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Abstract

Postglottal flow in low-order dynamical systems modeling vocal fold motion is customarily considered one-dimensional. A relaxation
distance is however mandatory before the flow effectively complies with this approximation. A continuous vocal fold model is used to
show that this relaxation distance can impact voice simulation through the coupling strength between source and tract. The degree of
interaction raises if relaxation occurs closer to the glottis, introducing complexity in the response of the system.
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1. Introduction

This work addresses an issue that has plagued speech
modeling for a number of years, that is, coupling a flow
solution that requires a finite distance for the flow and
acoustics to reach one-dimensionality, with commonly-
employed acoustic solvers that assume that one-dimension-
ality occurs instantly at the glottis.

Voice production can be modeled with different degrees
of complexity. The essentials of the fluid—structure-acous-
tics interaction process can be captured by simple ordinary
differential equation systems (ODEs), where the folds are
represented by a mass-spring system, the fluid is repre-
sented by a quasi-parallel (1D) flow, and the acoustic
source is represented by a plane wave emitter at the glottis
(Sciamarella and Artana, 2009). The mucosal-wave model
(Titze, 1988) is an example of the low-order modeling
approach, in which the flapping motion of the vocal folds
is condensed in one second-order ODE. This model, ini-
tially conceived for small amplitude oscillations, was later
extended to account for large amplitude oscillations (Laje
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et al., 2001). In the extended version, an ad hoc nonlinear
damping term was added in the ODE to account for an
ensemble of effects ranging from the formation of the glot-
tal jet to the saturation mechanism responsible for stopping
the folds and interrupting the flow during vocal fold colli-
sion. The extended model has the particular advantage of
being continuous: the returning points of the oscillation
are included without resorting to piecewise functions. The
approach, shown to produce vocal fold oscillation with
physiologically realistic values for the parameters
(Lucero, 2005) and also applied to labial oscillation model-
ing in birdsong (Laje and Mindlin, 2008), was employed to
study the effect of source-tract coupling in phonation, ie.
of delayed feedback on vocal fold dynamics.

Feedback arises when the glottal system is coupled to
the vocal tract and pressure reverberations are allowed to
perturb vocal fold motion after a time delay given by sound
speed and vocal tract length. The inclusion of this delay
transforms the single ODE system into a DDE system
(delay differential equation), endowing the simple oscillator
with a complexity that can lead to subharmonic and non-
periodic solutions (Laje et al., 2001).

In an application of the DDE system to source-tract
interaction in birdsong (Laje and Mindlin, 2008), the
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transition zone between the avian source and the base of
the tract is modeled in terms of characteristic distances
which are redefined in this work for application to the case
of human voice. A transition or relaxation distance sepa-
rates the glottal outlet from the region where postglottal
flow can be effectively considered 1-D. This distance is
incorporated into the continuous vocal fold model, leading
to an expression for the pressure perturbations that
depends on this length scale.

This study considers the role of the relaxation distance
in human voice production. Unlike many of the parameters
involved in low-order vocal fold models, the finite distance
required for the flow and acoustics to reach one-dimension-
ality has a direct physical correlate in the development of
the glottal jet. It corresponds to the distance it takes the
flow exiting the glottis to regain a unidirectional profile
across the vocal tract section. Different values of this
parameter are to be expected depending on the spreading
rate of the jet and on the geometry of the jet-developing
region — epilarynx tube and vocal tract (Titze, 2008). The
spreading rate of a jet is known to depend on numerous
parameters (Gutmark and Grinstein, 1999), such as Rey-
nolds number, nozzle geometry and aspect-ratio. The pul-
sating nature of the glottal jet makes the scenario still
more complex, because most of these parameters are
time-varying. Moreover, the elongated geometry of the
glottal outlet leads to spreading rates with initially opposed
tendencies in the coronal and sagittal planes, that result in
axis switching (Sciamarella et al., 2012). Recent in vitro
studies (Krebs et al., 2012) are addressing the quantifica-
tion of the full flow field in the proximity of the glottis,
and therefore on the problem on which this work focuses,
with simple modeling tools. Correlations will be proposed
in this work with experimental data, in order to show
how the solution is affected by measured variations in the
development length of the flow.

The paper is organized as follows. Section 2 presents the
derivation of the equation system modeling human voice
with the relaxation length as an additional parameter,
together with an analysis of the involved scales. Section 3
contains numerical examples showing how the model pro-
duces qualitatively different behavior for different values of
the parameter. It also shows how solutions are affected if
the relaxation length is time dependent. Conclusions are
provided in Section 4.

2. The relaxation length in the model

Titze’s flapping model (Titze, 1988) is based on the geo-
metrical sketch of the vocal folds presented in Fig. 1. The
glottal areas at entry, mid-height and exit respectively are:

ay = 2Lg(xo1 +x + ')
ag = 2Lg((x01 +X02)/2 +X) (1)

ar = 2Lg(x0p +x — ')

Fig. 1. Frontal section of the flapping model for the vocal folds.

where x is the departure of the midpoint of the folds from
the prephonatory profile, L, is the glottal length in the
anteroposterior direction and 2t = T'/c,, is the time it takes
the surface wave to travel along the vocal fold body from
bottom to top at speed ¢,,. The constants xy; and xg, corre-
spond to the prephonatory positions, Axy = xo; — Xp2. The
equation describing the fluid-structure interaction is writ-
ten by lumping the mechanical properties of the vocal fold
tissue at the glottal midpoint:

Axy + 214

M+ K =P+ (P, —P)——
X'+ Kx+f, + ( )x01+x+rx'

2)
where M, K are the mass and stiffness (per unit area) of the
vocal fold medial surface, f, is the dissipative force and
pressures P, and P; stand respectively for the subglottal
(lung) pressure, and for the input pressure at the vocal
tract. The extension of the model by Laje et al. (2001) uses
a nonlinear dissipative force that is quadratic in (x — %),
where X is the position of equilibrium. This allows for large
amplitude oscillations since the squared term guarantees
high dissipation every time the departure from the station-
ary position x is large.

4 = B[l + C(x — )Y 3)

In this expression, B is the damping per unit area and Cis a
phenomenological coefficient. The effect of acoustic feed-
back is incorporated through the expression for
P; = P;(x,x). The pressure at the vocal tract input is com-
posed of two parts: the forward-propagating perturbations
generated by the time-varying flow injected by the vocal
valve s(¢), and a backward-propagating sound wave b(t)
due to reflections occurring in the tract. As in Laje et al.
(2001), the vocal tract is assumed to be a uniform tube of
length L, so that:

Pi(t) = s(t) + RP;(t — L/c,) (4)

where ¢, is the speed of sound and R the reflection coeffi-
cient at the interface between the vocal tract end and the
atmosphere. This simple boundary conditions assume that
the wave propagating along the tract is a plane wave. Let
us consider the region near the source, where the sound



178 D. Sciamarella, G. Artanal Speech Communication 66 (2015) 176-181

wave is not expected to be planar. Following Laje and
Mindlin (2008), let us assume that the vocal valve is a local
emitter of diverging spherical harmonic waves of the form:

s(r 1) = ? exp(i(wt — kr)) (5)

As in Laje and Mindlin (2008), Py can be determined by
the relationship between s and v (the particle velocity) for
a spherical sound wave at a distance d; from the source:

S(dl, I) = Z(d])l)(dl,t)
- p((kd,)? + iowd,) (6)
(1+ (kd1)*)

where k = 2nf /¢, is the wave number and f'is the sound
frequency. Combining Eq. (5) evaluated at » =d; and
(6), we have Py = exp(—i(wt — kdy))d,Z(d,)v(d,, ).

Let us now define d, as the relaxation distance where the
one-dimensional flow approximation becomes valid, ie.
where pressure perturbations and particle velocity depend
only on the streamwise coordinate, as illustrated in
Fig. 2. Evaluating Eq. (5) at » = d,, one obtains the expres-
sion that corresponds to s(¢) in Eq. (4). Since v is also a har-
monic function of time for a spherical harmonic sound
disturbance, v = iwv, and hence:

z(d,

S(dz, t) = %Z(dl) exp(fzk(dg — dl)l)(dl, t))
— Ro(dy, £) + Tv/(ds, ) (7)

Let us now introduce some case-specific assumptions differ-
ing from those in Laje and Mindlin (2008). To apply the
derivation to human voice, we will take as reference case
the parameters used in Laje et al. (2001) to study coupling
to the vocal tract. In this scenario, the resistive term Ruv is
more than two orders of magnitude lower than Zv'. The
same applies to the sine term (with respect to the cosine
term) within Zv/, so that:

Fig. 2. Coupling between source and tract: d; indicates the length scale of
spherical wave propagation and d, the length scale of the distance it takes
the flow to become one-dimensional, d, stands for the mean glottal
opening.

dipcosk(dy, — dy)]
dr(1 + (kd,)?)

By flow conservation, u(d,,t) = A,v(d,t) can be equa-
ted to u, (1) ~ a,(t)v, with v; = 2P,/p:

V(1) ~ a;if)vg RN o)

This leads to an expression for the forward-traveling
waves in terms of a coupling coefficient A depending on
lengths d; and d;:

s(da,t) = Ady, )X (1) = T(dy,d2)2Le\/2PJpX' (1) (10)

with Z = T /A,. The insertion of s(d,,?) as s(¢) in (4) leads
to a set of equations which explicitly include the distance
it takes the flow to relax to a one-dimensional profile.

The values of the coupling factor Z(d,,d,) for the two
length scales d; and d, are plotted in Fig. 3. As mentioned
before, our default parameters are those of the extended
model with coupling to vocal tract and feedback used in
Laje etal. (2001). This includes a value of T = 0.2 ms, which
corresponds to an oscillation regime with low tissue defor-
mation. To evaluate 4, in Z(d,,d,) we use A, = n(d,/2)’
with d, = 1 mm, the standard value for the mean glottal
opening.

Normal speech values for the inertance are typically
lower than 0.06 g/cm®. Fig. 3 shows that for certain values
of d, and d,, the coupling factor 7 attains values higher
than ~0.08 g/cm®, where tongues of subharmonic solutions
are reported to occur (Laje et al., 2001). This indicates that
dy and d, are potentially relevant scales in models
implementing the simplest explanation for vocal fold oscil-
lation with delayed feedback. Their values significantly
affect the degree of coupling (or coupling strength) and
can hence lead to qualitatively different dynamics, as will
be shown in the next section.

I(dl,dz) ~

(8)

d; [em]

ds [cm]

Fig. 3. Contour values of the coupling factor Z in (g/cm®) as a function of
d, and d, for the human voice reference case.
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Fig. 4. Solutions for different values of the relaxation distance d,. The top pannel shows phase space (%, y), the middle pannel shows the time series for x,

and the bottom pannel the time series for P;.

3. Numerical examples

Let us now use the DDE system as a voice simulator for
different values of the relaxation distance d,. Variables are
normalized using: ¥ = x/xg = x/xo; and ¢ =tf = t\/K/M
as in Lucero (2005). This yields:

¥=y (11)
~/ ~ ~ \2\~ ~ g g ~ A0+255/

V=—o(l+p(x—%)")y—%+Pi+ (P, — P T+i10p (12)
Pi(#) = i(dy,dy)j+ RP;(i—11) (13)

where the dimensionless control parameters are: o = B/f,
p= Cx(z), o=1f, A= Axo/xo, 11 =L/(c;f), Psi=Psif
([()C()), fo :)?/X(), and )u(dl,dz)\/KM:)u(dl,dz) =
I(dl,dz)ng\/ZPS/p.

As mentioned in the previous section, our default
parameter values correspond to the settings in Laje et al.
(2001) to study delayed feedback: K = 250 kdyn/cm?,
M =0.45g/cm?, B =100dyn/cm?, C=10"cm™2, xy =
0.1cm, xp =0.09cm, P,=15kdyn/cm? L,=1.4cm,
T=04cm, t=02ms, p=0.00114g/cm?® R=-0.9,
L=175cm, ¢, =3500 cm/s, d; = 1.5T.

Solutions corresponding to different values of d, are
shown in Fig. 4. For each solution we display the oscilla-
tion in the (¥,7) space, the time series for x(¢) and of the
pressure fluctuations P;(¢). As the relaxation length d,
decreases, solutions become dynamically richer and P; is

enhanced. The sequence shows three different solution
types as d, is lowered: a quasi-sinusoidal oscillation, an
asymmetric solution with skewing in the glottal pulse,
and a period-2 solution with skewing and ripples in the
glottal waveform.

Let us finally bring into consideration that d, is not a
static parameter, since it depends on the dynamics of the
glottal jet. Recent 3D experimental studies of the glottal
jet (Krebs et al., 2012) show that the magnitudes quantify-
ing its intra-cycle development are not constant. In conso-
nance with these observations, let us conjecture that d, is
correlated to the glottal flow pulsations given by
U(t) = U(x(¢)). This involves letting d» = d,(x(?)).

Let us expressly assume that d, fluctuates as the flow
rate increases and decreases. Since in this model
U(t) < x(¢), let us pose da(t) = dao + fxy X(¢) with f a phe-
nomenological factor. To estimate this factor, we consider
that d, advances (and recedes) as the jet axis-switching
crossover position advances (and recedes) within the open
phase of the cycle (Krebs et al., 2012). Let us set f* ~ 5: this
introduces an ¥ dependence in the delay equation for P;(7):

Pi(f) = i(dx(%))7 + RPi(f — 11) (14)

Let us now numerically integrate the system formed by
(11)—~(14). Using dyy = 0.65 cm as in the last example of
Fig. 4c, the solution that results retains some but not all
of the features of the static 0.65 cm case. The rippled glottal
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Fig. 5. Period-1 solution for d, = 0.65 cm + 5x(¢). The top pannel shows
phase space (¥,7), the middle pannel shows the time series for x, and the
bottom pannel the time series for P;.

waveform is similar but the 2-period solution becomes a 1-
period solution. The introduction in the model of a time-
varying relaxation distance is thus found to help moderate
the complexity of the solution (see Fig. 5).

4. Conclusions

Simple mathematical models are particularly useful to
study in isolation the different sources of complexity that
intervene in vocal fold behavior and hence in sound pro-
duction. In studies devoted to the problem of source-tract
(Laje and Mindlin, 2008) and source-source interaction
(Laje et al., 2008) in oscine birds, coupling is treated with
an approach that is more general than the traditional
impedance approach. This rationale is applied back to
speech communication in this work.

Following recent velocimetry measurements for the glot-
tal jet (Krebs et al., 2012), it is postulated that glottal flow
regains a quasi-one-dimensional profile across the tract at a
finite distance from the source. Combining ingredients
from human (Laje et al., 2001) and birdsong (Laje and
Mindlin, 2008) toy models, a delayed differential equation
system is obtained and used as a voice simulator to evalu-
ate the influence of this relaxation distance. Numerical
examples show that a significant sensitivity to this magni-
tude exists through the coupling strength.

The assumption of 1D postglottal flow is in fact an
unphysical hypothesis. Our study shows that when feed-
back is taken into account, this common assumption is
not deprived of consequences. For low values of the relax-
ation distance (i.e. comparable to the size of the vocal
folds), the degree of coupling is shown to reach levels where
subharmonic responses are possible. Delayed feedback is
one of the possible mechanisms underlying subharmonici-
ty, also reported to occur in the case of asymmetrical vocal
fold motion (Steinecke and Herzel, 1995; Svec et al., 1996)
or in the Kargyraa style of harmonic chant (Levin and
Edgerton, 1999). Larger values of the relaxation distance,
instead, are shown to undermine the enhancement of
delayed feedback, moving the system back to normal vocal
fold behavior — where subharmonic response is untypical.
Moreover, an intra-cycle time-variation of the relaxation
length (in phase with glottal flow, as indicated by experi-
mental studies Krebs et al., 2012) can drive the response
from the system back from a period-2 state to a period-1
solution, as shown by our numerical simulations.

In short, to the parameter set that controls the degree of
source-tract interaction in phonation (including geometri-
cal factors, such as the exact dimensions of the epilarynx),
this work incorporates the role of commonly disregarded
fluid dynamical factors, such as the non-planar characteris-
tics and intra-cycle dynamics of postglottal flow: both are
shown to have a moderating influence over coupling
strength and therefore, over dynamical complexity. In
other words, jet relaxation is found to provide a physical
mechanism inducing a regularization of vocal fold behav-
ior, there where the assumption of one-dimensionality
occurring instantly at the glottis produces subharmonicity.
There is still a paucity of information regarding the three-
dimensional fluid dynamics of postglottal flow in phona-
tion, which this work encourages to fulfill. An analysis of
the manner in which the relaxation distance changes with
subglottal pressure, stress—strain vocal fold characteristics,
and other parameters controlling vocal fold motion would
provide further insight on the effective role of this physical
mechanism in real phonation.
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