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h i g h l i g h t s

• The percolation problem of deposited dimers on square lattices is studied.
• The surfaces are generated by square patches, which can be ordered or random.
• Dimers are irreversibly adsorbed on the lattice.
• At high coverage, the final state generated is a disordered state.
• The curves separating the percolating and non-percolating regions were calculated.
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a b s t r a c t

The percolation problem of irreversibly deposited dimers on square lattices with two kinds
of sites is studied. Simple adsorptive surfaces are generated by square patches of l × l
sites, which can be either arranged in a deterministic chessboard structure or in a random
way. Thus, the system can be characterized by the distribution (ordered or random) of the
patches, the patch size l and the probability of occupying each patch θi (i = 1, 2). Dimers
(particles that occupy two neighboring sites simultaneously) are irreversibly adsorbed on
the lattice. By means of random adsorption simulations and finite-size scaling analysis, a
complete (θ1–θ2–l) phase diagram separating a percolating and a non-percolating region is
determined.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Percolation theory has been investigated in the last few decades and it is still a topic of great interest [1–27]. It studies the
emergence of long-range connectivity in many systems such as network theory [2,13–17], the flow and transport in porous
media [2,4,19], transport in disordered media [18,19], spread of disease in populations [20], forest fires [21], spread of com-
puter viruses [23], network failures [24,25], formation of gels [22], and even formation of social groups [26,27]. The percola-
tion threshold is defined as the minimum concentration at which an infinite cluster of occupied elements spans the system.

Most of the studies of percolation have taken into account that the state of sites on lattice changes irreversibly fromempty
to filled (occupied). In these cases, the temperature of the system does not play any relevant role and it is not considered.
Another interesting application of percolation theory is related to the description of the spatial distribution of particles
adsorbed (in equilibrium) on solid surfaces [28–31]. In this framework, Giménez et al. studied the percolation properties of
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the adsorbed phase of (1) interactingmonomers on square, honeycomb and triangular lattices [28,29]; (2) interacting dimers
on square lattices [29]; (3) non-interacting monomers on heterogeneous surfaces [30]; and (4) interacting monomers on
heterogeneous surfaces [31].

Despite of the number of contributions to the percolation problem, there are many aspects which are not yet completely
solved. In fact, most of the studies are devoted to the percolation of objects whose size coincides with the size of the lattice
site (single occupancy). However, if some sort of correlation exists, like particles occupying several k contiguous lattice sites
(k-mers), the statistical problem becomes exceedingly difficult and a few studies have been devoted to understanding the
percolation of elements occupying more than one site (bond) [8,9,32,33].

In Refs. [8,9,32], the percolation behavior for k-mers with a length in the interval k = 1, . . . , 15 has been studied. The
authors found that the percolation threshold exhibits an exponentially decreasing behavior as a function of the k-mer size.
This feature was observed for straight and tortuous k-mers deposited on 2D square lattices [8,9], and for straight k-mers on
3D cubic lattices [32]. In all the studied cases, the problemwas shown to belong to the randompercolation universality class.
Nevertheless, in a recent work by Tarasevich et al. [33] a nonmonotonic size dependence was observed for the percolation
threshold of straight k-mers on 2D square lattices, which decreases for small particles sizes, goes through a minimum at
k ≈ 13, and finally increases for large segments.

In all of the cases mentioned above, the particles are always deposited on a homogeneous surface. This means that all
the sites are considered to have the same probability of occupation as they are ‘‘seen’’ by the incoming particles. However, it
has been shown that even single crystal surfaces are not perfect and contain structural and energetic heterogeneities which
clearly indicate the necessity to developmore refined atomisticmodels for describing heterogeneous surfaces and for study-
ing the processes taken place on them as well. In this line, the percolation of monomers (single particles that occupy each
one single site) on heterogeneous surfaces was investigated by Nieto et al. [34]. The authors presented a simple model in
which two types of independent sites are located either in a chessboard structure or in random patches. The composition
of this system was characterized by the occupation probabilities of each type of site θ1 and θ2. Interesting (θ1 − θ2) phase
diagrams were obtained and discussed.

The aim of the present paper is to investigate the combined effect of multisite occupancy and heterogeneity. For this
purpose, dimers (particles that occupy two adjacent lattice sites) are irreversibly deposited on patchwise lattices. These lat-
tices, largely used to model adsorptive heterogeneous surfaces, are composed of two different types of sites, which in turn
are grouped into homogeneous patches or finite domains.

From an experimental point of view, numerous studies show that on some kinds of metal surfaces, molecular adsorption
is the initial step and is followed by dissociation [35,36]. In all cases, when the diatomic molecule dissociates, it is broken
into two monomers, each of which occupies a site. The distributions of such dissociated monomers and the structure of the
clusters composed of them are important in the catalytic processes. Because the dimers are randomly placed on the lattice
and randomly dissociate, the dissociative adsorption is a spatial random process. Therefore, it can be clearly illustrated by
dimer percolation models [37].

On the other hand, simple heterogeneous surfaces as studied here, have also been intensively used in modeling ad-
sorption phenomena [38]. A special class of bivariate surfaces, with a chessboard structure, has been observed to occur in
a natural system [39]. Bivariate surfaces may also mimic, to a rough approximation, more general heterogeneous surfaces
with energetic topography arising from a solidwhere a small amount of randomly distributed impurity (strongly adsorptive)
atoms are added [40].

This paper is organized as follows: in Section 2 we describe the model and the simulation technique used to obtain the
desired quantities for describing the percolation phase transition. Results are presented and discussed in Section 3. Finally,
some conclusions are drawn in Section 4.

2. Model and calculation method

The heterogeneity of the system is characterized by two parameters: the patch size l and the probability of occupying
each patch θi (i = 1, 2). The deposition of the dimers is followed by the calculation of the percolation properties by means
of the Hoshen–Kopelman algorithm [41]. For each pair (θ1, θ2) the percolation probability is obtained by averaging over
10000 samples. The procedure is repeated for several system sizes in order to make a finite-size analysis and extrapolate
the percolation probability for an infinite system.

Let us consider the substrate is represented by a two-dimensional square lattice ofM = L×L siteswith periodic boundary
conditions. There are two kinds of sites: sites 1 and sites 2, in equal concentration. These sites form square patches of size
l (l = 1, 2, 3, . . .) which are spatially distributed either in a deterministic alternate way (chessboard topography), or in a
nonoverlapping random way (random topography).

In order to easily identify a given topography, we introduce the notation lC for a chessboard topography of size l and,
similarly, lR for random square patches.

Given θ1 and θ2, the occupancy probability of each kind of site, the lattice is filled with dimers until θ1 ×M/2 sites of kind
1 and θ2 ×M/2 sites of kind 2 are occupied. The procedure is the following. (1) One lattice site is chosen at random. (2) If the
site selected in (1) is empty, then one of his four neighboring sites is selected at random. (3) If both sites are unoccupied, a
dimer is deposited on those two sites. (4) Steps (1)–(3) are repeated until the two probabilities θ1 and θ2 are satisfied or until
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jamming conditions. Due to the blocking of the lattice by the already randomly deposited dimers, the limiting or jamming
coverage, θ J

1(2) = θ1(2)(t → ∞) is less than that corresponding to the close packing (θ J
1(2) < 1).

If the coverage of sites type 1 reaches the maximum value (θ1), the step involving adsorption on type 1 sites is rejected
and the procedure is repeated until the coverage of type 2 sites reaches the value θ2, and vice versa.

An extensive overview of this field can be found in the excellent work by Evans [42] and references therein.
The central idea of the percolation theory is based on finding the minimum coverage degree for which at least a cluster

(a group of occupied sites in such a way that each one of them has at least one occupied nearest neighbor site) extends from
one side to the opposite one of the system. This particular value of the coverage degree is named critical concentration or
percolation threshold and determines a phase transition in the system. In the present model, given θ1, we look for the value
of θ2 for which percolation occurs, and that value will be our percolation threshold θ c

2 .
As the scaling theory predicts [10], the larger the system size to study, the more accurate the values of the threshold

obtained therefrom. Thus, the finite-size scaling theory give us the basis to achieve the percolation threshold and the critical
exponents of a system with a reasonable accuracy. For this purpose, the probability R = RU

L (θ) that a lattice composed of
L × L sites percolates at concentration θ can be defined [2,43,44]. RU

L (θ) is the probability of finding either a rightward or a
downward percolating cluster.

In the simulations, each run consists of the following steps: (a) the construction of the lattice for the desired fraction
(θ1, θ2), according to the scheme mentioned before, and (b) the cluster analysis by using the Hoshen and Kopelman
algorithm [41]. n runs of such two steps are carried out for obtaining the numbermU of them for which a percolating cluster
is found. Then, RU

L (θ2) = mU/n is defined and the procedure is repeated for a fixed value of θ1 and different values of θ2. A
set of n = 10 000 independent samples is numerically prepared for each pair (θ1, θ2), l and L.

The present percolation study involves dimers irreversibly adsorbed on heterogeneous surfaces characterized by the lin-
ear dimension L and the patch size l. The value of L has to be properly chosen such that the adlayer structure is not perturbed,
and considering the number and ordering of the energetic patches and their size l. Thus, L must be even and multiple of 2l.
In our calculations we have used L = 32, 48, 64, 80, 96, 112, 128 for l = 2, L = 36, 48, 60, 72, 96, 120, 144 for l = 3,
L = 40, 48, 64, 80, 96, 128, 160 for l = 4 and L = 50, 60, 70, 80, 100, 120, 140 for l = 5.

3. Results and discussion

3.1. Jamming coverage

Typical configurations corresponding to dimers (red and green circles) deposited on heterogeneous bivariate surfaces
with chessboard (3C ) and random (2R) topography are shown in Figs. 1 and 2, respectively. Black squares correspond to type
1 sites and white squares represent type 2 sites. The coverage degrees are θ1 = 0.4 and θ2 = 0.6 (Fig. 1) and θ1 = 0.4 and
θ2 = 0.7 (Fig. 2).

As mentioned in the previous section, the irreversible deposition of objects occupying more than one lattice site leads
to a final state (known as jamming state), in which no more objects can be deposited due to the absence of free space of
appropriate size and shape. Then, for each value of θ1 (θ2), the coverage of the type 2 (1) sites can reach a maximum value
(or jamming coverage), θ2(=θ

J
2 < 1)[θ1(=θ

J
1 < 1)]. Fig. 3 collects the limit values of θ2 as a function of θ1 for different

topographies and lattice sizes as indicated. In this case, θ1 is fixed at a given value and θ2 is varied up to the jamming limit.
Several conclusions can be drawn from the figure.

The coverage of the type 1 sites varies between 0 and θ
J
1 (0 ≤ θ1 ≤ θ

J
1). As it can be easily understood, θ J

1 corresponds to
the value of the jamming coverage of dimers on a homogeneous square lattice θ

J
1 ≈ 0.907 [42]. In the limit θ1 → 0 (region

not shown in Fig. 3 for clarity), the corresponding value of θ2 represents the maximum concentration of occupied sites that
is possible to reach on the type 2 patches. This value (1) depends on size and distribution of the patches, (2) increases for
increasing values of l [45] and (3) as expected, tends to 0.907 for l → ∞ (independent of the distribution of the patches).

On the other hand, in the limit θ1 → 0.907, all curves converge to a point (θ
J
1 = θ

J
2 = 0.907). In fact, the condition

θ1 = θ2 restricts the filling process to the first stage (when a coverage θ1 is reached on the type 1 patches, then a coverage
x = θ1 = θ2 is also reached on the type 2 patches) and the problem reduces to the homogeneous case. Thus, the extreme
point (θ

J
1 = θ

J
2 = 0.907) is a particular case of the condition θ1 = θ2, and does not depend on the topography.

In the intermediate range of θ1, most of curves exhibit a non-monotonic behavior: they decrease for small values of θ1,
goes through a minimum, and finally asymptotically converges towards the limit θ1 point (θ

J
1 = θ

J
2 = 0.907). Strong size

effects are observed for random topography and l = 1, where the corresponding curve grows linearly in all range of θ1.
With respect to the influence of the topography, it is interesting to note that the behavior of a curve corresponding

to a random topography of size l seems to approach that of a chessboard topography with an effective size leff > l. This
characteristic has been previously reported in studies of adsorption on heterogeneous surfaces [38]. As l → ∞, the border
effects between the patches disappear and the curves converge to a limit curve (dashed line in Fig. 3), independently of the
distribution of the patches.

Since the problem is invariant under the transformation θ1 → θ2 and θ2 → θ1, similar results to those reported in Fig. 3
can be obtained by fixing θ2 and varying the coverage of the type 1 sites up to the jamming density. The corresponding
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Fig. 1. Snapshot of a portion of a typical configuration of dimers deposited on a heterogeneous bivariate surfaceswith chessboard topography (with l = 3),
θ1 = 0.4 and θ2 = 0.6. Black squares and white squares correspond to type 1 sites and type 2 sites, respectively. Red circles and green circles correspond
to vertical and horizontal dimers, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 2. Same as in Fig. 1 for a random topography (with l = 2), θ1 = 0.4 and θ2 = 0.7. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

curves delimit the region of available values of θ1 and θ2. This situation is shown in Fig. 4 for a 2C topography. As it can be
observed, the area of the allowed region diminishes with respect to the corresponding one for the case of percolation of
monomers, where θ1 and θ2 vary in the range [0, 1] [34].

3.2. Percolation phase diagram

Once the θ1–θ2 parameter space is determined, the percolation properties of the system can be studied.
In Fig. 5(a), the percolation probability RU

L (θ2) is shown for a typical case: θ1 = 0.5, 4C topography and different values
of L as indicated. It can be seen that RU

L (θ2) increases as θ2 increases for all sizes of the system. On the other hand, as L
increases, the jump (between non-percolating and percolating state) becomes more pronounced and the curve displaces to
higher values of θ2.

The standard theory of finite-size scaling allows for various efficient routes to estimate the percolation threshold fromMC
data [2,28,43,44]. One of thismethod, whichwill be used here, is from the extrapolation of the positions θ c

2 (L) of themaxima
of the slopes of RU

L (θ2). For each size, dRU
L (θ2)/dθ2 is calculated and fitted by a Gaussian function. The corresponding value

of θ c
2 (L) is obtained from the central point of the Gaussian function, see inset in Fig. 5(b). For this quantity one expects that

θ c
2 (L) = θ c

2 (∞) + AL−
1
ν , (fixed θ1) (1)
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a

b

Fig. 3. Values of θ2 at which jamming occurs as a function of θ1 for chessboard [(a)] and random [(b)] topographies. The curves correspond to different
values of l as indicated.

Fig. 4. Allowed and forbidden regions of the parameters θ1 and θ2 for a 2C topography.

where A is a non-universal constant and the critical exponent ν is expected to be equal to ν = 4/3, as in the case of stan-
dard random percolation [2,8,9]. The interested reader is invited to see Refs. [28,43,44] for a more detailed discussion of the
method for determining the critical threshold and the critical exponents.
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a

b

Fig. 5. (a) Fraction of percolating lattices RU
L (θ2) as a function of θ2 for ordered patches with l = 4, θ1 = 0.5 and different values of L as indicated. (b)

Extrapolation of θ c
2 (L) towards the thermodynamic limit according to the theoretical prediction given by Eq. (1). Inset: dRU

L (θ2)/dθ2 and the corresponding
Gaussian fitting curve for a 4C topography, θ1 = 0.5 and L = 160.

Fig. 5(b) shows the extrapolation towards the thermodynamic limit of θ c
2 (L) according to Eq. (1) for the data in Fig. 5(a). In

this case, θ c
2 (∞) = 0.61906. This is the way of obtaining the percolation threshold for each topography and each particular

value of l and θ1.
In Fig. 6(a), the finite-size scaling analysis has been used in the whole range of the variables (θ1 and θ2) in order to

determine the percolation thresholds and the phase diagram in the case of ordered patches with l = 2. Thus, the resulting
(θ1–θ2) phase diagram (solid circles) is shown in the figure, in comparisonwith the corresponding critical line formonomers
(empty circles) on a 2C surface.

As previously discussed, the problem is invariant under the transformation θ1 → θ2 and θ2 → θ1. Consequently, the
critical lines separating the percolating and non-percolating regions are symmetrical under mirror reflection about the line
θ1 = θ2. On this line, the system behaves as a homogeneous one. This property can be observed in the figure by noting
that the line θ1 = θ2 cuts the critical lines corresponding to monomers and dimers in the points (θ1 ≈ θ2 ≈ 0.593) and
(θ1 ≈ θ2 ≈ 0.564), respectively. The value 0.593 represents the percolation threshold of monomers on homogeneous
square lattices [2], while the value 0.564 corresponds to dimers on homogeneous square lattices [8,9].

Fig. 6(a) shows also that the more important qualitative and quantitative differences between the results for monomers
and dimers are related to jamming effects. The restrictions in the (θ1–θ2) space, due to the blocking of the lattice by the
already randomly deposited dimers, lead to a decrease in the dimer percolating area with respect to the case of monomers.

The effect of the topography on the percolation phase diagramof dimers on bivariate heterogeneous surfaces is presented
in Fig. 6(b). The study indicates that: (1) for all cases, the values of θ2 on the critical line decrease for increasing values of
θ1; (2) the critical pair (θ1 ≈ 0.564, θ2 ≈ 0.564) belongs to all transition lines because the percolation threshold of dimers
deposited on a homogeneous square lattice is 0.564 [8,9]; (3) for a fixed value of θ1 and a given distribution (ordered or
random) of patches, the critical value of θ2 decreases as the patch size is increased; (4) for a fixed value of l and θ1, the
corresponding critical value of θ2 for random patches is smaller than for ordered patches; and (5) for high values of l, the
problem does not depend on lattice details and the critical lines tend to a limit curve for the limit l → ∞.

The results in Fig. 6 prove that the geometrical distribution of sites is an important property to be taken into account in
percolation problems, and here means that percolation is favored by a random distribution of patches.
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a

b

Fig. 6. (a) Percolation phase diagram of dimers on a 2C surface. Solid circles joined by a connecting line separate the percolating and non-percolating
regions. For comparison, the critical line corresponding to monomers on a chessboard surface with l = 2 is shown in open circles. (b) Critical lines
separating the percolating and non-percolating regions for dimers deposited on surfaces with different topographies as indicated.

4. Conclusions

In this work, the percolation phase diagram of irreversibly deposited dimers on heterogeneous square lattices is ad-
dressed by using irreversible adsorption simulations and finite-size scaling analysis. The surfaces are represented by two
kinds of sites: type 1 and type 2 sites form l× l patches, which can be either arranged in a deterministic chessboard structure
or in a randomway. Thus, the system is characterized by the distribution (ordered or random) of the patches, the patch size
l and the probability of occupying each patch θi (i = 1, 2).

At high coverage, the final state generated by irreversible adsorption of dimers is a disordered state (known as jamming
state), in which no more objects can be deposited due to the absence of free space of appropriate size and shape. As a
consequence of this effect, the space of the parameters θ1 and θ2 is restricted for values of coverage close to 1. Then, as a
first step to calculate the phase diagram, the curves limiting the region of available values of θ1 and θ2 were obtained for the
different studied topographies. The results revealed a strong dependence of the limit curves on topography.

In a second step, the critical curves separating the percolating and non-percolating regions were calculated for different
values of the parameters of the system. The results (1) absolutely agree in all limits with the corresponding ones from
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classical dimer percolation; (2) show that the transition lines are largely affected by the size of the patches as well as by
their geometrical distribution; and (3) indicate that percolation is favored by a random distribution of patches.
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