similar or even better performances. Hence,
this algorithm could be used to facilitate the work of physicians
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Fig. 1. Block diagram of the proposed method.

in analyzing long-term iEEG records and it can be implemented
on a personal computer since the methods used require low
computational cost.

2. Materials

The iEEG database was recorded during invasive pre-surgical
epilepsy monitoring at the Epilepsy Center of the University Hospital
of Freiburg [30]. The iEEG database contains invasive EEG recordings
of 21 patients (13 M, 8 F, age=29.9+ 11.9 years) suffering from
medically intractable focal epilepsy. In nine patients the source of
epilepsy was located in the temporal lobe; another six suffered from
frontal focal epilepsy and one of parietal epilepsy. The other five
patients had two different epileptic sources, three with temporo-
occipital epilepsy and two with fronto-temporal and temporo-
parietal each. There are 196 iEEG segments available in the database
(only 89 of them with epileptic seizures). In order to obtain a high
signal-to-noise ratio, fewer artifacts, and to record directly from focal
areas, intracranial grid-, strip- and depth-electrodes were used. The
iEEG data were acquired using a Neurofile NT digital video EEG
system with 128 channels, 256 Hz sampling rate, and a 16 bits A/D
converter. Notch or band pass filters have not been applied in the
acquisition stage.

The iEEG recordings were divided into segments of 1 h. The 89
iEEG segments that have epileptic seizure contain only one seizure
per segment. The available data only include six intracranial EEG
channels. This database contains annotations done by trained
experts of the starting and ending times of the seizures.

3. Methods

The proposed method is designed to detect epileptic seizure in
long-term iEEG records acquired in pre-surgery studies. It is based
on the estimation and average of energies from /3, @ and € bands.
The proposed algorithm consists of three main blocks (Fig. 1). The
first block shows the preprocessing of the iEEG signal, the second
block presents the seizure detection and onset/offset time points
of the seizure are computed in the third block. A description of
each block is presented:

3.1. Preprocessing

The iEEG signals were band-pass filtered with a bi-directional
Butterworth second order filter with a bandwidth between 0.5 and
60 Hz.This bandwidth contained the useful information to detect
the epileptic seizure in iEEG [31]. The line frequency interference
was removed with a 50 Hz notch filter.
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Fig. 2. Relative power of the Theta (P’y(n)), Alpha (P’,(n)) and Beta (P’y(n)) bands corresponding to channels #4,#5 and #6. Patient #14, segment #19 (with epileptic seizure).
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3.2. Seizure detection

The epileptic seizure detection was performed in three steps.
They are described in the following sections.

3.2.1. Relative power spectrum

The power spectral density of each iEEG channel was estimated
by means of the Welch periodogram. It was implemented using a
1 s (256 samples) Hamming window and 50% overlapping.

Then, the relative power of thed (4-8 Hz),a (8-12 Hz) and f3
(12-30 Hz) bands were computed using the following expression.
Let S(f) be the value of the periodogram at frequency f(in Hz), then
the relative power of Theta (Py), Alpha (P,) and Beta (Ps) bands
are:

_2}3=45(f)' _2}2:35(/()_ p _Ef30=125(f)
- Pr > Pa= P FT Pr

Where Pr is the total power of the iEEG. It is calculated as:

Py M
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Pr= (2)

Then, for each iEEG channel, three series (Py(n), P,(n) and
Pj(n)) were obtained, one per each relative power (P, Py and Pp,
respectively). These series describe the variations of Py, P, and Py
across the records. Therefore, as six channels were considered, 18
series were obtained.

Fig. 2 shows 9 series of the 18 obtained for channels #4, #5
and #6 for patient #14, segment #19. This segment has epileptic
seizure.

Relative Power [N.U.]

3600

Time [s]

Fig. 3. Smoothed version of 18 derivatives of the series (P'(n)). Patient #14,
segment #19 (with epileptic seizure) (Blue: P’y(n), Red: P’,(n), Black: P’y(n)).

3.2.2. Derivative and average of the time series

First, smoothed versions of the 18 series were calculated using
a moving median filter. It was implemented as a window of 30 s
(7680 samples) moved in steps of 1 s (256 samples).

The derivative was estimated by the Newton's difference quo-
tient. It is a simple two-point estimation of the slope by a nearby
secant line through these points. The derivatives of the time-series
(Pg(n), Po(n) and Pg(n)) were performed in order to emphasize their
changes. They were calculated as [32]:

Py(n) ~ Py(n+1)—Py(n);
P;z(n) ~Po(n+ ])_Pu(n)§

/,() ~ Py(n+1)— Py(n); 3)

Where, Pg(n), P'y(n) and P’g(n) are the derivatives per each channel
(Fig. 3).

Further, the 18 derived series (P’(n)) were summarized into one
final series, which represented the seizure in only one series. The
final series (FSE(n)) was obtained by absolute value of the average
process of Py(n), P'y(n) and P’4(n) per each channel (ch), according
to the following expression:

6 6 6
X Ppm+ ¥ Ph(m+ ¥ Py(m)
FSE(H): ‘ch_l ch:l]s ch=1

“4)

The epileptic seizure was observed almost simultaneously in
every channel and, in the FSE(n) the seizure is represented as a
power increase. Moreover, the rest of the electrical brain activity is
not identical in every channel and thus, it is canceled or reduced
on the average process. This average process has been used in
electrocardiographic signals to emphasize events in the QRS
complex [33].

In order to smooth very short duration electrical activity, the
FSE(n) is re-filtered with a moving median filter of 30s (7680
samples).In Fig. 4 the final time series obtained from the data base
for one patient can be observed.

3.2.3. Threshold detection.

In this stage two thresholds were used, both were evaluated
over the FSE(n) (eq. (4)).One threshold evaluated the power of the
seizure and the other one evaluated the duration of the seizure.
Hence, a seizure is detected when FSE(n) exceeds both thresholds.
The first threshold was determined as three times the average
power of the FSE(n). It was empirically estimated in order to obtain
the maximum values of sensitivity and specificity over the data-
base. A ROC curve was performed with all tested threshold values
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Fig. 4. Epileptic Seizure detection. a) Absolute value of the final series (FSE(n)) and threshold. b) iEEG corresponding to Patient #14, segment #19 channel #1 (with epileptic

seizure).
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(from 1 to 6, with and increment of 0.1). Fig. 5 shows some of the
tested values as threshold.

The second threshold was defined as 30 s (7680 samples), it
was based on the typical duration of seizures (between 30 s and
1805) [3].

3.3. Onset-offset time point detection

Once a seizure was detected, the onset and offset time points of
the epileptic seizure were traced. Therefore, these points are
traced on a window beginning 30s (7680 samples) before and
finishing 30 s after of the previous seizure detection (time points
where the threshold was exceeded). The detection procedure was
based on the integration of the power of the Beta, Alpha and Theta
rhythms obtained from the Wavelet decomposition. Fig. 6

3.3.1. Wavelet decomposition

The Wavelet Transform (WT) allows the discrimination of non-
stationary signals with different frequency features[34].The Dau-
bechies 2 stationary WT was used to separate the 2s iEEG
segments in five scales. Subasi demonstrated that Daubechies
wavelet of 2" order achieves better classification efficiency than
some of the other common wavelets [19]. At the sampling rate of
the database (256 Hz), the frequency ranges of scales 3, 4 and 5 of
the Wavelet decomposition were D3:16-32 Hz; D4: 8-16 Hz
andD5: 4-8 Hz. Note, these scales have approximately the same
bandwidth of Beta, Alpha and Theta rhythms, respectively. Then,
the energy of each one of these three scales were calculated as:

N
liIEEGs = ’21 |ds(k)| (5)
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Fig. 5. ROC curve performed with all tested threshold values to estimate the
maximum values of sensitivity and specificity.

Where, liEEGs is the energy of the S scale (S= 3, 4, 5); ds(k) are the
wavelet coefficients of S scale obtained from decomposition of the
iEEG segment and N is the total number of coefficients. The [iEEGs
is closely related to the energy of each brain rhythm (Beta, Alpha
and Theta). The three [EEGs was calculated on the six iEEG
channels.

3.3.2. Threshold

First, a moving median filter was used to smooth the liEEGs of
each band. The filter was calculated using a window of 30 s (7680
samples) duration, which was moved in steps of 1 s (256 samples).

Then, a threshold was empirically determined as the double of
the median value of the [iEEGs. Hence, when the energy of the
liEEGs exceeded this threshold an onset/offset point was set. In
other words, the onset/offset point was determined as the inter-
section of the [EEGs with the threshold. Thus, 18 onset and
offsettime points were obtained from the 18 [iEEGs. Consequently,
the definitive onset and offset time points were obtained by
averaging those 18 onset and offset points.

4. Results

The algorithm was tested on 196 iEEG segments of 1 h duration
each (89 segments with and 109 without epileptic seizures). These
iEEG segments were extracted from the 21 patients with epilepsy
in the Freiburg database.

A positive detection is reported when flagged by the algorithm,
but all (the) detections within a 60s period are grouped so that
continuous bursts of positive detections are not over represented [35].

The values of the results are shown in Table 1 for each patient
of the database. The results are presented as: True Positive (TP: is
reported when a positive detection occurs within the time marked
as a seizure by human expert) [35], True Negative (TN: segments
without epileptic seizure that the algorithm correctly recognizes),
False Positive (FP: segments without epileptic seizure that the
algorithm detects erroneously), False Negative (FN: segments with
epileptic seizure that the algorithm does not detect). Note that the
database contains only one seizure per iEEG segment. Then, the
total number of segments TP+FP+TN+FN is 196, where TP+FN
(76 +13=89) represent the segments with epileptic seizures and
TN+FP (89+18=107) represent the segments with no seizure.
The algorithm detected 76 of 89 segments with seizure and 89 out
of the 107 segments without epileptic seizure.

Additionally, some statistical parameters were calculated in order
to determine the performance of the algorithm: False Detections
(FD:FP+FN), sensitivity (SEN:TP/(TP+FN)), specificity (SPE:TN/
(TN-+FP)) and positive predictive value (PPV:TP/(TP+FP)),[36]. The
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Fig. 6. Patient #14, segment #19 channel #1 (with epileptic seizure). Onset and offset time points.
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Table 1
Performance of the proposed algorithm.

Patient Number of 1h segments Gender Age FD SEN (%) PPV (%) SPE (%) Epilepsy type TP N FP FN
1 9 f 15 1 75 100 100 Frontal 3 5 0 1
2 6 m 38 0 100 100 100 Temporal 3 3 0 0
3 9 m 14 2 80 80 75 Frontal 4 3 1 1
4 10 f 26 1 100 833 80 Temporal 5 4 1 0
5 10 f 16 3 80 66.6 60 Frontal 4 3 2 1
6 8 f 31 2 100 66.6 50 Temp/Occip 4 2 2 0
7 6 f 42 2 66.6 66.6 66.6 Temporal 2 2 1 1
8 4 f 32 0 100 100 100 Frontal 3 1 0 0
9 10 m 44 3 80 66.6 60 Temp/Occip 4 3 2 1
10 11 m 47 3 60 75 83.3 Temporal 3 5 1 2
1 8 f 10 0 100 100 100 Parietal 4 4 0 0
12 8 f 42 2 75 75 75 Temporal 3 3 1 1
13 4 f 22 1 100 66.6 50 Temp/Occip 2 1 1 0
14 7 f 41 1 100 80 66.6 Front/Temp 4 2 1 0
15 10 m 31 1 100 80 833 Temporal 4 5 1 0
16 12 f 50 2 100 714 71.4 Temporal 5 5 2 0
17 15 m 28 1 100 833 920 Temporal 5 9 1 0
18 1 f 25 3 40 100 100 Frontal 2 6 0 3
19 13 f 28 1 75 100 100 Frontal 3 9 0 1
20 12 m 33 1 100 833 875 Temp/Pariet 5 7 1 0
21 12 m 13 1 80 100 100 Temporal 4 7 0 1
Total 196 31 85.39 80.85 83.17 76 89 18 13

results for each patient and the statistical parameters are shown in
Table 1 along with other details as gender, age and epilepsy type.

The differences between the onset-offset time points calculated
by the proposed algorithm and the ones provided by the database
are: Onset point detection (24 +/— 14 s) and Offset point detec-
tion (15 +/— 8s). In Table 2 the values of seizure onset and offset
detection points are shown. For example, in Fig. 3a the onset and
offset points marked by experts in an iEEG segment (Patient #14,
segment #19 channel #1) are presented. In Fig. 3b the points
obtained by the algorithm are presented as well. The difference
between these points for patient #14 are 19 s in the onset point
and 3 s in the offset point.

5. Discussion

In this article we proposed an algorithm which is a clinical tool
that helps experts achieve more accurate and faster diagnosis.
Besides, the capability of the algorithm to correctly detect an
epileptic seizure is measured by the SEN value; as well, the SPE
value measures the proportion of negatives which are correctly
identified as such. Therefore, it is essential to detect seizures with
a high SEN, that is, the algorithm should detect all the seizures.
However, a high SPE is not essential because the physician will
reject any false detection. Note that low SPE will produce too much
false detection and thus, more effort from the physician is
required. The SEN of the method from 11 patients was 100%. These
results demonstrate high accuracy for epileptic seizure detection
since the average SEN and SPE for all patients was 85.39% and
83.17%, respectively. The average PPV of the method is 80.85%. In
Table 1, from 87 segments with epileptic seizures, 76 were
correctly identified by the algorithm. This method is based on
the average process of multiple channels, thus the SEN would be
higher if additional channels were available for analysis.

In epileptic detection research, interpretation of the perfor-
mance depends on the application. Hence, the exact onset and
offset point detection is important for a system designed to stop a
seizure once it has started as in seizure prediction algorithms, but
not indispensable for a clinical review of the iEEG. Varsavsky et al.

proposed a detection strategy that deals with the ambiguity of
onset/offset marks. They stated that a TP is reported when a
positive detection occurs within 60 s of the onset/offset marked as
a seizure by a trained expert [35]. The marks of the proposed
algorithm differ from the ones provided by the database in
24 + 14 s (onset point) and 15+ 8 s (offset point). For example,
Fig. 3 shows the differences of 19 s in the onset point and 3 s in
the offset point between the database marks and the points
detected by the algorithm. Therefore, the latency achieved in the
present work is acceptable for seizure detection in visual inspec-
tion of iEEG records.

In the epileptic seizure detection area some researchers used
the same database (FSPEEG) to extract features and classify iEEG
segments [7,14,37-39], those results are presented in Table 3.The
SEN obtained in those papers is lower than the 85.39% obtained in
the current work, except for Raghuatham, et al.[37] and Zhang
et al. [39]. The former, achieved a slightly higher SEN(87.5%), but
they only evaluated five patients of the database. Zhang et al.
tested the entire database, however, a higher computational cost
methods was used. Moreover, Zhang et al. applied a different
approach based on patient-specific seizure detection, that is, the
method required previous training for each patient. The algorithm
proposed in this article does not require any previous training.

The proposed algorithm detects the epileptic seizures with
more sensitivity than other reviewed articles|[7,14,37-39], evalu-
ated over the same database.

Short-term EEG records are visually inspected by the physi-
cians; however, long-term records required many hours for the
visual inspection process. The method developed here is useful for
long iEEG records, because it is a simple and quick algorithm.
However, the specialist is still needed in order to validate the
results. In this sense, the physician is required to pay attention
only to those segments detected by the algorithm. Note that the
purpose of the method is to facilitate the work of physicians in
analyzing long-term iEEG records.

The proposed algorithm is self-tuned to each patient, that is, all
parameters are adjusted at the beginning of the iEEG record for
each patient. Therefore, the current algorithm can be evaluated in
other databases and its performance should be suitable for clinical
applications.
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Patient Segment with seizure Ictal period (s) Real onset time point (s) Offset time point (s) Delay onset detection(s) Delay offset detection(s)
#1 #7 19 356 375 29 7
#8 19 287 305 13 12
#14 7 320 328 No detection No detection
#15 7 1,363 1,371 17 14
#2 #15 147 3,201 3,348 24 15
#18 69 985 1,053 22 20
#21 139 2,997 3,135 10 21
#3 #105 109 2,423 2,531 12 16
#125 119 279 398 14 22
#127 117 1,359 1,475 25 23
#174 94 3,484 3,579 31 15
#176 25 202 227 No detection No detection
#4 #207 177 11 188 38 17
#304 85 3,471 3,556 27 9
#317 91 1,233 1,324 34 12
#223 91 265 356 10 10
#328 93 370 463 12 23
#5 #2 152 3,447 3,599 26 20
#13 15 3,570 3,585 No detection No detection
#24 28 317 345 31 8
#26 14 2,085 2,099 28 12
#33 15 3,302 3,317 12 18
#6 #11 108 2,881 2,989 34 13
#23 43 2,959 3,002 10 12
#30 49 981 1,030 21 15
#7 #36 320 344 664 No detection No detection
#346 80 2,512 2,592 22 10
#372 62 1,013 1,075 38
#8 #46 179 376 555 25 20
#69 149 2,059 2,207 12 22
#9 #26 39 157 196 26 19
#36 268 1,847 2,115 No detection No detection
#38 83 552 635 14 16
#50 88 40 127 22 20
#71 91 1,367 1,458 18 9
#10 #137 87 643 730 24 8
#162 63 1,545 1,608 No detection No detection
#166 1041 2,384 3,425 21 7
#194 1701 1,724 3,425 No detection No detection
#200 51 1,073 1,124 10 21
#11 #5 42 189 230 12 17
#24 116 2,036 2,152 18 20
#25 116 2,990 3,106 20 19
#31 356 709 1,065 11 14
#12 #5 62 4 66 No detection No detection
#15 58 274 332 10 7
#17 45 3,269 3,314 23 8
#19 56 1,511 1,567 26 12
#13 #1 76 636 712 12 20
#40 240 734 974 10 23
#14 #7 71 1,212 1,283 23 22
#15 359 2,269 2,628 21 9
#17 286 3,183 3,470 24 12
#19 149 2,003 2,152 11 18
#15 #6 32 3,385 3,417 10 19
#9 145 314 459 24 22
#41 92 1,906 1,998 12 9
#88 312 2,076 2,388 31
#16 #8 171 1,299 1,470 12 13
#27 94 1,578 1,672 15 9
#41 96 856 952 19 21
#48 87 1,501 1,588 10 17
#83 203 281 484 12 20
#17 #99 59 2,908 2,967 23 23
#110 103 2,962 3,065 16 21
#115 123 3,369 3,492 23 18
#123 95 1,670 1,765 10 20
#132 51 3,475 3,526 22 15
#18 #11 18 713 731 26 7
#13 15 2,390 2,405 28 19
#14 4 2,125 2,129 No detection No detection
#20 18 626 644 No detection No detection
#108 14 274 287 No detection No detection
#19 #15 23 35 58 12 15
#69 7 3,184 3,191 No detection No detection
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Table 2 (continued )

Patient Segment with seizure Ictal period (s) Real onset time point (s) Offset time point (s) Delay onset detection(s) Delay offset detection(s)
#90 11 1,180 1,191 15 20
#91 9 3,160 3,168 20 9

#20 #13 25 3,034 3,059 21 12
#25 90 2,650 2,741 24 18
#55 36 2,311 2,346 27 17
#82 179 2,146 2,325 12 14
#94 98 2,486 2,584 17 16

#21 #6 89 3,357 3,446 10 12
#8 68 2,182 2,250 19 21
#11 69 3,470 3,539 34 23
#44 68 2,653 2,721 No detection No detection
#51 121 1,518 1,639 24 21

Table 3

Researchers with the fspeeg database.

Author Processing techniques Number of patient from FSPEEG- IEEG Sen %
Schad et al., 2008 Time analysis 6 Between 38%-77%
Aarabi, 2009 Entropy/Frequency and time analysis All 68.9%
Orosco et al., 2011 EMD/IMF’s energy All 414
EMD/IMF'’s frequency |/ Time analysis All 69.4
Raghunathan et al., 2011 Wavelet- two linear time-based features 5 (#3,9, 14, 16 and 21) 875
Zhang et al., 2010 Nonlinear dimensionality reduction All 99.3
Garcés et al. Relative power spectrum/ Wavelet All 86.27
6. Conclusions References

This article presents an automatic algorithm that is able to
detect epileptic seizures in long-term iEEG records for clinical
applications.

The proposed algorithm is based on simple and low computa-
tional costs methods. Therefore, it reduces the visual inspection
time spent by physicians in pre-surgical studies analysis from
hours to minutes.

The proposed algorithm uses thresholds instead of complex
classifier such as neural networks, or support vector machines.
Therefore, no training step is required because the threshold is
calculated automatically from the records. Consequently, the
proposed algorithm can be applied to new records that have not
been previously presented to the algorithm. Additionally to its
simplicity, the achieved performance is similar or superior com-
pared to other related and more complex algorithms.

In summary, an iEEG signal processing algorithm has been
developed in order to provide physicians with clinical tools that
may help in achieving faster and more accurate diagnosis in pre-
surgical studies.
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