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Role of leptin in female reproduction

Abstract: Reproductive function is dependent on energy 
resources. The role of weight, body composition, fat distri-
bution and the effect of diet have been largely investigated 
in experimental female animals as well as in women. Any 
alteration in diet and/or weight may induce abnormalities 
in timing of sexual maturation and fertility. However, the 
cellular mechanisms involved in the fine coordination of 
energy balance and reproduction are largely unknown. 
The brain and hypothalamic structures receive endo-
crine and/or metabolic signals providing information on 
the nutritional status and the degree of fat stores. Adi-
pose tissue acts both as a store of energy and as an active 
endocrine organ, secreting a large number of biologically 
important molecules termed adipokines. Adipokines have 
been shown to be involved in regulation of the reproduc-
tive functions. The first adipokine described was leptin. 
Extensive research over the last 10 years has shown that 
leptin is not only an adipose tissue-derived messenger 
of the amount of energy stores to the brain, but also a 
crucial hormone/cytokine for a number of diverse physi-
ological processes, such as inflammation, angiogenesis, 
hematopoiesis, immune function, and most importantly, 
reproduction. Leptin plays an integral role in the normal 
physiology of the reproductive system with complex inter-
actions at all levels of the hypothalamic-pituitary gonadal 
(HPG) axis. In addition, leptin is also produced by pla-
centa, where it plays an important autocrine function. 
Observational studies have demonstrated that states of 
leptin excess, deficiency, or resistance can be associated 

with abnormal reproductive function. This review focuses 
on the leptin action in female reproduction.
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Introduction
Reproductive function, as other physiological functions, 
depends on the energy reserves stored as fat in adipose 
tissue. The large energy requirement of a hypothetical 
pregnancy in the future was the original rationale for 
explaining the disruption of reproductive function by low 
fat stores in the present. The teleological nature of this 
argument compelled investigators to search for an endo-
crine signal that conveys information to the brain about 
the size of fat stores [1]. In 1994, leptin was the first adi-
pokine claimed to be the ‘missing link’ between fat and 
reproduction. Leptin is a 16 kDa peptide hormone secreted 
mainly from adipose tissue which plays an integral role 
in the regulation of body weight and energy expenditure 
[2]. Plasma levels of leptin are correlated with the degree 
of obesity and are regulated by feeding and fasting. At 
present, leptin is considered to be a multifunctional 
hormone that regulates not only body weight homeosta-
sis, but also thermogenesis, angiogenesis, hematopoie-
sis, osteogenesis, chondrogenesis, neuroendocrine, and 
immune functions, as well as arterial pressure control 
[3–6]. These actions of leptin are consistent with its 
production by various tissues and organs, such as the 
stomach, skeletal muscle, pituitary cells and the placenta 
[7]. Compelling evidence has also implicated leptin in 
reproductive functions, such as the regulation of ovarian 
function, oocyte maturation, embryo development as well 
as implantation and placentation [8, 9]. This influence 
of leptin on human reproductive function was indicated 
by observed associations of leptin or leptin-receptor defi-
ciency with impaired reproductive development [10–12].
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The leptin receptor (LEPR), product of the diabetes (db) 
gene, is a member of the class I cytokine receptor super-
family, with six known isoforms. LEPRb is primarily found 
in the hypothalamus and is involved in satiety response 
[13]. There are three other membrane bound LEPR isoforms 
LEPRa, LEPRc, LEPRd and LEPRf (short forms) which vary 
from the full length LepRb depending on the length of the 
intracellular domain. Their function also varies depending 
on the tissue in which they are localized and the length 
of the cytoplasmic tail. The short isoform LEPRa has a 
role in the leptin transport across the blood-brain barrier 
[14]. Other functions include leptin cellular internaliza-
tion and signaling through the MAPK pathway [15, 16]. The 
fifth LEPR isoform is a soluble form (LEPRe). This form 
does not contain the transmembrane domain or intracel-
lular domains. In vitro studies have shown that a human-
derived LEPRe isoform can occur by  post-translational 
modification by proteolytic cleavage [17].

The LEPRb, which contains a long intracellular domain, 
is the only isoform with two of the protein motifs necessary 
for activation of the Janus kinase 2 and signal transducers 
and activators of transcription (JAK-STAT) pathway [18], the 
major signaling mechanism activated by the LEPR. Activa-
tion of JAK-2 stimulates the phosphorylation of multiple 
residues (Tyrosine 985, Tyrosine 1138, and Tyrosine 1077) 
on the intracellular domain of LEPRb. Phosphorylation 
of each of these residues leads to the recruitment of a dis-
tinct set of downstream signaling molecules. By example, 
phosphorylated Tyr985 recruits the SH2-containing tyros-
ine phosphatase 2(SHP2), which presents the first step in 
the activation of the extracellular signal-regulated kinase 
(MAPK) cascade [19]. Additionally, phosphorylated Tyr985 
also recruits SOCS3, a negative regulator of leptin action. 
Phosphorylation of tyrosine residue 1138 mainly recruits 
the transcription factor signal transducer and activator of 
transcription 3 (STAT3), which upon subsequent, JAK-2-de-
pendent, phosphorylation translocates to the nucleus to 
regulate specific gene expression. It has been reported that 
hypothalamic leptin control of reproduction is regulated 
by signals independent of STAT3 signaling [20]. Finally, 
the phosphorylation of Tyr1077, the major phosphorylation 
site mediating leptin’s effects on reproduction, promotes 
the recruitment and transcriptional activation of STAT5 
[19] and is required for ongoing appropriate function of the 
female reproductive function [21].

Other intracellular signaling pathways have been 
reported to be stimulated by leptin including activation of 
phosphatidylinositolkinase-3 (PI3K) and the mammalian 
target of Rapamycin (mTOR) and inhibition of the AMP-
dependent protein kinase (AMPK) [22]. Therefore, leptin 
signaling via LEPRb Tyr1077 might serve as an important 

mechanism by which leptin modulates endocrine func-
tion, linking body adiposity and the reproductive axis.

Research has demonstrated that leptin plays an 
integral role in the normal physiology of the reproduc-
tive system with complex interactions at all levels of the 
hypothalamic-pituitary gonadal axis (HPG) (stimulatory 
effects at the hypothalamus and pituitary and inhibitory 
actions at the gonads). Thus, leptin serves as a putative 
signal that links metabolic status with the reproductive 
axis. The intent of this review is to examine the biologi-
cal role of leptin with emphasis on its actions in female 
reproduction. The effects of obesity on pregnancy rates 
and complications, together with the effects on delivery 
and fetal morbidities and mortality will not be included 
in this article, and readers should therefore refer to recent 
reviews on these issues [23, 24].

Role of leptin in the regulation of 
gonadotrophs secretion
Gonadotropin-releasing hormone (GnRH) cells of the hypo-
thalamus are the primary regulators of the reproductive 
axis, regulating puberty and ovulation. Most of the GnRH-
producing cells in the brain reside in the preoptic area of 
the hypothalamus. GnRH is secreted into the hypophyseal 
portal blood vessels and controls secretion of the pituitary 
gonadotropins luteinizing hormone (LH) and follicle-stim-
ulating hormone (FSH). The hypothesis that leptin plays 
an important role in regulating GnRH secretion, and ulti-
mately in reproduction, stems from several findings. The 
ob/ob mouse, lacking a functional leptin gene, is infertile 
and has atrophic reproductive organs [25]. Treatment with 
leptin rejuvenates the reproductive system in ob/ob mice, 
leading to growth and function of the reproductive organs 
and fertility [25] via secretion of gonadotropins [25, 26]. In 
human, patients lacking leptin protein [12] or functional 
LEPRs [11] do not attain pubertal maturity and have low 
serum levels of follicle-stimulating hormone and LH. The 
initiation of the menstrual cycle and the function of the 
reproductive system in women suggest the existence of 
a critical threshold leptin concentration. Moreover, the 
LEPR is expressed abundantly within the hypothalamus 
[2, 27–29], mainly present in arcuate and ventromedial 
hypothalamic nuclei controlling both sexual behavior 
and food intake [28, 30]. In the hypothalamus, leptin has 
a direct stimulatory effect on the HPG axis by accelerating 
GnRH secretion in the arcuate hypothalamic neurons in a 
dose-dependent manner. However, GnRH neurons in the 
preoptic area do not express LEPR-b, indicating that leptin 
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indirectly regulates these cells by acting on interneurons 
upstream of GnRH neurons. In fact, GnRH cell bodies are 
not affected by leptin directly [31] and other neuropep-
tides (target for leptin), such as NPY [32, 33] and kiss-
peptin [30, 34–36] and proopiomelanocortin (POMC) [35] 
could mediate the action of leptin. In addition to the stim-
ulatory effect on the HPG axis at the hypothalamic level, 
leptin has direct effects on the anterior pituitary as well 
[37]. Almost 90% of the gonadotropes in the pars tuberalis 
(i.e., the portion of the pituitary in close proximity with 
the primary plexus of the hypophyseal portal system) and 
30% of the gonadotropes in the pars distalis express LEPR 
[38]. Results from pituitary tissue culture studies demon-
strated that leptin induces a dose-related increase in LH, 
FSH, and prolactin (PRL) release [39] via nitric oxide syn-
thase activation in the gonadotropes [40]. In fact, several 
reports demonstrated that inhibition of LH secretion by 
restricted-feeding was reversed with leptin treatment, 
demonstrating a positive association between LH secre-
tion and leptin [41–43]. Moreover, as much as 20%–25% 
of anterior pituitary cells, predominantly folliculostellate 
cells and corticotropes, express leptin, which may serve to 
regulate pituitary cell growth and differentiation in addi-
tion to its effect on LH/FSH secretion [44]. In addition, 
leptin regulates gonadotropin secretion via the regulation 
of GnRH function [45], which, could be mediated through 
kisspeptin neurons indirectly via its action at NPY and (or) 
POMC cell bodies.

As leptin has been shown to be influenced by steroid 
hormones and can stimulate LH release, it has been 
hypothesized that leptin acts as a permissive factor in the 
development of puberty [46]. In leptin-deficient (ob/ob) 
mice leptin administration accelerates sexual maturation 
and puberty in normal female mice [47, 48]. In fact, the rise 
in leptin levels may be the earliest signal of the initiation 
of puberty and may contribute to activation of the HPG 
axis, resulting in increased sex steroid production and 
subsequent activation of the GH/IGF-I axis. Rodents and 
humans with LEPR deficiency have hypothalamic hypog-
onadism, resulting in delayed pubertal development and 
infertility too. In these, atrophic uterine and ovarian size, 
abnormal estrous cyclicity and impaired mammary gland 
morphology and function have been reported [11, 49, 50]. 
Moreover, synchronicity of LH, estradiol, and leptin rhyth-
micity has been demonstrated during the mid-to-late folli-
cular phase of the menstrual cycle in healthy women [51]. 
Taken together, these studies indicate that leptin either 
regulates or contributes significantly to the regulation of 
LH secretion [52–54].

In summary, leptin augments secretion of gonado-
tropin hormones, which are essential for initiation and 

maintenance of normal reproductive function, by acting 
centrally at the hypothalamus to regulate GnRH neu-
ronal activity and secretion, as well as acting directly on 
gonadotropes.

Role of leptin in ovary function
Not only does leptin participate in the control of gonado-
tropin secretion via its hypothalamic/pituitary actions, 
but circulating or locally produced leptin may also provide 
direct modulation of ovarian function. Leptin protein has 
been found in follicular fluid, with concentrations cor-
responding to those reported in serum [55]. Leptin plays 
a role in both follicular development, where leptin tran-
script has been detected at early follicular stages, whereas 
leptin protein appears only in mature follicles [56], and 
subsequent luteal function. Moreover, LEPRs have been 
identified in granulosa, theca and interstitial cells of the 
human ovary [55, 57]. In these, several in vitro studies 
have demonstrated that treatment with  medium-high 
physiologic doses (beginning from 10  ng/mL) of leptin-
inhibited steroidogenesis in human granulosa and theca 
cells [58, 59] and lead to a marked decline in the number 
of ovulated oocytes [60]. Thus, high leptin concentra-
tions in the ovary may suppress estradiol production and 
interfere with the development of dominant follicles and 
oocyte maturation, predisposing to anovulation. There-
fore, conditions with excess energy stores or metabolic 
disturbances, such as obesity and polycystic ovarian syn-
drome, leptin have an inhibitory effect on the gonads. 
However, in suboptimal nutritional status, such as eating 
disorders, exercise-induced amenorrhea, and functional 
hypothalamic amenorrhea, leptin deficiency results in 
HPG dysfunction [52], raising the possibility that rela-
tive leptin resistance or deficiency may be at least partly 
responsible for the reproductive abnormalities that occur 
in these pathophysiological conditions.

Role of leptin in preinplantational 
embryo
Relatively little research has focused on receptor-medi-
ated events in maturing oocytes and pre-implantation 
embryos. However a significant role of leptin in implanta-
tion has been proposed. While leptin correlates with pro-
gesterone concentrations throughout the cycle [61], LEPRs 
in oocytes might also influence oocyte maturation and 
development [62]. In fact, in mouse oocytes [63–65] leptin 
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induces tyrosine phosphorylation of STAT3, a major intra-
cellular leptin signal transduction protein in mouse met-
aphase II stage oocytes [64]. Moreover, LEPR and leptin 
mRNA is specifically expressed at the blastocyst stage, 
suggesting a function in the blastocyst-endometrial dialog 
[8]. In a human in vitro model, it was observed that leptin 
was present in conditioned media from human blasto-
cysts whether or not they were cocultured with endome-
trial epithelial cells [66]. Thus, in embryo culture media, 
leptin promoted the development of embryos from the 
two-cell stage to blastocysts, fully expanded blastocysts, 
and hatched blastocysts [63]. The higher leptin secretion 
found in competent human blastocyst cultures, compared 
with arrested blastocysts, suggests that this molecule may 
be a marker of cell viability. In line with this, leptin has 
concentration and stage-dependent effects on embry-
onic development in vitro. Differences between arrested 
and competent blastocysts suggest autocrine/paracrine 
regulation of leptin between endometrial epithelial cells 
and preimplantation embryos [67]. However, exposure of 
porcine or ovine oocytes to leptin during in vitro matura-
tion and subsequent embryo culture after IVF resulted 
in the formation of fewer blastocysts relative to controls 
[68]. Since the endocrinology of pregnancy, in general, 
and leptin, in particular, are not well conserved between 
species, the extrapolation of data from rodent to human 
physiology is not feasible [69].

Role of leptin in implantation
Embryo implantation represents the most critical step of 
the reproductive process, involving a complex sequence 
of signaling events that are crucial to the establishment of 
pregnancy. A large number of identified molecular media-
tors have been postulated to be involved in this early 
feto-maternal interaction, including hormones, adhesion 
molecules, cytokines, growth factors, lipids and others 
[70]. In this sense, it has been reported that both leptin and 
LEPR are expressed in the glandular and luminal tissues 
of the endometrium throughout the menstrual cycle [8, 
62, 71]. More specifically, low LEPR levels observed during 
the early proliferative phase are followed by a gradual 
increase and peak in the early secretory phase of the men-
strual cycle, suggesting that LEPRs may be regulated by 
ovarian steroids, and that leptin might have a physiologi-
cal role in the implantation of a fertilized egg [66].

The obligatory nature of leptin signaling in mamma-
lian implantation was illustrated by experiments in the 
mouse demonstrating that endometrial LEPR expression 

was pregnancy-dependent and that intrauterine injec-
tion of a leptin peptide antagonist or a leptin antibody 
impaired implantation, suggesting that secretory endo-
metrium is also a target tissue for leptin action. In fact, 
the blastocyst becomes intimately connected to the mater-
nal endometrial surface to form the placenta [72] and 
oocytes and preimplantation embryos also express LEPR 
mRNA, as mentioned above, indicating that leptin may be 
necessary for embryonic development. In line with this, 
a deficiency in functional LEPR expression in the endo-
metrium has been found in patients with subfertility who 
had evidence of an endometrial maturation defect [73]. 
Further evidence for the importance of leptin in implanta-
tion is the fact that in cytotrophoblasts, leptin increases 
the expression of matrix metalloproteinases (MMP-2 and 
MMP-9), which have been implicated in trophoblast inva-
sion [74–76].

Role of leptin in placentation
The placenta is a complex organ that enables the mam-
malian embryo to survive within the intrauterine environ-
ment. The diversity of functions performed by the placenta 
is impressive, ranging from anchoring the embryo and 
preventing its rejection by the maternal immune system 
to enabling the transport of nutrients and waste between 
mother and the embryo [77]. Similarly to adipose tissue, 
placenta is a potent endocrine organ capable of express-
ing and secreting leptin. In fact, human placental leptin 
is identical to that derived from adipose tissue in terms of 
size, charge, and immunoreactivity [78], but it has a spe-
cific upstream enhancer, known as the placental leptin 
enhancer region [79], implying that leptin gene expression 
is regulated differently in placenta than in adipose tissue. 
In this regard, it has been reported that gestational hor-
mones, such as b-hCG, estrogen progesterone and human 
placental lactogen (hPL) as well as hypoxia, insulin, 
glucocorticoids, several interleukins (IL-1a, IL-1b, IL-6), 
interferon-γ and cAMP, regulate placental leptin expres-
sion [74, 76, 80–86]. In humans, with the progression of 
placentation, two pathways of cytotrophoblast differen-
tiation lead to the formation of two distinct phenotypes. 
In the villus, cytotrophoblast cells undergo cellular fusion 
and differentiation to form syncytiotrophoblast, while the 
extravillous trophoblast proliferates and migrates into the 
decidua, remodeling the pregnant endometrium [87]. In 
this sense, leptin, as well as LEPRs have been shown to be 
localized to the syncytiotrophoblast of the placenta facing 
maternal circulation [16] suggesting that leptin may act 
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through a paracrine or autocrine mechanism on placen-
tal function. Besides, previous studies have demonstrated 
the interactions between leptin and some placental hor-
mones, implicating leptin also as a modulator of placental 
endocrine function [88].

Short and long LEPR isoforms as well as the soluble 
receptor have been characterized in human placenta [16]. 
Moreover, it has been reported that multiple signal trans-
duction pathways are activated in response to leptin both 
in JEG-3 cell culture and in human term placenta [89]. 
Leptin is able to stimulate Janus kinase (JAK)-signal trans-
ducers and activators of transcription (STAT) pathway by 
promoting JAK-2 and STAT-3 tyrosine phosphorylation, 
which have been correlated with trophoblast invasive-
ness [90]. The signal transduction pathways involving 
mitogen-activated protein kinase (MAPK), which mediates 
a proliferative response, as well as PI3K, which regulates 
the invasive differentiation of human trophoblast, have 
also been found to be signaling pathways activated in 
response to leptin [89, 91]. Therefore, as trophoblast cells 
produce leptin locally, once bound to placental receptors, 
leptin triggers local and peripheral effects. In this way, it 
has been reported that placental leptin induces hCG pro-
duction in trophoblast cells and increases the synthesis 
of extracellular matrix proteins and metalloproteinases 
(MMP-2 and MMP-9) that are involved in extracellular 
matrix remodeling [76]. In addition, leptin is a trophic 
and mitogenic factor for trophoblastic cell line by virtue of 
inhibiting apoptosis and promoting proliferation [92]. In 
this context, it has reported that leptin promotes growth, 
proliferation and cell survival of trophoblastic cells [89] by 
activating JAK-STAT, MAPK, and PI3K signaling pathways 
[93–96]. More specifically, leptin enhances cell prolifera-
tion in a dose- and time-dependent fashion, displaced the 
cells towards a G2/M phase as well as upregulated cyclin 
D1 expression, one of the key cell cycle-signaling proteins 
[92]. In fact, it was demonstrated that the MAPK pathway 
is the major signaling pathway to mediate the antiapop-
totic effect of leptin in placenta [89] while that PI3K activa-
tion may mediate other functions of leptin in placenta. In 
this sense, both PI3K and MAPK pathways were reported 
to mediate the protein synthesis effect of leptin in pla-
centa, via activation of the translational machinery (phos-
phorylation state of EIF4EBP1 and EIF4E) [94, 95]. This 
may be relevant both physiologically and pathophysiolog-
ically since a decrease in EIF4EBP1 phosphorylation has 
been recently found in fetuses with intrauterine growth 
restriction resulting from impaired placental development 
[94]. Recently, we have described the participation of the 
RNA binding protein Sam68 in leptin signaling in human 
trophoblastic cells, mediating the growth promoting 

effect of leptin [97, 98]. Concentrations of leptin in human 
cord blood correlate with placental size. This is in agree-
ment with the role of leptin in regulating placental 
growth, which potentially leads to placental hypertrophy 
under conditions of leptin overproduction, such as the 
placenta of women with gestational diabetes (GDM) [99, 
100]. Increased leptin and LEPR expression in placenta 
from GDM patients have been well described [86, 101]. 
Besides, it has been also reported an increased phospho-
rylation state of different proteins implicated on the ini-
tiation stage of translation, and as a result, an increased 
protein synthesis rate in placentas from GDM, suggesting 
a molecular mechanism for the observed increase in the 
placenta weight in GDM [86, 102]. In fact, the placental 
dysfunction in women with GDM is also associated with 
increased amino acid transport [103].

More physiological effects of placenta-derived leptin 
include angiogenesis and immunomodulation. Leptin 
has been shown to be a regulator of angiogenesis by 
enhancing expression of vascular endothelial growth 
factor (VEGF) and its receptor VEGF-R2 and by inducing 
neovascularization [104, 105]. Data suggest that altera-
tions in leptin levels and the soluble LEPRs may disrupt 
normal angiogenic events and remodeling events during 
placental development and could lead to hyperactivation 
of the angiogenic pathways thus resulting in endothelial 
dysfunction. Moreover, leptin might modulate the activa-
tion of natural killer (NK) cells (70% of the decidual leu-
kocyte population), which produce an array of angiogenic 
growth factors including angiopoietin-1 (Ang-1), Ang-2, 
and VEGF-C and have been implicated in decidual vascu-
lar remodeling [106, 107].

Leptin is a key modulator of the inflammatory and 
immune responses, preventing the embryo rejection by 
the maternal immune system [77] and regulating genera-
tion of arachidonic acid products, nitric oxide induction, 
and T cell cytokines [78], which play an important role in a 
number of normal and abnormal inflammatory processes, 
including the initiation and progression of human labor 
and delivery [108, 109]. Thus, placental leptin may have a 
local autocrine immunomodulatory or anti-inflammatory 
role [110]. However, deeper understanding of the immu-
nology of the maternal-fetal interface promises to yield 
significant insight into the pathogenesis of many human 
pregnancy complications, including preeclampsia, intra-
uterine growth restriction, spontaneous abortion, preterm 
birth, and congenital infection.

In summary, the localization of leptin and its recep-
tor in human placental indicates that leptin may have 
both autocrine and paracrine activities as a local immu-
nomodulatory signal [111]. Deregulation of the autocrine/
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paracrine function of leptin at the feto-placentomaternal 
interface may be implicated in the pathogenesis of GDM, 
preeclampsia, and intrauterine fetal growth restriction 
[112, 113], as described in the next section.

Role of leptin in pregnancy
Pregnancy with its associated hormonal changes (espe-
cially insulin, glucocorticoids, estrogens, and PRL) 
appears to be a state of physiologic hyperleptinemia and 
leptin resistance, with uncoupling of eating behavior and 
metabolic activity [114]. It is well known that serum leptin 
levels are higher in pregnant as compared to non-pregnant 
women [115–117]. Moreover, serum leptinemia correlates 
with maternal body weight [118]. However, this eleva-
tion does not appear to be mediated by increased body 
weight and adiposity, since circulating leptin concentra-
tions increase dramatically well before the occurrence of 
increased body weight [116]. Current data demonstrate 
that placenta is capable of contributing significantly to 
the higher levels of leptin seen in maternal circulation 
during healthy pregnancy [61, 114, 119, 120]. In fact, pla-
cental leptin expression patterns coincide with maternal 
serum leptin levels. Maternal leptin serum levels steadily 
increase during the first and second trimesters and peak 
in late second or early third trimester [61, 114, 121]. These 
high levels are maintained throughout the remainder of 
gestation and decline drastically postpartum. Moreo-
ver, in pregnancy, increases in LEPRe are also observed. 
Hence, leptin resistance may result from an inability of 
leptin to disassociate from leptin-LEPRe complex leading 
to decreased free leptin and decreased binding to mem-
brane bound receptors or by the inability of leptin-LEPRe 
complex to cross the blood-brain barrier and reach its 
target tissue. This central leptin resistance may act as a 
compensatory mechanism to meet the developing fetal 
energy needs akin to the maternal insulin resistance that 
occurs in later gestation. Interestingly, normal weight 
pregnant women and obese non-pregnant individuals 
seem to have similar increases in circulating leptin levels 
compared with their counterpart non-pregnant or healthy 
controls. They also exhibit alterations in signaling of the 
appetite center of the brain, (i.e., both exhibiting a form of 
leptin resistance).

The current view is that the maternal metabolic envi-
ronment may generate stimuli within the placenta result-
ing in the increased production of leptin and inflammatory 
cytokines whose expression is minimal under normal 
pregnancy. In this sense, there are several pregnancy 

molecules and hormones, commonly increased in the 
course of pregnancy, involved in leptin up-regulation in 
the placenta. Leptin expression has been shown to be up-
regulated by different pregnancy hormones, such as chori-
onic gonadotrophin, and 17beta-estradiol, and by second 
messengers, such as cyclic adenosine 5′-monophosphate, 
mediated through MAPK and PI3K signaling pathways [83, 
122–126]. Hyperinsulinemia in the pregnancy, probably 
also may regulate placental leptin production, perhaps 
acting as a circulating signal to control fetal homeosta-
sis [102]. In fact, insulin is an inducer of leptin produc-
tion in human placenta as shown in vivo [84], enhancing 
the activity of leptin promoter region [85]. This may be 
relevant in gestational diabetes [6, 86, 112, 127], a state 
of greater insulin resistance and hyperinsulinemia than 
normal pregnancies. In this line, numerous studies have 
reported that circulating leptin levels, as well as placen-
tal leptin and LEPR expression are significantly higher in 
pregnant women with GDM compared to healthy control 
women with uncomplicated pregnancy [128, 129], pro-
viding, at least, a molecular mechanism for the placenta 
overgrowth previously observed in GDM [99, 100]. Others 
common complications of pregnancy, such as type 1 dia-
betes mellitus (T1DM) and preeclampsia are also associ-
ated with an increase in the concentration of leptin in 
the maternal blood as well as an increase in placental 
leptin gene expression [130, 131]. In addition, it has been 
observed an increase in the LEPRe expression in the cyto-
trophoblast layer of the placenta in preeclampsia com-
pared to healthy pregnancy [16].

Intriguingly, elevated leptin levels in venous cord 
blood correlate significantly with the development of 
preeclampsia in human females [132]. This increase in 
leptin levels occurs before clinical symptoms of preec-
lampsia are present, which usually are observed in the 
third trimester of pregnancy, a time at which maternal 
serum leptin levels typically decline. However, a causative 
role for leptin in the development of preeclampsia has not 
been established yet.

Finally, it has been hypothesized that leptin, in 
concert with other hormones upregulated during preg-
nancy (i.e., estrogens), may be a local growth factor acting 
as a functional link between adipocytes and epithelial 
cells of the mammary gland, providing information on the 
adequacy of energy stored in adipose tissue. Intriguingly, 
the highest level of LEPR expression occurred during mid-
pregnancy when active growth of the mammary gland 
is initiated, indicating that the LEPR may be important 
in regulating mammary gland growth and development 
during pregnancy and lactation [133]. Thus, absence of 
leptin may result in failure of mammary gland growth and 
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subsequent failure of lactation, as evidenced by the com-
plete failure of lactation in ob/ob female mice after an oth-
erwise normal delivery [134]. These results argue against 
an important role of leptin on pregnancy, however, leptin 
has also been detected in colostrum and breast milk and 
results from regional production by mammary epithelial 
cells and diffusion from the maternal circulation [135]. In 
this sense, leptin may play an important regulatory role in 
suckling offspring, possibly affecting growth and/or food 
intake [135, 136].

The argument against a relevant role of leptin in preg-
nancy has also been raised in humans. Thus, it has recently 
been reported a clinical case that describes a spontane-
ously conceived pregnancy in a woman with a LEPR muta-
tion and the child’s growth and development have been 
normal, an observation that calls into question the belief 
that leptin is necessary for normal reproductive function 
[137]. In any case, since placenta trophoblast is developed 
from the embryo, the placenta from this woman with a 
LEPR mutation may express LEPR, and therefore, leptin 
may be important for the placenta growth and function.

In summary, leptin may have regulatory roles in preg-
nancy, and the leptin resistance in healthy pregnancy 
seems to be central and beneficial for mobilizing energy 
stores to support adequate fetal growth.

Role of leptin in fetal development
Several studies have shown that leptin also regulates fetal 
growth and development [7, 82, 138], however, whether 
the placenta contributes to circulating fetal leptin is still 
under debate. Leptin are localized in villous vascular 
endothelial cells in direct contact with maternal and fetal 
blood, respectively [139]. Even though leptin is secreted 
by the placenta into the fetal circulation, the rate of this 
secretion is minimal (98.4% released into the maternal 
and 1.6% into the fetal circulation) [140] and increases 
during late pregnancy in parallel with an upregulation of 
expression of the shorter isoforms of the LEPR in the pla-
centa [141, 142]. To date leptin levels in fetal blood are still 
believed to be mostly independent from placental and/or 
maternal contributions and correlate more with fetal fat 
mass, as it does in the adult, reinforcing this notion [120, 
143]. In accordance with this, an increase in circulating 
leptin levels in macrosomic fetuses and decreased leptin 
levels in growth restricted fetuses have been reported 
[128, 144].

However, it has been demonstrated that augmentation 
of placental leptin expression may have a contribution to 

fetal growth, independently of maternal glucose control 
[145]. In addition, fetal concentrations of leptin and 
insulin are increased in venous cord blood without modi-
fication of maternal circulating leptin levels [30], suggest-
ing that placental leptin release is more important for fetal 
than for maternal leptin levels. It is interesting to note that 
elevated venous cord leptin levels have also been shown 
to correlate significantly with increased birth weight [146], 
suggesting that increased levels of leptin in venous cord 
blood could possibly be a causative factor for the higher 
birth weights typically observed in infants born from dia-
betic women. In this sense, insulin has been involved in 
the regulation of placental leptin [85, 86] and recent data 
have provided new molecular mechanisms that might 
underlie the increased growth of placenta and fetal over-
growth observed in GDM [85, 86]. Briefly, an increased 
leptin production stimulated by insulin might act as a 
fetal growth factor and as result, giving rise to large-for-
gestational-age infants. In fact, cord blood leptin levels 
are elevated in infants of diabetic mothers and in large-
for-gestational-age newborns [130]. However, whether 
increased leptin production is due to increased fetal fat 
mass [147, 148] or others factors could affect adipose tissue 
in the fetus remain unclear, and further investigations 
regarding the feto-maternal leptinemia are necessary to 
clarity this point [149, 150].

Thus, it is possible that fetal plasma leptin could be 
derived from the placenta (leptin mRNA is detected from 
early gestation, i.e., weeks 7–14, up to term [151]) and from 
fetal adipose tissue, which appears and develops progres-
sively from 14 weeks of gestation to term [152]. Anyway, 
there is evidence that leptin may have a range of neu-
roendocrine and endocrine actions in the fetus. Leptin 
has been shown to bind to LEPRs in fetal organs, sug-
gesting that leptin may be able to influence fetal growth 
and development [111]. The high level of expression of 
leptin (and its receptor) [140] in fetal bone suggests a role 
for leptin in bone or cartilage development, as well as in 
the development of ossification. In fact, leptin plays an 
important role in the regulation of fetal skeletal develop-
ment, acting on both chondrocyte and osteoblast differ-
entiation and proliferation [138]. More specifically, fetal 
serum leptin levels are negatively correlated with serum 
markers of bone resorption [153], suggesting a possible 
effect of leptin on the overall increase of bone mass by 
decreasing bone loss. Leptin may also be associated with 
fetal pulmonary system during intra-uterine development 
[82]. In addition, leptin has a role stimulating myelopoie-
sis, erythropoiesis, lymphopoiesis, and thus, it may also 
promote maturation of the fetal immune system [140, 154]. 
The presence of mature leptin protein in several tissues of 
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the fetus contrasts with the absence of leptin in the corre-
sponding adult tissues [140, 155]. This suggests that leptin 
is a growth factor in fetal development, rather than acting 
as a signal of fetal energy stores to the fetal CNS, as it does 
in adults. Thus, leptin may be considered an important 
factor during fetal organogenesis.

Finally, a role for leptin in the early programming 
of later obesity has also been suggested. A programmed 
alteration in the synthesis, secretion or actions of leptin 
may play a role in the early origins of later obesity follow-
ing exposure to either relative over- or undernutrition in 
early life [156].

In summary, these data suggest that leptin has a role 
in intrauterine and neonatal development and that the 
placenta provides a source of leptin for the growing fetus.

Conclusions
As discussed in this review, leptin control of reproduction 
has been intensely studied over the past several years. 
Clearly, neuroendocrine actions of leptin and signaling 
mechanisms have received most of the attention and are 
the best understood at this time. We can conclude that 
leptin controls reproduction depending on the energy 
state of the body, and sufficient levels of leptin are a pre-
requisite for the maintenance of reproductive capacity. 
Leptin plays an integral role in the normal physiology of 
the reproductive system with complex interactions at all 
levels of the HPG axis. At the central level, leptin has a 
stimulatory effect in the regulation of gonadotropin secre-
tion. Whether this is a direct or indirect effect of leptin’s 
action on kisspeptin neurons is yet to be fully resolved. At 
the peripheral level, in the ovary, leptin antagonizes the 
effect of growth factors on gonadotropin-stimulated ster-
oidogenesis, to augment reproductive function of females.

Moreover, leptin signaling mainly involves activation 
of JAK/STAT, MAPK/ERK and PI3K pathways in the cell, 
however, the LEPR-Tyr1077-Stat5 might serve as an impor-
tant mechanism by which leptin modulates endocrine 
function, linking body adiposity and the reproductive 
axis. Future studies have to resolve the question of how 
leptin Tyr1077-Stat5 signaling controls reproduction.

Leptin and LEPRs are expressed in other sites, such 
as mammary epithelial cells, blastocyst, endometrium, 
placenta, immune system and fetal tissues, leading to 
the suggestion that leptin may have additional regula-
tory roles in successful establishment of pregnancy, fetal 
growth and lactation. However, further work is needed 
to provide a clearer and precise role of leptin in each of 

these critical reproductive processes. The role of leptin in 
mitogenic, antiapoptotic, protein synthesis, angiogenic, 
immune modulation and placental nutrient transport is 
a widely accepted fact. Its deregulation in the placenta 
has been implicated in the pathogenesis of various disor-
ders during pregnancy, such as GDM and preeclampsia. 
Finally, observational studies have demonstrated that 
states of leptin excess, deficiency, or resistance can be 
associated with abnormal reproductive function. Future 
interventional studies involving leptin administration 
are expected to further elucidate these complex relation-
ships and potentially provide new and better options in 
our therapeutic arsenal for the reproductive function in 
women.
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