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Abstract

The study of a Lennard-Jones (LJ)-based model for viscosities led us to concentrate on a recent high-quality
pressure–density–temperature LJ equation of state (EOS). The application of LJ-EOSs to real fluids typically
requires introducing a temperature dependence on the LJ intermolecular potential parameters. Though this goal has
been the matter of previous works, we have found the following problems: (a) relatively low quality of the unmodified
LJ-EOS (U-LJ-EOS) used as the basis for real-fluid computations; (b) uncontrolled use of the U-LJ-EOS outside the
range of conditions of the supporting molecular simulation data; (c) poor reproduction of the pure-compound critical
temperature and/or critical pressure and (d) need of iterative calculations either to compute the vapor pressure at a
given temperature or to regress the values of the LJ parameters from experimental data at saturation.

In the present work, we address all these problems, and provide useful equations to compute properties at
saturation through non-iterative procedures. These procedures conserve the quality of the output numerical result,
in comparison to the corresponding iterative algorithms. We examine a number of options for the LJ temperature
dependence. Some of them make possible to represent accurately the vapor pressure, in a wide range of temperature,
for non-polar, polar and heavy compounds. We also scrutiny the potential (unwanted) appearance of crossing pressure
versus volume isotherms, which can be produced by the introduction of a temperature dependence, and propose a
simple test to systematically assess the range of applicability of a chosen temperature dependence. We also illustrate
here the effect of a good vapor–pressure reproduction on the prediction of viscosities. © 2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Models based on molecular theory have a greater potential for describing accurately the physical
properties of real fluids. This is due to the microscopic picture of matter associated to these models.
Among the available model-fluids used in molecular theory, the Lennard-Jones (LJ) fluid is known to
grasp the essential behavior of real substances.

The expression for the LJ intermolecular potential is the following.

u(r) = 4ε

[(σ
r

)12
−

(σ
r

)6
]

(1)

where r is the intermolecular distance, u the potential energy, ε the depth of the LJ potential well and
σ the LJ separation distance at zero energy. According to Eq. (1), the potential energy shared by two
molecules depends on their relative positions as specified by only the coordinate r. This is strictly valid
only for spherically symmetric molecules. The intermolecular potential for more complex molecules
actually depends on additional coordinates such as angles of orientation [1]. However, for practical
reasons, the modeling of physical properties for systems containing complex molecules, has been often
based on the properties of the LJ fluid. For instance, Sun et al. [2] presented, for viscosity (among other
properties), a method which combines the rough sphere theory with LJ viscosities, and applied it to liquid
n-alkanes up to n-C16H34. Reid et al. [3] reviewed estimation methods for low-pressure gas viscosities
including a method that, while based on LJ viscosities, is applied to non-spherical polar and non-polar
molecules. Sun and Teja [4] have modeled the vapor–liquid equilibria of systems containing polar or
elongated molecules using a LJ-EOS with temperature-dependent effective LJ parameters. In this case
all the complex interactions taking place between real non-spherical molecules, often with presence of
polar or specific intermolecular forces, are lumped into a single pseudo LJ intermolecular potential. This
approach is acceptable for engineering calculations and hence we follow it in the present work.

The LJ reduced temperature T+, reduced pressure P+, and reduced density ρ+ are conventionally
defined as follows.

T + = kT

ε
(2)

P+ = Pσ 3

ε
(3)

ρ+ = NAρσ
3 (4)

where k is the Boltzmann’s constant, T the absolute temperature, P the absolute pressure, NA Avogadro’s
number, ρ the mole density (in, e.g. mol cm−3 units). The variable ρ+ can reach values higher than unity.

A fundamental problem of the LJ fluid is that its practical reduced temperature value at the triple point
Tr,LJ,tp is normally higher than that of real fluids. Below Tr,LJ,tp, the LJ fluid, at equilibrium, can be either
a solid or a low-density vapor. Hence, at T r < T r,LJ,tp, and for any property, no reference equilibrium LJ
value can exist for a real dense fluid. In such a case the user needs to resort to extrapolations. One possibil-
ity consists of setting extrapolation schemes based on LJ properties under metastable conditions computed
through computer experiments (e.g. molecular dynamics, Monte Carlo). The other option consists of set-
ting extrapolation schemes for LJ equations of state (EOSs), based on the known qualitative behavior that
a dense LJ fluid should meet to be realistic. The disadvantage of using properties of a metastable dense LJ
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fluid, calculated using molecular simulation, is that more than one metastable condition may be compatible
with the adopted values for the degrees of freedom. Hence, we apply here LJ-EOSs extrapolations.

We are presently studying a viscosity model based on a LJ viscosity equation of state (VEOS) [5]. Such
a VEOS provides the LJ viscosity as a function of temperature and density. The normal engineering need
is to compute viscosities at a given temperature and pressure. Hence, a pressure–temperature–density
LJ EOS is required. In the present work we study a high quality LJ-EOS. We use it freely only within
the proper temperature–density range and propose suitable extrapolation schemes for calculations falling
outside the original range of applicability. As with cubic EOSs, we force the model criticality to occur
at the experimental critical temperature and pressure. Such a choice results in a too volatile LJ fluid.
Hence, we introduce a temperature dependence into the LJ energy parameter ε, using non-iterative
calculations, to improve the vapor pressure description. Our preliminary work had the aim of assessing
the potential of using a LJ-based approach for modeling viscosities [6]. In such work, we held constant the
LJ parameters and we restricted the use of the working equations to their original ranges of applicability
(no extrapolations were allowed).

In summary, for the chosen LJ-EOS the main purposes of this work are: (a) to device a procedure to
make possible to compute a reasonable value for the LJ fluid–density at any condition of temperature
and pressure, e.g. at reduced temperatures below Tr,LJ,tp and (b) to force the model to be consistent with
known or accepted values of the pure component vapor pressure, using simple mathematical procedures.
Actually, it is not our goal to generate a highly predictive model for the vapor pressure. Rather, we
want the chosen LJ-EOS to give both liquid-like and vapor-like roots within the proper pressure range,
for a given isotherm, through forcing the vapor pressure reproduction. Some other advantages of this
approach are: (1) proper limits reached when the EOS is used for mixtures, or for subcooled liquids or for
subcritical superheated vapors; (2) consistency among experimental vapor pressure values and calculated
fugacity coefficients, phase densities, enthalpies and other thermodynamic properties at saturation and
(3) potential prediction of viscosities from vapor pressures at subcritical temperatures, or possibility of
exporting the form of the temperature dependence obtained from vapor pressures to the representation of
viscosities.

A flexible temperature dependence carries on the danger of producing crossing pressure versus density
isotherms [7]. We also look at this problem in the present work.

2. The PVE/hBH Lennard-Jones equation of state

The first step consists of choosing a high quality LJ EOSs. Kolafa and Nezbeda [8] proposed such an
analytical EOS for the LJ fluid. The PVE/hBH LJ-EOS. This EOS is based on a perturbed virial expansion
with a theoretically defined temperature-dependent reference hard sphere term. The use of two theoretical
terms implies that only a simple empirical correction is required to reach the needed accuracy [8]. This
correction demands less parameters than modified Benedict-Webb-Rubin (MBWR) LJ-EOSs or other
purely empirical LJ-EOSs (see [9] and references therein). A recent example of a MBWR–LJ-EOS is
the one proposed by Sun and Teja [4]. The PVE/hBH LJ-EOS is based on critically assessed computer
simulation data from several sources. Mecke et al. [10] confirmed the good quality of this LJ-EOS. The
PVE/hBH LJ-EOS is the following.

z = P+

ρ+T + = fKN(ρ
+, T +) (5)
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where z is the compressibility factor and fKN a function of ρ+ and T+, available in [8]. However, we
presented the working equations for fKN more concisely in our recent work [6]. The temperature range
of application of Eq. (5) is 0.68 ≤ T + ≤ 10. The range for ρ+ is from 0 to the density of the dense LJ
fluid in equilibrium with the LJ solid (ρ+

fluid,SFE). The LJ triple point temperature is T +
tp = 0.687 ± 0.004

[11], therefore we decided to use Eq. (5) in the temperature range 0.7 ≤ T + ≤ 10. The LJ-EOS used by
Sun and Teja [4] has a temperature range of application 0.45 ≤ T + ≤ 6. Hence, when used for a dense
fluid at T + < 0.687, their LJ-EOS acts as an extrapolation tool. The critical coordinates corresponding
to Eq. (5) are the following [8].

T +
c = 1.3396 (6)

P+
c = 0.1405 (7)

ρ+
c = 0.3108 (8)

zc = 0.3375 (9)

We have found that, in spite of the non-cubic nature of this EOS, the number of ρ+ values compatible
with given physically meaningful values of T+ and P+ never exceeds the number of three, as in the case
of semi-empirical cubic EOSs (e.g. [12]), as long as the PVE/hBH LJ-EOS is used within the original
range of applicability. At subcritical temperatures, an efficient way to compute the number of ρ+ values
compatible with a given value of P+ is to locate first the two P+ local extrema [13]. Using this method, we
did not find any problem with regard to root discrimination even at subcritical temperatures very close to
the critical one. The LJ-EOS, Eq. (5), cannot be reliably used at T + < 0.68, as illustrated in Fig. 1, which
shows the pressure P+ as a function of density ρ+ at two different values of temperature T+, for Eq. (5).
The T + = 0.7 isotherm has the proper shape. However, the T + = 0.27 isotherm has an unphysical shape
due to the presence of multiple local extrema. The T + = 0.27 isotherm of Fig. 1 clearly illustrates the
potential danger that lies behind the direct use, beyond their original range of validity, of EOSs based on
molecular theory.

Fig. 1. Lennard-Jones fluid pressure as a function of density at constant temperature according to Eq. (5).
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3. Density of the dense LJ fluid in equilibrium with the LJ solid (ρ+
fluid,SFE)

To use Eq. (5) we need to know the value of ρ+
fluid,SFE. Agrawal and Kofke [11] reported properties of

the LJ fluid at solid–fluid coexistence from the LJ triple point temperature up to very high temperatures.
Agrawal and Kofke [11] provided the following semi-empirical fit of the melting line.

P+
SFE = β−5/4(A+ Bβ + Cβ2) exp (−Dβ1/2) (10)

with

β = 1

T + (11)

where P+
SFE is the melting pressure P+. The parameters of Eq. (10) are the following [11]: A = 16.89,

B = −7.19, C = −3.028 and D = 0.4759. Eq. (10) corresponds both to the solid–liquid equilibrium
and to the solid-supercritical fluid equilibrium. Eq. (10) is not valid for the LJ solid–vapor equilibrium
that takes place at temperatures lower than the LJ triple point temperature. The range of Eq. (10) is
0.00365 ≤ β ≤ 1.456, which corresponds to the (wide) T+ range 0.686813 ≤ T + ≤ 273.973. A
reliable method to compute ρ+

fluid,SFE at a given value of T+ consists of calculating first the pressure of
LJ solid/dense–fluid equilibrium P+

SFE using Eq. (10). The resulting value of P+ is then introduced into
Eq. (5) to obtain ρ+

fluid,SFE (in case of more than one root, the highest density root should be chosen). The
ρ+ values obtained in this way, for the T+ range of Eq. (5), agree very well [6] with the values of ρ+

fluid,SFE

reported by Agrawal and Kofke [11]. The density ρ+
fluid,SFE increases with T+, reaching a value of the

order of 1.5 at T + = 10.

4. Consistency tests and extrapolation schemes

The pressure of an homogeneous fluid held at constant volume increases with temperature. A given
EOS violates this fundamental restriction whenever different pressure versus density isotherms intersect
each other. The potential appearance of this problem is often studied by generating plots, or not studied
at all. A more suitable way of assessing the EOS consistency is to look at the sign of the derivative of
pressure P with respect to temperature T, at constant density ρ, in a wide enough region of the T − ρ

plane. For constant values of ε and σ , the consistency requirement for the PVE/hBH LJ-EOS can be
written as follows.(

∂P+

∂T +

)∣∣∣∣
ρ+
> 0 for ρ+ > 0 (12)

We define ρ+
∞ as the finite density value at which pressure tends to +infinity (+∞) in Eq. (5). The

inverse of ρ+
∞ is conventionally called ‘covolume’. For 0.7 ≤ T + ≤ 10, it can be shown that ρ+

∞ is roughly
equal to 1.65–2.1 times ρ+

fluid,SFE, depending on the value of T+. We calculated the above derivative using
Eq. (5) at grid points belonging to the domain 0.7 ≤ T + ≤ 10 and 0 < ρ+ < ρ+

∞ and did find violations
within most of the region defined by the range ρ+

fluid,SFE < ρ+ < ρ+
∞. Fortunately, no violations at all

were found within the (proper) density range 0 < ρ+ ≤ ρ+
fluid,SFE. The grid steps used were �T + = 0.1

and �ρ+ = 0.01. We computed the derivative of restriction (12) using finite differences.
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5. Scheme for pressure extrapolations in density

Within the temperature range of Eq. (5) calculations for real fluids may require to compute the pressure
at a density exceeding the value of ρ+

fluid,SFE without violating restriction (12). Defining the function hKN

as

hKN(ρ
+, T +) = P+ = ρ+T +fKN(ρ

+, T +) (13)

we set the following linear extrapolation scheme, which defines the function g(ρ+, T +)


for 0.7 ≤ T + ≤ 10

P+ = g(ρ+, T +) =
{
hKN(ρ

+, T +) for ρ+ ≤ ρ+
fluid,SFE

hKN(ρ
+
fluid,SFE, T

+)+ [ρ+ − ρ+
fluid,SFE](h′

KN)ρ+
fluid,SFE

for ρ+ > ρ+
fluid,SFE

}

(14)

where (h′
KN)ρ+

fluid,SFE
is the partial derivative ∂hKN/∂ρ

+ evaluated at T+ and at ρ+ = ρ+
fluid,SFE.

Note that the above scheme is such that a finite value of density at which pressure tends to infinity
does not exist, and hence no ‘covolume’ is associated to Eq. (14). To make a meaningful comparison
against the extrapolation-free original Eq. (5), we tested restriction (12), using Eq. (14), within the same
(T+, ρ+) grid previously described. We found no violations at all, even at extremely high densities, thus
demonstrating the suitability of the above linear extrapolation scheme.

6. Scheme for pressure extrapolations in temperature

For calculations at temperatures outside the range 0.7 ≤ T + ≤ 10, we set the following extrapolation
equations.

P+ = P+
ref + ρ+(T + − T +

ref) with T +
ref =

{
0.7 for T + < 0.7
10 for T + > 10

(15)

where

P+
ref = g(ρ+, T +

ref) (16)

From Eq. (15), it is clear that the pressure versus density isotherms in the range {T + < 0.7 and
T + > 10} are totally determined by the T + = 0.7 isotherm and the T + = 10 isotherm. Hence, no
calculations of ρ+

fluid,SFE are required outside the range 0.7 ≤ T + ≤ 10. Eq. (15) corresponds to assuming
that the residual pressure 	P+ − ρ+T +
 is independent of temperature for T+ beyond T +

ref , and equal
to the residual pressure [P+

ref − ρ+T +
ref ] at T +

ref and ρ+. The word ‘residual’ implies here the difference
between the LJ pressure and the ideal gas pressure (P+

ideal gas = ρ+T +) at fixed temperature and density.
Since the original PVE/hBH LJ-EOS gives the ideal gas law at low density, the extrapolation scheme
(15) has the same behavior. The coupled Eqs. (14) and (15) cover all possible (T+, ρ+) conditions.
We studied restriction (12) for the coupled Eqs. (14) and (15), in the rectangular wide-ranging domain
0.01 ≤ T + ≤ 20 and 0 < ρ+ ≤ 2.6. We found no violations, thus confirming the suitability of the coupled
Eqs. (14) and (15). Actually, the extrapolation scheme (15) is such that the pressure P+ is proportional to
the temperature T+. Hence, by construction, the model avoids the problem of crossing isotherms, in the
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Fig. 2. Pressure as a function of density at constant temperature for the EXT-EJ-EOS.

temperature range {T + < 0.7 and T + > 10}. Appendix A provides more details on scheme (15). We
inspected the shape of pressure versus density isotherms generated using scheme (15) at low temperatures
(T + < 0.7). The isotherms had the proper shape showing a low-density local maximum in pressure and
a high-density local minimum, confirming the right qualitative behavior of scheme (15).

The combined schemes (14) and (15) make possible to compute a LJ value of P+ at any positive
values of T+ and ρ+, keeping a tight control on the model qualitative behavior at low and supercritical
temperatures. The present extrapolation strategy should be preferred to the blind extrapolation of Eq. (5)
outside the range of the supporting LJ molecular simulation data.

The set of Eqs. (5), (13)–(16) defines a LJ model that we call EXT-LJ-EOS. Fig. 2 shows pressure versus
density isotherms for the EXT-LJ-EOS. The T + = 0.1 isotherm falls outside the original temperature
range of Eq. (5), but due to the extrapolation scheme (15), it has a proper shape. The EXT-LJ-EOS is not
really as complicated as it might look at first sight. It can be easily programmed in a computer and it is
well-behaved. The core equation of the EXT-LJ-EOS is the PVE/hBH EOS, i.e. Eq. (5), which has an
algebraic form necessarily more complicated than simple cubic EOS, because it is aimed to reproduce
results from computer experiments. This is the price to be paid for switching from more empirical EOSs
to EOSs based on molecular theory, together with the need of having to set extrapolation schemes. With
the current availability of fast and relatively inexpensive computers, algebraic complexity is not really an
issue, as long as the model is well behaved.

7. Saturated vapor pressure with the EXT-LJ-EOS

Eqs. (14) and (15) completely define the EXT-LJ-EOS relation among P+, ρ+ and T+, at any possible
(T+, ρ+) condition. From such relation and from exact thermodynamics, the expression for the fugacity
coefficient ϕ can be found. Careful attention should be paid to the proper introduction of the extrapolation
equations within the expression for ϕ. We tested our codes for ϕ, in all (four) (T+, ρ+) regions of Eqs. (14)
and (15), through numerical differentiation according to [14]. We obtained the saturated vapor pressure
P+,sat, in a wide temperature range, by solving the isofugacity condition for the pure LJ fluid. Since the
integration variable is the density, within the (not shown) expression for ϕ, the results are valid both
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Table 1
Sample results for the saturated vapor pressure computed using the EXT-LJ-EOS

T+ 0.05 0.15 0.25 0.5 0.75
P+,sat 1.2810 × 10−33 1.9946 × 10−12 4.6963 × 10−8 1.2445 × 10−4 2.6241 × 10−3

T+ 0.95 1.1 1.3 1.3395
P+,sat 1.7478 × 10−2 4.5857 × 10−2 1.1972 × 10−1 1.4045 × 10−1

for constant and/or for temperature-dependent values of ε and σ . We stress that, if ε and σ are made
temperature-dependent, then Eq. (32) of [8] for the LJ internal energy becomes invalid. Table 1 shows
some of the computed values.

For 0.7 ≤ T + ≤ T +
c our computations agree well with those which Mecke et al. [10] reported for the

PVE/hBH LJ-EOS. We extended the calculation up to extremely low values of T+ in order to use the
model for compounds, such as propane, having an extremely low ratio between the triple point pressure
and temperature. At this point, it is important to remark that it is better to write the expression for ϕ in
terms of T+ and the compressibility factor z, rather than in terms of T+ and ρ+, mainly if calculations at
very low temperature have to be carried out.

Following Soave [15] we correlated P+,sat as a function of T+, and also the inverse function, to perform
further vapor pressure calculations or parameter regressions in a non-iterative way. The results are the
following.

Y = Fdir(X) (17)

X = Finv(Y ) (18)

where

Y = P ∗

T ∗ (19)

X = 1

T ∗ (20)

P ∗ = P+

P+
c

(21)

T ∗ = T +

T +
c

(22)

We define the explicit functions Fdir and Finv in Appendix B. The correlation error associated with
functions Fdir and Finv is low enough to make possible to replace iterative calculations by explicit calcula-
tions. Eq. (17) makes possible to calculate saturated vapor pressures explicitly, while Eq. (18) is useful for
parameter regression and/or for setting a temperature dependence for the LJ ε parameter, non-iteratively,
as shown below.

The functions Fdir and Finv in Appendix B depend on a number of parameters. However, these parame-
ters are general for the EXT-LJ-EOS, i.e. they are not compound-specific. Appendix B parameters have the
sole purpose of replacing iterative calculations by explicit calculations without loss of quality in the output
result. The modeling potential of the EXT-LJ-EOS is obviously independent on the calculation method
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chosen for computing vapor pressures. Hence, the user may completely ignore, if he/she wants, the infor-
mation available in Appendix B when calculating a pure-compound vapor pressure for the EXT-LJ-EOS,
and use instead any method for solving the necessary condition of equilibrium written for the EXT-LJ-EOS.
However, that would be impractical. To fix ideas, it is much easier and faster to calculate a vapor pres-
sure, for the present non-cubic EXT-LJ-EOS, using the direct procedure represented by Eq. (17), than
calculating a vapor pressure for a simpler empirical EOS using the conventional iterative procedures.

When using the one fluid approach, i.e. for mixture parameters which are composition weighed averages
of the pure compound parameters, the relationship among T+, P+ and ρ+ is assumed to be the same than
the one valid for the pure compounds. In such a case, Eq. (17) can be used, within EXT-LJ-EOS computer
codes for mixtures, to quickly locate a pressure value for which liquid- and vapor-like roots exist.

8. Introducing a temperature dependence into the EXT-LJ-EOS

In this work we chose to obtain the critical values of ε and σ , i.e. εc and σ c, from Eqs. (2), (3), (6)
and (7) used with the experimental values of the critical temperature Tc and of the critical pressure Pc.
Thus, the experimental critical T, P coordinates are exactly reproduced as in the case of cubic EOSs. We
discussed the advantages of this choice elsewhere [6]. Sun and Teja [4] did not force such a reproduction,
and hence criticality corresponded in their work to Tc and Pc values different from the experimental ones.
If ε and σ are set to be constant and, respectively, equal to εc and σ c, then the predicted vapor pressure
becomes too high, mainly at low temperatures. Hence, it is necessary to introduce a proper temperature
dependence for these parameters.

From Eq. (2) the following equation can be derived.

T +

T +
c

= Tr

αε

where

Tr = T

Tc
(24)

αε = ε

εc
(25)

If ε does not depend on temperature, then the variable αε is equal to unity. As in [4] we held σ constant
with temperature and equal to σ c. Hence, from Eq. (3) it can be shown that

P+

P+
c

= Pr

αε

where

Pr = P

Pc
(27)

Combining Eqs. (17), (23) and (26), we write

Pr

Tr
= Fdir

(
αε

Tr

)
(28)
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If αε is known as a function of temperature, Eq. (28) makes possible to compute explicitly the vapor
pressure at saturation for a given temperature, using the EXT-LJ-EOS. Combining Eqs. (18), (23) and
(26), we write

αε

Tr
= Finv

(
Pr

Tr

)
(29)

Eq. (29) makes possible to regress from a experimental vapor pressure data point the value of αε that
reproduces exactly the experimental vapor pressure. Soave [15], Zabaloy and Vera [12], and Sacomani
et al. [16] used relations such as Eqs. (28) and (29) for the case of cubic EOSs.

Let us assume that the temperature dependence of the vapor pressure of a pure compound is known.

P sat
r = f0(Tr) (30)

where f0(Tr) is a known explicit analytical function of Tr which represents well the vapor pressure curve
(VPC) of the chosen pure compound, either through generalized parameters or through compound-specific
parameters. The function (30) can be directly introduced into Eq. (29) to define the temperature depen-
dence of αε. Then, if the result is introduced into Eq. (28), the back calculated pressure will be virtually
equal to the value obtained with Eq. (30) due to the low error associated to the functions Fdir and Finv.
This technique is somehow an hybrid between the techniques used in [12,16] for cubic EOSs. What is
gained by the user, who obtains the αε temperature dependence as described, is to force the EXT-LJ-EOS
to be fully consistent with the known experimental pure-compound vapor pressure. We already discussed
in the introduction the advantages of such situation. The practical fact here is that we get vapor–pressure
consistency without having to resort to iterative calculations. Hence, for the chosen compound, the
vapor–pressure-consistent analytical (explicit) form for αε is the following.

αε = TrFinv

[
f0(Tr)

Tr

]
(31)

When using Eq. (31) the quality in the vapor pressure representation achieved by the EXT-LJ-EOS
is the same than the original quality of f0(Tr). The difference is that the EXT-LJ-EOS can be used to
calculate many thermodynamic properties, while the function f0(Tr), if not coupled to the EXT-LJ-EOS,
is limited to only one property: the vapor pressure. Eq. (31) sets the αε temperature dependence from
information at saturation. The result is then used for calculations using Eqs. (14), (15), (23), (26) and (31)
at any condition (saturation or not), as long as the temperature does not exceed the critical one. This is the
conventional chemical engineering approach. For temperatures higher than the critical Eq. (31) should
not be used. The user may set ε = εc and σ = σ c at temperatures higher than Tc or get their temperature
dependence from another property, measured at supercritical temperatures.

9. Real fluids: forms for the αε temperature dependency

We used the pure-compound DIPPR database [17] as our source of the following experimental data:
Tc, the triple point temperature Ttp, and the VPC [P sat

r = fDIPPR(Tr)] in the range [Ttp, Tc]. For full
consistency, using the DIPPR–VPC, we obtained: (a) the vapor pressure at the triple point P sat

tp as fDIPPR

at Ttp; (b) Pc as fDIPPR at Tc and (c) the acentric factor ω and the boiling point temperature Tb, from their
definitions and from fDIPPR. We used a database of more than 100 compounds of varied nature.
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We studied a few forms for f0(Tr) that we introduced into Eq. (31). In all cases we inspected the
following restriction.(

∂Pr

∂Tr

)∣∣∣∣
ρ

=
(
∂Pr

∂Tr

)∣∣∣∣
ρ+
> 0 for ρ > 0, (ρ+ > 0) (32)

From the fact that the EXT-LJ-EOS does not violate restriction (12) in a wide (T+, ρ+) domain we
cannot conclude that restriction (32) will be automatically satisfied. Compliance with restriction (12),
which is written in terms of dimensionless variables, guaranties the satisfaction of constraint (32) only
for constant LJ parameters. Hence, for temperature dependent LJ parameters restriction (32) should be
checked. Note that since, in this work, we set σ constant with temperature and equal to σ c, from Eq. (4), it
is clear that constant ρ implies constant ρ+. For this test, we used a grid corresponding to T r,tp ≤ T r ≤ 1
and to 0 < ρ+ ≤ 2.6, where T r,tp = T/T tp. The steps were �T r = 	(1 − T r,tp)/40
 and �ρ+ = 0.025.
The first case we studied was

f0(Tr) = fDIPPR(Tr) (33)

which obviously made possible to exactly reproduce the DIPPR vapor pressure values from Ttp to Tc

using Eqs. (28) and (31).
The second set of cases corresponded to the following equation.

f0(Tr) = exp
⌊
κ1(T

−1
r − 1)+ κ2 ln Tr + κ3(Tr − 1)

⌋
(34)

Eq. (34) can be derived from assuming a quadratic dependence in temperature for the heat of vapor-
ization, integrating the Clapeyron equation using usual assumptions, and setting P r = 1 for T r = 1. The
hierarchy of κ1 is higher than that of κ2, and the hierarchy of κ2 is higher than that of κ3. This is because
κ1, κ2 and κ3 correspond, respectively, to the independent term (C), the linear (L) term and the quadratic
(Q) term of the assumed quadratic dependence for the heat of vaporization. Hence, the only possibilities
that should be considered for Eq. (34) are: C: (κ1 �= 0, κ2 = κ3 = 0), L: (κ1 �= 0, κ2 �= 0, κ3 = 0) and
Q: (κ1 �= 0, κ2 �= 0, κ3 �= 0). The κi coefficients can be adjusted from vapor pressure data, or obtained
analytically from three (or less) selected vapor pressure data points. In all cases we evaluated the κi coef-
ficients analytically. For case C, we obtained κ1 from Eq. (34) and from the acentric factor (ω) definition,
being the result κ1 = (−7/3)(1 +ω)ln 10. This is option Cw. For case L we calculated κ1 and κ2 from ω

and from the triple point vapor pressure (Ttp, P
sat
tp ) (option LwTP). For case Q we computed κ1, κ2 and κ3

from ω, from the boiling point Tb and from (Ttp, P
sat
tp ) (option QwTPTb). To quantify the κi coefficients

we analytically solved a 1×1/2 ×2/3×3 linear system of equations, based on Eqs. (30) and (34), for the
case C/L/Q. Depending on the particular problem, the user may select other vapor pressure data points.

The form of function fDIPPR(Tr) is similar to that defined by Eq. (34). The difference is in the last term
within the exponential argument, which is linear for Eq. (34) and is proportional to a compound-specific
integer power of temperature for fDIPPR(Tr). For most of the cases studied here such power is greater than
unity.

From the calculated κi coefficients we computed the EXT-LJ-EOS vapor pressure from the triple point
temperature up to the critical temperature using Eqs. (28), (31) and (34).

Table 2 shows the interpolation/extrapolation accuracy in vapor pressure for options Cw, LwTP and
QwTPTb. Table 2 also reports ranges of conditions at which the EXT-LJ-EOS violates restriction (32).
This is shown for options Cw, LwTP and QwTPTb, and also for the case f0(T r) = f DIPPR(T r).
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For option Cw relative errors in vapor pressure are very high in the low temperature region. We expected
this, because the input experimental information for this option corresponds to T r = 0.7, and hence option
Cw acts as an extrapolation scheme at low temperatures. Thus, for option Cw, we only report errors for
T r > 0.6 in Table 2. Within this restricted temperature range the results are acceptable for most of
the compounds (alcohols are an important exception). However, at some conditions, the model violates
restriction (32). For option Cw, Table 2 reports errors in vapor pressure for T r > 0.6, and conditions of
violation of restriction (32) for the range [Ttp, Tc]. As an example, consider the case of propane: Table
2 shows that violations to Eq. (32) may only occur, for option Cw, between T r = 0.23 and T r = 0.56,
only if the reduced pressure Pr is higher or equal than 10.9.

Table 2 shows that, for all the studied options for the temperature-dependency, the model violates
restriction (32) only at high reduced pressures, at relatively low reduced temperatures. Only for three
compounds we verified full compliance with constraint (32) (neon, argon, neopentane). From Table 2, the
violation reduced-temperature range is not sensitive to the adopted option. Depending on the considered
pure compound, the reduced pressure of incipient violation may or may not be sensitive to the chosen
option. These results show that the introduction of a temperature dependency, within an EOS, can lead
to an inconsistent behavior at some conditions. Such conditions may or may not be relevant, depend-
ing on the specific problem to which the user applies the model. For the tested compounds, violations
happened always at ρ+ values higher than 0.9–0.925, for all options considered. The violation ranges in
Table 2 could be refined by using a temperature–density grid with higher resolution than the one used
here.

We do not report errors in vapor pressure for the case f0(T r) = f DIPPR(T r), because, as expected,
the errors were obviously negligible, throughout the complete subcritical temperature range. For option
LwTP, the vapor pressure reproduction throughout the subcritical range is good for some compounds
and fair for others. On the other hand, as it can be seen from the average and maximum deviations
reported in Table 2, the description of vapor pressures is very good for option QwTPTb, i.e. within
experimental error for the vast majority of the cases. That was also the case for a relatively recent form of
the cubic Peng–Robinson EOS, i.e. the ZVPR–EOS, when used with exactly the same input experimental
vapor pressure information of option QwTPTb (‘option a’ of [12]). The study [12] for the ZVPR–EOS
corresponds practically to the same database of the present work. Since our ultimate goal is to model
real fluid viscosities based on LJ properties, we are restricted to LJ EOSs, and hence we chose the
QwTPTb–EXT-LJ-EOS rather than the ‘ZVPR–EOS–option a’. The more involved algebraic form of
the QwTPTb–EXT-LJ-EOS in comparison to that of the ‘ZVPR–EOS–option a’ should not be regarded
as an important disadvantage. Nowadays, the amount of required input experimental information is a
much more important issue than the algebraic model complexity, since experimental measurements are
much more expensive than calculations with computation times typical of routine process simulation and
design. Furthermore, there is an evident advantage in using PVT EOSs based on molecular theory, when
intending to model transport properties: computer experiments such as molecular dynamics provide not
only PVT properties, but also transport properties. Hence, with the aid of EOSs for transport properties
fitted against computer experiments data, a natural link arises between transport properties at equilibrium
and PVT properties at equilibrium. Such a link does not exist for simpler empirical EOSs.

Note that the described technique does not resort to adjustable parameters. Rather, the κi coefficients
are obtained analytically, in a way that a unique set of values of the κi coefficients is computed from the
chosen vapor pressure data points. Hence, the typical problem of multiple possible sets of (adjustable)
parameters values, with similar quantitative performance, is here avoided.
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The EXT-LJ-EOS can be extended to mixtures using the van der Waals (VW) one-fluid mixing rules
studied by Sun and Teja [4] for their LJ-EOS. These researchers [4] found that their LJ + VW EOS
could be used to correlate as well as extrapolate mixture data over considerable ranges of temperature and
pressure, and also found, on the other hand, that commonly used cubic EOS models were inadequate when
extrapolated. Sun and Teja [4] comparisons correspond to EOSs (LJ and Peng–Robinson-like), which for
pure compounds were adjusted using vapor pressure experimental data. The systems studied [4] contained
molecules of considerable complexity (e.g. water, ethanol, methane, n-decane), and the pure-compound
LJ parameters were made temperature-dependent. In spite of the non-Lennard-Jonnescity of the studied
complex molecules, which were modeled [4] using temperature-dependent effective LJ parameters, Sun
and Teja [4] concluded that the predictive power is higher for LJ-based EOSs than for cubic EOSs. The
most probable explanation for these conclusions is that LJ EOSs acknowledge the existence of discrete
molecules through forced agreement with results from molecular level computer experiments, rather than
assuming that fluids have a continuous nature.

The added calculation effort associated to LJ-EOSs in comparison to cubic EOSs should not be regarded
as a significant problem due to the ever-increasing power of modern computers.

For a multi-component system, vapor–liquid equilibrium exists if the system temperature is less than
the pure-compound critical temperature of at least one of the present components. In this case, the mixture
bubble pressure can be accurately described only if the vapor pressure is well reproduced by the EOS for at
least the most concentrated components. If the system temperature is close to the critical temperature of a
component which is at high concentration, then the model can only be successful in representing the VLE if
the experimental critical pure-compound T, P coordinates are properly reproduced. These two features are
met by the EXT-LJ-EOS if the techniques described here are applied. From these features and from the high
quality of the PVE/hBH EOS used as the basis of the EXT-LJ-EOS, a VLE performance at least compara-
ble to that of [4] should be expected when using the EXT-LJ-EOS coupled to VW one-fluid mixing rules.

10. Effect of reproducing the vapor pressure on the representation of viscosities

Fig. 3 shows the viscosity of propylene at 290 K as a function of pressure in a wide range of pressure. The
dashed vertical line corresponds to a pressure equal to 0. Curve A corresponds to the LJ viscosity calculated
according to [6], with values of ε and σ set to be constant and respectively equal to εc and σ c. Curve
A corresponds to a prediction of viscosity from the values of critical temperature and pressure given for
propylene in [18]. The squares correspond to the viscosity data available in [18]. The curve A loop comes
from the VW loop of the pressure–density–temperature LJ-EOS. The inset within Fig. 3 shows the low
pressure-low viscosity region amplified. We see that the model gives both vapor- and liquid-like viscosities
at 290 K. For liquid propylene, curve A is such that the model underpredicts the viscosity at all pressures.

From [17], propylene at 290 K has a reduced temperature T r = 0.7947 and a reduced pressure at
saturationP r = 0.2049. Introducing these values into Eq. (29), we obtain the value ofαε which reproduces
exactly the saturation pressure, i.e. αε = 1.049. From Eq. (25), we calculate the corresponding value of
ε at 290 K and use it to generate curve B of Fig. 3. For that, we use the calculation procedure of [6], but
with a value of ε which differs from εc. Curve B corresponds to a prediction of viscosity from the vapor
pressure of propylene at 290 K and from its values of critical temperature and pressure. We see that, for
propylene, forcing the LJ parameters to be consistent with vapor pressure information shifted the model
predictions in the right direction improving the model quantitative performance, mainly at high pressures.
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Fig. 3. Predicted viscosity of propylene at 290 K as a function of pressure. Curve A: LJ viscosity calculated according to [6]
with ε = εc; curve B: LJ viscosity calculated according to [6] with ε = αεεc and αε = 1.049; (�): Stephan and Lucas [18].

Fig. 3 hence illustrates what we stated in third point of Section 1. We stress that we obtained curves A and
B without using any experimental viscosity datum as input or any parameter adjusted from viscosity data.

We obtained Fig. 4 for di-chloro–di-fluoro-methane in a similar way than Fig. 3. The dashed vertical
line corresponds to the pressure of the experimental viscosity datum identified with an arrow, i.e. to
20 bar. From [17], di-chloro–di-fluoro-methane has at T = 360 K, a reduced temperature T r = 0.9352
and a reduced pressure at saturation P r = 0.6378, which corresponds to αε = 1.0193 (Eq. (29)). We
observe that forcing consistency with the vapor pressure again shifted the model predictions in the right

Fig. 4. Predicted viscosity of di-chloro–di-fluoro-methane at 360 K as a function of pressure. Curve A: LJ viscosity calculated
according to [6] with ε = εc; curve B: LJ viscosity calculated according to [6] with ε = αεεc and αε = 1.0193; (�): Stephan
and Lucas [18].
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direction. However, in this case additional corrections to the LJ reference model will be required for
reaching a better quantitative performance. Curve A is such that at 20 bar, the model gives only one root
which corresponds to a vapor phase. On the other hand, curve B gives three roots at 20 bar. One of them
corresponds to a liquid. Hence, forcing consistency with the vapor pressure produced the appearance of
a liquid-like viscosity value which corresponds to the situation found experimentally.

11. Conclusions

This work addressed the need to compute LJ densities as a function of temperature and pressure, in
wide ranges of temperature and pressure, for further use in LJ-based viscosity calculations. To that end
we chose a high-quality LJ-EOS, which has, as any other LJ-EOS, the limitations imposed by the LJ fluid
itself, rather than by the chosen LJ-EOS. An important limit is that the LJ (practical) reduced temperature
at the triple point is higher than that of real fluids. Hence, we proposed here an extrapolation scheme that
makes possible to compute LJ densities or pressures at lower temperatures. We also looked at the density
range of applicability of chosen LJ-EOS and set a linear extrapolation scheme with proper qualitative
behavior, for computations at high density. We call the original LJ-EOS coupled to our extrapolation
schemes EXT-LJ-EOS. We computed, for the EXT-LJ-EOS, the dimensionless vapor pressure at satu-
ration in an extremely wide temperature range, once for all, and correlated the results to make possible
either to compute LJ vapor pressures, or to regress parameters from experimental data, avoiding itera-
tive calculations. We exploited this result to make the EXT-LJ-EOS temperature dependence reproduce
well experimental vapor pressures. For that, we analytically obtained the needed parameters from a few
selected vapor pressure data points. We conclude that, it is possible to achieve a very good description
of the pure-compound VPC for substances of diverse nature using the EXT-LJ-EOS. However, all the
options we studied did produce violations to the requirement which states that different pressure versus
density isotherms should not intersect each other. Violations occurred only at relatively high reduced
pressures. The constraint we studied here is restriction (32). It should be inspected in a wide enough
temperature–density range whenever a temperature dependence is imposed on an EOS, regardless the
nature of the EOSs. The test is simple, and could be added to the set of modern standard tests available
in the literature [14,19]. Compliance with restriction (32) for pure compounds does not guarantee com-
pliance for mixtures when using, e.g. temperature dependent interaction parameters or, e.g. temperature
dependent mixture covolume parameters. Besides, restriction (32) could be embedded into constrained
optimization computer programs used to fit pure compound or mixture parameters from experimental
data. Within such programs, restriction (32) should be evaluated not only at the conditions of the ex-
perimental data, but also within a wide-ranging temperature–density grid. We stress that the danger of
introducing a temperature dependence into EOSs is not only limited to temperature-dependent volume
translations: any proposed EOS temperature dependence can potentially violate constraint (32). Finally,
we illustrated that a better representation of vapor pressures has a good impact on the LJ based prediction
of viscosities.

List of symbols
AAD% average absolute-value percent relative deviation = (100/NP)

∑NP
i=1|P vap

model − P
vap
exp |/P vap

exp

EOS equation of state
k Boltzmann’s constant



J.M.V. Machado et al. / Fluid Phase Equilibria 182 (2001) 75–95 93

LJ Lennard-Jones
max AD% maximum absolute-value percent relative deviation = maxNP

i=1100|P vap
model − P

vap
exp |/P vap

exp

NA Avogadro’s number
NP number of data points
P absolute pressure
Pc critical pressure
Pr practical reduced pressure = P/P c

Pvap vapor pressure
P+

SFE LJ melting P+

r intermolecular distance
T absolute temperature
Tc critical temperature
Tr practical reduced temperature = T/T c

u potential energy
z compressibility factor

Greek letters
ε depth of the LJ potential well
ρ+

fluid,SFE dimensionless density of the dense LJ fluid in equilibrium with the LJ solid
ρ mole density
ρc critical mole density
σ LJ separation distance at zero energy
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Appendix A. The assumption of constant residual pressure

A conventional linear scheme for pressure extrapolations in temperature would be the following.

P+ = P+
ref + (P+)′

T +
ref
(T + − T +

ref) (A.1)

where (P+)′
T +

ref
is the partial derivative ∂P+/∂T + evaluated at T +

ref and at ρ+. When the ideal gas state is

approached, i.e. when density tends to 0, the derivative (P+)′
T +

ref
tends to ρ+. Hence, Eq. (15) of the text can

be seen as a conventional linear extrapolation scheme in temperature, simplified through approximating
the derivative (P+)′

T +
ref

with its ideal gas expression.
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Table 3
Parameters for Eqs. (B.2) and (B.3)

Range of applicability

26.792 ≥ X ≥ 1.913714, 0.05 ≤ T+ ≤ 0.7 1.913714 ≥ X ≥ 1, 0.7 ≤ T + ≤ T +
c (T +

c = 1.3396)

Eq. (B.2)
C1 −3.9861939990000000 −3.9861948470775700
C2 −2.6866929859013500 −4.6375884689076900
C3 −3.4972762407717100 × 10−4 −3.6134532060524600 × 10−1

C4 6.5754749882896100 × 10−4 1.4119528267359000 × 10−2

C5 −1.1469464793808900 × 10−4 1.3876184735954800 × 10−2

C6 9.6938574173793900 × 10−6 −1.0492074195993400 × 10−1

C7 −4.4395676013937400 × 10−7 −7.3871672162542300 × 10−2

C8 1.0436731563233000 × 10−8 −4.7043694762065000 × 10−2

C9 −9.3439364960073900 × 10−11 5.6137946063172200 × 10−3

C10 −1.6577015678260900 × 10−13 6.0199517668712400 × 10−5

C11 1.9137143 1.9137143

Maximum errora in calculated P+ (%)
0.2 3.2 × 10−4

Range of applicability

2.442823 × 10−31 ≤ Y ≤ 1.857077 × 10−2, 0.05 ≤ T+ ≤ 0.7 1.857077 × 10−2 ≤ Y ≤ 1, 0.7 ≤ T + ≤ T +
c (T +

c = 1.3396)

Eq. (B.3)
D1 1.9137142875511800 1.9137142875511800
D2 −3.7226684284862000 × 10−1 −2.1562205993968200 × 10−1

D3 −2.0402808070806900 × 10−5 −3.6652371328205900 × 10−3

D4 −1.1893931236856300 × 10−5 −6.6675577354054800 × 10−5

D5 −7.5424792709156900 × 10−7 −8.9386803365887000 × 10−5

D6 −2.3817194433494600 × 10−8 6.2728933498223300 × 10−5

D7 −4.1521399113226400 × 10−10 −1.8028612925501300 × 10−5

D8 −3.7155915735425500 × 10−12 3.3474928821195800 × 10−6

D9 −1.1686049441009600 × 10−14 −2.0957624312109200 × 10−7

D10 1.9676957115858100 × 10−17 −5.8182590872080500 × 10−10

D11 −3.986193999 −3.986193999

Maximum errora in calculated T+ (%)
6.0 × 10−3 7.5 × 10−5

a With respect to the iterative procedure.

Appendix B. Definitions of F dir and F inv

Definition of Fdir

Y = Fdir(X) = exp(Udir) (B.1)

Udir = C1 +
10∑
i=2

Ci(X − C11)
(i−1) (B.2)
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Definition of Finv

X = Finv(Y ) = D1 +
10∑
i=2

Di(ln Y −D11)
(i−1) (B.3)

The constants Ci and Di are given in Table 3. These constants are general for the EXT-LJ-EOS.
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